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Abstract

Real Algebraic Geometry in Convex Optimization

by

Cynthia Vinzant

Doctor of Philosophy in Mathematics

University of California, BERKELEY

Professor Bernd Sturmfels, Chair

In the past twenty years, a strong interplay has developed between convex optimization and
algebraic geometry. Algebraic geometry provides necessary tools to analyze the behavior of
solutions, the geometry of feasible sets, and to develop new relaxations for hard non-convex
problems. On the other hand, numerical solvers for convex optimization have led to new fast
algorithms in real algebraic geometry.

In Chapter 1 we introduce some of the necessary background in convex optimization and
real algebraic geometry and discuss some of the important results and questions in their
intersection. One of the biggest of which is: when can a convex closed semialgebraic set be
the feasible set of a semidefinite program and how can one construct such a representation?

In Chapter 2, we explore the consequences of an ideal I ⊂ R[x1, . . . , xn] having a real
radical initial ideal, both for the geometry of the real variety of I and as an application to
sums of squares representations of polynomials. We show that if inw(I) is real radical for a
vector w in the tropical variety, then w is in the logarithmic set of its real variety. We also
give algebraic sufficient conditions for w to be in the logarithmic limit set of a more general
semialgebraic set. If, in addition, w ∈ (R>0)

n, then the corresponding quadratic module is
stable, which has consequences for problems in polynomial optimization. In particular, if
inw(I) is real radical for some w ∈ (R>0)

n then
∑

R[x1, . . . , xn]2 + I is stable. This provides
a method for checking the conditions for stability given by Powers and Scheiderer.

In Chapter 3, we examine fundamental objects in convex algebraic geometry, such as def-
inite determinantal representations and sums of squares, in the special case of plane quartics.
A smooth quartic curve in the complex projective plane has 36 inequivalent representations
as a symmetric determinant of linear forms and 63 representations as a sum of three squares.
These correspond to Cayley octads and Steiner complexes respectively. We present exact
algorithms for computing these objects from the 28 bitangents. This expresses Vinnikov
quartics as spectrahedra and positive quartics as Gram matrices. We explore the geometry
of Gram spectrahedra and discuss methods for computing determinantal representations.
Interwoven are many examples and an exposition of much of the 19th century theory of
plane quartics.
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In Chapter 4, we study real algebraic curves that control interior point methods in linear
programming. The central curve of a linear program is an algebraic curve specified by linear
and quadratic constraints arising from complementary slackness. It is the union of the
various central paths for minimizing or maximizing the cost function over any region in the
associated hyperplane arrangement. We determine the degree, arithmetic genus and defining
prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These
invariants, along with the degree of the Gauss image of the curve, are expressed in terms of
the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields
an instance-specific bound on the total curvature of the central path, a quantity relevant for
interior point methods. The global geometry of central curves is studied in detail.

Chapter 5 has two parts. In the first, we study the kth symmetric trigonometric mo-
ment curve and its convex hull, the Barvinok-Novik orbitope. In 2008, Barvinok and Novik
introduce these objects and show that there is some threshold so that for two points on S1

with arclength below this threshold the line segment between their lifts to the curve form
an edge on the Barvinok-Novik orbitope and for points with arclength above this threshold,
their lifts do not form an edge. They also give a lower bound for this threshold and con-
jecture that this bound is tight. Results of Smilansky prove tightness for k = 2. Here we
prove this conjecture for all k. In the second part, we discuss the convex hull of a general
parametrized curve. These convex hulls can be written as spectrahedral shadows and, as we
shall demonstrate, one can compute and effectively describe their faces.
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Chapter 1

Introduction

In this chapter, we discuss the motivation, background and main objects of study of this
thesis. The main introductory references are [3], [16], and [64].

1.1 Convexity, Optimization, and Spectrahedra

Convexity is a basic property that naturally aries in many contexts. It is especially important
in the theory of optimization. In this section, we introduce the basic concepts from the theory
of convexity and convex optimization, in particular linear and semidefinite programming. For
a more detailed introduction to convexity, see [3].

Definition 1.1.1. A set S ⊂ Rn is convex if S contains any line segment joining two of its
points. A function f : Rn → R is convex if its epigraph {(t,x) ∈ Rn+1 : t ≥ f(x)} is a
convex set and f is concave if −f is convex. The convex hull of a set S ⊂ Rn, denoted
conv(S), is the smallest convex set containing S. That is,

conv(S) :=

{ r∑
i=1

λipi : λi ≥ 0,
r∑
i=1

λi = 1, p1, . . . , pr ∈ S
}
.

A large branch of optimization focuses on convex optimization, that is, minimizing a
convex function f over a convex set S (see [16]). By passing to the epigraph of f , it suffices
to understand the minimization of a linear function over a convex set. The possible solution
sets are the exposed faces of S.

Definition 1.1.2. Given a convex set S ⊂ Rn, we’ll say that a face of S is a subset F ⊂ S
such that for any point p ∈ F , whenever p can be written as a convex combination of elements
in S, these elements must belong to F . Furthermore, F is an exposed face of S if there
exists a hyperplane H such that F = S∩H and S lies in one of the closed halfspaces defined
by H. A vertex of S is a 0-dimensional face of S, an edge is a 1-dimensional face, and a
facet is a codimension-1 face.
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Duality is an important tool in convex optimization. One can obtain certificates for
optimality by simultaneously optimizing over a convex set and its dual [16, §5].

Definition 1.1.3. Given a convex set S ⊂ Rn, we define its dual convex body S∨ to be
the set of linear functions ` : Rn → R such that ` ≥ 1 on S.

As discussed at length in [92], the notions of duality in convexity and algebraic geom-
etry are deeply related. For a convex closed semialgebraic set S, the Zariski-closure of the
boundary of S∨ equals the algebraic hypersurface dual to the Zariski closure of ∂S.

One often considers a convex set as an affine slice of a convex cone, which is a convex
set closed under scaling by R+. One of the most studied of these cones is the non-negative
orthant (R≥0)n, which is central to linear programming.

Definition 1.1.4. A linear program (LP) is the problem of maximizing a linear function
over an affine slice of the non-negative orthant. In symbols:

Maximizex∈Rn cTx subject to Ax = b, and x ≥ 0, (1.1)

where A ∈ Rd×n is matrix of rank d, b ∈ Rd, and c ∈ Rn.

Linear programming is very well studied and many methods have been developed to solve
this problem [107, 111]. One of the techniques developed, called interior point methods, will
be studied at length in Chapter 4.

Another important cone in convex optimization is the convex cone of positive semidefinite
matrices. A well known fact of linear algebra is that all of the eigenvalues of a real symmetric
matrix are real. Requiring these eigenvalues to be non-negative determines the cone RN×N

�0 .

Definition 1.1.5. A real symmetric matrix Q ∈ RN×N
sym is positive semidefinite (psd),

denoted Q � 0, if the four equivalent conditions hold:

(a) all of the eigenvalues of Q are non-negative,

(b) each principal minor of Q is non-negative,

(c) for every x ∈ RN , xTQx ≥ 0,

(d) Q has a real Cholesky factorization: Q =
∑rank(Q)

i=1 qiq
T
i , where qi ∈ RN .

Under the inner product 〈P,Q〉 = trace(P · Q), the cone RN×N
�0 is self-dual. When we

restrict to diagonal matrices in RN×N
sym the cone RN×N

�0 becomes (R≥0)N . Optimizing a linear

function over an affine section of RN×N
�0 thus generalizes linear programming (1.1).
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Figure 1.1: A spectrahedron and a non-exposed vertex of its shadow.

Definition 1.1.6. A semidefinite program (SDP) is the problem of maximizing a linear
function over the intersection of the cone of positive semidefinite matrices with an affine-
linear space:

MaximizeQ∈RN×N
sym

〈C,Q〉 subject to 〈Ai, Q〉 = bi for i = 1, . . . , d, and Q � 0, (1.2)

where C,Ai ∈ RN×N
sym and b ∈ Rd. The feasible set of an SDP is called a spectrahedron.

The affine linear space in RN×N
sym cut out by the equations 〈Ai, Q〉 = bi can be rewritten as

B0 + span{B1, . . . , Bn} where Bi ∈ RN×N
sym . Then the spectrahedron in (1.2) becomes

{(x1, . . . , xn) ∈ Rn : B0 + x1B1 + . . .+ xnBn � 0}, (1.3)

We call the projection of a spectrahedron a spectrahedral shadow.

See [15] for an in-depth survey of semidefinite programming. Unlike polyhedra, the class
of spectrahedra is not closed under projection. One way to see this is that all faces of a
spectrahedron are exposed [70], but spectrahedral shadows can have non-exposed faces, as
seen in Figure 1.1. Spectrahedral shadows, however, are closed under projection and duality
[92]. As we can lift objective functions, linear optimization over a spectrahedral shadow is
still an SDP.

One of goal of the theory of convex optimization is to better understand the geometry
and facial structure of feasible sets (such as polyhedra and spectrahedra). A related area
of research is finding LP or SDP relaxations for hard problems in non-convex optimization,
commonly coming from combinatorial or polynomial optimization. Well known examples are
the Goemans-Williamson SDP-approximation of the max-cut of a graph [35] and Lovász’s
SDP-relaxation of the maximum stable set of a graph [61]. For more general surveys, see
[58] and [62]. SDP relaxations for polynomial optimization were developed in [54],[76], and
[77] and will be further discussed in §1.3.5. Part of the challenge here is to understand
which convex sets can be written as spectrahedra or spectrahedral shadows. This involves
constructing a special determinantal representation (1.10) for the hypersurface bounding the
set, a difficult problem in computational real algebraic geometry.
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1.2 Real Algebraic Geometry and Sums of Squares

The fundamental objects of study in real algebraic geometry are real varieties and semi-
algebraic sets. One wishes to understand the geometry of such sets and how important
constructs from classical algebraic geometry, such as degenerations or determinantal repre-
sentations, behave under complex conjugation. For example, in Chapter 3, we see that there
are six different topological types of real smooth quartic plane curve and the number of real
bitangents, real determinantal representations, and real representations as a sum of three
squares is entirely determined by this topological type.

Embedded in this study is the theory of non-negative polynomials and sums of squares.
Certainly a sum of squares of real polynomials is non-negative on Rn. A classic theorem
of Hilbert [48] states if n > 1, 2d > 2, and (n, 2d) 6= (2, 4), then there exists a polynomial
in R[x1, . . . , xn] of degree 2d that is non-negative on Rn but cannot be written as a sum of
squares. A famous example is the Motzkin polynomial x4y2 + x2y4 − 3x2y2 + 1 [68].

Definition 1.2.1. A basic closed semialgebraic set S is a subset of R defined by finitely-
many polynomial inequalities:

S = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0}, (1.4)

where g1, . . . , gs ∈ R[x1, . . . , xn]. Just as one studies an algebraic set in Cn through the set
of polynomials that vanish on it, one can study a semialgebraic set S through the set of
polynomials that are non-negative on it. We denote that set

Pos(S) := {f ∈ R[x1, . . . , xn] : f(p) ≥ 0 ∀p ∈ S}. (1.5)

Because R≥0 is closed under addition and multiplication, so is Pos(S), and thus Pos(S)
is a convex cone in the infinite-dimensional vector space R[x1, . . . , xn]. Starting from a few
polynomials that are non-negative on S, such as g = {g1, . . . , gs} and sums of squares, we
can generate many more by closing under addition and multiplication. This gives what is
called the preorder generated by g1, . . . , gs:

PO(g) =

{ ∑
e∈{0,1}s

ge11 . . . gess σe : σe ∈
∑

R[x1, . . . , xn]2 for e ∈ {0, 1}s
}
, (1.6)

where
∑
R2 = {

∑
h2i : hi ∈ R} for a ring R. Preorders will be discussed at length in

Chapter 2. While the preorders PO(g) are often imperfect approximations to Pos(S), the
Positivstellensatz [64, §2.2] states that every polynomial in Pos(S) can be written as a ratio
of polynomials in PO(g). In particular, this lets us characterize the real radical of an ideal
I ⊂ R[x1, . . . , xn]. For F a subset of some field extension of R and an ideal I ⊂ R[x1, . . . , xn],
let VF (I) denote {p ∈ F n : f(p) = 0 ∀f ∈ I}.
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Definition 1.2.2. The real radical of an ideal I is the ideal of polynomials vanishing on
the real variety of I:

R
√
I = I(VR(I)) = {f ∈ R[x1, . . . , xn] : f(p) = 0 ∀p ∈ VR(I)}.

By the Positivstellensatz [64, §2.2], an equivalent characterization is

R
√
I := {f ∈ R[x1, . . . , xn] : −f 2m ∈

∑
R[x1, . . . , xn]2 + I for some m ∈ Z+}. (1.7)

We call an ideal I real radical if R
√
I = I.

Real radical ideals are useful because one can use techniques from algebraic geometry over
C, such as Gröbner basis computations, to compute information about their real varieties,
such as dimension and degree. As we’ll see in Chapter 2, when, in addition, an ideal’s
initial ideal inw(I) is real radical, then the corresponding Gröbner degeneration [31, §15]
also behaves nicely over R.

Often one can understand an algebraic set through its degenerations, that is, by intro-
ducing a parameter ε (strategically) into equations or inequalities and letting ε→ 0. These
degenerations are often simpler in structure but retain useful information from the original
set. Formally this is done by extending a given field K to the field of Puiseux series,

K{{ε}} =

{ ∞∑
i=i0

ci/Nε
i/N where ci/N ∈ K and i0 ∈ Z, N ∈ Z>0

}
. (1.8)

The valuation val : K{{ε}}∗ → Q given by val(
∑

q cqε
q) = min{q : cq 6= 0} extends

coordinate-wise to (K{{ε}}∗)n. The field C{{ε}} is algebraically closed and R{{ε}} is real
closed. As further discussed in Section 2.5, working over the field of Puiseux series reveals
the behavior of an algebraic or semialgebraic set as the parameter ε tends to 0. When an
initial ideal is real radical, it reveals the behavior of a real Gröbner degeneration.

Theorem 2.2.3. If inw(I) is real radical and monomial-free, then −w ∈ val(VR{{ε}}(I)).

We will use such degenerations extensively throughout Chapter 2 to understand com-
pactifications of semialgebraic sets. We also use these techniques in Section 3.8 to examine
a quartic curve degenerating into four lines and in Section 4.4 to degenerate a central path
(1.9) into a union of smaller central paths. It can be instructive in many ways to consider
these degenerate examples, which have more combinatorial structure and retain many of the
important properties of non-degenerate objects.
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1.3 Convex Algebraic Geometry

Convex algebraic geometry is an emerging field that combines techniques from real algebraic
geometry and convexity to study semialgebraic sets and problems in optimization. Areas
of research in convex algebraic geometry include the algebraic geometry inherent in general
LPs or SDPs [6, 60, 73, 92, 105], algebraic methods for relaxing problems in combinatorial
optimization [35, 36], and using semidefinite programming for computation in real algebraic
geometry and polynomial optimization [56, 57]. Two fundamental connections between
optimization (specifically LP and SDP) and real algebraic geometry are that

• many questions in optimization are inherently algebraic and specified over R, and

• semidefinite programming gives effective algorithms in real algebraic geometry.

In this section, we introduce some major goals and questions of convex algebraic geometry,
focusing on those that will be relevant in later chapters.

1.3.1 Central Curves

Even though linear programming appears to be much more combinatorial than algebraic,
many of its important theoretical questions involve real and semialgebraic sets, [6],[14], [53].
In Chapter 4 we will study the real algebraic geometry of interior points methods, which
solve LP’s by tracking a real algebraic curve through the desired section of Rn

+.

Definition 1.3.1. The central path of the linear program (1.1) is the union of the points

argmaxx∈Rn cTx + λ
∑

log(xi) subject to Ax = b, x > 0 (1.9)

as λ ranges over (0,∞). As λ → 0, the central path leads to the desired optimal vertex of
the feasible polytope, {Ax = b, x ≥ 0}.

This path is part of a real algebraic curve, called the central curve, first introduced and
studied by Bayer and Lagarias [6, 7]. The algebraic properties of this curve, in particular
its degree and genus, give bounds on the complexity of interior point methods [23]. In
Chapter 4, we characterize these algebraic quantities in terms of matroid invariants of the
matroid associated to the matrix A. For example, an important quantity in analyzing
the complexity of interior point methods is the total curvature of the central curve (4.27),
[23, 67, 99, 108, 103].

Theorem 4.5.2. Let C denoted the closure in Pn of the central path of the LP (1.1). Using
the h-vector of the broken circuit complex of the matroid of

(
A
c

)
(as in §4.3), we have that

total curvature of C ≤ 2π ·
d∑
i=1

i · hi ≤ 2π · (n− d− 1) ·
(
n− 1

d− 1

)
.
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These curves have another nice connection with convex algebraic geometry: they are a
generalization of hyperbolic plane curves, which appear in Theorem 1.3.3. Central curves
in the plane are hyperbolic, and, in higher dimensions, there is a one-dimensional family of
hyperplanes all of whose intersection points with the curve are real.

1.3.2 Determinantal Representations and Hyperbolic Polynomials

Given a basic closed convex semialgebraic set S, we would like to write S as a spectrahedron,
in order to optimize over it using semidefinite programming. Such a representation gives a
real determinantal representation of the Zariski-closure of the boundary of our set,

∂S = {x ∈ Rn : det(A0 + x1A1 + . . .+ xnAn) = 0}. (1.10)

Finding a determinantal representation for a hypersurface is a difficult computation over C.
Adding the requirement that the matrices Ai are real and that their affine span contains a
positive definite matrix makes this problem even more difficult and puts strong constraints
on the set S. Not every convex closed semialgebraic set can be written as a spectrahedron,
but a general characterization remains one of the big open problems in this field:

Question 1.3.2. Which convex semialgebraic sets can be written as spectrahedra?

A big result in field came when this question was answered for n = 2, by Helton and
Vinnikov [44]:

Theorem 1.3.3 (Helton-Vinnikov [44]). A convex basic closed semialgebraic set S ⊂ R2 can
be written as a spectrahedron (1.3) if and only if the Zariski closure of the boundary of S is
hyperbolic with respect to e ∈ S.

Definition 1.3.4. A polynomial f ∈ R[x1, . . . , xn] or hypersurface V(f) ⊂ Rn is hyperbolic
with respect to a point e /∈ V(f) if every real line passing through e meets V(f) in only real
points. That is, for every vector v ∈ Rn, the univariate polynomial f(e + tv) ∈ R[t] has
only real roots. If n = 2 (as in Theorem 1.3.3), this is equivalent to the plane curve V(f)
having the real topology of completely nested ovals in P2(R) with e inside the innermost
oval (Figure 1.2). As the proof of Theorem 1.3.3 relies heavily on Vinnikov’s work [109], we
will also refer to these curves as Vinnikov curves.

For an overview of hyperbolic polynomials and their importance in optimization, see
[41, 60]. One direction of Theorem 1.3.3 is not difficult. For v ∈ Rn, denote A0 +

∑n
i=1 viAi

by A(v) and suppose S = {x ∈ Rn : A(x) � 0}. Then for any e ∈ int(S), A(e) � 0 and
restricting the polynomial det(A(x)) to the line e + tv gives the univariate polynomial

det(A(e) + tA(v)) = tN · det(A(e)) · det

(
(1/t)I + UTA(v)U

)
(1.11)
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Figure 1.2: Hyperbolic hypersurfaces bounding spectrahedra.

where A(e)−1 = UUT . This is a multiple of the characteristic polynomial of the matrix
UTA(v)U . Since the matrix UTA(v)U is real and symmetric, it has only real eigenvalues,
λ1, . . . , λN , meaning that t = 1/λ1, . . . , 1/λN are the roots of (1.11) and are all real. To
summarize, the polynomial det(·) on RN×N

sym is hyperbolic with respect to any positive definite
matrix and this hyperbolicity persists under restricting to an affine-linear space.

Vinnikov’s theorem states that if n = 2, hyperbolicity is also sufficient for a hypersurface
to have a definite determinantal representation (1.10). As shown recently [17], [71], this
sufficiency does not hold for n > 2. Even in the case n = 2 when existence is guaranteed, it
can still be difficult to construct a definite determinantal representation of a given hyperbolic
polynomial. Methods for doing this are discussed in Section 3.2 and [80] with particular
emphasis on the special case of plane quartics.

1.3.3 Convex Hulls of Semialgebraic Sets

Optimizing a linear function over a semialgebraic set S is equivalent to optimizing over its
convex hull conv(S). We would like to be able to write this convex hull as a spectrahedral
shadow. There are some general methods for approximating these convex hulls, [56, 76], but
in general these are not exact.

Another relevant problem is computing the algebraic boundary and facial structure of
conv(S). The necessary tangency conditions are algebraic, so, using computational alge-
bra software such as Macaulay2 [37], one can compute a hypersurface which contains this
boundary, as described for curves in [86] and algebraic varieties in [87]. Actually determin-
ing which components of this hypersurface lie in the Zariski closure of ∂ conv(S) and which
semialgebraic subsets of these form ∂ conv(S) can still be quite difficult.

Even describing the facial structure of a spectrahedron can be a challenge. Unlike poly-
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topes, spectrahedra usually have infinitely many faces, having various ranks and often coming
in algebraic families. For example, the spectrahedron on the right in Figure 1.2 is an affine
section of R3×3

�0 . It has four rank-1 vertices, six edges of rank-2 matrices (between any pair
of the rank-1 vertices), and an irreducible hypersurface of rank-2 vertices. In general it is
still unclear what the right analog of a face-poset is in this context.

One of the cases in which these problems are tractable is that of parametrized rational
curves, which we discuss in Chapter 5. These form a rich and interesting class of spectrahe-
dral shadows [45] whose faces one can compute and describe using tools from computational
algebraic geometry and semidefinite programming. The underlying reason this is possible
for curves parametrized by polynomials in one variable is that all non-negative polynomials
in R[t] are sums of squares, which one can test using semidefinite programming.

1.3.4 Gram Matrices and Sums of Squares

An intrinsic connection between real algebraic geometry and semidefinite programming is
that checking whether a given polynomial is a sum of squares is an SDP. A polynomial
f ∈ R[x1, . . . , xn] of degree 2d is a sum of squares if and only if it can be written as a
positive semidefinite quadratic form in the monomials of degree at most deg(f)/2. More
explicitly, let X be a vector whose entries form a basis for the polynomials of degree at most
d, for example, the monomials X = (1, x1, . . . , x

d
n). For Q =

∑r
i=1 qiq

T
i , we see that

r∑
i=1

(qTi X)2 = XT

(
r∑
i=1

qiq
T
i

)
X = XTQX. (1.12)

Using Definition 1.1.5(d), the problem of testing whether or not a polynomial f is a sum of
squares can then be written as semidefinite program:

f is a sum of squares ⇐⇒ ∃ Q � 0 : XTQX = f. (1.13)

This defines a projection of the cone of positive semidefinite matrices RN×N
�0 onto the cone

of sums of squares in R[x1, . . . , xn]≤2d, where N =
(
n+d
d

)
. One can study the geometry and

facial structure of these cones through the fibers of this map.

Definition 1.3.5. A Gram matrix of a polynomial f ∈ R[x1, . . . , xn]≤2d is a N ×N sym-
metric matrix Q with XTQX = f . These form the linear space Gram(f) inside CN×N

sym . The
set of real psd Gram matrices of f is the Gram spectrahedron of f , denoted Gram�0(f).

Gram matrices were introduced in [21] as a more unique certificate of a polynomial as
a sum of squares. Because the Cholesky factorization (Def. 1.1.5(d)) is not unique, an
element of Gram�0(f) gives many representations of f as a sum of squares. Explicitly, if

Q =
∑rank(Q)

i=1 qiq
T
i , then for any orthogonal matrix U , we have Q =

∑rank(Q)
i=1 (qiU

T )(UqTi ).

We’ll say that the sum of squares representation f =
∑rank(Q)

i=1 (qTi X)2 is equivalent to the
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representation f =
∑rank(Q)

i=1 (UqTi X)2. A positive semidefinite Gram matrix gives an invariant
representation of a polynomial as a sum of squares. For example:

Theorem [83]. Let f ∈ R[x, y, z]4 be non-negative with VC(f) smooth. Then Gram(f) has
63 rank-3 matrices, 15 of which are real, 8 of which belong to Gram�0(f).

Each of these Gram matrices however give 3 = dim(O(3)) dimensions worth of represen-
tations of f as a sum of three squares. These Gram matrices have beautiful connections to
the classical theory of plane quartics, which will be studied in depth in Chapter 3.

As sums of squares play a strong role in real algebraic geometry, (1.13) can be exploited
to produce effective computational algorithms. Lasserre, Laurent, and Rostalski [57] use
(1.7) and (1.13) to give an SDP-based computation of the real radical of an ideal. A similar
approach also give relaxations for polynomial optimization.

1.3.5 SDPs and Polynomial Optimization

One of the most general class of SDP relaxations for polynomial optimization was pioneered
by Lasserre [54, 55] and Parrilo [75, 76, 77]. See [64, §10] for a more thorough overview. The
objective of polynomial optimization is to minimize a polynomial f over a semialgebraic set.
For an ideal I ⊂ R[x1, . . . , xn] = R[x] and polynomials g1, . . . , gs ∈ R[x], we want

f ∗ = min f(p) such that p ∈ S := {p ∈ VR(I) : g1(p) ≥ 0, . . . , gs(p) ≥ 0}.

This is equivalent to finding the largest t ∈ R such that f(x)− t belongs to the set Pos(S)
(1.5). In general, this problem is very difficult, but we can relax it to obtain a lower bound:

f ∗sos, d = max t : f(x)− t =
∑

e∈{0,1}s
σeg

e1
1 . . . gess mod I, where σe ∈

∑
R[x]2≤d (1.14)

As the equation above is linear in the variables t and σe, we see from (1.13) that the com-
putation of f ∗sos, d is an SDP.

The quality and behavior of this hierarchy of relaxations is deeply related to the geometry
of the semialgebraic set S and the infinite-dimensional cone PO(g) + I (1.6). For example,
if S is compact, then by Schmüdgen’s Theorem [96], PO(g) + I contains every polynomial
that is strictly positive on S. Then PO(g) is a good approximation to Pos(S) and f ∗sos, d
converges to f ∗ as d → ∞. On the the other hand as shown in [84], if S is “large at infin-
ity,” then the sequence f ∗sos, d stabilizes, meaning for some D, f ∗sos,D = f ∗sos,d for any d ≥ D.
One of the main theorems of Chapter 2 gives concrete algebraic conditions guaranteeing this
stability (Theorem 2.3.3).

What we have presented in this chapter are only some of the many connections between
optimization and algebraic geometry. While our understanding of the geometry of semidefi-
nite programming and relaxations such as (1.14) is progressing rapidly, there are still many
important open questions and potential connections with other fields of research.
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Chapter 2

Real Radical Initial Ideals

The content of this chapter will be published in Journal of Algebra in a paper of the
same title. The present version has a new section on connections to Puiseux series and
minor changes throughout for consistency with other chapters.

2.1 Preliminaries: Initial Ideals and Sums of Squares

Initial ideals can be seen as degenerations that retain useful information of the original ideal
but often have simpler structure. The theory of Gröbner bases and much of computational
algebraic geometry take advantage of this retention. Tropical geometry uses initial ideals
and degenerations of algebraic varieties to understand the combinatorial structure of an ideal
(see [63, 89]). Here we will explore a property of initial ideals relevant to the real variety of
an ideal, namely that an initial ideal is real radical.

Because R is not algebraically closed, Gröbner basis techniques are not sufficient to
algebraically characterize a real variety. This leads to the theory of sums of squares of
polynomials, as seen in (1.7). Many computations involving sums of squares can now be
performed numerically with semidefinite programming, which is effective and intimately
related to real algebraic geometry, as discussed in §1.3.4. For a further introduction to sums
of squares of polynomials and these connections, see [64].

This chapter has two main theorems, both stating consequences of an initial ideal being
real radical. In Section 2.2, we introduce some useful constructions from tropical geometry
and prove our first main result, which relates real radical initial ideals to the logarithmic limit
set of real varieties and other semialgebraic sets. In particular, we show that a nonsingular
point of VR∗(inw(I)) ensures that the vector w lies in the logarithmic limit set of VR∗(I).
Section 2.3 deals with representations of polynomials as sums of squares modulo an ideal
and more generally as elements of a preorder, which has implications for certain problems
in real algebraic geometry and semidefinite programming, such as (1.14). Our second main
result gives conditions on a set of polynomials so that the preorder they generate is stable,
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as defined in [84]. In particular, if an initial ideal is real radical, there are degree bounds for
the representation of polynomials as sums of squares modulo the ideal. These results can be
better understood by embedding Cn in a weighted projective space P(1,w), which we discuss
in Section 2.4. In Section 2.5, we translate the results of the prior sections into the language
of Puiseux series, which is more commonly used in tropical geometry. In Section 2.6, we
will mention some of the current algorithms for computing real radicals and give conditions
under which these computations become more tractable. We conclude by discussing the
problem of determining the compactness of a real variety from its initial ideals.

First we need to introduce notation and ideas from the theory of Gröbner bases and real
algebraic geometry. For further background, see [64] and [104].

We often use xa to denote the monomial xa11 . . . xann , f(x) for f(x1, . . . , xn), and R[x] for
R[x1, . . . , xn]. For w ∈ Rn and a polynomial f(x) =

∑
a fax

a, define

degw(f) = max{wTa : fa 6= 0} and inw(f) =
∑

a : wT a=degw(f)

fax
a.

If w = (1, 1, . . . , 1), we will drop the subscript w. For an ideal I ⊆ R[x], define its initial
ideal, inw(I), as 〈inw(f) : f ∈ I〉. For w ∈ (R≥0)n we call {h1, . . . , hs} ⊂ I a w-Gröbner
basis for I if inw(I) = 〈inw(h1), . . . , inw(hs)〉. Any w-Gröbner basis for I generates I as an
ideal. As in §1.2, for F a subset of a field extension of R and an ideal I ⊂ R[x], let VF (I)
denote {p ∈ F n : f(p) = 0 ∀f ∈ I}.

Definition 2.1.1. The real radical of an ideal I is

R
√
I := {f ∈ R[x] : −f 2m ∈

∑
R[x]2 + I for some m ∈ Z+},

where
∑

R[x]2 = {
∑
h2i : hi ∈ R[x]}. By the Positivstellensatz [64, §2.2], an equivalent

characterization is
R
√
I = {f ∈ R[x] : f(p) = 0 ∀p ∈ VR(I)}.

We call an ideal I real radical if R
√
I = I.

Proposition 2.1.2. If inw(I) is real radical for some w ∈ (R≥0)n, then I is real radical.

Proof. If the set {
∑
f 2
i ∈ I : fi /∈ I ∀i} is nonempty, then it has an element with minimal

w-degree,
∑m

i=1 f
2
i . Then for A = argmaxi∈[m]{degw(fi)}, the polynomial

∑
i∈A inw(fi)

2 is
in inw(I). As inw(I) is real radical, we have inw(fi) ∈ inw(I) for i ∈ A. For i ∈ A, let gi ∈ I
so that inw(fi) = inw(gi) and consider the following polynomial:∑

i∈A

(fi − gi)2 +
∑

i∈[m]\A

f 2
i =

∑
i∈[m]

f 2
i +

∑
i∈A

gi(−2fi + gi) ∈ I.

This is a sum of squares in I with strictly lower w-degree than
∑

i f
2
i . As fi − gi /∈ I for all

i ∈ A, this contradicts our choice of
∑

i f
2
i .
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A cone is a subset of Rn that is closed under addition and multiplication by nonnegative
scalars. A cone is a rational polyhedral cone if it is the intersection of finitely many
halfspaces defined by linear inequalities with rational coefficients. We say that a finite
collection ∆ of rational polyhedral cones is a fan if is closed under intersection and taking
faces. The support of a fan ∆, denoted |∆|, is the union of the cones in ∆.

An ideal I defines an equivalence relation on Rn, by letting w ∼ v whenever inw(I) =
inv(I). One can show that there are only finitely many equivalence classes, and for ho-
mogeneous ideals each equivalence class is a relatively open rational polyhedral cone [104].
Together the closures of these cones form a fan called the Gröbner fan of I, denoted ∆Gr(I).
Using the software GFan [49], one can actually compute the Gröbner fan of a homogeneous
ideal. If I is not homogeneous, then we homogenize by adding a new variable. For any
f ∈ R[x1, . . . , xn] and ideal I ⊂ R[x1, . . . , xn], let f(x0, x1, . . . , xn) denote its homogenization
(x0)

deg(f)f(x1/x0, . . . , xn/x0) and I = 〈f : f ∈ I〉. We can define ∆Gr(I) to be the fan in
Rn obtained by intersecting all cones of ∆Gr(I) with the plane {w0 = 0}. The closure of an
equivalence class [w] = {v ∈ Rn : inv(I) = inw(I)} will be a union of cones in ∆Gr(I).

Let ∆Rad(I) denote the subset of ∆Gr(I) corresponding to real radical initial ideals;

∆Rad(I) := {σ ∈ ∆Gr(I) : inw(I) is real radical for w ∈ relint(σ)},

where relint(σ) denotes the relative interior of the cone σ. For homogeneous I and any
w ∈ Rn, inw(I) equals inw+(1,...,1)(I), thus we can assume w ∈ (R≥0)n. Then Proposition
2.1.2 ensures that for homogeneous I, the set of cones ∆Rad(I) is closed under taking faces,
meaning that it is actually a subfan of ∆Gr(I).

Sums of squares of polynomials are used to approximate the set of polynomials that
are nonnegative on Rn, as discussed in §1.2. We can use sums of squares modulo an ideal,∑

R[x]2 + I, to instead approximate the set of polynomials that are nonnegative on its real
variety, VR(I). These methods extend to any basic closed semialgebraic set {x ∈ Rn :
g1(x) ≥ 0, . . . , gs(x) ≥ 0} by considering the quadratic module or preorder generated by
g1, . . . , gs.

Formally, given a ring R (e.g. R[x], R[x]/I), we call P ⊂ R a quadratic module if
P is closed under addition, multiplication by squares {f 2 : f ∈ R}, and contains the
element 1. If in addition, P is closed under multiplication then we call P a preorder. For
g1, . . . , gs ∈ R, we use QM(g1, . . . , gs) and PO(g1, . . . , gs) to denote the quadratic module
and preorder generated by g1, . . . , gs (respectively), where R will be inferred from context:

QM(g1, . . . , gs) =

{
σ0 +

s∑
i=1

giσi : σi ∈
∑

R2 for i = 0, 1, . . . , s

}
, and

PO(g1, . . . , gs) =

{ ∑
e∈{0,1}s

ge11 . . . gess σe : σe ∈
∑

R2 for e ∈ {0, 1}s
}
.
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There are advantages to both of these constructions. Preorders are often needed to obtain
geometrical results (such as Proposition 2.1.3 and Theorem 2.2.3). From a computational
point of view, however, preorders are less tractable than quadratic modules because the
number of terms needed to represent an element is exponential in the number of generators.

For any set of polynomials P ⊂ R[x], let K(P ) denote the subset of Rn on which all the
polynomials in P are all nonnegative. That is, K(P ) = {x ∈ Rn : f(x) ≥ 0 ∀f ∈ P}. Note
that for g1, . . . , gs ∈ R[x], K({g1, . . . , gs}) and K(PO(g1, . . . , gs)) are equal subsets of Rn. If
P =

∑
R[x]2 + I, then K(P ) = K(I) = VR(I).

In this chapter we focus on semialgebraic sets that are not full-dimensional, that is,
those that are real varieties or contained in real varieties. The corresponding quadratic
modules and preorders contain a nontrivial ideal. For ease of notation, let QM(g1, . . . , gs; I)
and PO(g1, . . . , gs; I) denote QM(g1, . . . , gs,±h1, . . . ,±ht) and PO(g1, . . . , gs,±h1, . . . ,±ht)
respectively, where I = 〈h1, . . . , ht〉. Then

QM(g1, . . . , gs; I) = QM(g1, . . . , gs) + I and PO(g1, . . . , gs; I) = PO(g1, . . . , gs) + I.

For an ideal I ⊂ R[x], the preorder
∑

R[x]2 + I has nice properties if inw(I) is real
radical, as we’ll see in Section 2.3. To extend these properties to more general quadratic
modules and preorders, we need the following definitions. For g1, . . . , gs ∈ R[x] and an ideal
I ⊂ R[x], say that g1, . . . , gs form a quadratic module basis (QM-basis) with respect to
I if for all yij ∈ R[x], ∑

j

y20j +
∑
i,j

giy
2
ij ∈ I ⇒ yij ∈ I ∀ i, j.

Similarly, we say that g1, . . . , gs form a preorder basis (PO-basis) with respect to I if for
all yej ∈ R[x], ∑

e,j

gey2ej ∈ I ⇒ yej ∈ I ∀ e, j,

where ge = ge11 . . . gess for e ∈ {0, 1}s. Any PO-basis with respect to I is also a QM-basis with
respect to I, but the converse is not generally true. We see that ∅ is a PO-basis if and only
if I is real radical. As shown in Example 2.1.4, not every preorder P has generators which
form a PO-basis with respect to P ∩ −P , though many do. The following proposition gives
a geometric condition for elements forming a PO-basis.

Proposition 2.1.3. For g1, . . . , gs ∈ R[x] and an ideal I ⊂ R[x], the polynomials g1, . . . , gs
form a PO-basis with respect to I if and only if the set {x ∈ VR(I) : gi(x) > 0 for all i =
1, . . . , s} is Zariski-dense in VR(I) and the ideal I is real radical.

Proof. Let P = PO(g1, . . . , gs; I). By a slight abuse of notation, let

K+(P ) = {x ∈ VR(I) : gi(x) > 0 for all i = 1, . . . , s} ⊂ K(P ).



15

(⇐) Suppose
∑

e,j g
ey2ej ∈ I. For all x ∈ K+(P ), we have

∑
e,j g

e(x)yej(x)2 = 0. Since
ge(x) > 0, we have that yej(x) = 0 for all x ∈ K+(P ). Then the Zariski-denseness of K+(P )
implies that yej = 0 on VR(I). Since I is real radical, this gives us that yej ∈ I.

(⇒) We have
∑
y2j ∈ I implies yj ∈ I, so I is real radical. It is not difficult to check

that P ∩ −P = I. Suppose f = 0 on K+(P ). Then f̂ = f 2
∏

i gi = 0 on K(P ). By the

Positivstellensatz [64, Ch. 2], −f̂ 2m ∈ P ∩ −P = I for some m ∈ N. Since I is real radical,
we have f̂ = f 2

∏
i gi ∈ I. Because g1, . . . , gs form a PO-basis with respect to I, we see that

f ∈ I. Thus K+(P ) is Zariski-dense in VR(I).

Example 2.1.4. Here is an example of a preordering P where P ∩−P is real radical but no
set of generators for P form a PO-basis with respect to P∩−P . Consider P = PO(x, y; 〈xy〉).
Notice thatK(P ) ⊂ R2 is the union of the nonnegative x and y axes. We have P∩−P = 〈xy〉,
which is real radical.

Now suppose g1, . . . , gs form a PO-basis for 〈xy〉. We will show x /∈ PO(g1, . . . , gs; 〈xy〉),
meaning P 6= PO(g1, . . . , gs; 〈xy〉). By Proposition 2.1.3, there exists p ∈ R≥0 so that
gi(0, p) > 0 for all i = 1, . . . , s. Then for all q in a small enough neighborhood of p,
gi(0, q) > 0. Now suppose x =

∑
e g

eσe + xyh for some σe ∈
∑

R[x, y]2 and h ∈ R[x, y].
Plugging in (0, q) gives

∑
e g

e(0, q)σe(0, q) = 0. As ge(0, q) > 0 and σe(0, q) ≥ 0, this implies
that σe(0, q) = 0 for every e. As this occurs for every q in a neighborhood of p, we have that
σe ∈ 〈x〉 for every e. Because σe is a sum of squares, we actually have σe ∈ 〈x2〉. This means
that

∑
e g

eσe + xyh and its partial derivative ∂/∂x vanish at (0, 0), which is not true of x.
Thus x /∈ PO(g1, . . . , gs; 〈xy〉) and P 6= PO(g1, . . . , gs; 〈xy〉). �

We will need PO-bases for the geometric result of Theorem 2.2.3 but only QM-bases for
the more algebraic result of Theorem 2.3.3.

2.2 Real Tropical Geometry

Tropical geometry is often used to answer combinatorial questions in algebraic geometry. For
an introduction, see [63], [89]. Here we investigate analogous constructions for real algebraic
geometry.

Definition 2.2.1. Given an ideal I, define its tropical variety as

Trop(I) := {w ∈ Rn : inw(I) contains no monomials}.

Soon we will see an equivalent definition involving logarithmic limit sets.
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Definition 2.2.2. The logarithmic limit set of a set V ⊂ (R+)n is defined to be

L(V ) := lim
t→0

log1/t(V )

= {x ∈ Rn : there exist sequences y(k) ∈ V and t(k) ∈ (0, 1),

t(k)→ 0 with log 1
t(k)

(y(k))→ x}.

The operations log and | · | on Rn are taken coordinate-wise. For a subset V of (R∗)n or
(C∗)n, we will use L(V ) to denote L(|V |), where |V | = {|x| : x ∈ V }. A classic theorem of
tropical geometry states that Trop(I) = L(VC(I)), [63, §1.6].

Two analogs have been developed for varieties of R+, which can easily be extended to
R∗. First is the positive tropical variety, TropR+

, studied by Speyer and Williams for
Grassmannians [101] and implicit in Viro’s theory of patchworking [110]:

TropR+
(I) = {w ∈ Rn : inw(I) does not contain any nonzero polynomial in R+[x1, ..., xn]}.

To extend this to R∗, we simply take the union over the different orthants of Rn. For each
π ∈ {−1, 1}n, define the ideal π · I = {f(π1x1, . . . , πnxn) : f ∈ I}. Then we can define

TropR∗(I) =
⋃

π∈{−1,1}n
TropR+

(π · I),

which we’ll call the real tropical variety of I. By Proposition 2.2.10, TropR∗(I) is the
support of the smallest subfan of ∆Gr(I) containing {w : VR∗(inw(I)) 6= ∅}. On the other
hand, L(VR∗(I)) is studied by Alessandrini [1], who shows that

L(VR∗(I)) ⊆ TropR∗(I). (2.1)

One can also describe these sets as the images under valuation of certain Puiseux series,
as we’ll see in Section 2.5. Unfortunately, it is not always possible to describe L(VR∗(I))
solely in terms of initial ideals (see the example on page 21). While our results below involve
L(VR∗(I)), the sets TropR∗(I) and Trop(I) are much more practical for computation.

Now we are ready to present the connection between real radical initial ideals and these
tropical constructions.

Theorem 2.2.3. Let g1, . . . , gs ∈ R[x], an ideal I ⊂ R[x], and w ∈ Trop(I). If inw(I)
is real radical and inw(g1), . . . , inw(gs) form a preorder basis with respect to inw(I), then
w ∈ L(KR∗), where KR∗ = {x ∈ VR∗(I) : gi(x) ≥ 0 ∀ i = 1, . . . , s}.

This provides the first inner approximation of L(KR∗) in terms of inw(I) and inw(gi). In
fact, Lemma 2.2.7 gives a stronger such inner approximation, discussed in Remark 2.2.11.
Also, Theorem 2.2.3 gives sufficient conditions for a semialgebraic set to be non-compact,
which are stated more explicitly in Corollary 2.6.1.
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Lemma 2.2.4. For a polynomial g ∈ R[x], w ∈ Rn, and a compact set S ⊂ (R∗)n, if
inw(g) > 0 on S, then there exists c0 > 0 so that for every c > c0, we have g(cw ·S) ⊂ (0,∞),
where cw · x = (cw1x1, . . . , c

wnxn) and cw · S = {cw · x : x ∈ S}.
Proof. Write g = gd + . . . + gd′ where d > . . . > d′ and gk is w-homogeneous with w-degree
k. So degw(g) = d and inw(g) = gd. Let a = argminx∈S |gd(x)| and bj = argmaxx∈S |gj(x)|
for j 6= d. As inw(g) > 0 on S, we have |gd(a)| = | inw(g)(a)| 6= 0. Then

lim
c→∞

∑
j 6=d |gj(cw · bj)|
|gd(cw · a)|

= lim
c→∞

∑
j 6=d |cjgj(bj)|
|cdgd(a)|

=
1

|gd(a)|
lim
c→∞

∑
j 6=d

cj

cd
|gj(bj)| = 0.

Thus there exists c0 > 0 so that for every c > c0 and for any x ∈ S,

|gd(cw · x)| ≥ |gd(cw · a)| >
∑
j 6=d

|gj(cw · bj)| ≥
∑
j 6=d

|gj(cw · x)|.

Since cdgd(x) = gd(c
w · x) > 0, we have g(cw · x) ≥ gd(c

w · x) −
∑

j 6=d |gj(cw · x)| > 0. This
gives that g(cw · x) > 0.

Lemma 2.2.5. Let I ⊂ R[x] be an ideal and w ∈ (R≥0)n. Suppose p ∈ VR(inw(I)) such
that the vectors {∇ inw(fi)(p) : i = 1, . . . ,m} are linearly independent, where inw(I) =
〈inw(f1), . . . , inw(fm)〉 and fi ∈ I. Then there exists c0 ∈ R+ and sequence {xc}c∈(c0,∞) such
that {cw · xc}c∈(c0,∞) ⊂ VR(I) and xc → p as c→∞.

Proof. The basic idea is that for a compact set S and large enough c > 0, polynomials behave
like their initial forms on cw ·S. Since w ∈ R≥0 and inw(I) = 〈inw(f1), . . . , inw(fm)〉, we have
I = 〈f1, . . . , fm〉. If m < n, let H denote the m-dimensional affine space p+span{inw(fi)(p) :
i = 1, . . . ,m}.

For every ε ∈ R+, define the following affine transformation of an m-dimensional cube:

B(ε) := {x ∈ H : |∇ inw fi(p) · (x− p)| ≤ ε ∀ i ≤ m},

with facets for each i ≤ m,

B−i (ε) := {x ∈ B(ε) : ∇ inw fi(p) · (x− p) = −ε},
B+
i (ε) := {x ∈ B(ε) : ∇ inw fi(p) · (x− p) = ε}.

Because ∇ inw(fi)(p) 6= 0, for small enough ε > 0 we have that inw fi(B
−
i (ε)) ⊂ (−∞, 0)

and inw fi(B
+
i (ε)) ⊂ (0,∞), for each i ≤ m. By the compactness of B(ε) and B±i (ε) and

Lemma 2.2.4, there is some cε > 0 so that for each c > cε and i ≤ m,

fi(c
w ·B−i (ε)) ⊂ (−∞, 0) and fi(c

w ·B+
i (ε)) ⊂ (0,∞).

We will show that for every c > cε, there is xε,c ∈ B(ε) with cw · xε,c ∈ VR(I). To do this,
we use the Poincaré-Miranda Theorem, which is a generalization of the intermediate value
theorem [52]. Let Jm := [0, 1]m ⊂ Rm and for each i ≤ m, denote

J−i := {x ∈ Jm : xi = 0} and J+
i := {x ∈ Jm : xi = 1}.
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Theorem 2.2.6 ([52]). Let ψ : Jm → Rm, ψ = (ψ1, . . . , ψm), be a continuous map such that
for each i ≤ m, ψi(J

−
i ) ⊂ (−∞, 0] and ψi(J

+
i ) ⊂ [0,∞). Then there exists a point y ∈ Jm

such that ψ(y) = 0 = (0, . . . , 0).

Define a homeomorphism φc : Rm → cw ·H such that φc(J
m) = cw ·B(ε) and for i ≤ m,

φc(J
−
i ) = cw ·B−i (ε) and φc(J

+
i ) = cw ·B+

i (ε).

Let ψ = f ◦ φc, where f = (f1, . . . , fm). Then ψ : Jm → Rm is continuous and for each
i ≤ m,

ψi(J
−
i ) = fi(c

w ·B−i (ε)) ⊂ (−∞, 0) and ψi(J
+
i ) = fi(c

w ·B+
i (ε)) ⊂ (0,∞).

By the Poincaré-Miranda Theorem, there exists y ∈ Jm so that ψ(y) = 0. Then let xε,c =
c−w · φ−1c (y). This gives cw · xε,c ∈ cw · B(ε) = φ−1c (J), meaning xε,c ∈ B(ε). Also,
f(cw · xε,c) = ψ(y) = 0, which implies cw · xε,c ∈ VR(I).

We have that for every c > cε, there exists xε,c ∈ B(ε) such that cw · xε,c ∈ VR(I). We
will let xc = xε,c for appropriately chosen ε. Fix a ε0 > 0. For every c such that c > cε0
there exists εc so that c > cε. By increasing c, we may choose εc → 0. Let xc = xεc,c. For
every c > cε0 , c

w · xc ∈ VR(I). Moreover, because εc → 0 and xc = xεc,c ∈ B(εc), we see that
xc → p as c→∞.

Lemma 2.2.7. Let I ⊂ R[x] and w ∈ Rn. If p ∈ VR(inw(I)) is nonsingular, then there
exists a c0 ∈ R+ and {xc}c∈(c0,∞) such that {cw · xc}c∈(c0,∞) ⊂ VR(I) and xc → p as c→∞.

Proof. We will first assume w ∈ (R≥0)n and generalize later on. Let inw(I)p be the localiza-
tion of inw(I) at p, that is, inw(I)p = { g

h
: g ∈ inw(I), h(p) 6= 0}. Because VR(inw(I)) is

nonsingular at p, inw(I)p is a complete intersection [43, §II.8]. Thus we can find f1, . . . , fm ∈ I
so that inw(f1), . . . , inw(fm) generate inw(I)p where dim(inw(I)p) = n−m. Because inw(I)p
is nonsingular, we also have that the vectors ∇ inw(f1)(p) . . . ,∇ inw(fm)(p) are linearly in-
dependent. Now extend these to generators inw(f1), . . . , inw(fm), inw(fm+1), . . . , inw(fr) of
the ideal inw(I), with fm+1, . . . , fr ∈ I. Because inw(I)p = 〈inw(f1), . . . , inw(fm)〉, there
is a w-homogeneous h so that h(p) 6= 0 and h · inw(fk) ∈ 〈inw(f1), . . . , inw(fm)〉 for every
k = m+ 1, . . . , r.

Consider the ideal I ′ = 〈f1, . . . , fm, h · fm+1, . . . , h · fr〉. Since {f1, . . . , fr} is a w-Gröbner
basis for I and h is w-homogeneous, one can check that {f1, . . . , fm, h ·fm+1, . . . , h ·fr} forms
a w-Gröbner basis for I ′. By construction,

inw(h · fk) = h · inw(fk) ∈ 〈inw(f1), . . . , inw(fm)〉

for k = m + 1, . . . , r, so in fact {f1, . . . , fm} forms a w-Gröbner basis for I ′. To summa-
rize, we have inw(I ′) = 〈inw(f1), . . . , inw(fm)〉 and∇ inw(f1)(p), . . . ,∇ inw(fm)(p) are linearly
independent.
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Using Lemma 2.2.5, we have c0 ∈ R+ and {xc}c∈(c0,∞) with {cw · xc}c∈(c0,∞) ⊂ VR(I ′)
and xc → p as c → ∞. Because h(p) 6= 0 and h is w-homogeneous, for large enough c,
h(cw · xc) = cdegw(h)h(xc) 6= 0. As cw · xc ∈ VR(I ′), which is contained in VR(I) ∪ VR(h), we
see that cw · xc ∈ VR(I). This proves Lemma 2.2.7 in the case w ∈ (R≥0)n.

Now consider an arbitrary vector w ∈ Rn. For any f ∈ R[x1, . . . , xn], let f(x0, x1, . . . , xn)
denote its homogenization (x0)

deg(f)f(x1/x0, . . . , xn/x0), and I = 〈f : f ∈ I〉. Then
VR(I) = VR(I)∩{x0 = 1}. For f ∈ R[x] there is some d ∈ N so that in(0,w)(f) = (x0)

dinw(f).
Using this, we can see that since p ∈ VR(inw(I)) is nonsingular, we have (1, p) is nonsingular
in VR(in(0,w)(I)).

Choose b ∈ R+ so that v := (0, w) + b(1, . . . , 1) ∈ (R≥0)n+1. Since I is homogeneous,
in(0,w)(I) = inv(I) and we have that (1, p) is nonsingular in VR(inv(I)). By the case v ∈
(R≥0)n+1 shown above, there exists c0 ∈ R+ and {cv · yc}c∈(c0,∞) ⊂ VR(I) so that yc → (1, p)
as c→∞. As I is homogeneous and cv = cbc(0,w), we have that {c(0,w) · yc}c∈(c0,∞) ⊂ VR(I).
Because yc → (1, p), by increasing c0 if necessary we may assume that (yc)0 6= 0 for all
c ∈ (c0,∞). This lets us scale yc to have first coordinate 1. Let y′c = (1/(yc)0) · yc := (1, xc).
Then c(0,w) · y′c = (1, cw · xc) ∈ VR(I), giving us cw · xc ∈ VR(I). In addition, as (yc)0 → 1, we
have that xc → p as c→∞.

Now we generalize to arbitrary semialgebraic sets using the notion of a PO-basis (page 14):

Lemma 2.2.8. Consider g1, . . . , gs ⊂ R[x], an ideal I ⊂ R[x], and w ∈ Rn. If the initial
forms inw(g1), . . . , inw(gs) form a preorder-basis with respect to inw(I), then there is a Zariski-
dense subset U of VR(inw(I)) so that for every p ∈ U , there exists c0 ∈ R+ and {xc}c∈(c0,∞) ⊂
Rn with {cw · xc}c∈(c0,∞) ⊂ K({g1, . . . , gs} ∪ I) and xc → p as c→∞.

Proof. As inw(I) is real radical, it is radical. So we can write inw(I) as an intersection of
primes ideals ai; inw(I) = ∩iai where for all j, aj 6⊆ ∩i 6=jai. Since inw(I) is real radical, we
have that ai is real radical for all i. By [43, Thm 1.5.3], the singular points of VC(ai) form
a proper Zariski-closed subset. Because ai is real radical, VR(ai) is Zariski-dense in VC(ai),
so singular points of VR(ai) form a proper Zariski-closed subset of VR(ai). The nonsingular
points of VR(ai), denoted Reg(VR(ai)), therefore form a nonempty Zariski-open subset of
VR(ai). This implies that Reg(VR(inw(I))) forms a Zariski-open, Zariski-dense subset of
VR(inw(I)).

Let Kin
+ = {p ∈ VR(inw(I)) : inw(gi)(p) > 0 for i = 1, . . . , s}. By Proposition 2.1.3, Kin

+

is Zariski dense in VR(inw(I)). Thus Kin
+ ∩ Reg(VR(inw(I)) is Zariski-dense in VR(inw(I)).

Let U denote this intersection, Kin
+ ∩ Reg(VR(inw(I)), and consider a point p ∈ U . By

Lemma 2.2.7, there exist c0 ∈ R+ and {cw · xc}c∈(c0,∞) ⊂ VR(I) such that xc → p as c→∞.
Because p ∈ Kin

+ , inw(gi)(p) > 0. As xc → p, for large enough c, inw(gi)(xc) > 0 for all
i = 1, . . . , s. Using Lemma 2.2.4, we can find a c′0 > c0 so that for all c > c′0, gi(c

w · xc) > 0
for i = 1, . . . , s. Thus for c > c′0, we have cw · xc ∈ VR(I) ∩ {x : gi(x) ≥ 0 ∀ i = 1, . . . , s} =
K({g1, . . . , gs} ∪ I).

We now prove the main theorem of this section by removing the coordinate hyperplanes.
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Proof of Theorem 2.2.3. Since w ∈ Trop(I), no monomial lies in inw(I). As inw(I) is real
radical, we can conclude that x1 · · ·xn does not vanish on VR(inw(I)). Thus VR(inw(I)) ∩
VR(x1 · · ·xn) is a proper Zariski-closed subset of VR(inw(I)), meaning VR∗(inw(I)) is a non-
empty Zariski-open subset of VR(inw(I)).

Let U ⊆ VR(inw(I)) as given by Lemma 2.2.8. As VR∗(inw(I)) is nonempty and Zariski-
open in VR(inw(I)), we have that U ∩ (R∗)n is nonempty. So let p ∈ U ∩ (R∗)n. By Lemma
2.2.8, there exists c0 ∈ R+ and {xc}c∈(c0,∞) ⊂ Rn such that {cw ·xc}c∈(c0,∞) ⊂ K({g1, . . . , gs}∪
I) and xc → p as c→∞. By increasing c0 if needed, we can take {xc}c∈(c0,∞) ⊂ (R∗)n.

Taking logarithmic limits with c = 1/t gives

lim
t→0

log1/t((1/t)
w · x1/t) = w + lim

t→0
log1/t(x1/t) = w.

From this, we conclude that w lies in the logarithmic limit set, L(KR∗), of the set KR∗ =
{x ∈ VR∗(I) : g1(x) ≥ 0, . . . , gs(x) ≥ 0}.

Corollary 2.2.9. For an ideal I ⊆ R[x], we have the chain of inclusions:

TropRad(I) ⊆ L(VR∗(I)) ⊆ TropR∗(I) ⊆ Trop(I),

where TropRad(I) = |∆Rad(I)| ∩ Trop(I).

All but the first inclusion are consequences of the results in [1] and [101], discussed above.
Theorem 2.2.3 with {g1, . . . , gs} = ∅ gives TropRad(I) ⊆ L(VR∗(I)).

Example: Harmony

If an ideal has nice structure, we may see equality among our different tropical constructions.
For example, let 2 ≤ d ≤ m and consider the ideal Id,m ⊂ R[xij : 1 ≤ i ≤ d, 1 ≤ j ≤ m]
generated by the determinants of the

(
m
d

)
maximal minors of the d×m matrix

x11 x12 x13 . . . x1m
x21 x22 x23 . . . x2m
...

...
...

. . .
...

xd1 xd2 xd3 . . . xdm

 .
These polynomials form a universal Gröbner basis for Id,m, by [12], meaning that they
form a w-Gröbner basis for every w ∈ Rdm.

Any term of one of these polynomials is a square-free monomial with coefficient±1. Every
monomial initial ideal of Id,m is generated by square-free monomials and thus is real radical.
Any initial ideal of Id,m has a further initial ideal that is monomial, so by Proposition 2.1.2,
every initial ideal of Id,m is real radical. That is, |∆Rad(Id,m)| = Rdm. Intersecting with
Trop(Id,m) and using Corollary 2.2.9 gives

TropRad(Id,m) = L(VR∗(Id,m)) = TropR∗(Id,m) = Trop(Id,m).
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Example: Dissonance

Unlike the positive tropical variety, the logarithmic limit set L(VR∗(I)) cannot be character-
ized solely in terms of initial ideals. Consider I = 〈(x− y − z)4 + (x− y − 1)2〉 ⊂ R[x, y, z].
For this example, we’ll demonstrate that each of the inclusions in Corollary 2.2.9 are strict:

TropRad(I) ( L(VR∗(I)) ( TropR∗(I) ( Trop(I).

Because I is principal, the tropical variety is given by the dual fan of the Newton polytope
of (x− y − z)4 + (x− y − 1)2. Thus it is the union of the rays r0 = (1, 1, 1), r1 = (0, 0,−1),
r2 = (0,−1, 0), r3 = (−1, 0, 0) and the six 2-dimensional cones spanned by pairs of these rays.
We’ll use σij to denote the cone spanned by ri and rj. The corresponding monomial-free
initial ideals are:

σ inσ(I)
0 (x− y − z)4 + (x− y − 1)2

r0 (x− y − z)4

r1 (x− y)4 + (x− y − 1)2

r2 (x− z)4 + (x− 1)2

r3 (y + z)4 + (y − 1)2

σ inσ(I)
σ01 (x− y)4

σ02 (x− z)4

σ03 (y + z)4

σ12 x4 + (x− 1)2

σ13 y4 + (y − 1)2

σ23 z4 + 1

To calculate TropR∗(I), we use a theorem of Einsiedler and Tuncel [30] regarding the
positive tropical variety, which easily extends to the following:

Proposition 2.2.10 ([30]). Fix an ideal I ⊂ R[x]. A vector w ∈ Rn lies in the real tropical
variety of I, TropR∗(I), if and only if there exists v ∈ Rn with VR∗(inv(inw I)) 6= ∅.

Given v, w ∈ Rn, for small enough ε > 0, inv(inw I) = in(w+εv)(I). For a cone σ ∈ ∆Gr(I),
let inσ(I) denote inw(I) for w in the relative interior of σ. We can view inσij(I) as an initial
ideal of inri(I). To understand TropR∗(I) we’ll first look at the maximal cones, σij. As each
of their further initial ideals are monomial, we see that TropR∗(I) contains σij if and only
if the variety VR∗(inσij(I)) is nonempty. Thus the two-dimensional cones of TropR∗(I) are
σ01, σ02, and σ03. Because each of the rays r0, r1, r2, r3 is contained in one of these cones,
they are each in TropR∗(I) as well.

To calculate L(VR∗(I)), note that the real variety of I is {(x, y, z) : x− y = 1, z = 1}.
Because the real variety is contained in the plane {z = 1}, we see that L(VR∗(I)) is contained
in the plane {z = 0}. The intersection of TropR∗(I) with the plane {z = 0} is the union
of the three rays, r2, r3 and (1, 1, 0) ⊂ σ03. The sequences (1 + t, t, 1), (t,−1 + t, 1), and
(1/t + 1, 1/t, 1) respectively verify that each of these rays is in L(VR∗(I)). So L(VR∗(I)) is
the union of the rays r2, r3 and (1, 1, 0). Note that in this case, L(VR∗(I)) is not a subfan of
TropR∗(I).

Finally, by the table listed above we see that TropRad(I) is empty. To summarize,
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TropRad(I) = ∅
L(VR∗(I)) = r2 ∪ r3 ∪ (1, 1, 0)
TropR∗(I) = σ01 ∪ σ02 ∪ σ03
Trop(I) = σ01 ∪ σ02 ∪ σ03 ∪ σ12 ∪ σ13 ∪ σ23,

and indeed, TropRad(I) ( L(VR∗(I)) ( TropR∗(I) ( Trop(I).

Remark 2.2.11. Lemma 2.2.7 gives a stronger inner approximation of L(VR∗(I)). We can
characterize this algebraically as follows. Let inw(I) = ∩iai be the primary decomposition
of inw(I), see for example [31, §3.3]. There exists a nonsingular point p ∈ VR(inw(I)) if and
only if for some i, ai is real radical [64, Thm. 12.6.1]. If in addition, ai does not contain
the monomial x1 . . . xn, then there is such a point in (R∗)n and w ∈ L(VR∗(I)). Thus in
Corollary 2.2.9, we may replace TropRad(I) with

{w ∈ Trop(I) : inw(I) has a real radical primary component}.

See Example 2.6.3 for such a computation.

2.3 Stability of Sums of Squares modulo an Ideal

Sums of squares of polynomials are essential in real algebraic geometry. They are also
made computationally tractable by methods in semidefinite programming. See §1.3.4. Many
semidefinite optimization problems involve quadratic modules and their corresponding semi-
algebraic sets, such as (1.14). Given a quadratic module P = QM(g1, . . . , gs) and semialge-
braic set K = K(P ), there are some natural questions about quality of the approximation
of P to {f ∈ R[x] : f ≥ 0 on K}.

(1) Does P contain all f that are positive on K?

(2) Given f ∈ P , can we bound the degree of σi ∈
∑

R[x]2 needed to represent f =
σ0 +

∑s
i=1 σigi in terms of deg(f) only?

We call a quadratic module stable if the answer to (2) is yes.

Definition 2.3.1. A quadratic module P = QM(g1, . . . , gs) ⊂ R[x] is stable if there exists
a function l : N → N so that for all f ∈ P , there exist σi ∈

∑
R[x]2 so that f =

∑
i σigi

where g0 = 1, and for each i, deg(σigi) ≤ l(deg(f)).

These seemingly abstract conditions have strong consequences for problems in polynomial
optimization. We see that (1) implies that the hierarchy of SDPs in §1.3.5 converge to the
correct values; f ∗sos, d → f ∗ as d → ∞. On the other hand, condition (2) implies that this
hierarchy stabilizes at some point; there exists a D ∈ N depending only on deg(f) such that
f ∗sos, D = f ∗sos, D+d for any d ≥ 0. Unfortunately, these two conditions are largely disjoint.
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For preorders, the answers to (1) and (2) are related and both heavily depend on the
geometry of K. Scheiderer shows that for K with dimension greater than one, a positive
answer to (1) implies that P is not stable [95]. A complementary result of Schmüdgen states
that if K(P ) is compact, then P contains any polynomial that is strictly positive on K [96].
Thus for K compact of dimension greater than one, the preorder P is not stable.

Example 2.3.2. Consider the preorder P =
∑

R[x, y, z]2 + 〈x4 − x3 + y2 + z2〉. Since the
variety of x4 − x3 + y2 + z2 is compact and two-dimensional, the preorder P is not stable.
Indeed, we can see that by Schmüdgen’s Theorem, P must contain x + ε for every ε > 0.
By inspection one can check that x /∈ P . For real radical ideals I, such as our example,
and given d, the set {

∑
i g

2
i + I : deg(gi) ≤ d} is a closed subset of the R-vector space

{f + I : deg(f) ≤ 2d} ⊂ R[x]/I, [64, Lemma 4.1.4]. Thus there can be no d for which
x + ε ∈ {

∑
i g

2
i + 〈x4 − x3 + y2 + z2〉 : deg(gi) ≤ d} for every ε in a positive neighborhood

of 0. The degrees of polynomials verifying x+ ε ∈ P must be unbounded as ε→ 0. �

In what follows, we give sufficient conditions to avoid this unstable behavior. The rest of
this section will address question (2), but as we see from [95] and [96] this has implications
for the compactness of K and the answer to (1). In practice checking the stability of a
quadratic module P is difficult. Netzer gives tractable sufficient conditions when K is full
dimensional [69]. Here we present a complimentary result: sufficient conditions for stability
in the case K ⊆ VR(I), P = PO(g1, . . . , gs; I).

Theorem 2.3.3. Let g1, . . . , gs ∈ R[x] and I ⊂ R[x] be an ideal. If there exists w ∈ (R>0)
n

so that inw(I) is real radical and inw(g1), . . . , inw(gs) is a quadratic-module basis with respect
to inw(I), then QM(g1, . . . , gs; I) is stable.

Lemma 2.3.4. Under the hypotheses of Theorem 2.3.3, for any f ∈ QM(g1, . . . , gs; I),
there exist σi ∈

∑
R[x]2 with f ≡

∑s
i=0 σigi (mod I), where g0 = 1, and maxi{degw(σigi)} ≤

degw(f).

Proof. Let f ∈ QM(g1, . . . , gs; I). Then f =
∑s

i=0 gi
∑

j y
2
ij + h for some yij ∈ R[x] and

h ∈ I. Let d = maxi{degw(giy
2
ij)} and A = {(i, j) : degw(giy

2
ij) = d}. Let h′ equal h if

degw(h) = d and 0 otherwise. Note that h′ ∈ I either way.
Suppose degw(f) < d. This implies that top terms in the representation of f must cancel,

that is,
∑

(i,j)∈A inw(giy
2
ij) + inw(h′) = 0. Since inw(giy

2
ij) = inw(gi) inw(yij)

2, we have∑
(i,j)∈A

inw(gi) inw(yij)
2 = − inw(h′) ∈ inw(I).

Because inw(g1), . . . , inw(gs) is a QM-basis with respect to inw(I), this implies inw(yij) ∈
inw(I) for all (i, j) ∈ A. Thus there is some zij ∈ I so that inw(zij) = inw(yij). Let
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ŷij = yij − zij for (i, j) ∈ A and ŷij = yij for (i, j) /∈ A. So yij − ŷij ∈ I for all (i, j). Then

f =
∑
i

gi
∑
j

ŷ2ij + h′′

where h′′ = h +
∑

(i,j)∈A gi · (y2ij − ŷ2ij) ∈ I. Also, note that degw(ŷij) < degw(yij) for

all (i, j) ∈ A. Then max(i,j){degw(giŷ
2
ij)} < d = max(i,j){degw(giy

2
ij)}. If degw(f) <

max(i,j){degw(giŷ
2
ij)}, then we repeat this process. Because the maximum degree drops each

time and must be nonnegative, this process terminates. This gives f ≡
∑s

i=0 σigi (mod I)
where degw(f) = maxi{degw(σigi)}.

Proof of Theorem 2.3.3. As shown in [64, §4.1], QM(g1, . . . , gs; I) is stable in R[x] if and
only if QM(g1, . . . , gs) is stable in R[x]/I. Thus to show that QM(g1, . . . , gs; I) is stable, it
suffices to find l : N→ N so that for every f ∈

∑
QM(g1, . . . , gs; I), there are σi ∈

∑
R[x]2

with f ≡
∑

i σigi + I and deg(σigi) ≤ l(deg(f)).
Let f ∈ QM(g1, . . . , gs; I). Let σi be the polynomials given by Lemma 2.3.4. Note that

for any h ∈ R[x],
wmin deg(h) ≤ degw(h) ≤ wmax deg(h),

where wmax = maxi{wi} and wmin = mini{wi}. Then

wmin max
i
{deg(σigi)} ≤ max

i
{degw(σigi)} = degw(f) ≤ wmax deg(f).

So maxi{deg(σigi)} ≤ wmax

wmin
· deg(f).

The restriction w ∈ (R>0)
n cannot be weakened to w ∈ (R≥0)n. For example, consider

the ideal I of Example 2.3.2. Since the ideal is real radical, the initial ideal with respect to
the zero vector, in0(I) = I, is real radical, but the preorder

∑
R[x]2 + I is not stable.

Corollary 2.3.5. Let I ⊂ R[x] be an ideal. If there exists w ∈ (R>0)
n with inw(I) real

radical, then the preorder
∑

R[x]2 + I is stable. If I is homogeneous and ∆Rad(I) 6= ∅, then∑
R[x]2 + I is stable.

Proof. The statement for general ideals follows from Theorem 2.3.3 with {g1, . . . , gs} = ∅.
If an ideal I ⊂ R[x] is homogenous, then for every v ∈ Rn, there exists w ∈ (R>0)

n so that
inv(I) = inw(I). Thus ∆Rad(I) 6= ∅ if and only if there exists w ∈ (R>0)

n for which inw(I) is
real radical.

2.4 Connections to Compactification

The results of Sections 2.2 and 2.3 are best understood by embedding varieties of Cn into
the weighted projective space P(1,w), which we will explain here.
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Consider inw(I) for an ideal I and w ∈ Rn. Because the Gröbner fan is a rational
polyhedral fan, there exists a vector v ∈ Zn so that inw(I) = inv(I). Thus we may re-
place w ∈ (R≥0)n with w ∈ Nn. For a vector w ∈ Nn, weighted projective space P(1,w)

as a set is Cn+1\{0} modulo the equivalence (a0, a1, . . . , an) ∼ (ta0, t
w1a1, . . . , t

wnan) for all
t ∈ C∗. We’ll use [a0 : a1 : . . . : an] to denote the equivalence class of (a0, a1, . . . , an) ∈
Cn+1\{0}. Varieties in P(1,w) are defined by the zero sets of (1, w)−homogeneous polynomi-
als in C[x0, . . . , xn]. The real points of P(1,w) are the points in the image of Rn+1\{0} under

the equivalence relation. In other words, a ∈ P(1,w) is an element of P(1,w)
R if a = [b0 : . . . : bn]

for some (b0, . . . , bn) ∈ Rn+1.
We embed Cn into P(1,w) by (a1, . . . , an) 7→ [1 : a1 : . . . : an]. Let I ⊂ R[x1, . . . , xn] be an

ideal, and let V denote the image of VC(I) under this map. Let VR denote the image of VR(I).
Let V and VR denote the closures of V and VR in the Zariski topology on P(1,w). For f ∈ C[x],

let f
w

(x0, x1, . . . , xn) = x
degw(f)
0 f(x1/x

w1
0 , . . . , xn/x

wn
0 ). Then f

w
is (1, w)-homogeneous and

f
w

(0, x1, . . . , xn) = inw(f)(x1, . . . , xn). For an ideal I ⊂ R[x], let I
w

= 〈fw : f ∈ I〉. We
see that V is cut out by I

w
.

For every t ∈ C, define I
w

(t) = {f(t, x1, . . . , xn) : f ∈ I
w}. The boundary of our

embedding of Cn into P(1,w) is given by {a0 = 0} ∼= Pw. Thus V \V is cut out by I
w

(0) in
{a0 = 0} ∼= Pw. Since f

w
(0, x1, . . . , xn) = inw(f), we see that I

w
(0) = inw(I). So V \V is cut

out by inw(I) in {a0 = 0} ∼= Pw.

Example 2.4.1. Note that (VR) ⊂ (V )R, but in general we do not have equality. For
example, consider I = 〈(x − y)4 + x2〉 and w = (1, 1). Since VR(I) = {(0, 0)}, we have
VR = {[1 : 0 : 0]}. But V is cut out by (x− y)4 + x2t2 = 0. This gives

(VR) = {[1 : 0 : 0]}, and (V )R = {[1 : 0 : 0], [0 : 1 : 1]}.

We’ll see that if inw(I) is real radical, then (VR) = (V R). �

Consider the preordering P = PO(g1, . . . , gs; I) and the semialgebraic set K = K(P ).
Suppose inw(g1), . . . , inw(gs) form a PO-basis with respect to inw(I). Consider U , p ∈ U and
{xc}c∈(c0,∞) as given by Lemma 2.2.8.

For y ∈ Cn and a ∈ C, let [a : y] denote [a : y1 : . . . : yn] in P(1,w). By embedding K into
P(1,w), we see that

[1 : cw · xc] = [c−1 : xc] ∈ K.

As c → ∞, we have (c−1, xc) → (0, p) in Rn+1. Thus [0 : p] ∈ K ⊂ P(1,w), where K is
the closure of K in the Euclidean topology on P(1,w). This shows that for every p ∈ U ,
[0 : p] ∈ K.

Recall that V \V is cut out by inw(I) in {a0 = 0} ∼= Pw. As U is Zariski-dense in
VR(inw(I)) and inw(I) is real radical, we have that U is Zariski-dense in VC(inw(I)). Together
with [0 : p] ∈ K for all p ∈ U , this gives that K\K is Zariski-dense in V \V .
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Remark 2.4.2. The conditions for stability given in Theorem 2.3.3 imply that K\K is
Zariski-dense in V \V when we embed K and V into P(1,w).

This very closely resembles the conditions for stability given in [84]. After introducing
the notion of stability in [84], Powers and Scheiderer give the following general sufficient
condition for stability of a preorder.

Theorem 2.4.3 (Thm. 2.14, [84]). Suppose I ⊂ R[x] is a radical ideal and V = VC(I) is
normal. Let P be a finitely generated preorder with K(P ) ⊆ VR. Assume that V has an
open embedding into a normal complete R-variety V such that the following is true: For any
irreducible component Z of V \V , the subset K ∩ ZR of ZR is Zariski dense in Z, where K
denotes the closure of K in V R. Then the preorder P is stable.

By Remark 2.4.2, the conditions in Theorem 2.3.3 give a specific compactification that
(mostly) satisfies the conditions of Theorem 2.4.3, namely embedding V into P(1,w). While
Theorem 2.3.3 is less general, it has the advantage of having no normality requirements and
providing a concrete method of ensuring stability.

2.5 Connections to Puiseux Series

The geometric discussions in Sections 2.2 and 2.3 and the definitions of logarithmic limit
sets deal with analytic paths inside of a variety or semialgebraic set. A natural step is to
parametrize these paths by power series or Laurent series. Even better is the set of (complex)
Puiseux series (1.8), defined as

C{{ε}} =

{ ∞∑
i=k

ci/Nε
i/N where ci/N ∈ C and k ∈ Z, N ∈ Z>0

}
. (2.2)

The set C{{ε}} is an algebraically closed field, with a valuation val : C{{ε}} → Q given by

val(
∑
q

cqε
q) = min{q : cq 6= 0}.

We will be also interested in the coefficients of the lowest terms of elements in C{{ε}}, so
define the map coeff : C{{ε}} → C by coeff(x) to be 0 if x = 0 and cval(x) otherwise. We can
extend both val and coeff to C{{ε}}n letting them act coordinate-wise. The fundamental
theorem of tropical geometry [78] states that for any ideal I and vector w ∈ Rn,

VC∗(inw(I)) = coeff({x ∈ VC{{ε}}(I) : −val(x) = w}), (2.3)

from which it follows that
Trop(I) = −val(VC{{ε}}(I)).
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The natural extension of this theory to R is to use the real Puiseux series, R{{ε}}, a
real closed field which inherits the maps val and coeff . The real analog of the fundamental
theorem was proved by Alessandrini [1] and states that for any ideal I ⊂ R[x], we have

L(VR∗(I)) = −val(VR{{ε}}(I)). (2.4)

In fact, this theorem extends to semi-algebraic sets. The field R{{ε}} is ordered, by declaring
x > 0 when coeff(x) > 0. Thus for F = R∗ or R{{ε}}, we can define a semi-algebraic set
KF (g) = {x ∈ F : g1(x) ≥ 0, . . . , gs(x) ≥ 0}. Then (2.4) extends to

L(KR∗(g)) = −val(KR{{ε}}(g)).

As seen through this chapter, initial ideals cannot always characterize L(VR∗(I)) and some-
times only provide an outer approximation TropR∗(I). To see TropR∗(I) in terms of Puiseux
series, define F = {x ∈ C{{ε}} : coeff(x) ∈ R}. Then

TropR∗(I) = −val(VF(I)).

As R{{ε}} ⊂ F , the containment of (2.1) is now clear. The goal of Section 2.2 is to work
towards an analog of (2.3) over the real numbers. As shown by examples such as on page 21,
we can only achieve containments:

Reg(VR∗(inw(I)) ⊂ coeff({x ∈ VR{{ε}}(I) : −val(x) = w}) ⊂ VR∗(inw(I)).

More formally, Lemma 2.2.7 and Theorem 2.2.3 give the following:

Corollary 2.5.1. If p ∈ VR∗(inw(I)) is nonsingular, then there exists a point x ∈ VR{{ε}}(I)
such that val(x) = −w and coeff(x) = p. Furthermore, if inw(gi)(p) > 0 for i = 1, . . . , s,
then this point lies in the semialgebraic set KR{{ε}}(g).

2.6 Computation

In this section, we discuss tractable cases and possible methods for computing ∆Rad and give
sufficient conditions for the compactness and non-compactness of a real variety.

To make use of Theorems 2.2.3 and 2.3.3 for a given ideal I ⊂ R[x], we need to verify that
their hypotheses are satisfied. Thus we seek to compute TropRad(I) and determine whether
the set |∆Rad(I)| ∩ (R+)n is nonempty. More generally, we would like to compute ∆Rad(I).
Each of these tasks involves checking whether initial ideals are real radical. In general,
checking whether an ideal is real radical is difficult, so calculating ∆Rad(I) and TropRad(I)
will be difficult as well. Initial ideals often have simpler form, making it possible to partially
compute ∆Rad(I). Here we will discuss some types of ideals for which these calculations are
more tractable and present some general heuristics for computation in the general case.



28

One such case is when I is principal. Consider I = 〈f〉. As in the general case, maximal
cones of ∆Gr(I) correspond to initial monomials of f and belong to ∆Rad(I) if and only if
these monomials are square-free. Next we can consider cones of codimension one, which are
dual to edges of the Newton polytope of f , NP (f). Because an edge is one-dimensional,
the initial form to which it corresponds can be thought of as a polynomial in one variable.
Specifically, suppose a = (a1, . . . , an) and b = (b1, . . . , bn) are the vertices of an edge of
NP (f), with dual cone σ ⊂ Trop(f). Then the Newton polytope of inσ(f) is the edge with
endpoints a and b. If for some i ∈ {1, . . . , n} both ai ≥ 2 and bi ≥ 2, then x2i divides inσ(f),
so σ /∈ ∆Rad(I). Otherwise, let d = gcd(|a1− b1|, . . . , |an− bn|), meaning that there are d+ 1
lattice points on the edge joining a and b. Using v = (a− b)/d, for some γk ∈ R we can write

inσ(f) =
d∑

k=0

γkx
(b+kv) = xb

d∑
k=0

γk(x
v)k.

Then σ ∈ ∆Rad(I) if and only if the polynomial in one variable
∑d

k=0 γkt
k is real radical,

meaning that all of its roots are real and distinct. This can easily be checked using Sturm
sequences [5, §2.2.2]. Similarly, we can check if a cone of codimension d belongs to ∆Rad(I)
by checking whether or not a certain polynomial in d variables is real radical, though this is
harder when d ≥ 2.

If the ideal I is binomial, then for all w ∈ Trop(I), we have inw(I) = I. Thus to
understand TropRad(I) it suffices to know whether or not I is real radical. Becker et. al. [8]
present a concrete algorithm for computing the real radical of a binomial ideal. If I is not
real radical, TropRad(I) = ∅. If I is real radical, then TropRad(I) = L(VR∗(I)) = TropR∗(I) =
Trop(I). If in addition (R+)n ∩ Trop(I) is nonempty, then by Theorem 2.3.3 the preorder∑

R[x]2 + I is stable.
When I is neither principal nor binomial, we can use more general heuristics for com-

puting ∆Rad(I), which can be specialized to TropRad(I) or |∆Rad(I)| ∩ (R+)n. These are
presented in Algorithm 2.1.

Full dimensional cones σ ∈ ∆Gr(I) (i = n in step iv) correspond to monomial initial
ideals. A monomial ideal is real radical if and only if it is radical if and only if it is square
free. More generally, one can calculate the radical of an ideal with Gröbner basis methods
and exclude σ from ∆Rad(I) whenever inσ(I) is not radical. In general as the dimension of
σ ∈ ∆Gr(I) decreases, inσ(I) has less structure and checking whether inσ(I) is real radical
becomes more difficult.

Currently the only general symbolic methods of determining whether or not an ideal is
real radical are not practical for computation. Becker and Neuhaus present an algorithm for
computing the real radical of an ideal via quantifier elimination [9, 72]. For I = 〈f1, . . . , fr〉 ⊆
R[x1, . . . , xn] they show that the real radical of I, R

√
I is generated by polynomials of degree

at most
max
i=1,...,r

{deg(fi)}2
O(n2)

.
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Given an ideal I ⊂ R[x], calculate the fan ∆Rad(I) as follows:

(i) Calculate I, the homogenization of I.

(ii) Use GFan to calculate the Gröbner fan of I, ∆Gr(I).

(iii) Intersect the cones of ∆Gr(I) with {w0 = 0} to obtain ∆Gr(I).

(iv) For i = n, n− 1, . . . , 0 and cones σ ∈ ∆Gr(I) of dimension i, check if inσ(I) is real
radical.

if yes, σ ∈ ∆Rad(I) and for all faces τ of σ, τ ∈ ∆Rad(I).

if no, σ /∈ ∆Rad(I).

Algorithm 2.1: Calculation of ∆Rad(I)

This also provides a bound for the computation time of their algorithm for finding R
√
I. There

are also numerical methods for computing the real radical of an ideal based on solvers for
semidefinite programs [57], which may perform more quickly but also rely on some symbolic
computations.

Corollary 2.2.9 also has consequences for the compactness of a real variety. Consider an
ideal I ⊂ R[x]. By the definition of logarithmic limit sets, we have that VR∗(I) is compact
and nonempty if and only if its logarithmic limit set is the origin, L(VR∗(I)) = {0}, and
VR∗(I) is empty if and only if L(VR∗(I)) is empty. Corollary 2.2.9 shows that TropRad(I) and
TropR∗(I) provide inner and outer approximations of L(VR∗(I)). This gives the following:

Corollary 2.6.1. For an ideal I ⊂ R[x],

(a) if TropR∗(I) ⊆ {0}, then VR∗(I) is compact,

(b) if TropRad(I) 6⊆ {0}, then VR∗(I) is not compact, and

(c) if TropRad(I) 6⊆ (R≤0)n, then VR(I) is not compact.

This provides a method of verifying the compactness (or non-compactness) of the real
variety of an ideal based only on its initial ideals in some cases. However, the example on
page 21 shows these conditions cannot completely characterize compactness.

Example 2.6.2. Let’s see Corollary 2.6.1 in action:

(a) Let I = 〈(x− 2)2 + (y − 2)2 − 1〉. For every vector w 6= 0, the set VR∗(inw(I)) is empty.
For instance, in(0,−1)(I) = 〈(x − 2)2 + 3〉. Thus TropR∗(I) = {0}, confirming that VR∗(I) is
compact.



30

(b) Consider I = 〈x2 + y2 − 1〉. One checks that TropRad(I) is the union of the non-positive
x and y axes, which shows that VR∗(I) is not compact (even though VR(I) is).

(c) For the ideal I = 〈x4 +x2y2−1〉, we see that in(−1,1)(I) = 〈x2y2−1〉 = 〈(xy+1)(xy−1)〉
and thus (−1, 1) ∈ TropRad(I). This shows that the curve VR(I) is not compact. �

As TropR∗(I) and TropRad(I) are imperfect approximations to L(VR∗(I)), none of the
converses of Corollary 2.6.1 hold. Example 2.4.1 shows that the converse of (a) does not
hold, and the example on page 21 provides a counterexample to the converses of (b) and (c).

Lemma 2.2.7 provides a slightly more general condition for the non-compactness of VR(I).
As discussed in Remark 2.2.11, we can use

{w ∈ Trop(I) : inw(I) has a real radical primary component}

in place of TropRad(I) in Corollary 2.6.1.

Example 2.6.3. For any f ∈ R[x, y] with deg(2,1)(f) < 10, consider I = 〈x5−x4y2 +x3y4−
x2y6 + f〉. Then

in(2,1)(I) = 〈x〉2 ∩ 〈x− y2〉 ∩ 〈x2 + y4〉.

As 〈x − y2〉 is real radical, we see that there is a nonsingular point in VR∗(in(2,1)(I)), for
example the point (1, 1). Thus by Lemma 2.2.7, the vector (2, 1) lies in L(VR∗(I)) and VR(I)
is not compact. �

While these concepts are more subtle over R than over C, tropical geometry and toric
degenerations still provide powerful tools for computation in algebraic geometry. We can
use initial forms and ideals to study both the geometry of semialgebraic sets, as in Theo-
rem 2.2.3, and the behavior of associated polynomials, preorders and quadratic modules, as
in Theorem 2.3.3.
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Chapter 3

Quartic Curves and their Bitangents

This chapter is joint work with Daniel Plaumann and Bernd Sturmfels. It incorporates
material from two papers: “Quartic Curves and their Bitangents” appearing in the Jour-
nal of Symbolic Computation 46 (2011) 712-733 and “Computing Symmetric Determinantal
Representations” appearing in the volume in honor of Bill Helton, Mathematical Methods in
Systems, Optimization and Control, (eds. Harry Dym, Mauricio de Oliveira, Mihai Putinar),
Operator Theory: Advances and Applications”, Birkhäuser, Basel, 2011. Sections 3.7 and
3.8 have been significantly changed and expanded.

3.1 History and Motivation

We consider smooth curves in the projective plane defined by ternary quartics

f(x, y, z) = c400x
4 + c310x

3y + c301x
3z + c220x

2y2 + c211x
2yz + · · ·+ c004z

4, (3.1)

whose 15 coefficients cijk are parameters over the field Q of rational numbers. Our goal is to
devise exact algorithms for computing the two alternate representations

f(x, y, z) = det
(
xA+ yB + zC

)
, (3.2)

where A,B,C are symmetric 4× 4-matrices, and

f(x, y, z) = q1(x, y, z)2 + q2(x, y, z)2 + q3(x, y, z)2, (3.3)

where the qi(x, y, z) are quadratic forms. The representation (3.2) is of most interest when
the real curve VR(f) consists of two nested ovals. Following Helton-Vinnikov [44] and Hen-
rion [46], one seeks real symmetric matrices A,B,C whose span contains a positive definite
matrix. The representation (3.3) is of most interest when the real curve VR(f) is empty. Fol-
lowing Hilbert [48] and Powers-Reznick-Scheiderer-Sottile [83], one seeks quadrics qi(x, y, z)
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with real coefficients. We shall explain how to compute all representations (3.2) and (3.3)
over C.

The theory of plane quartic curves is a delightful chapter of 19th century mathematics,
with contributions by Aronhold, Cayley, Frobenius, Hesse, Klein, Schottky, Steiner, Sturm
and many others. Textbook references include [27, 66, 93]. It started in 1834 with Plücker’s
result [81] that the complex curve VC(f) has 28 bitangents. The linear form ` = αx+βy+γz
of a bitangent satisfies the identity

f(x, y, z) = g(x, y, z)2 + `(x, y, z) · h(x, y, z)

for some quadric g and some cubic h. This translates into a system of polynomial equations
in (α : β : γ), and our algorithms start out by solving these equations.

Let K denote the corresponding splitting field, that is, the smallest field extension of
Q that contains the coefficients α, β, γ for all 28 bitangents. The Galois group Gal(K,Q)
is very far from being the symmetric group S28. In fact, if the coefficients cijk are general
enough, it is the Weyl group of E7 modulo its center,

Gal(K,Q) ∼= W (E7)/{±1} ∼= Sp6(Z/2Z). (3.4)

This group has order 8! · 36 = 1451520, and it is not solvable [42, page 18]. We will see a
combinatorial representation of this Galois group in Section 3.3 (Remark 3.3.9). It is based
on [66, §19] and [28, Thm. 9]. The connection with Sp6(Z/2Z) arises from the theory of
theta functions [27, §5]. For further information see [42, §II.4].

Naturally, the field extensions needed for (3.2) and (3.3) are much smaller for special
quartics. As our running example we take the smooth quartic given by

E(x, y, z) = 25 · (x4 + y4 + z4) − 34 · (x2y2 + x2z2 + y2z2).

We call this the Edge quartic. It is one of the curves in the family studied by William L. Edge
in [29, §14], and it admits a matrix representation (3.2) over Q:

E(x, y, z) = det


0 x+ 2y 2x+ z y − 2z

x+ 2y 0 y + 2z −2x+ z
2x+ z y + 2z 0 x− 2y
y − 2z −2x+ z x− 2y 0

 . (3.5)

The sum of three squares representation (3.3) is derived from the expression

(
x2 y2 z2 xy xz yz

)


25 −55/2 −55/2 0 0 21
−55/2 25 25 0 0 0
−55/2 25 25 0 0 0

0 0 0 21 −21 0
0 0 0 −21 21 0
21 0 0 0 0 −84




x2

y2

z2

xy
xz
yz

 (3.6)
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Figure 3.1: The Edge quartic and some of its 28 bitangents

by taking the Cholesky decomposition of the the above rank-3 matrix, as in (1.12). The real
quartic curve VR(E) consists of four ovals and is shown in Figure 3.1.

Each of the 28 bitangents of the Edge quartic is defined over Q, but the four shown on
the right in Figure 3.1 are tangent at complex points of the curve. The following theorem
and Table 3.1 summarize the possible shapes of real quartics.

Theorem 3.1.1. There are six possible topological types for a smooth quartic curve VR(f) in
the real projective plane. They are listed in the first column of Table 3.1. Each of these six
types corresponds to only one connected component in the complement of the discriminant
∆ in the 14-dimensional real projective space of quartics.

The real curve Cayley octad Real bitangents Real Steiner complexes
4 ovals 8 real points 28 63
3 ovals 6 real points 16 31
2 non-nested ovals 4 real points 8 15
1 oval 2 real points 4 7
2 nested ovals 0 real points 4 15
empty curve 0 real points 4 15

Table 3.1: The six types of smooth quartics in the real projective plane.

The classification result in Theorem 3.1.1 is due to Zeuthen [113]. An excellent exposition
can be found in Salmon’s book [93, Chapter VI]. Klein [51, §5] proved that each type is
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connected in the complement of the discriminant {∆ = 0}. We note that ∆ is a homogeneous
polynomial of degree 27 in the 15 coefficients cijk of f . As a preprocessing step in our
algorithms, we use the explicit formula for ∆ given in [94, Proposition 6.5] to verify that a
given quartic curve VC(f) is smooth.

This chapter is organized as follows. In Section 3.2 we present an algorithm, based on
Dixon’s approach [26], for computing one determinantal representation (3.2). The resulting
4×4-matrices A,B and C specify three quadratic surfaces in P3 whose intersection consists
of eight points, known as a Cayley octad.

In Section 3.3 we use Cayley octads to compute representatives for all 36 inequivalent
classes of determinantal representations (3.2) of the given quartic f . This is accomplished
by a combinatorial algorithm developed by Hesse in [47], which realizes the Cremona action
[28] on the Cayley octads. The output consists of 36 symmetric 8×8-matrices (3.9). These
have rank 4 and their 28 entries are linear forms defining the bitangents.

In Section 3.4 we identify sums of three squares with Steiner complexes of bitangents,
and we compute all 63 Gram matrices, i.e. all 6×6-matrices of rank 3 as in (3.6), again using
only rational arithmetic over K. This ties in with the results of Powers, Reznick, Scheiderer
and Sottile in [83], where it was proved that a smooth quartic f has precisely 63 inequivalent
representations as a sum of three squares (3.3). They strengthened Hilbert’s theorem in [48]
by showing that precisely eight of these 63 are real when f is positive.

Section 3.5 is devoted to the boundary and facial structure of the Gram spectrahedron.
This is the six-dimensional spectrahedron consisting of all sums of squares representations of
a fixed positive ternary quartic f . We show that its eight special vertices are connected by
12 edges that form two complete graphs K4. We also study the structure of the associated
semidefinite programming problems.

In Section 3.6 we focus on Vinnikov quartics, that is, real quartics consisting of two nested
ovals. Helton and Vinnikov [44] proved the existence of a representation (3.2) over R. We
present a symbolic algorithm for computing that representation in practice. Our method
uses exact arithmetic and writes the convex inner oval explicitly as a spectrahedron (1.3).
This settles a question raised by Henrion [46, §1.2].

In Section 3.7 we derive the number of real and definite equivalence classes of determi-
nantal representations using using Steiner complexes and theory from Section 3.5. We give
exact examples to demonstrate phenomena in different cases and give a classification of nets
of real quadrics in P3.

In Section 3.8 we end with an example of a smooth plane quartic over the field Q(ε), for
which the field K is Q[i]((ε)). This is a first step towards understanding the tropical theory
of plane quartics, as well as contact curves and spectrahedra.

We have implemented most of the algorithms presented in this chapter in the system
SAGE1. Our software and supplementary material on quartic curves and Cayley octads can
be found at math.berkeley.edu/∼cvinzant/quartics.html.

1www.sagemath.org
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3.2 Computing a Symmetric Determinantal Represen-

tation from Contact Curves

We now prove, by way of a constructive algorithm, that every smooth quartic admits a
symmetric determinantal representation (3.2). First we compute the 28 bitangents, ` =
αx+ βy + γz . Working on the affine chart {γ = 1}, we equate

f
(
x, y,−αx− βy

)
= (κ0x

2 + κ1xy + κ2y
2)2,

eliminate κ0, κ1, κ2, and solve the resulting system for the unknowns α and β. This constructs
the splitting field K for the given f as a finite extension of Q. All further computations in
this section are performed via rational arithmetic in K.

Next consider any one of the
(
28
3

)
= 3276 triples of bitangents. Multiply their defining

linear forms. The resulting polynomial v00 = `1`2`3 is a contact cubic for VC(f), which
means that the ideal 〈v00, f〉 in K[x, y, z] defines six points in P2 each of multiplicity 2. Six
points that span three lines in P2 impose independent conditions on cubics, so the space
of cubics in the radical of 〈v00, f〉 is 4-dimensional over K. We extend {v00} to a basis
{v00, v01, v02, v03} of that space.

Max Noether’s Fundamental Theorem [34, § 5.5] can be applied to the cubic v00 and the
quartic f . It implies that a homogeneous polynomial lies in 〈v00, f〉 if it vanishes to order
two at each of the six points of VC

(
〈v00, f〉

)
. The latter property holds for the sextic forms

v0iv0j. Hence v0iv0j lies in 〈v00, f〉 for 1 ≤ i ≤ j ≤ 3. Using the Extended Buchberger
Algorithm, we can compute cubics vij such that

v0iv0j − v00vij ∈ 〈f〉. (3.7)

We now form a symmetric 4×4-matrix V whose entries are cubics in K[x, y, z]:

V =


v00 v01 v02 v03
v01 v11 v12 v13
v02 v12 v22 v23
v03 v13 v23 v33

 .

The following result is due to Dixon [26], and it almost solves our problem.

Proposition 3.2.1. Each entry of the adjoint V adj is a linear form times f 2, and

det(f−2 · V adj) = γ · f(x, y, z) for some constant γ ∈ K.

Hence, if det(V ) 6= 0 then f−2 · V adj gives a linear matrix representation (3.2).

Proof. Since v00 6∈ 〈f〉, the condition (3.7) implies that, over the quotient ring K[x, y, z]/〈f〉,
the matrix V has rank 1. Hence, in the polynomial ring K[x, y, z], the cubic f divides all 2×2
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minors of V . This implies that f 2 divides all 3×3 minors of V , and f 3 divides det(V ). As the
entries of V adj have degree 9, it follows that V adj = f 2 ·W , where W is a symmetric matrix
whose entries are linear forms. Similarly, as det(V ) has degree 12, we have det(V ) = δf 3 for
some δ ∈ K, and δ 6= 0 unless det(V ) is identically zero. Let I4 denote the identity matrix.
Then

δf 3 · I4 = det(V ) · I4 = V · V adj = f 2 · V ·W.

Dividing by f 2 and taking determinants yields

δ4f 4 = det(V ) · det(W ) = δf 3 · det(W ).

This implies the desired identity det(W ) = δ3f .

We now identify the conditions to ensure that det(V ) is not the zero polynomial.

Theorem 3.2.2. The determinant of V vanishes if and only if the six points of VC(f, `1`2`3),
at which the bitangents `1, `2, `3 touch the quartic curve VC(f), lie on a conic in P2. This
happens for precisely 1260 of the 3276 triples of bitangents.

Proof. Dixon [26] proves the first assertion. The census of triples appears in the table on page
233 in Salmon’s book [93, §262]. It is best understood via the Cayley octads in Section 3.3.
For further information see Dolgachev’s notes [27, §6.1].

Remark 3.2.3. Let `1, `2, `3 be any three bitangents of VC(f). If the six intersection points
with VC(f) lie on a conic, the triple {`1, `2, `3} is called syzygetic, otherwise azygetic. A
smooth quartic f has 1260 syzygetic and 2016 azygetic triples of bitangents. Similarly, a
quadruple {`1, `2, `3, `4} of bitangents is called syzygetic if its eight contact points lie on
a conic and azygetic if they do not. Every syzygetic triple `1, `2, `3 determines a fourth
bitangent `4 with which it forms a syzygetic quadruple. Indeed, if the contact points of
`1, `2, `3 lie on a conic with defining polynomial q, then q2 lies in the ideal 〈f, `1`2`3〉, so that
q2 = γf + `1`2`3`4, and the other two points in VC(f, q) must be the contact points of the
bitangent `4.

Given a smooth ternary quartic f ∈ Q[x, y, z], we compute the splitting field K over
which the 28 bitangents of VC(f) are defined. We pick a random triple of bitangents
and construct the matrix V via the above method. If det(V ) 6= 0, we compute the
adjoint of V and divide by f 2, obtaining the desired determinantal representation of f
over K. If det(V ) = 0, we pick a different triple of bitangents. On each iteration, the
probability for det(V ) 6= 0 is 2016

3276
= 8

13
.

Algorithm 3.1: Constructing a linear matrix representation from bitangents
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Example 3.2.4. The diagram on the left of Figure 3.1 shows an azygetic triple of bitangents
to the Edge quartic. Here, the six points of tangency do not lie on a conic. The represen-
tation of the Edge quartic in (3.5) is produced by Algorithm 3.1 starting from the contact
cubic v00 = 2(y + 2z)(−2x+ z)(x− 2y). �

3.3 Cayley Octads and the Cremona Action

Algorithm 3.1 outputs a matrix M = xA + yB + zC where A,B,C are symmetric 4×4-
matrices with entries in the subfield K of C over which all 28 bitangents of VC(f) are defined.
Given one such representation (3.2) of the quartic f , we shall construct a representative from
each of the 35 other equivalence classes. Two representations (3.2) are considered equivalent
if they are in the same orbit under the action of GL4(C) by conjugation M 7→ UTMU . We
shall present an algorithm for the following result. It performs rational arithmetic over the
splitting field K of the 28 bitangents, and it constructs one representative for each of the 36
orbits.

Theorem 3.3.1 (Hesse [47]). Every smooth quartic curve f has exactly 36 equivalence classes
of linear symmetric determinantal representations (3.2).

Our algorithm begins by intersecting the three quadric surfaces seen in M :

uAuT = uBuT = uCuT = 0 where u = (u0 : u1 : u2 : u3) ∈ P3(C). (3.8)

These equations have eight solutions O1, . . . , O8. This is the Cayley octad of M . In general,
a Cayley octad is the complete intersection of three quadrics in P3(C).

The next proposition gives a bijection between the 28 bitangents of VC(f) and the lines
OiOj for 1 ≤ i ≤ j ≤ 8. The combinatorial structure of this configuration of 28 lines in P3

plays an important role for our algorithms.

Proposition 3.3.2. Let O1, . . . , O8 be the Cayley octad defined above. Then the 28 linear
forms OiMOT

j ∈ C[x, y, z] are the equations of the bitangents of VC(f).

Proof. Fix i 6= j. After a change of basis on C4 given by a matrix U ∈ GL4(C) and replacing
M by UTMU , we may assume that Oi = (1, 0, 0, 0) and Oj = (0, 1, 0, 0). The linear form
bij = OiMOT

j now appears in the matrix:

M =

 0 bij
bij 0

M ′

(M ′)T ∗

 .

Expanding det(M) and sorting for terms containing bij shows that f= det(M) is congruent
to det(M ′)2 modulo 〈bij〉. This shows that bij is a bitangent.
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Let O be the 8 × 4-matrix with rows given by the Cayley octad. The symmetric 8×8-
matrix OMOT has rank 4, and we call it the bitangent matrix of M . By the definition of O,
the bitangent matrix has zeros on the diagonal, and, by Proposition 3.3.2, its 28 off-diagonal
entries are precisely the equations of the bitangents:

OMOT =



0 b12 b13 b14 b15 b16 b17 b18
b12 0 b23 b24 b25 b26 b27 b28
b13 b23 0 b34 b35 b36 b37 b38
b14 b24 b34 0 b45 b46 b47 b48
b15 b25 b35 b45 0 b56 b57 b58
b16 b26 b36 b46 b56 0 b67 b68
b17 b27 b37 b47 b57 b67 0 b78
b18 b28 b38 b48 b58 b68 b78 0


. (3.9)

Remark 3.3.3. We can see that the octad O1, . . . , O8 consists of K-rational points of P3:
To see this, let K ′ be the field of definition of the octad over K. Then any element σ
of Gal(K ′ : K) acts on the octad by permutation, and thus permutes the indices of the
bitangents, bij. On the other hand, as all bitangents are defined over K, σ must fix bij (up
to a constant factor). Thus the permutation induced by σ on the octad must be the identity
and Gal(K ′ :K) is the trivial group.

Example 3.3.4. The symmetric matrix M in (3.5) determines the Cayley octad

OT =


1 0 0 0 −1 1 1 3
0 1 0 0 3 −1 1 1
0 0 1 0 1 3 1 −1
0 0 0 1 −1 −1 3 −1

 .

All the 28 bitangents of E(x, y, z) are revealed in the bitangent matrix OMOT =
0 x+ 2y 2x+ z y − 2z 5x+5y+3z 5x−3y+5z 3x+5y−5z −x+y+z

x+ 2y 0 y + 2z −2x+ z x−y+z 3x+5y+5z −5x+3y+5z 5x+5y−3z
2x+ z y + 2z 0 x− 2y −3x+5z+5y x−z+y 5x+3z−5y 5x+5z+3y
y − 2z −2x+ z x− 2y 0 −3y+5z−5x −5y−3z+5x −y−z− x 5y−5z−3x

5x+5y+3z x−y+z −3x+5z+5y −3y+5z−5x 0 24y + 12z −12x+ 24z 24x+ 12y
5x−3y+5z 3x+5y+5z x−z+y −5y−3z+5x 24y + 12z 0 24x− 12y 12x+ 24z
3x+5y−5z −5x+3y+5z 5x+3z−5y −y−z−x −12x+ 24z 24x− 12y 0 24y − 12z
−x+y+z 5x+5y−3z 5x+5z+3y 5y−5z−3x 24x+ 12y 12x+ 24z 24y − 12z 0


Each principal 4×4-minors of this matrix is a multiple of E(x, y, z), as in (3.10). �

Each principal 3×3-minor of the bitangent matrix (3.9) is a contact cubic 2bijbikbjk of
VC(f) and can serve as the starting point for the procedure in Section 3.2. Hence, each
principal 4×4-minor Mijkl of (3.9) represents the same quartic:

det(Mijkl) = a non-zero scalar multiple of f(x, y, z)
= b2ijb

2
kl + b2ikb

2
jl + b2ilb

2
jk − 2(bijbikbjlbkl + bijbilbjkbkl + bikbilbjkbjl).

(3.10)
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However, all these
(
8
4

)
= 70 realizations of (3.2) lie in the same equivalence class.

In what follows, we present a simple recipe due to Hesse [47] for finding 35 alternate
bitangent matrices, each of which lies in a different GL4(C)-orbit. This furnishes all 36
inequivalent determinantal representations promised in Theorem 3.3.1. We begin with a
remark that explains the number 1260 in Theorem 3.2.2.

Remark 3.3.5. We can use the combinatorics of the Cayley octad to classify syzygetic
collections of bitangents. There are 56 triples 4 of the form {bij, bik, bjk}. Any such triple
is azygetic, by the if-direction in Theorem 3.2.2, because the cubic bijbikbjk appears on the
diagonal of the adjoint of the invertible matrix Mijkl. Every product of an azygetic triple of
bitangents appears as a 3×3 minor of exactly one of the 36 inequivalent bitangent matrices,
giving 36 · 56 = 2016 azygetic triples of bitangents and

(
28
3

)
− 2016 = 1260 syzygetic triples.

A quadruple of bitangents of type � is of the form {bij, bjk, bkl, bil}. Any such quadruple
is syzygetic. Indeed, equation (3.10) implies f + 4(bijbjkbklbil) = (bijbkl − bikbjl + bilbjk)

2,
and this reveals a conic containing the eight points of contact.

Consider the following matrix which is gotten by permuting the entries of Mijkl:

M ′
ijkl =


0 bkl bjl bjk
bkl 0 bil bik
bjl bil 0 bij
bjk bik bij 0

 .

This procedure does not change the determinant: det(M ′
ijkl) = det(Mijkl) = f . This gives

us 70 linear determinantal representations (3.2) of the quartic f , one for each quadruple
I = {i, j, k, l} ⊂ {1, . . . , 8}. These are equivalent in pairs:

Theorem 3.3.6. If I 6= J are quadruples in {1, . . . , 8}, then the symmetric matrices M ′
I

and M ′
J are in the same GL4(C)-orbit if and only if I and J are disjoint. None of these

orbits contains the original matrix M = xA+ yB + zC.

Proof. Fix I = {1, 2, 3, 4} and note the following identity in K[x, y, z, u0, u1, u2, u3]:
u0
u1
u2
u3


T

0 b12 b13 b14
b12 0 b23 b24
b13 b23 0 b34
b14 b24 b34 0



u0
u1
u2
u3

 = u0u1u2u3


u−10

u−11

u−12

u−13


T

0 b34 b24 b23
b34 0 b14 b13
b24 b14 0 b12
b23 b13 b12 0



u−10

u−11

u−12

u−13


This shows that the Cayley octad of M ′

1234 is obtained from the Cayley octad of M1234

by applying the Cremona transformation at O1, O2, O3, O4. Equivalently, observe that the
standard basis vectors of Q4 are the first four points in the Cayley octads of both M1234 and
M ′

1234, and if Oi = (αi : βi : γi : δi) for i = 5, 6, 7, 8 belong to the Cayley octad of M1234,
then O′i = (αi

−1 : β−1i : γ−1i : δ−1i ) for i = 5, 6, 7, 8 belong to the Cayley octad O′ of M ′
1234.
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Thus the transformation from Mijkl to M ′
ijkl corresponds to the Cremona action cr3,8 on

Cayley octads, as described on page 107 in the book of Dolgachev and Ortland [28]. Each
Cremona transformation changes the projective equivalence class of the Cayley octad, and
altogether we recover the 36 distinct classes. That M ′

I is equivalent to M ′
J when I and J

are disjoint can be explained by the following result due to Coble [22]. See [28, §III.3] for a
derivation in modern terms.

Theorem 3.3.7. Let O be an unlabeled configuration of eight points in linearly general
position in P3. Then O is a Cayley octad (i.e. the intersection of three quadrics) if and only
if O is self-associated (i.e. fixed under Gale duality; cf. [32]).

The Cremona action on Cayley octads was known classically as the bifid substitution,
a term coined by Arthur Cayley himself. We can regard this as a combinatorial rule that
permutes and scales the 28 entries of the 8×8 bitangent matrix:

Corollary 3.3.8. The entries of the bitangent matrix OM1234O
T = (bij) and the bitangent

matrix O′M ′
1234O

′T = (b′ij) are related by non-zero scalars in the field K as follows:

The linear form b′ij is a scalar multiple of


bkl if {i, j, k, l} = {1, 2, 3, 4},
bij if |{i, j} ∩ {1, 2, 3, 4}| = 1,
bkl if {i, j, k, l} = {5, 6, 7, 8}.

Proof. The first case is the definition of M ′
1234. For the second case we note that

b15 = O1M1234O
T
5 = β5b12 + γ5b13 + δ5b14

and b′15 = O′1M
′
1234O

′T
5 = β−15 b34 + γ−15 b24 + δ−15 b23,

(3.11)

by Proposition 3.3.2. The identity O5M1234O
T
5 = 0, when combined with (3.11), translates

into α5b15 +β5γ5δ5b
′
15 = 0, and hence b′15 = −α5β

−1
5 γ−15 δ−15 b15. For the last case we consider

any pair {i, j} ⊂ {5, 6, 7, 8}. We know that b′ij = νbkl, for some ν ∈ K∗ and {k, l} ⊂
{5, 6, 7, 8}, by the previous two cases. We must exclude the possibility {k, l} ∩ {i, j} 6=
∅. After relabeling this would mean b′56 = νb56 or b′56 = νb57. If b′56 = νb56 then the
lines {b′12, b′25, b′56, b′16} and {b34, b25, b56, b16} coincide. This is impossible because the left
quadruple is syzygetic while the right quadruple is not, by Remark 3.3.5. Likewise, b′56 =
νb57 would imply that the azygetic triple {b′15, b′56, b′16} corresponds to the syzygetic triple
{b15, b57, b16}.

Remark 3.3.9. The 35 bifid substitutions of the Cayley octad are indexed by partitions
of [8] = {1, 2, . . . , 8} into pairs of 4-sets. They are discussed in modern language in [28,
Prop.4, page 172]. Each bifid substitution determines a permutation of the set

(
[8]
2

)
={

{i, j} : 1≤i<j≤8
}

. For instance, the bifid partition 1234|5678 determines the permutation

in Corollary 3.3.8. Hesse [47, page 318] wrote these 35 permutations of
(
[8]
2

)
explicitly in a

table of format 35×28. Hesse’s remarkable table is a combinatorial realization of the Galois
group (3.4). Namely, W (E7)/{±1} is the subgroup of column permutations that fixes the
rows.
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We conclude this section with a remark on the real case. Suppose that f is given by a real
symmetric determinantal representation (3.2), i.e. f = det(M) where M = xA + yB + zC
and A,B,C are real symmetric 4 × 4-matrices. By [109, §0], such a representation exists
for every smooth real quartic f . Then the quadrics uAuT , uBuT , uCuT ∈ K[u0, u1, u2, u3]2
defining the Cayley octad are real, so that the points O1, . . . , O8 are either real or come in
conjugate pairs.

Corollary 3.3.10. Let M = xA+ yB + zC be a real symmetric matrix representation of f
with Cayley octad O1, . . . , O8. Then the bitangent OT

i MOj is defined over R if and only if
Oi and Oj are either real or form a conjugate pair, Oi = Oj.

From the possible numbers of real octad points we can infer the numbers of real bitangents
stated in Table 3.1. If 2k of the eight points are real, then there are 4−k complex conjugate
pairs, giving

(
2k
2

)
+ 4− k = 2k2 − 2k + 4 real bitangents.

3.4 Sums of Three Squares and Steiner Complexes

Our next goal is to write the given quartic f as the sum of three squares of quadrics. Such
representations (3.3) are classified by Gram matrices of rank 3. As in Definition 1.3.5, a
Gram matrix for f is a symmetric 6× 6 matrix G with entries in C such that

f = vT ·G · v where v = (x2, y2, z2, xy, xz, yz)T .

We can write G = HT · H, where H is an r × 6-matrix and r = rank(G). Then the
factorization f = (Hv)T · (Hv) expresses f as the sum of r squares.

It can be shown that no Gram matrix with r ≤ 2 exists when f is smooth, and there are
infinitely many for r ≥ 4. For r = 3 their number is 63 by Theorem 3.4.1.

Gram matrices classify the representations (3.3): two distinct representations

f = q21 + q22 + q23 = p21 + p22 + p23

correspond to the same Gram matrix G of rank 3 if and only if there exists an orthogonal
matrix T ∈ O3(C) such that T · (p1, p2, p3)T = (q1, q2, q3)

T . The objective of this section is
to present an algorithmic proof for the following result.

Theorem 3.4.1. Let f ∈ Q[x, y, z] be a smooth quartic and K the splitting field for its 28
bitangents. Then f has precisely 63 Gram matrices of rank 3, all of which we compute using
rational arithmetic over the field K.

The fact that f has 63 Gram matrices of rank 3 is a known result due to Coble [22,
Ch. 1, §14]; see also [83, Prop. 2.1]. Our contribution is a new proof that yields a K-
rational algorithm for computing all rank-3 Gram matrices. Instead of appealing to the
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Jacobian threefold of f , as in [83], we shall identify the 63 Gram matrices with the 63
Steiner complexes of bitangents (see [93, §VI] and [27, §6]).

We begin by constructing a representation f = q21 + q22 + q23 from any pair of bitangents.
Let `, `′ be distinct bitangents of f , and let p ∈ C[x, y, z]2 be a non-singular quadric passing
through the four contact points of ``′ with f . By Max Noether’s Fundamental Theorem [34,
§ 5.5], the ideal

〈
``′, f

〉
contains p2, thus

f = ``′u− p2, (3.12)

for some quadric u ∈ C[x, y, z]2, after rescaling p by a constant. Over C, the identity (3.12)
translates directly into one of the form:

f =

(
1

2
``′ +

1

2
u

)2

+

(
1

2i
``′ − 1

2i
u

)2

+ (ip)2. (3.13)

Remark 3.4.2. Just as systems of contact cubics to VC(f) were behind the formula (3.2),
systems of contact conics to VC(f) are responsible for the representations (3.3). The simplest
choice of a contact conic is a product of two bitangents.

In (3.13) we wrote f as a sum of three squares over C. There are
(
28
2

)
= 378 pairs {`, `′}

of bitangents. We will see Theorem 3.4.5 that each pair forms a syzygetic quadruple with
5 other pairs. This yields 378/6 = 63 equivalence classes. More importantly, there is a
combinatorial rule for determining these 63 classes from a Cayley octad. This allows us to
compute the 63 Gram matrices over K.

Equation (3.12) can also be read as a quadratic determinantal representation

f = det

(
q0 q1
q1 q2

)
(3.14)

with q0 = ``′, q1 = p, and q2 = u. This expression gives rise to the quadratic system of
contact conics {λ20q0 + 2λ0λ1q1 + λ21q

2
2 : λ ∈ P1(C)}. The implicitization of this quadratic

system is a quadratic form on span{q0, q1, q2}. With respect to the basis (q0, q1, q2), it is
represented by a symmetric 3× 3 matrix C. Namely,

C =

0 0 2
0 −1 0
2 0 0

 and its inverse is C−1 =

 0 0 1/2
0 −1 0

1/2 0 0

.
The formula (3.14) shows that f = q0q2−q21 = (q0, q1, q2) ·C−1 ·(q0, q1, q2)T . We now extend
q0, q1, q2 to a basis q = (q0, q1, q2, q3, q4, q5) of C[x, y, z]2. Let T denote the matrix that takes

the monomial basis v = (x2, y2, z2, xy, xz, yz) to q. If G̃ is the 6× 6 matrix with C−1 in the
top left block and zeros elsewhere, then

f = (q0, q1, q2) · C−1 · (q0, q1, q2)T = vT · T T · G̃ · T · v. (3.15)
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Thus, G = T T G̃T is a rank-3 Gram matrix of f . This construction is completely reversible,
showing that every rank-3 Gram matrix of f is obtained in this way.

The key player in the formula (3.15) is the quadratic form given by C. From this, one
easily gets the Gram matrix G. We shall explain how to find G geometrically from the pair
of bitangents `, `′. The following result is taken from Salmon [93]:

Proposition 3.4.3. Let f = det(Q) where Q is a symmetric 2 × 2-matrix with entries
in C[x, y, z]2 as in (3.14). Then Q defines a quadratic system of contact conics λTQλ ,
λ ∈ P1(C), that contains exactly six products of two bitangents.

Sketch of Proof. To see that λTQλ is a contact conic, note that for any λ, µ ∈ C2,

(λTQλ)(µTQµ)− (λTQµ)2 =
∑
i,j,k,l

λiλjµkµl(QijQkl −QikQjl). (3.16)

The expression QijQkl − QikQjl is a multiple of det(Q) = f , and hence so is the left hand
side of (3.16). This shows that λTQλ is a contact conic of VC(f). The set of singular conics
is a cubic hypersurface in C[x, y, z]2. As λTQλ is quadratic in λ, we see that there are six
points λ ∈ P1(C) for which λTQλ is the product of two linear forms. These are bitangents
of f and therefore K-rational.

Remark 3.4.4. If the Gram matrix G is real, then it is positive (or negative) semidefinite
if and only if the quadratic system Q = {λTQλ | λ ∈ P1(C)} does not contain any real
conics. For if G is real, we may take a real basis (q′0, q

′
1, q
′
2) of span{q0, q1, q2} = ker(G)⊥ in

C[x, y, z]2. If Q does not contain any real conics, then the matrix C ′ representing Q with
respect to the basis (q′0, q

′
1, q
′
2) is definite. Using C ′ instead of C in the above construction, we

conclude that C ′−1 is definite and hence G is semidefinite. The converse follows by reversing
the argument.

We now come to Steiner complexes, the second topic in the section title.

Theorem 3.4.5. Let S =
{
{`1, `′1}, . . . , {`6, `′6}

}
be six pairs of bitangents of a smooth

quartic f ∈ Q[x, y, z]. Then the following three conditions are equivalent:

(i) The reducible quadrics `1`
′
1, . . . , `6`

′
6 lie in a system {λTQλ, λ ∈ P1(C)} of contact

conics, for Q a quadratic determinantal representation (3.14) of f .

(ii) For each i 6= j, the eight contact points VC(`i`
′
i`j`

′
j) ∩ VC(f) lie on a conic.

(iii) With indices as in the bitangent matrix (3.9) for a Cayley octad, either

S =
{
{bik, bjk} | {i, j} = I and k ∈ Ic

}
for a 2-set I ⊂ {1, . . . , 8},

or S =
{
{bij, bkl} | {i, j, k, l} = I or {i, j, k, l} = Ic

}
for a 4-set I ⊂ {1, . . . , 8}.
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Proof. This is a classical result due to Otto Hesse [47]. The proof can also be found in the
books of Salmon [93] and Miller-Blichfeldt-Dickson [66, §185–186].

A Steiner complex is a sextuple S of pairs of bitangents satisfying the conditions of
Theorem 3.4.5. A pair of bitangents in S is either of the form {bik, bjk} (referred to as type∨

) or of the form {bij, bkl} (type ||). The first type of Steiner complex in Theorem 3.4.5 (iii)
contains pairs of bitangents of type

∨
and the second type contains pairs of type ||. There are(

8
2

)
= 28 Steiner complexes of type

∨
and

(
8
4

)
/2 = 35 Steiner complexes of bitangents of type

||. The two types of Steiner complexes are easy to remember by the following combinatorial
pictures:

Type
∨

Type ||

This combinatorial encoding of Steiner complexes enables us to derive the last column in
Table 3.1 in the Introduction. We represent the quartic as (3.3) with A,B,C real, as in [109].
The corresponding Cayley octad {O1, . . . , O8} is invariant under complex conjugation. Let
π be the permutation in S8 that represents complex conjugation, meaning Oi = Oπ(i). Then
complex conjugation on the 63 Steiner complexes is given by the action of π on their labels.
For instance, when all Oi are real, as in the first row of Table 3.1, then π is the identity.
For the other rows we can relabel so that π = (12), π = (12)(34), π = (12)(34)(56) and
π = (12)(34)(56)(78). We say that a Steiner complex S is real if its labels are fixed under
π. For example, if S is the Steiner complex {{b13, b23},. . . , {b18, b28}} of type

∨
as above,

then S is real if and only if π fixes {1, 2}. Similarly, if S is the Steiner complex {{b12, b34},
{b13, b24}, {b14, b23}, {b56, b78}, {b57, b68}, {b58, b67}} of type ||, then S is real if and only if π
fixes the partition

{
{1, 2, 3, 4}, {5, 6, 7, 8}

}
. For instance, for the empty curve, in the last row

Table 3.1, one can check that exactly 15 Steiner complexes are fixed by π = (12)(34)(56)(78),
as listed in Section 3.5.

We now sum up what we have achieved in this section, namely, a recipe for constructing
the 63 Gram matrices from the 28 + 35 Steiner complexes

∨
and ||.

Proof and Algorithm for Theorem 3.4.1. We take as input a smooth ternary quartic f ∈
Q[x, y, z] and any of the 63 Steiner complexes

{
{`1, `′1}, . . . , {`6, `′6}

}
of bitangents of VC(f).

From this we can compute a rank-3 Gram matrix for f as follows. The six contact conics `i`
′
i

span a 3-dimensional subspace of K[x, y, z]2, by Theorem 3.4.5 (i), of which {`1`′1, `2`′2, `3`′3}
is a basis. The six vectors `i`

′
i lie on a conic in that subspace, and we compute the symmetric

3×3-matrix C̃ representing this conic in the chosen basis. We then extend its inverse C̃−1

by zeroes to a 6×6 matrix G̃ and fix an arbitrary basis {q4, q5, q6} of span{`1`′1, `2`′2, `3`′3}⊥
in K[x, y, z]2. Let T ∈ K6×6 be the matrix taking the basis v = (x2, y2, z2, xy, xz, yz)T to

(`1`
′
1, `2`

′
2, `3`

′
3, q4, q5, q6)

T . Then G = T T G̃T is the desired rank-3 Gram matrix for f , and
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all rank-3 Gram matrices arise in this way. Note that G does not depend on the choice of
q4, q5, q5.

Remark 3.4.6. Given f , finding a Steiner complex as input for the above algorithm is not
a trivial task. But when a linear determinantal representation of f is known, and thus a
Cayley octad, one can use the criterion in Theorem 3.4.5 (iii).

Example 3.4.7. We consider the quartic f = det(M) defined by the matrix

M =


52x+ 12y − 60z −26x− 6y + 30z 48z 48y
−26x− 6y + 30z 26x+ 6y − 30z −6x+6y−30z −45x−27y−21z

48z −6x+ 6y − 30z −96x 48x
48y −45x− 27y − 21z 48x −48x

.
The complex curve VC(f) is smooth and its set of real points VR(f) is empty. The corre-
sponding Cayley octad consists of four pairs of complex conjugates:

OT =


i −i 0 0 −6 + 4i −6− 4i 3 + 2i 3− 2i

1 + i 1− i 0 0 −4 + 4i −4− 4i 7− i 7 + i
0 0 i −i −3 + 2i −3− 2i −86

39
− 4

13
i −86

39
+ 4

13
i

0 0 1 + i 1− i 1− i 1 + i 4
39
− 20

39
i 4

39
+ 20

39
i

.
Here the 8×8 bitangent matrix OMOT = (bij) is defined over the field K = Q(i) of Gaussian
rationals, and hence so are all 63 Gram matrices. According to the lower right entry in
Table 3.1, precisely 15 of the Gram matrices are real, and hence these 15 Gram matrices
have their entries in Q. For instance, the representation

f = 288


x2

y2

z2

xy
xz
yz



T
45500 3102 −9861 5718 −9246 4956
3102 288 −747 882 −18 −144
−9861 −747 3528 −864 −1170 −504
5718 882 −864 4440 1104 −2412
−9246 −18 −1170 1104 11814 −5058
4956 −144 −504 −2412 −5058 3582




x2

y2

z2

xy
xz
yz


is obtained by applying our algorithm for Theorem 3.4.1 to the Steiner complex

S =
{
{b13, b58}, {b15, b38}, {b18, b35}, {b24, b67}, {b26, b47}, {b27, b46}

}
.

The above Gram matrix has rank 3 and is positive semidefinite, so it translates into a
representation (3.3) for f as the sum of three squares of quadrics over R.

�
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3.5 The Gram spectrahedron

The Gram spectrahedron Gram�0(f) of a real ternary quartic f is the set of its positive
semidefinite Gram matrices. This spectrahedron is the intersection of the cone of posi-
tive semidefinite 6×6-matrices with a 6-dimensional affine subspace Gram(f), as in Defini-
tion 1.3.5. By Hilbert’s result in [48], Gram�0(f) is non-empty if and only if f is non-negative.
In terms of coordinates on the 6-dimensional subspace given by a fixed quartic

f(x, y, z) = c400x
4 + c310x

3y + c301x
3z + c220x

2y2 + c211x
2yz + · · ·+ c004z

4,

the Gram spectrahedron Gram�0(f) is the set of all positive semidefinite matrices

c400 λ1 λ2
1
2c310

1
2c301 λ4

λ1 c040 λ3
1
2c130 λ5

1
2c031

λ2 λ3 c004 λ6
1
2c103

1
2c013

1
2c310

1
2c130 λ6 c220 − 2λ1

1
2c211 − λ4

1
2c121 − λ5

1
2c301 λ5

1
2c103

1
2c211 − λ4 c202 − 2λ2

1
2c112 − λ6

λ4
1
2c031

1
2c013

1
2c121 − λ5

1
2c112 − λ6 c022 − 2λ3


, where λ ∈ R6. (3.17)

The main result of [83] is that a smooth positive quartic f has exactly eight inequivalent
representations as a sum of three real squares, which had been conjectured in [82]. These
eight representations correspond to rank-3 positive semidefinite Gram matrices. We call
these the vertices of rank 3 of Gram�0(f). In Section 3.4 we compute them using arithmetic
over K.

We define the Steiner graph of the Gram spectrahedron to be the graph on the eight
vertices of rank 3 whose edges represent edges of the convex body Gram�0(f).

Theorem 3.5.1. The Steiner graph of the Gram spectrahedron Gram�0(f) of a generic
positive ternary quartic f is the disjoint union K4 t K4 of two complete graphs, and the
relative interiors of these edges consist of rank-5 matrices.

This theorem means that the eight rank-3 Gram matrices are divided into two groups of
four, and, for G and G′ in the same group, we have rank(G+G′) ≤ 5. The second sentence
asserts that rank(G+G′) = 5 holds for generic f . For the proof it suffices to verify this for
one specific f . This we have done, using exact arithmetic, for the quartic in Example 3.4.7.
For instance, the rank-3 vertices

( 1
288

)G = ( 1
288

)G′ =
45500 3102 −9861 5718 −9246 4956
3102 288 −747 882 −18 −144
−9861 −747 3528 −864 −1170 −504
5718 882 −864 4440 1104 −2412
−9246 −18 −1170 1104 11814 −5058
4956 −144 −504 −2412 −5058 3582




45500 −2802 −6666 5718 −9246 132
−2802 288 −72 882 1206 −144
−6666 −72 3528 −4878 −1170 −504
5718 882 −4878 16248 5928 −3636
−9246 1206 −1170 5928 5424 −1044

132 −144 −504 −3636 −1044 2232


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both contain the vector (11355,−4241, 47584, 8325, 28530, 36706)T in their kernel, so that
rank(G+G′) ≤ 5. But this vector spans the intersection of the kernels, hence rank(G+G′) =
5, and every matrix on the edge has rank 5.

We also know that there exist instances of smooth positive quartics where the rank along
an edge drops to 4. One such example is the Fermat quartic, x4 + y4 + z4, which has two
psd rank-3 Gram matrices whose sum has rank 4. We do not know whether the Gram
spectrahedron Gram�0(f) has proper faces of dimension ≥ 1 other than the twelve edges
in the Steiner graph K4 t K4. In particular, we do not know whether the Steiner graph
coincides with the graph of all edges of Gram�0(f).

Proof of Theorem 3.5.1. Fix a real symmetric linear determinantal representation M = xA+
yB + zC of f . The existence of such M when f is positive was proved by Vinnikov [109,
§0]. The Cayley octad {O1, . . . , O8} determined by M consists of four pairs of complex
conjugate points. Recall from Section 3.4 that a Steiner complex corresponds to either a
subset I ⊂ {1, . . . , 8} with |I| = 2 (type

∨
) or a partition I|Ic of {1, . . . , 8} into two

subsets of size 4 (type ||). We write SI for the Steiner complex given by I or I|Ic and GI

for the corresponding Gram matrix. Theorem 3.5.1 follows from the more precise result in
Theorem 3.5.2 which we shall prove further below.

Theorem 3.5.2. Let f be positive with VC(f) smooth and conjugation acting on the Cayley
octad by Oi = Oπ(i) for π = (12)(34)(56)(78). The eight Steiner complexes corresponding
to the vertices of rank 3 of the Gram spectrahedron Gram�0(f) are

1357|2468 1368|2457 1458|2367 1467|2358
1358|2467 1367|2458 1457|2368 1468|2357

(3.18)

The Steiner graph K4 tK4 is given by pairs of Steiner complexes in the same row.

Our proof of Theorem 3.5.2 consists of two parts: (1) showing that the above Steiner
complexes give the positive semidefinite Gram matrices and (2) showing how they form two
copies of K4. We will begin by assuming (1) and proving (2):

By Theorem 3.4.5, for any two pairs of bitangents {`1, `′1} and {`2, `′2} in a fixed Steiner
complex S, there is a conic u in P2 that passes through the eight contact points of these four
bitangents with VC(f). In this manner, one associates with every Steiner complex S a set of(
6
2

)
= 15 conics, denoted conics(S).

Lemma 3.5.3. Let S and T be Steiner complexes with Gram matrices GS and GT . If
conics(S) ∩ conics(T ) 6= ∅ then rank(GS +GT ) ≤ 5.

Proof. Suppose S = {{`1, `′1}, . . . , {`6, `′6}}. Let Q be a quadratic matrix representation
(3.14) such that the six points `1`

′
1, . . . , `6`

′
6 ∈ P(C[x, y, z]2) lie on the conic Q = {λTQλ :

λ ∈ P1(C)}. By the construction in the proof of Theorem 3.4.1, we know that the projective
plane in P(C[x, y, z]2) spanned by this conic Q is ker(GS)⊥.
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Consider two pairs {`1, `′1}, {`2, `′2} from S and let u ∈ conics(S) be the unique conic
passing through the eight contact points of these bitangents with the curve VC(f). By our
choice of Q, we can find λ, µ ∈ P1 such that λTQλ = `1`

′
1 and µTQµ = `2`

′
2. Equation (3.16)

then shows that u = λTQµ. From this we see that u ∈ span{Q11, Q12, Q22} = ker(GS)⊥.
Therefore, conics(S) ⊆ ker(GS)⊥.

If conics(S) ∩ conics(T ) 6= ∅, then the two 3-planes ker(GS)⊥ and ker(GT )⊥ meet non-
trivially. Since C[x, y, z]2 has dimension 6, this implies that ker(GS) and ker(GT ) meet
nontrivially. Hence rank(GS +GT ) ≤ 5.

For example, conics(S1358) and conics(S1457) share the conic going through the contact
points of b15, b26, b38, and b47. Lemma 3.5.3 then implies rank(G1358 + G1457) ≤ 5, as shown
above for Example 3.4.7 with G = G1358 and G′ = G1457.

Using this approach, we only have to check that conics(SI)∩ conics(SJ) 6= ∅ when I and
J are in the same row of the table in Theorem 3.5.2. More precisely:

Lemma 3.5.4. Let I and J be subsets of {1, . . . , 8} of size four with I 6= J and I 6= J c.
Then conics(SI) ∩ conics(SJ) 6= ∅ if and only if |I ∩ J | = 2.

Proof. Every syzygetic set of four bitangents `1, `2, `3, `4 determines a unique conic u passing
through their eight contact points with VC(f). There are three ways to collect the four
bitangents into two pairs, so u appears in conics(S) for exactly three Steiner complexes.
Thus for two Steiner complexes SI and SJ , we have conics(SI) ∩ conics(SJ) 6= ∅ if and only
if there are bitangents `1, `2, `3, `4 such that {`1,`2}, {`3,`4} ∈ SI and {`1,`3}, {`2,`4} ∈ SJ .
This translates into |I ∩ J | = 2.

To complete the proof of Theorem 3.5.2, it remains to show that the eight listed Steiner
complexes give positive semidefinite Gram matrices. Recall that a Steiner complex SI is
real if and only if I is fixed by the permutation π coming from conjugation. As stated in
Section 3.3, there are 15 real Steiner complexes, namely,

(1) The eight complexes of type || listed in Theorem 3.5.2.

(2) Three more complexes of type ||, namely 1234|5678, 1256|3478, 1278|3456.

(3) Four complexes of type
∨

, namely 12, 34, 56, 78.

Since we know from [83] that exactly eight of these give positive semidefinite Gram matrices,
it suffices to rule out the seven Steiner complexes in (2) and (3). Every Steiner complex SI
gives rise to a system of contact conics QI = {λTQIλ, λ ∈ P1(C)}, where QI is a symmetric
2×2-matrix as in (3.14), and a rank-3 Gram matrix GI for f . The following proposition is
a direct consequence of Remark 3.4.4.

Proposition 3.5.5. Let SI be a real Steiner complex. The Gram matrix GI is positive
semidefinite if and only if the system QI does not contain any real conics.
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It follows that if SI is one of the three Steiner complexes in (2), then the Gram matrix
GI is not positive semidefinite, since the system QI contains a product of two of the real
bitangents b12, b34, b56, b78. Thus it remains to show that if I = ij with ij ∈ {12, 34, 56, 78}
as in (3), then the system Qij contains a real conic.

The symmetric linear determinantal representationM gives rise to the system of (azygetic)
contact cubics {λTMadjλ |λ ∈ P3(C)} (see [27, §6.3]). The main idea of the following is that
multiplying a bitangent with a contact conic of f gives a contact cubic, and if both the
bitangent and the cubic are real, then the conic must be real. The next lemma identifies
products of bitangents and contact conics inside the system of contact cubics given by M .

Lemma 3.5.6. For i 6= j we have bij · Qij =
{
λTMadjλ |λ ∈ span{Oi, Oj}⊥

}
.

Proof. After a change of coordinates, we can assume that Oi, Oj, Ok, Ol are the four unit
vectors e1, e2, e3, e4. This means that M = xA+ yB + zC takes the form

M =


0 bij bik bil
bij 0 bjk bjl
bik bjk 0 bkl
bil bjl bkl 0

.
Consider the three 3×3-minors complementary to the lower 2×2-block of M . They are
eT3M

adje3, e
T
3M

adje4, e
T
4M

adje4. We check that all three are divisible by bij. Therefore
b−1ij · λTMadjλ with λ ∈ span{e3, e4} is a system of contact conics. Note that bikbjk =

b−1ij e
T
4M

adje4. Similarly, we can find the other six products of pairs of bitangents from the
Steiner complex Sij, as illustrated by the following picture:

i j

Hence the system of contact conics Qij arises from division by bij as asserted.

Proof of Theorem 3.5.2 (and hence of Theorem 3.5.1). With all the various lemmas in place,
only one tiny step is left to be done. Fix any of the four Steiner complexes ij of type

∨
in

(3). Then the bitangent bij is real. Since M is real and Oi = Oj, we can pick a real point
λ ∈ span{Oi, Oj}⊥. Lemma 3.5.6 implies that that Qij contains the real conic b−1ij ·λTMadjλ.
Proposition 3.5.5 now completes the proof.

Semidefinite programming over the Gram spectrahedron Gram�0(f) means finding the
best sum of squares representation of a positive quartic f , where “best” refers to some
criterion that can be expressed as a linear functional on Gram matrices. This optimization
problem is of particular interest from the perspective of Tables 1 and 2 in [73], because
m = n = 6 is the smallest instance where the Pataki range of optimal ranks has size three.
For the definition of Pataki range see also equation (5.16) in [92, §5]. The matrix rank of
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the exposed vertices of a generic 6-dimensional spectrahedron of 6×6-matrices can be either
3, 4 or 5.

The Gram spectrahedra Gram�0(f) are not generic but they exhibit the generic behavior
as far as the Pataki range is concerned. Namely, if we optimize a linear function over
Gram�0(f) then the rank of the optimal matrix can be either 3, 4 or 5. We obtained the
following numerical result for the distribution of these ranks by optimizing a random linear
function over Gram�0(f) for randomly chosen f :

Rank of optimal matrix 3 4 5 any

Algebraic degree 63 38 1 102
Probability 2.01% 95.44% 2.55% 100%

Table 3.2: Statistics for semidefinite programming over Gram spectrahedra.

The sampling in Table 3.2 was done in matlab2, using the random matrix generator.
This distribution for the three possible ranks appears to be close to that of the generic case,
as given in [73, Table 1]. The algebraic degree of the optimal solution, however, is much
lower than in the generic situation of [73, Table 2], where the three degrees are 112, 1400
and 32. For example, while the rank-3 locus on the generic spectrahedron has 112 points
over C, our Gram spectrahedron Gram�0(f) has only 63, one for each Steiner complex.

The greatest surprise in Table 3.2 is the number 1 for the algebraic degree of the rank-5
solutions. This means that the optimal solution of a rational linear function over the Gram
spectrahedron Gram�0(f) is Q-rational whenever it has rank 5. For a concrete example,
consider the problem of maximizing the function

159λ1 − 9λ2 + 34λ3 + 73λ4 + 105λ5 + 86λ6

over the Gram spectrahedron Gram�0(f) of the Fermat quartic f = x4 + y4 + z4. The
optimal solution for this instance is the rank-5 Gram matrix (3.17) with coordinates

λ =

(
−867799528369
6890409751681

,
−7785115393679
13780819503362

,
−2624916076477
6890409751681

,
1018287438360

6890409751681
,
2368982554265

6890409751681
,
562671279961

6890409751681

)
.

The drop from 1400 to 38 for the algebraic degree of optimal Gram matrices of rank 4 is
dramatic. It would be nice to understand the geometry behind this. We finally note that
the algebraic degrees 63, 38, 1 in Table 3.2 were computed using Macaulay23 by elimination
from the KKT equations, as described in [92, §5].

3.6 Definite Representations of Vinnikov Quartics

The symmetric determinantal representations f = det(M) of a ternary quartic f ∈ Q[x, y, z]
are grouped into 36 orbits under the action of GL4(C) given by M 7→ T TMT . The algorithms

2www.mathworks.com
3www.math.uiuc.edu/Macaulay2
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in Sections 3.2 and 3.3 construct representatives for all 36 orbits. If we represent each orbit
by its 8×8-bitangent matrix (3.9), then this serves as a classifier for the 36 orbits. Suppose
we are given any other symmetric linear matrix representation M = xA + yB + zC of the
same quartic f , and our task is to identify in which of the 36 orbits it lies. We do this
by computing the Cayley octad O of M and the resulting bitangent matrix OMOT . That
8×8-matrix can be located in our list of 36 bitangent matrices by comparing principal minors
of size 3×3. These minors are products of azygetic triples of bitangents, and they uniquely
identify the orbit since there are 2016 = 36 · 56 azygetic triples.

We now address the problem of finding matrices A,B and C whose entries are real
numbers. Theorem 3.1.1 shows that this is not a trivial matter because none of the 36
bitangent matrices in (3.9) has only real entries, unless the curve VR(f) consists of four ovals
(as in Figure 3.1). We discuss the case when the curve is a Vinnikov quartic (see Def. 1.3.4),
which means that VR(f) consists of two nested ovals.

As shown in [44], the region bounded by the inner oval corresponds exactly to{
(x, y, z) ∈ R3 : xA + yB + zC is positive definite

}
,

a convex cone. This means that the inner oval is a spectrahedron (1.3). The study of such
spectrahedral representations is of considerable interest in convex optimization. Recent work
by Henrion [46] underscores the difficulty of this problem for curves of genus g ≥ 2, and in the
last two paragraphs of [46, §1.2], he asks for the development of a practical implementation.
This section constitutes a definitive computer algebra solution to Henrion’s problem for
smooth quartic curves.

Example 3.6.1. The following smooth quartic is a Vinnikov curve:

f(x, y, z) = 2x4 + y4 + z4 − 3x2y2 − 3x2z2 + y2z2.

Running the algorithm in Section 3.2, we find that the coefficients of the 28 bitangents are
expressed in radicals over Q. However, only four of the bitangents are real. Using Theorem
3.6.2 below, we conclude that there exists a real matrix representation (3.2) with entries
expressed in radicals over Q. One such representation is

f(x, y, z) = det


ux+ y 0 az bz

0 ux− y cz dz
az cz x+ y 0
bz dz 0 x− y

 with (3.19)

a = −0.57464203209296160548032752478263071485849363449367...,
b = 1.03492595196395554058118944258225904539129257996969...,
c = 0.69970597091301262923557093892256027951096114611925...,
d = 0.4800486503802432010856027835498806214572648351951...,

u =
√

2 = 1.4142135623730950488016887242096980785696718....
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The expression in radicals is given by the following maximal ideal in Q[a, b, c, d, u]:〈
u2 − 2 , 256d8 − 384d6u+256d6−384d4u+672d4−336d2u+448d2−84u+121,
23c+ 7584d7u+10688d7−5872d5u−8384d5+1806d3u+2452d3−181du−307d,
23b+ 5760d7u+8192d7−4688d5u−6512d5+1452d3u+2200d3−212du−232d,
23a− 1440d7u−2048d7+1632d5u+2272d5−570d3u−872d3+99du+81d

〉
.

A picture of the curve VR(f) in the affine plane {x = 1} is shown in Figure 3.2. �

The objective of this section is to establish the following algorithmic result:

Theorem 3.6.2. Let f ∈ Q[x, y, z] be a quartic whose curve VC(f) is smooth. Suppose
f(x, 0, 0) = x4 and f(x, y, 0) is squarefree, and let K be the splitting field for its 28 bitangents.
Then we can compute a determinantal representation

f(x, y, z) = det(xI + yD + zR) (3.20)

where I is the identity matrix, D is a diagonal matrix, R is a symmetric matrix, and the
entries of D and R are expressed in radicals over K. Moreover, there exist such matrices
D and R with real entries if and only if VR(f) is a Vinnikov curve containing the point
(1 : 0 : 0) inside the inner oval.

The hypotheses in Theorem 3.6.2 impose no loss of generality. Any smooth quartic will
satisfy them after a linear change of coordinates (x : y : z) in P2.

Proof. Using the method in Section 3.2, we find a first representation f(x, y, z) = det(xA+
yB + zC) over the field K. However, the resulting matrices A,B,C might have non-real
entries. The matrix A is invertible because we have assumed det(xA) = f(x, 0, 0) = x4,
which implies det(A) = 1.

The binary form f(x, y, 0) = det(xA + yB) is squarefree. That assumption guarantees
that the 4×4-matrix A−1B has four distinct complex eigenvalues. Since its entries are in K,
its four eigenvalues lie in a radical extension field L over K. By choosing a suitable basis
of eigenvectors, we find a matrix U ∈ GL4(L) such that U−1A−1BU is a diagonal matrix
D1 = diag(λ1, λ2, λ3, λ4) over the field L.

We claim that D2 = UTAU and D3 = UTBU are diagonal matrices. For each column ui
of U we have A−1Bui = λiui , so Bui = λiAui. For 1 ≤ i < j ≤ 4 this implies uTj Bui =
λiu

T
j Aui and, by switching indices, we get uTi Buj = λju

T
i Auj. Since B is symmetric, the

difference of the last two expressions is zero, and we conclude (λi − λj) · uTi Auj = 0. By
assumption, we have λi 6= λj and therefore uTi Auj = 0 and uTi Buj = 0. This means that
D2 and D3 are diagonal.

Let D4 be the diagonal matrix whose entries are the reciprocals of the square roots of
the entries of D2. These entries are also expressed in radicals over K. Then D4D2D4 = I
is the identity matrix, D4D3D4 = D is also diagonal, and

D4U
TMUD4 = xI + yD + zR
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is the real symmetric matrix representation required in (3.20).
In order for the entries of D and R to be real numbers, it is necessary (by [44]) that

VR(f) be a Vinnikov curve. We now assume that this is the case. The existence of a real
representation (3.20) is due to Vinnikov [109, §0]. A transcendental formula for the matrix
entries of D and R in terms of theta functions is presented in equations (4.2) and (4.3) of
[44, §4]. We need to show how our algebraic construction above can be used to compute
Vinnikov’s matrices D and R.

Given a quartic f ∈ Q[x, y, z] with leading term x4, the identity (3.20) translates into a
system of 14 polynomial equations in 14 unknowns, namely the four entries of D and the
ten entries of R. For an illustration of how to solve them see Example 3.6.4. We claim
that these equations have at most 24 · 8 · 36 = 6912 complex solutions and all solutions are
expressed in radicals over K. Indeed, there are 36 conjugation orbits, and per orbit we have
the freedom to transform (3.20) by a matrix T such that T TT = I and T TDT is diagonal.
Since the entries entries of D are distinct, these constraints imply that T is a permutation
matrix times a diagonal matrix with entries ±1. There are 24 · 16 possible choices for T , but
T and −T yield the same triple (I,D,R), so the number of solutions per orbit is 24 · 8.

We conclude that, for each of the 36 orbits, either all representations (3.20) are real or
none of them is. Hence, by applying this method to all 36 inequivalent symmetric linear de-
terminantal representations constructed in Section 3.3, we are guaranteed to find Vinnikov’s
real matrices D and R. See also Section 3.7 and [80, Section 2] for additional examples and
a more detailed discussion.

The above argument for the simultaneous diagonalizability of A and B is taken from
Greub’s linear algebra text book [38]. We could also handle the exceptional case when A−1B
does not have four distinct eigenvalues. Even in that case there exists a matrix U in radicals
over K such that UTAU and UTBU are diagonal, but the construction of U is more difficult.
The details are found in [38, §IX.3].

Corollary 3.6.3. Every smooth Vinnikov curve has a real determinantal representation (3.2)
in radicals over the splitting field K of its 28 bitangents.

We close with the remark that the representation (3.20) generally does not exist over the
field K itself but the passage to a radical extension field is necessary.

Example 3.6.4. All 6912 matrix representations of the form xI + yD + zR of the Edge
quartic E(x, y, z) = 25 · (x4 + y4 + z4) − 34 · (x2y2 + x2z2 + y2z2) are non-real and have
degree 4 over Q. The entries of D are the four complex zeros of the irreducible polynomial
x4− 34

25
x2+1. After fixing D, we have 192 choices for R, namely, selecting one of the 36 orbits

fixes R up to conjugation by diag(±1,±1,±1,±1). For the orbit of the matrix xA+yB+zC
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in (3.5), our algorithm gives the representation

D =


−
√

21/5− 2i/5 0 0 0

0
√

21/5 + 2i/5 0 0

0 0 −
√

21/5 + 2i/5 0

0 0 0
√

21/5− 2i/5



R =


0 −2

5(
√

3/7 + i) −
√

27/35 0

−2
5(
√

3/7 + i) 0 0
√

27/35

−
√

27/35 0 0 −2
5(
√

3/7− i)
0

√
27/35 −2

5(
√

3/7− i) 0

 .

�

3.7 Real and Definite Determinantal Representations

In this section, we will combine the techniques of Sections 3.2, 3.3, and 3.5 to determine the
number of real linear matrix representations of a real quartic.

A determinantal representation M = xA + yB + zC of f is called real if the matrices
A,B,C are real and called definite if, in addition, there exists a point (x, y, z) ∈ R3 for
which the matrix xA + yB + zC is (negative or positive) definite. Every determinantal
representation comes in an equivalence class [M ] = {UTMU : U ∈ GL4(C)} and with a
system of contact cubics M = {λTadj(M)λ : λ ∈ C4} ⊂ C[x, y, z]3. The equivalence class
[M ] is real if [M ] = [M ], which is equivalent to the setM being invariant under conjugation.
As we see from Dixon’s construction in Section 3.2, the class [M ] has a real representative
if and only if M contains a real contact cubic. We’ll see that if the curve V(f) is non-
empty, then these two notions of reality agree. However, this approach does not easily reveal
whether an equivalence class contains a real definite representative.

Here we calculate the number of real equivalence classes of determinantal representations
of f based on its topological type (Table 3.1). We do this using Steiner complexes, defined
in Theorem 3.4.5 on page 44.

Theorem 3.7.1. The number of real equivalence classes of symmetric linear matrix repre-
sentations of a smooth quartic V(f) is

#{real Steiner complexes of type ||} + 1.

If VR(f) is the empty curve, then 8 of these equivalence classes have no real representative.
If VR(f) is a Vinnikov curve, then 8 of these have a definite representative. Otherwise each
equivalence class has a real representative but no definite representative.
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Figure 3.2: A quartic Vinnikov curve from Example 3.6.1 and four contact cubics

Proof. Let M be a linear determinantal representation of f with [M ] andM as above. The
matrix M induces a labeling of the 28 =

(
8
2

)
bitangents, bij, with 1 ≤ i < j ≤ 8. The

system M is real if and only if conjugation acts on the bitangents via this labeling, that is,
there exists π ∈ S8 such that bij = bπ(i)π(j). This permutation will be the product of disjoint
transpositions, whose fixed points are real points of the Cayley octad, seen in Table 3.1.

Suppose M is real, with permutation π ∈ S8. The other 35 representations (3.2) corre-
spond to the

(
8
4

)
/2 partitions of {1, . . . , 8} into two sets of size 4. From Section 3.4, we see

that these partitions also label the Steiner complexes of type ||. If I|Ic is such a partition
then the corresponding system of contact cubics contains 56 products of three bitangents,
namely bijbikbi` and bimbjmbk` where i, j, k, l,m are distinct and {i, j, k, l} = I or Ic. This
system is real if and only if π fixes the partition I|Ic if and only if the Steiner complex
indexed by I|Ic is real. Including the starting linear matrix representation M gives the first
part of the theorem.

For example, if π = (12)(34)(56)(78), meaning V(f) is a Vinnikov curve or the empty
curve, then the real Steiner complexes of type || are labeled by the partitions

1234|5678, 1256|3478, 1278|3456, 1357|2468, 1358|2467, 1368|2457
1367|2458, 1457|2368, 1458|2367, 1467|2358, and 1468|2357.

(3.21)

Together with the system M, this gives 12 real systems of azygetic contact cubics.
Next, we will show that if V(f) contains real points, each of these systems actually

contains a real cubic, also described in more generality in [40, Prop 2.2]. To do this, we use
contact conics, as the product of a bitangent with a contact conic is a contact cubic. By
Lemma 3.5.6, there exists a real bitangent b ∈ R[x, y, z]1 and a real system of contact conics
Q ⊂ C[x, y, z]2 such that their product {b · q : q ∈ Q} lies in the system M ⊂ C[x, y, z]3.
Furthermore, by Proposition 3.5.5, if VR(f) is nonempty, every real system of contact conics
Q to f contains a real conic q. The desired real contact cubic is the product b · q.
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The real curve Real eq. class of LMRs Eq. classes of real LMRs Real definite
with no real rep. with no PD rep. eq. classes

4 ovals 0 36 0
3 ovals 0 16 0
2 non-nested ovals 0 8 0
1 oval 0 4 0
2 nested ovals 0 4 8
empty curve 8 4 0

Table 3.3: The real and definite of LMRs of the six types of smooth quartics.

If VR(f) is empty, then from Section 3.5 we know that, after labeling the bitangents
and Steiner complexes with a real linear determinantal representation M , the the Steiner
complexes corresponding to positive semidefinite Gram matrices are those given in (3.18).
After a bifid substitution, Lemma 3.5.6 states that bij · QI ⊂ MJ where J = I∆{i, j} :=
(I\{i, j})∪ ({i, j}\I). From this, we deduce that the four real systems of contact cubicsM,
M1234|5678, M1256|3478 and M1278|3456 all contain real contact cubics. Furthermore, the eight
systems of contact cubics labeled by the partitions (3.18) do not.

Finally, suppose f in a Vinnikov quartic. Vinnikov [109] shows that f has eight inequiv-
alent definite linear matrix representations. This is discussed in detail in [80, §4]. If the
starting representation M is real and indefinite, then the definite representations are labeled
by (3.18). This suggests that there may be an analog of Proposition 3.5.5 relating definite
matrix representations with systems of contact cubics.

Note that Steiner complexes fall into two types, || and
∨

. Those of type
∨

are indexed
by subsets {1, . . . , 8} of size 2. Such a Steiner complex is real (that is fixed by π) if and only
if the corresponding bitangent bij is real. Thus the number of real Steiner complexes of type∨

equals the number of real bitangents, giving us the nice equality:

Corollary 3.7.2. For a real smooth plane quartic,

#{real eq. classes of LMRs} = #{real Steiner complexes}− #{real bitangents}+ 1.

Thus we can obtain the number of real equivalence classes of linear matrix representations
by subtracting two columns of Table 3.1 and adding 1 to each entry, giving 36, 16, 8, 4, 12,
and 12 real equivalence classes of linear matrix representations for each of the six types of
smooth quartic. These are the rows sums of Table 3.3, which summarizes Theorem 3.7.1.

In particular, a Vinnikov quartic has 12 real linear matrix representations. By construct-
ing a suitable Cayley octad over Q[i], the technique in the last paragraph of the above proof
led us to the following result: There exists a smooth Vinnikov quartic f ∈ Q[x, y, z]4 whose
12 real inequivalent matrix representations exist over the field Q.
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Example 3.7.3. The special rational Vinnikov quartic we found is

f(x, y, z) = 93081x4 + 53516x3y − 73684x2y2 +−31504xy3 + 9216y4

− 369150x2z2 − 159700xyz2 + 57600y2z2 + 90000z4.

This polynomial satisfies f(x, y, z) = det(M) where

M =

 50x −25x −26x− 34y − 25z 9x+ 6y + 15z
−25x 25x 27x+ 18y − 20z −9x− 6y

−26x− 34y − 25z 27x+ 18y − 20z 108x+ 72y −18x− 12y
9x+ 6y + 15z −9x− 6y −18x− 12y 6x+ 4y

 .
This representation is definite because the matrix M is positive definite at the point (1 :
0 : 0). Hence V(f) is a Vinnikov curve with this point in its inner convex oval. Rational
representatives for the other seven definite classes are found at the website

www.math.uni-konstanz.de/∼plaumann/theta.html (3.22)

along with representatives for the four non-definite real classes. One of them is the matrix

M1468 =


25x 0 −32x+ 12y −60z
0 25x 10z 24x+ 16y

−32x+ 12y 10z 6x+ 4y 0
−60z 24x+ 16y 0 6x+ 4y

 . (3.23)

We have det(M1468) = 4 · f(x, y, z), and this matrix is neither positive definite nor negative
definite for any real values of x, y, z. Any equivalent representation of a multiple of f in the
form det(xId4 + yB + zC) cannot have all entries of C real. One such representation, for a
suitable U ∈ GL4(C), is

UTM1468U =


x+ 64

71y 0 − 23
1349

√
26980 i z −51

1633

√
16330 z

0 x+ 2
3y − 2

19

√
570 z 4

23

√
345 i z

− 23
1349

√
26980 i z − 2

19

√
570 z x− 4

19y 0
−51
1633

√
16330 z 4

23

√
345 i z 0 x− 18

23y

 .
�

One might also be interested in constructing real linear matrix representations of other
types of real curves, whose existence is promised in Table 3.3. One can do this carefully
using real contact conics and Lemma 3.5.6.
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Example 3.7.4. Consider the Fermat quartic f = x4 + y4 + z4. Then using the numbers
a = 4
√

2 and r = 1

2
4
√

3−2
√
2

we can express f = det(xA+ yB + zC) where

A = r ·

 −a2 + 2 0 −a+ 1 −a3 + a+ 1
0 −a2 + 2 a3 − a+ 1 −a− 1

−a+ 1 a3 − a+ 1 a2 − 2 0
−a3 + a+ 1 −a− 1 0 a2 − 2

 ,

B = r ·

 −a2 + a −a3 + a −a+ 1 −a3 + a+ 1
−a3 + a −a2 − a a3 − a+ 1 −a− 1
−a+ 1 a3 − a+ 1 a3 + a2 − a −a

−a3 + a+ 1 −a− 1 −a −a3 + a2 + a

 ,

C = r ·

−a
2 + a a3 − a 1 −1

a3 − a −a2 − a −1 −1
1 −1 a3 − a2 − a a
−1 −1 a −a3 − a2 + a

 .
�

We close this chapter by reinterpreting Tables 3.1 and 3.3 as a tool to study linear spaces
of symmetric 4×4 matrices. Two matrices A and B determine a pencil of quadrics in P3, and
three matrices A,B,C determine a net of quadrics in P3. We now consider these pencils and
nets over the field R of real numbers. A classical fact, proved by Calabi in [20], states that
a pencil of quadrics either has a common point or contains a positive definite quadric. This
fact is the foundation for an optimization technique known in engineering as the S-procedure.
The same dichotomy is false for nets of quadrics [20, §4], and for quadrics in P3 it fails in
two interesting ways.

Theorem 3.7.5. Let N be a real net of homogeneous quadrics in four unknowns with det(N )
smooth. Then precisely one of the following four cases holds:

(a) The quadrics in N have a common point in P3(R).

(b) The net N is definite, i.e. it contains a positive definite quadric.

(c) There is a definite net N ′ with det(N ′) = det(N ), but N is nondefinite.

(d) The net N contains no singular quadric.

Proof. Let N = R{A,B,C} be a real net of quadrics. The polynomial det(N ) = det(xA +
yB+zC) depends on the choice of basis {A,B,C} only up to projective change of coordinates
in [x : y : z], and thus defines a smooth quartic curve. This real quartic falls into precisely one
of the six classes in Table 3.1 and Table 3.3. The first four classes correspond to our case (a).
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The fifth class corresponds to our cases (b) and (c) by the Helton-Vinnikov Theorem [44].
As a Vinnikov quartic has definite and non-definite real determinantal representations, both
(b) and (c) do occur [109]. Example 3.7.3 gives such an example. The last class corresponds
to our case (d).

Given a net of quadrics N = R{A,B,C}, one may wish to know whether there is
a common intersection point in real projective 3-space P3(R), and, if not, one seeks the
certificates promised in parts (b)–(d) of Theorem 3.7.5. Our algorithms in Sections 3.3, 3.6
and 3.4 furnish a practical method for identifying cases (b) and (d). The difference between
(b) and (c) is more subtle and is discussed in detail above.

3.8 A Tropical Example

Experts in moduli of curves will be quick to point out that our treatment of quartics should
extend from smooth curves to all stable curves. This is indeed the case. For instance, four
distinct lines form a stable Vinnikov quartic such as

f(x, y, z) = xyz(x+ y + z)

We can see this as a degeneration of the following smooth curve (for ε 6= 0)

fε(x, y, z) = det


x εz εy ε(y − z)
εz y εx ε(−x+ z)
εy εx z ε(x− y)

ε(y − z) ε(−x+ z) ε(x− y) x+ y + z

 .

The notions of spectrahedra and Vinnikov curves make perfect sense over the real closed
field R{{ε}}. This has been investigated from the perspective of tropical geometry by David
Speyer, who proved in [100] that tropicalized Vinnikov curves are precisely honeycomb curves.
For small ε ∈ R, fε defines a Vinnikov curve that degenerates to the four lines V(f) as ε→ 0.
This is shown in Figure 3.3 in the affine chart {x/3 + y/2 + z = 1}.

Working over the field of Puiseux series C{{ε}} (2.2), we can solve for the first terms of
the Cayley octad. By Hensel’s Lemma [31, §7], these points are defined over Q(i)[[ε]]:

O =



−i+ iε+ . . . i+ (2 + i)ε+ . . . i− (2− i)ε+ . . . 1
i− iε+ . . . −i+ (2− i)ε+ . . . −i− (2 + i)ε+ . . . 1

−i+ (2− i)ε+ . . . −i− (2 + i)ε+ . . . i− iε+ . . . 1
i+ (2 + i)ε+ . . . i− (2− i)ε+ . . . −i+ iε+ . . . 1
−i− (2 + i)ε+ . . . i− iε+ . . . −i+ (2− i)ε+ . . . 1
i− (2− i)ε+ . . . −i+ iε+ . . . i+ (2 + i)ε+ . . . 1
i− iε+ . . . i− iε+ . . . i− iε+ . . . 1
−i+ iε+ . . . −i+ iε+ . . . −i+ iε+ . . . 1


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Figure 3.3: Degeneration of a Vinnikov quartic into four lines.

From this we can calculate the 28 bitangents of fε over C{{ε}}. For example the real bitangent
b12 is (1− 8ε2 + . . .)x+ (1 + 8ε2 + . . .)y + (1 + 8ε2 + . . .)z.

As ε → 0 we see that the bitangent matrix (bij) of fε degenerates to the following 8×8-
matrix, whose 7 distinct non-zero entries (up to scaling) are the original 4 lines along with
the three lines spanned by pairs of intersection points:

0 x+ y + z y x+ z z x+ y x y + z
x+ y + z 0 x+ z y x+ y z y + z x

y x+ z 0 x+ y + z y + z x x+ y z
x+ z y x+ y + z 0 x y + z z x+ y
z x+ y y + z x 0 x+ y + z x+ z y

x+ y z x y + z x+ y + z 0 y x+ z
x y + z x+ y z x+ z y 0 x+ y + z

y + z x z x+ y y x+ z x+ y + z 0


.

All principal 4×4-minors of this 8×8-matrix are multiples of f(x, y, z), most of them
non-zero. They are all in the same equivalence class, which is real and definite. This matrix
shows how the 28 distinct bitangents of fε bunch up in seven clusters of four. For instance,
four bitangents of fε degenerate to the bitangent y of f :

b13 = ((2 + 4i)ε2 + . . .)x+ (1 + (2− 4i)ε+ (4 + 4i)ε2 + . . .)y + ((2 + 4i)ε2 + . . .)z,

b24 = ((2− 4i)ε2 + . . .)x+ (1 + (2 + 4i)ε+ (4− 4i)ε2 + . . .)y + ((2− 4i)ε2 + . . .)z,

b58 = ((−2− 4i)ε2 + . . .)x+ (1− 2ε− 4ε2 + . . .)y + (−(2− 4i)ε2 + . . .)z, and

b67 = ((−2 + 4i)ε2 + . . .)x+ (1− 2ε− 4ε2 + . . .)y + (−(2 + 4i)ε2 + . . .)z.
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Figure 3.4: A tropical quartic with its seven bitangents.

The study of tangency in tropical geometry is just beginning [18]. Figures 3.4 and 3.5
show the seven bitangents and two of the contact cubics of the tropicalization of fε. We
believe that the tropicalization in [100] offers yet another approach to constructing linear
determinantal representations. The theory of tropical contact curves could lead to a tropical
analog of Dixon’s construction (Section 3.2) and we hope to later return to this topic.

Figure 3.5: A tropical quartic with two of its contact cubics
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Chapter 4

The Central Curve of a Linear
Program

This material of this chapter is joint work with Jesús De Loera and Bernd Sturmfels. It
was submitted for publication in a paper of the same title.

4.1 Background and Definitions

We consider the standard linear programming problem in its primal and dual formulation:

Maximize cTx subject to Ax = b and x ≥ 0; (4.1)

Minimize bTy subject to ATy − s = c and s ≥ 0. (4.2)

Here A is a fixed matrix of rank d having n columns. The vectors c ∈ Rn and b ∈ image(A)
may vary. Before describing our contributions, we review some basics from the theory of
linear programming [91, 107]. The (primal) logarithmic barrier function for (4.1) is defined
as

fλ(x) := cTx + λ

n∑
i=1

log xi,

where λ > 0 is a real parameter. This specifies a family of optimization problems:

Maximize fλ(x) subject to Ax = b and x ≥ 0. (4.3)

Since the function fλ is strictly concave, it attains a unique maximum x∗(λ) in the interior
of the feasible polytope P = {x ∈ Rn

≥0 : Ax = b}. Note that fλ(x) tends to −∞ when x
approaches the boundary of P . The primal central path is the curve {x∗(λ) |λ > 0} inside
the polytope P . There is an analogous logarithmic barrier function for the dual problem
(4.2) and a corresponding dual central path. The central path connects the optimal solution
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Figure 4.1: The central curve of six lines for two choices of the cost function

of the linear program in question with its analytic center. This is the optimal point of f∞(x)
or equivalently argmaxP (

∑n
i=1 log xi). The central path is homeomorphic to a line segment.

The complementary slackness condition says that the pair of optimal solutions, to the
primal linear program (4.1) and to the dual linear program (4.2), are characterized by

Ax = b , ATy − s = c , x ≥ 0 , s ≥ 0, and xisi = 0 for i = 1, 2, . . . , n. (4.4)

The central path converges to the solution of this system of equations and inequalities:

Theorem 4.1.1 (cf. [107]). For all λ > 0, the system of polynomial equations

Ax = b , ATy − s = c, and xisi = λ for i = 1, 2, . . . , n, (4.5)

has a unique real solution (x∗(λ),y∗(λ), s∗(λ)) with the properties x∗(λ) > 0 and s∗(λ) > 0.
The point x∗(λ) is the optimal solution of (4.3). The limit point (x∗(0),y∗(0), s∗(0)) of these
solutions for λ→ 0 is the unique solution of the complementary slackness constraints (4.4).

Our object of study in this chapter is the set of all solutions of the equations (4.5), not just
those whose coordinates are real and positive. For general b and c, this set is the following
irreducible algebraic curve. The central curve is the Zariski closure of the central path, that
is, the smallest algebraic variety in (x,y, s)-space, R2n+d, that contains the central path.
The primal central curve in Rn is obtained by projecting the central curve into x-space. We
can similarly define the dual central curve by projecting into y-space or into s-space.

Example 4.1.2. Figure 4.1 depicts the primal central curve for a small transportation prob-
lem. Here A is the 5 × 6 node-edge matrix of the complete bipartite graph K2,3, as shown
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below:

v1

v2

v3

v4

v5

v1 1 1 1 0 0 0
v2 0 0 0 1 1 1
v3 1 0 0 1 0 0
v4 0 1 0 0 1 0
v5 0 0 1 0 0 1

Here n = 6 and d = 4 because A has rank 4. We return to this example in Section 4. �

As seen in Figure 4.1, the primal central curve contains the central paths of every polytope
in the arrangement in {Ax = b} defined by the coordinate hyperplanes {xi = 0} for the cost
function c and −c. The union over all central curves, as the right hand side b varies, is an
algebraic variety of dimension d + 1, called the central sheet, which will play an important
role. Our analysis will rely on recent advances on the understanding of algebras generated by
reciprocals of linear forms as presented in [11, 85, 106]. Matroid theory will be our language
for working with these algebras and their defining ideals.

The algebro-geometric study of central paths was pioneered by Bayer and Lagarias [6, 7].
Their 1989 articles are part of the early history of interior point methods. They observed
(on pages 569-571 of [7]) that the central path defines an irreducible algebraic curve in x-
space or y-space, and they identified a complete intersection that has the central curve as an
irreducible component. The last sentence of [7, §11] states the open problem of identifying
polynomials that cut out the central curve, without any extraneous components. It is worth
stressing that one easily finds polynomials that vanish on the central curve from the gradient
optimality conditions on the barrier function. However, the resulting equations have many
extra spurious zeros. Indeed, in general, those polynomials vanish on high-dimensional
components, other than the central curve, which are contained in the coordinate hyperplanes,
and the challenge is to remove the extra components.

In Section 4.4 we present a complete solution to the Bayer-Lagarias problem. Under the
assumption that b and c are general, while A is fixed and possibly special, we determine
the prime ideal of all polynomials that vanish on the primal central curve. We express the
degree of this curve as a matroid invariant read from the linear program. This yields a tight
upper bound

(
n−1
d

)
for the degree. For instance, the curves in Figure 4.1 have degree 5. We

also determine the Hilbert series and arithmetic genus of its closure in Pn.
In Section 4.6, we give an entirely symmetric description of the primal-dual central curve

inside a product of two projective spaces. This leads to a range of results on the global
geometry of our curves. In particular, we explain precisely how the central curve passes
through all vertices of the hyperplane arrangement and through all the analytic centers.
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In practical computations, the optimal solution to (4.1) is found by following a piecewise-
linear approximation to the central path. Different strategies for generating the step-by-step
moves correspond to different interior point methods. One way to estimate the number of
Newton steps needed to reach the optimal solution is to bound the total curvature of the
central path. This has been investigated by many authors (see e.g. [23, 67, 99, 108, 103]), the
idea being that curves with small curvature are easier to approximate with line segments.

Section 4.5 develops our approach to estimating the total curvature of the central curve.
Dedieu, Malajovich and Shub [23] noted that the total curvature of any curve C coincides
with the arc length of the image of C under the Gauss map. Hence any bound on the
degree of the Gauss curve translates into a bound on the total curvature. Our main result in
Section 4.5 is a very precise bound for the degree of the Gauss curve arising from any linear
program.

Our formulas and bounds in Sections 4.4, 4.5, and 4.6 are expressed in the language
of matroid theory. A particularly important role is played by matroid invariants, such as
the Tutte polynomial, that are associated with the matrix A. Section 4.3 is devoted to
an introductory exposition of the required background from matroid theory and geometric
combinatorics.

In the last section, Section 4.7, we will summarize the results and major objects of the
chapter through a detailed example. The power of matroid theory is that it allows us to
derive better bounds for the degree and curvature of the central curve when the matrix A
is special. Through an example, we’ll examine the consequences of non-generic matroid for
the central curve.

Section 4.2 offers an analysis of central curves in the plane, with emphasis on the dual
formulation (d = 2). We shall see that planar central curves are Vinnikov curves (Def. 1.3.4)
of degree n− 1 obtained from an arrangement of n lines by taking a Renegar derivative [88].
The total curvature of a plane curve can be bounded in terms of its number of real inflection
points, and we shall derive a new bound from a classical formula due to Felix Klein [50].

What got us started on this project was our desire to understand the “snakes” of Deza,
Terlaky and Zinchenko [24]. We close the introduction by presenting their curve for n = 6.

Example 4.1.3. Let n = 6, d = 2 and fix the following matrix, right hand side and cost
vector:

A =

(
0 −1 1 −1 1 −1
−1 1

10
1
3

100
11

1000
11

10000
11

)
, b =

(
0
1

)
,

cT =
(
−1 −1

2
−1

3
−449989

990000
−359989

792000
−299989

660000

)
.

The resulting linear program, in its dual formulation (4.2), is precisely the instance in [24,
Figure 2, page 218]. We redrew the central curve in Figure 4.2. The hexagon P ∗6,2 shown
there equals {y ∈ R2 : ATy ≥ c}. The analytic center of P ∗6,2 is a point with approximate
coordinates y = (−0.027978..., 0.778637...). It has algebraic degree 10 over Q, which indi-
cates the level of difficulty to write exact coordinates. The optimal solution is the vertex with
rational coordinates y = (y1, y2) = (− 599700011

1800660000
,− 519989

600220000
) = (−0.033304...,−0.00086...).
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Figure 4.2: The DTZ snake with 6 constraints. On the left, a global view of the polygon and its
central curve with the line y2 = 1 appearing as part of the curve. On the right a close-up of the
central path and its inflection points.

Following [24], we sampled many points along the central path, and we found that the
total curvature of the central path equals 13.375481417... . This measurement concerns
only the part of the central curve that goes from the analytic center to the optimum. Our
algebraic recipe (4.22) for computing the central curve leads to the following polynomial:
(y2 − 1)

(
2760518880000000000000000 y42 + 22783991895360000000000000 y32y1

−1559398946696532000000000 y32+1688399343321073200000000y1y
2
2+87717009913470910818000y22

− 3511691013758400000000000y21y
2
2 − 324621326759441931317y2 + 11183216292449806548000 y1y2

+ 2558474824415400000000 y21y2 − 51358431801600000000000 y31y2 + 6337035495096700140 y1
+ 77623920000000000000 y41s− 13856351760343620000 y21 + 291589604847546655

− 38575873512000000000 y31
)
.

This polynomial of degree 5 has a linear factor y2 − 1 because the vector b that specifies
the objective function in this dual formulation is parallel to the first column of A. Thus the
central curve in Figure 4.2 has degree 4, and its defining irreducible polynomial is the second
factor. When the cost vector b is replaced by a vector that is not parallel to a column of
A then the output of the same calculation (to be explained in Section 4) is an irreducible
polynomial of degree 5. In other words, for almost all b, the central curve is a quintic curve.

While most studies in optimization focus only on just the small portion of the curve that
runs from the analytic center to the optimum, we argue here that the algebraic geometry of
the entire curve reveals a more complete and interesting picture. For generic b and c, the
central curve is a quintic that passes through all vertices of the line arrangement defined
by the six edges of the polygon. It passes through the analytic centers of all bounded cells
(Theorem 4.6.8) and it is topologically a nested set of ovals (Proposition 4.2.1). �
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4.2 Plane Curves

When the central curve lives in a plane, the curve is cut out by a single polynomial equation.
This occurs for the dual curve when d = 2 and the primal curve when n = d − 2. We
now focus on the dual curve (d = 2). This serves as a warm-up to the full derivation of
all equations in Section 4.4. In this section we derive the equations of the central curve
from first principles, we show that these curves are hyperbolic and Renegar derivatives of a
product of lines, and we use this structure to bound the average total curvature of the curve.

Let A = (aij) be a fixed 2 × n matrix of rank 2, and consider arbitrary vectors b =
(b1, b2)

T ∈ R2 and c = (c1, . . . , cn)T ∈ Rn. Here the y-space is the plane R2 with coordinates
y = (y1, y2). The central curve is the Zariski closure in this plane of the parametrized path

y∗(λ) = argmin{y : ATy≥c} b1y1 + b2y2 − λ
n∑
i=1

log(a1iy1 + a2iy2 + ci).

The conditions for optimality are obtained by setting the first partial derivatives to zero:

0 = b1 − λ
n∑
i=1

a1i
a1iy1 + a2iy2 + ci

and 0 = b2 − λ
n∑
i=1

a2i
a1iy1 + a2iy2 + ci

.

Multiplying these equations by b2/λ or b1/λ gives

b1b2
λ

=
n∑
i=1

b2a1i
a1iy1 + a2iy2 + ci

=
n∑
i=1

b1a2i
a1iy1 + a2iy2 + ci

. (4.6)

This eliminates the parameter λ and we are left with the equation on the right. By clearing
denominators, we get a single polynomial C that vanishes on the central curve in y-space:

C(y) =
∑
i∈I

(b1a2i − b2a1i)
∏

j∈I\{i}

(a1jy1 + a2jy2 + cj), (4.7)

where I = {i : b1a2i−b2a1i 6= 0}. We see that the degree of C(y) is |I|−1. This equals n−1
for generic b. In our derivation we assumed that λ is non-zero but the resulting equation is
valid on the Zariski closure, which includes the important points with parameter λ = 0.

We consider the closure C of the central curve in the complex projective plane P2 with
coordinates [y0 : y1 : y2]. Then C is the complex projective curve defined by y

|I|−1
0 C(y1

y0
, y2
y0

).

Proposition 4.2.1. The curve C is hyperbolic with respect to the point [0 : −b2 : b1]. That
is, every line in P2(R) passing through this special point meets C only in real points.

Proof. Any line passing through the point [0 : −b2 : b1] (except {y0 = 0}) has the form
{b1y1 + b2y2 = b0y0} for some b0 ∈ R. On such a line the objective function value of
our linear program (4.2) is constant. See the left picture in Figure 4.3. We shall see in
Remark 4.6.9 that, for any b0 ∈ R, the line meets C in ds = deg(C) real points. This proves
the claim.
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Figure 4.3: The degree-6 central path of a planar 7-gon in the affine charts {y0 = 1} and {y2 = 1}.
Every line passing through [0 : −b2 : b1] intersects the curve in 6 real points, showing the real curve
to be 3 completely-nested ovals.

Hyperbolic curves are also known as Vinnikov curves, in light of Vinnikov’s seminal
work [60, 109] relating them to semidefinite programming [92]. Semidefinite programming
has been generalized to hyperbolic programming, in the work of Renegar [88] and others.
A key construction in hyperbolic programming is the Renegar derivative which creates a
(hyperbolic) polynomial of degree D − 1 from any (hyperbolic) polynomial of degree D. To
be precise, the Renegar derivative of a homogeneous polynomial f with respect to a point e is

Ref(y) =

(
∂

∂t
f(y + te)

) ∣∣∣∣
t=0

.

Renegar derivatives correspond to the polar curves of classical algebraic geometry [27, §1.1].
The Renegar derivative of f =

∏
i∈I(a1iy1 + a2iy2 + ciy0) with e = (0,−b2, b1) is seen

to be
Ref(y) =

∑
i∈I

(b1a2i − b2a1i)
∏

j∈I\{i}

(a1jy1 + a2jy2 + cjy0) = C(y). (4.8)

In words: the central curve C is the Renegar derivative, taken with respect to the cost
function, of the product of the linear forms that define the convex polygon of feasible points.

The product of linear forms f =
∏

i(a1iy1 + a2iy2 + ciy0) is a hyperbolic polynomial with
respect to e. Renegar [88] shows that if f is hyperbolic with respect to e then so is Ref .
This yields a second proof for Proposition 4.2.1.

Proposition 4.2.1 is visualized in Figure 4.3. The picture on the right is obtained from the
picture on the left by a projective transformation. The point at infinity which represents the
cost function is now in the center of the diagram. In this rendition, the central curve consists
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of three nested ovals around that point, highlighting the salient features of a Vinnikov curve.
This beautiful geometry is found not just in the dual picture but also in the primal picture:

Remark 4.2.2. If d = n− 2 then the primal central curve lies in the plane {Ax = b}. The
conditions for optimality of (4.1) state that the vector ∇(

∑
i log xi) = (x−11 , . . . , x−1n ) is in the

span of c and the rows of A. The Zariski closure of such x is the central sheet, to be studied
in Section 4. Here, the central sheet is the hypersurface in Rn with defining polynomial

det

 A1 A2 · · · An
c1 c2 · · · cn
x−11 x−12 · · · x−1n

 ·∏
i∈I

xi, (4.9)

where Ai is the ith column of A and I = { i : {
(
Aj

cj

)
}j∈[n]\i are linearly independent}. We

see that the degree of this hypersurface is |I|−1, so it is n−1 for generic A. Intersecting this
surface with the plane {Ax = b} gives the primal central curve, which is hence a curve of
degree |I| − 1. The corresponding complex projective curve in P2 = { [x0 : x]|Ax = x0b} ⊂
Pn is hyperbolic with respect to the point [0 : v] in Pn, where v spans the kernel of

(
A
c

)
.

It is of importance for interior point algorithms to know the exact total curvature, for-
mally introduced in equation (4.27), of the central path of a linear program (see [23, 67, 99,
108, 103]). Deza et al. [24] proved that even for d = 2 the total curvature grows linearly in
n, and they conjectured that the total curvature is no more than 2πn. They named this con-
jecture the continuous Hirsch conjecture because of its similarity with the discrete simplex
method analogue (see [25]). In Section 4.5 we derive general bounds for total curvature, but
for plane curves, we can exploit an additional geometric feature, namely, inflection points.

Benedetti and Dedò [10] derived a bound for the total curvature of a real plane curve in
terms of its number of inflection points and its degree. We can make this very explicit for
our central path {y∗(λ) : λ ∈ R≥0}. Its total curvature is bounded above by

total curvature of the central path ≤ π · (its number of inflection points + 1). (4.10)

To see this, note that the Gauss map γ (explored further in Section 4.5) takes the curve into
S1 by mapping a point to its unit tangent vector. The total curvature is the arc length of
the image of the Gauss map. As λ decreases from∞ to 0, the cost function bTy∗(λ) strictly
decreases. This implies that, for any point y∗(λ) on the curve, its image under the Gauss
map has positive inner product with b, that is, bTγ(y∗(λ)) ≥ 0. Thus the image of the
Gauss map is restricted to a half circle of S1, and it cannot wrap around S1. This shows that
the Gauss map can achieve a length of at most π before it must “change direction”, which
happens only at inflection points of the curve.

It is known that the total number of (complex) inflection points of a plane curve of degree
D is at most 3D(D − 2). For real inflection points, there is an even better bound:

Proposition 4.2.3 (A classical result of Felix Klein [50]).
The number of real inflection points of a plane curve of degree D is at most D(D − 2).
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This provides only a quadratic bound for the total curvature of the central path in terms
of its degree, but it does allow us to improve known bounds for the average total curvature.
The average total curvature of the central curve of a hyperplane arrangement is the average,
over all bounded regions of the arrangement, of the total curvature of the central curve in that
region. Dedieu et al. [23] proved that the average total curvature in a simple arrangement
(i.e. for a generic matrix A) defined by n hyperplanes in dimension d is not greater than
2πd. When d = 2, we can use Proposition 4.2.3 to improve this bound by a factor of two.

Theorem 4.2.4. The average total curvature of a central curve in the plane is at most 2π.

Proof. The central curve for n general lines in R2 has degree n−1 and consists of n−1 (real
affine) connected components. The argument above and Klein’s theorem then show that

n−1∑
i=1

(curvature of the ith component) ≤
n−1∑
i=1

π(#inflection points on the ith component + 1)

≤ π(n− 1)(n− 2).

Our arrangement of n general lines has
(
n−1
2

)
bounded regions. The average total curvature

over each of these regions is therefore at most π(n− 1)(n− 2)/
(
n−1
2

)
= 2π.

To bound the curvature of just the central path, we need to bound the number of inflection
points appearing on that piece of the curve. This leads to the following question whose
answer seems to be unknown. We are cautiously optimistic that recent insights on tropical
curves due to Brugallé and López de Medrano [18] can be used to construct interesting lower
bounds.

Question 4.2.5. What is the largest number of inflection points on a single oval of a hy-
perbolic curve of degree D in P2(R)? In particular, is this number linear in the degree D?

It has been noted in the literature on interior point algorithms (e.g. [67, 108]) that the
final stretch of the central path, shortly before reaching a non-degenerate optimal solution,
is close to linear. In other words, locally, at a simple vertex of our arrangement, the central
curve is well approximated by its tangent line. In closing, we wish to point out a way to
see this tangent line in our derivation of the equation (4.7). Namely, let i and j be the
indices of the two lines passing through that simple vertex. Then the equation (4.6) takes
the following form:

0 =
b1a2i − b2a1i

a1iy1 + a2iy2 + ci
+

b1a2j − b2a1j
a1jy1 + a2jy2 + cj

+ much smaller terms. (4.11)

Dropping the small terms and clearing denominators reveals the equation of the tangent line.
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4.3 Concepts from Matroid Theory

We have seen in the previous section that the geometry of a central curve in the plane is
intimately connected to that of the underlying arrangement of constraint lines. For instance,
the degree of the central curve, |I|−1, is one less than the number of constraints not parallel
to the cost function. This systematic study of this kind of combinatorial information, encoded
in a geometric configuration of vectors or hyperplanes, is the subject of matroid theory.

Matroid theory will be crucial for stating and proving our results in the rest of this
chapter. This section offers an exposition of the relevant concepts. Of course, there is
already a well-established connection between matroid theory and linear optimization (e.g.,
as outlined in [59] or in oriented matroid programming [2]). Our work sets up yet another
connection.

The material that follows is well-known in algebraic combinatorics, but less so in opti-
mization, so we aim to be reasonably self-contained. Most missing details can be found in
[13, 19] and the other surveys in the same series. We consider an r-dimensional linear sub-
space L of the vector space Kn with its fixed standard basis. Here K is any field. Typically,
L will be given to us as the row space of an r × n-matrix. The kernel of that matrix is
denoted by L⊥. This is a subspace of dimension n − r in Kn. We write x1, . . . , xn for the
restriction of the standard coordinates on Kn to the subspace L, and s1, . . . , sn for their
restriction to L⊥.

The two subspaces L and L⊥ specify a dual pair of matroids, denoted M(L) and M(L⊥),
on the set [n] = {1, . . . , n}. The matroid M(L) has rank r and its dual M(L⊥) = M(L)∗ has
rank n − r. We now define the first matroid M = M(L) by way of its independent sets. A
subset I of [n] is independent in M if the linear forms in {xi : i ∈ I} are linearly independent
on L. Maximal independent sets are called bases. These all have cardinality r. A subset I is
dependent if it is not independent. It is a circuit if it is minimally dependent. For example, if
K is an infinite field and L is a general subspace then we get the uniform matroid M = Ur,n
whose bases are all r-subsets in [n] and whose circuits are all (r + 1)-subsets of [n]. The
bases of the dual matroid M∗ are the complementary sets [n]\B where B is any basis of M .

The most prominent invariant in the theory of matroids is the Tutte polynomial (see
[19]). To define this, we assume the usual order 1 < 2 < · · · < n on the ground set [n],
but it turns out that the definition is independent of which ordering is chosen. Let B be
a basis of M and consider any element p ∈ [n]\B. The set B ∪ {p} is dependent, and it
contains a unique circuit C. The circuit C contains p. We say that p is externally active
for B if p is the least element in C, in symbols, p = min(C). Similarly, an element p ∈ B
is internally active if p is the least element that completes the independent set B\{p} to a
basis of the matroid. Let ia(B) and ea(B) denote the number of internally and externally
active elements associated to the basis B. Then the Tutte polynomial of M is the bivariate
polynomial

TM(x, y) =
∑

B∈B(M)

xia(B)yea(B).
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It satisfies the duality relation TM∗(x, y) = TM(y, x); see [19, Proposition 6.2.4].
An important number for us is the Möbius invariant [19, Eq. (6.21)]. It is defined in

terms of the following evaluation of the Tutte polynomial:

µ(M) = (−1)r · TM(1, 0) (4.12)

Throughout this chapter we use the absolute value |µ(M)| and call it the Möbius number
of M .

In algebraic combinatorics, one regards the independent sets of the matroidM as the faces
in a simplicial complex of dimension r− 1. We write fi(M) for the number of i-dimensional
faces of this independence complex of M . Equivalently, fi(M) is the number of independent
sets of cardinality i + 1. By [13, Proposition 7.4.7 (i)], the (reduced) Euler characteristic,
−1+f0(M)−f1(M)+ · · ·+fr−1(M), of the independence complex of a matroid M coincides
up to sign with the Möbius invariant of the dual matroid M∗:

µ(M∗) = (−1)r−1

(
−1 +

r−1∑
i=0

(−1)ifi(M)

)
. (4.13)

We apply this to compute the Möbius number of the uniform matroid M = Ur,n as follows:

|µ(Ur,n)| = |µ(U∗n−r,n)| =
n−r−1∑
i=−1

(−1)n−r+i+1

(
n

i+ 1

)
=

(
n− 1

r − 1

)
. (4.14)

This binomial coefficient is an upper bound on |µ(M)| for any rank r matroid M on [n].
A useful characterization of the Möbius number involves another simplicial complex on

[n] associated with the matroid M . As before, we fix the standard ordering 1 < 2 < · · · < n
of [n], but any other ordering will do as well. A broken circuit of M is any subset of [n]
of the form C\{min(C)} where C is a circuit. The broken circuit complex of M is the
simplicial complex Br(M) whose minimal non-faces are the broken circuits. Hence, a subset
of [n] is a face of Br(M) if it does not contain any broken circuit. It is known that Br(M)
is a shellable simplicial complex of dimension r − 1 (see Theorem 7.4.3 in [13]). We can
recover the Möbius number of M (not that of M∗) as follows. Let fi = fi(Br(M)) denote
the number of i-dimensional faces of the broken circuit complex Br(M). The corresponding
h-vector (h0, h1, . . . , hr−1) can be read off from any shelling (cf. [13, §7.2] and [102, §2]). It
satisfies

r−1∑
i=0

fi−1z
i

(1− z)i
=

h0 + h1z + h2z
2 + · · ·+ hr−1z

r−1

(1− z)r−1
. (4.15)

The relation between f-vector and h-vector holds for any simplicial complex [102]. The next
identity follows from [13, Eq. (7.15)] and the discussion on shelling polynomials in [13, §7.2]:

h0 + h1z + h2z
2 + · · ·+ hr−1z

r−1 = zr−1 · TM(1/z, 0). (4.16)
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The rational function (4.15) is the Hilbert series (see [102]) of the Stanley-Reisner ring of the
broken circuit complex Br(M). The defining ideal of the Stanley-Reisner ring is generated
by the monomials

∏
i∈C\{min(C)} xi representing broken circuits. Proudfoot and Speyer [85]

constructed a broken circuit ring, which is the quotient of K[x1, . . . , xn] modulo a prime ideal
whose initial ideal is precisely this monomial ideal. Hence (4.15) is also the Hilbert series of
the ring in [85]. In particular, the Möbius number is the common degree of both rings:

|µ(M)| = h0 + h1 + h2 + · · ·+ hr−1. (4.17)

This result is obtained from setting z = 1 in (4.16) and applying the identity (4.12).
The Möbius number is important to us because it computes the degree of the central

curve of the primal linear program (4.1). See Theorem 4.4.4 below. The matroid we need
there has rank r = d + 1 and it is denoted MA,c. The corresponding r-dimensional vector
subspace of Kn is denoted LA,c. It is spanned by the rows of A and the vector c. We use
the notation

|µ(A, c)| := |µ(MA,c)| = |µ(M(LA,c))|. (4.18)

The constraint matrix A has real entries and it has n columns and rank d. We write
Q(A) for the subfield of R generated by the entries of A. In Section 4.4 we shall assume
that the coordinates bi and cj of the right hand side b and the cost vector c are algebraically
independent over Q(A), and we work over the rational function field K = Q(A)(b, c) gen-
erated by these coordinates. This will ensure that all our algebraic results derived remain
valid under almost all other specializations K → R of these coordinates to the field of real
numbers.

We now present a geometric interpretation of the Möbius number |µ(M)| in terms of
hyperplane arrangements. The arrangements we discuss often appear in linear program-
ming, in the context of pivoting algorithms, such as the criss-cross method [33]. Fix any
r-dimensional linear subspace L ⊂ Rn and the associated rank r matroid M = M(L). For
our particular application in Section 4.4, we would take r = d+ 1, L = LA,c and M = MA,c.

Let u be a generic vector in Rn and consider the (n− r)-dimensional affine space L⊥+ u
of Rn. The equations xi = 0 define n hyperplanes in this affine space. These hyperplanes do
not meet in a common point. In fact, the resulting arrangement {xi = 0}i∈[n] in L⊥ + u is
simple, which means that no point lies on more than n−r of the n hyperplanes. The vertices
of this hyperplane arrangement are in bijection with the bases of the matroid M . The com-
plements of the hyperplanes are convex polyhedra; they are the regions of the arrangement.
Each region is either bounded or unbounded, and we are interested in the bounded regions.
These bounded regions are the feasibility regions for the linear programs with various sign
restrictions on the variables xi (one of the regions is xi ≥ 0 for all i). Proposition 6.6.2 in
[19], which is based on results of Zaslavsky [112], establishes the following:

|µ(M)| = # bounded regions of the hyperplane arrangement {xi = 0}i∈[n] in L⊥+u. (4.19)
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For M = MA,c, the affine space L⊥ + u is cut out by the equations
(
A
c

)
x =

(
A
c

)
u. It is

instructive to examine equation (4.19) for the case of the uniform matroid M = Ur,n. Here
we are given n general hyperplanes through the origin in Rn−r, and we replace each of them
by a random parallel translate. The resulting arrangement of n affine hyperplanes in Rn−r

creates precisely
(
n−1
r−1

)
bounded regions, as promised by the conjunction of (4.14) and (4.19).

For example, if r = 1 then |µ(U1,n)| = 1, since n hyperplanes in Rn−1 can create only one
bounded region. At the other hand, if r = n − 1 then our n affine hyperplanes are just n
points on a line and these will create |µ(Un−1,n)| = n− 1 bounded line segments.

For an instance of the latter case consider Example 4.1.2, with A the displayed 5×6-
matrix of rank d = 4, or the instance in Figure 4.3. Here, n = 6, r = d + 1 = 5, and
MA,c = U5,6 is the uniform matroid. Its Möbius number equals |µ(A, c)| = |µ(U5,6)| = 5.
This number 5 counts the bounded segments on the vertical red line on the left in Figure 4.3.
Note that the relevant matroid for Example 4.1.2 is not, as one might expect, the graphic
matroid of K2,3. For higher-dimensional problems the matroids MA,c we encounter are often
non-uniform.

4.4 Equations defining the central curve

In this section we determine the prime ideal of the central curve of the primal linear program
(4.1). As a consequence we obtain explicit formulas for the degree, arithmetic genus and
Hilbert function of the projective closure of the primal central curve. These results resolve
the problem stated by Bayer and Lagarias at the end of [7, §11]. Let LA,c be the subspace
of Kn spanned by the rows of A and the vector c. Our ground field is K = Q(A)(b, c) as
above. We define the central sheet to be the coordinate-wise reciprocal L−1A,c of that linear

subspace. In precise terms, we define L−1A,c to be the Zariski closure in the affine space Cn of
the set{(

1

u1
,

1

u2
, . . . ,

1

un

)
∈ Cn : (u1, u2, . . . , un) ∈ LA,c and ui 6= 0 for i = 1, . . . , n

}
. (4.20)

Lemma 4.4.1. The Zariski closure of the primal central path {x∗(λ) : λ ∈ R≥0} is equal to
the intersection of the central sheet L−1A,c with the affine-linear subspace defined by Ax = b.

Proof. We eliminate s,y and λ from the equations ATy−s = c and xisi = λ as follows. We
first replace the coordinates of s by si = λ/xi. The linear system becomes ATy− λx−1 = c.
This condition means that x−1 = ( 1

x1
, . . . , 1

xn
)T lies in the linear space LA,c spanned by c

and the rows of A. The result of the elimination says that x lies in the central sheet L−1A,c.
For x in the Zariski-dense set L−1A,c ∩ (C∗)n, one can reconstruct values of λ,y, s for which

(x,y, s, λ) is a solution to the equations ATy − s = c, xisi = λ. This shows that L−1A,c is
indeed the projection onto the x-coordinates of these solutions.
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The linear space {Ax = b} has dimension n − d, and we write IA,b for its linear ideal.
The central sheet L−1A,c is an irreducible variety of dimension d+ 1, and we write JA,c for its
prime ideal. Both IA,b and JA,c are ideals in K[x1, . . . , xn]. We argue the following is true:

Lemma 4.4.2. The prime ideal of polynomials that vanish on the central curve C is IA,b +
JA,c. The degree of both C and the central sheet L−1A,c coincides with the Möbius number
|µ(A, c)|.

Proof. The intersection of the affine space {Ax = b} with the central sheet is the variety
of the ideal IA,b + JA,c. This ideal is prime because b and c are generic over Q(A). The
intersection is the central curve. In Proposition 4.4.3 we show that the degree of the central
sheet is |µ(A, c)|, so here it only remains to show that this is the degree of the central
curve as well. For a generic vector (b, c0) ∈ Rd+1, we consider the hyperplane arrangement
induced by {xi = 0} in the affine space {

(
A
c

)
x =

(
b
c0

)
}. The number of bounded regions of

this hyperplane arrangement equals the Möbius number |µ(A, c)|, as seen in (4.19).
Note that |µ(A, c)| does not depend on c, since this vector is generic over Q(A). Each

of the |µ(A, c)| bounded regions in the (n − d − 1)-dimensional affine space {
(
A
c

)
x =

(
b
c0

)
}

contains a unique point maximizing
∑

i log |xi|. This point is the analytic center of that
region. Each such analytic center lies in L−1A,c, and thus on the central curve. This shows

that the intersection of the central curve with the plane {cTx = c0} contains |µ(A, c)| points.
Bézout’s Theorem implies that the degree of a variety V ⊂ Cn is an upper bound for the

degree of its intersection V ∩H with an affine subspace H, provided that n+ dim(V ∩H) =
dim(V ) + dim(H). We use this theorem for two inequalities; first, that the degree of L−1A,c
bounds the degree of the central curve C, and second that the degree of C bounds the number
of its intersection points with {cTx = c0}. To summarize, we have shown:

|µ(A, c)| ≤ #(C ∩ {cTx = c0}) ≤ deg(C) ≤ deg(L−1A,c) = |µ(A, c)|.

From this we conclude that |µ(A, c)| is the degree of the primal central curve C.

At this point we are left with the problem of computing the degree of the homogeneous
ideal JA,c and a set of generators. Luckily, this has already been done for us in the literature
through matroid tools. The following proposition was proved by Proudfoot and Speyer [85]
and it refines an earlier result of Terao [106]. See also [11]. The paper [105] suggests how
our results can be extended from linear programming to semidefinite programming.

Proposition 4.4.3 (Proudfoot-Speyer [85]). The degree of the central sheet L−1A,c, regarded
as a variety in complex projective space, coincides with the Möbius number |µ(A, c)|. Its
prime ideal JA,c is generated by a universal Gröbner basis consisting of all homogeneous
polynomials ∑

i∈supp(v)

vi ·
∏

j∈supp(v)\{i}

xj, (4.21)

where
∑
vixi runs over non-zero linear forms of minimal support that vanish on LA,c.



76

Proof. The construction in [85] associates the ring K[x1, . . . , xn]/JA,c to the linear subspace
LA,c of Kn. Theorem 4 of [85] says that the homogeneous polynomials (4.21) form a universal
Gröbner bases for JA,c (page 20). As argued in [85, Lemma 2], this means that the ring
degenerates to the Stanley-Reisner ring of the broken circuit complex Br(MA,c). Hence, by
our discussion in Section 3, or by [85, Prop. 7], the Hilbert series of K[x1, . . . , xn]/JA,c is the
rational function (4.15), and the degree of JA,c equals |µ(A, c)| as seen in (4.17). The ideal
JA,c is radical, since its initial ideal is square-free, and hence it is prime because its variety
L−1A,c is irreducible.

The polynomials in (4.21) correspond to the circuits of the matroid MA,c. There is at
most one circuit contained in each (d + 2)-subset of {1, . . . , n}, so their number is at most(
n
d+2

)
. If the matrix A is generic then MA,c is uniform and, by (4.14), its Möbius number

equals

|µ(A, c)| =

(
n− 1

d

)
.

For arbitrary matrices A, this binomial coefficient furnishes an upper bound on the Möbius
number |µ(A, c)|. We are now prepared to conclude with the main theorem of this sec-
tion. The analogous equations for the dual central curve are given in Proposition 4.6.1 in
Section 4.6.

Theorem 4.4.4. The degree of the primal central path of (4.1) is the Möbius number
|µ(A, c)| and is hence at most

(
n−1
d

)
. The prime ideal of polynomials that vanish on the

primal central path is generated by the circuit polynomials (4.21) and the d linear polynomi-
als in Ax− b.

Proof. This is an immediate consequence of Lemmas 4.4.1 and 4.4.2 and Proposition 4.4.3.

It is convenient to write the circuit equations (4.21) in the following determinantal rep-
resentation. Suppose that A has format d×n and its rows are linearly independent. Then
the linear forms of minimal support that vanish on LA,c are the (d+ 2)× (d+ 2)-minors of
the (d+ 2)× n matrix (AT , cT ,xT )T . This gives the description of our prime ideal JA,c:

JA,c = Inum,d+2

 A
c

x−1

 (4.22)

where x−1 = (x−11 , . . . , x−1n ) and the operator Inum,d+2 extracts the numerators of the (d+2)×
(d+2)-minors of the matrix. For example, one generator of JA,c equals

det

 A1 A2 . . . Ad+2

c1 c2 . . . cd+2

x−11 x−12 . . . x−1d+2

 ·∏
i∈I

xi,
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where I is the lexicographically earliest circuit of the matroid MA,c. Note that there are(
n
d+2

)
such minors but they need not be distinct.

Example 4.4.5. Let d = 4, n = 6 and A the matrix in Example 4.1.2. The linear ideal is

IA,b = 〈x1 + x2 + x3 − b1 , x4 + x5 + x6 − b2 , x1 + x4 − b3 , x2 + x5 − b4 〉.

The central sheet L−1A,c is the quintic hypersurface whose defining polynomial is

fA,c(x) = det


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
c1 c2 c3 c4 c5 c6
x−11 x−12 x−13 x−14 x−15 x−16

 · x1x2x3x4x5x6. (4.23)

The primal central curve is the plane quintic defined by the ideal IA,b + 〈fA,c〉. This ideal is
prime for general choices of b and c. However, this may fail for special values: the quintic
on the left in Figure 4.1 is irreducible but that on the right decomposes into a quartic and
a line. For a concrete numerical example we set b1 = b2 = 3 and b3 = b4 = b5 = 2. Then the
transportation polygon P is the regular hexagon depicted in Figure 4.1. Its vertices are(

0 1 2
2 1 0

)
,

(
0 2 1
2 0 1

)
,

(
1 0 2
1 2 0

)
,

(
1 2 0
1 0 2

)
,

(
2 0 1
0 2 1

)
,

(
2 1 0
0 1 2

)
. (4.24)

Consider the two transportation problems (4.1) given by cost vectors c =

(
0 0 0
0 1 3

)
and

c′ =

(
0 0 0
0 1 2

)
. In both cases, the last matrix in (4.24) is the unique optimal solution.

Modulo the linear ideal IA,b we can write the quintics fA,c and fA,c′ as polynomials in only
two variables x1 and x2:

fA,c =
3x41x2 + 5x31x

2
2 − 2x1x

4
2 − 3x41 − 22x31x2 − 15x21x

2
2 + 8x1x

3
2 + 2x42

+18x31 + 45x21x2 − 12x32 − 33x21 − 22x1x2 + 22x22 + 18x1 − 12x2,

fA,c′ =
(x2 − 1) · (2x41 + 4x31x2 + x21x

2
2 − x1x32 − 12x31 − 14x21x2 + x1x

2
2

+x32 + 22x21 + 10x1x2 − 5x22 − 12x1 + 6x2).

Both quintics pass through all intersection points of the arrangement of six lines. The cost
matrix c exemplifies the generic behavior, when the quintic curve is irreducible. On the
other hand, the central path for c is a segment on the horizontal line x2 = 1 in Figure 4.1. �

Remark 4.4.6. When b or c is not generic, various aspects of the above analysis break
down. If b is not generic, then the hyperplane arrangement {xi = 0}i∈[n] ⊂ {Ax = b} may
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not be simple, that is, it may have a vertex at which more than n − d hyperplanes meet.
This vertex will maximize cTx over more than one adjoining region of the arrangement. In
particular, the central curve passes through this vertex more than once and is singular at
this point.

If the cost function c maximizes a (non-vertex) face of a region of the hyperplane arrange-
ment {xi = 0}i∈[n] ⊂ {Ax = b}, then the central curve meets this face in its analytic center
and does not pass through any of the vertices of the hyperplane arrangement contained in
the affine span of this face. For example, see Figure 4.2. Another potential problem is that
for non-generic c the curve defined by the equations of Theorem 4.4.4 may be reducible, as
happens for the cost vector c′ in Example 4.4.5. The central curve will then be whatever
component of these solutions passes through the region of interest. In particular, its degree
and equations are no longer independent of the sign conditions on x. Fortunately, while our
precise formulas for the degree and genus of the curve may not hold in the non-generic case,
they still provide bounds for these quantities.

In the remainder of this section we consider the question of what happens to the central
sheet, and hence to the central path, when the cost function c degenerates to one of the
unit vectors ei. Geometrically this means that the cost vector becomes normal to one of the
constraint hyperplanes, and the curve reflects this by breaking into irreducible components.

To set up our degeneration in proper algebraic terms, we work over the field K{{ε}} of
Puiseux series (see (1.8)) over the field K = Q(A)(b, c) that was used above. The field
K{{ε}} comes with a natural ε-adic valuation. Passing to the special fiber represents the
process of letting the parameter ε tend to 0. Our cost vector c has its coordinates in the
Puiseux series field:

c =
(
εw1 , εw2 , . . . , εwn−1 , 1

)
(4.25)

Here w1 > w2 > · · · > wn−1 > 0 are any rational numbers. We are interested in the special
fiber of the central sheet L−1A,c. This represents the limit of the central sheet as ε approaches

0. This induces a degeneration of the central curve L−1A,c ∩ {Ax = b}. We wish to see how,
in that limit, the central curve breaks into irreducible curves in the affine space {Ax = b}.

The ideal defining the special fiber of JA,c is denoted in(JA,c) = JA,c|ε=0. By a combi-
natorial argument as in [85], the maximal minors in (4.22) have the Gröbner basis property
for this degeneration. Hence we obtain the prime ideal of the flat family by simply dividing
each such minor by a non-negative power of ε. This observation implies the following result:

Theorem 4.4.7. The central sheet L−1A,c degenerates into a reduced union of central sheets
of smaller linear programming instances. More precisely, the ideal in(JA,c) is radical, and it
has the following representation as an intersection of ideals that are prime when A is generic:

in(JA,c) =
n−1⋂
i=d

(
Inum,d+1

(
A1 A2 · · · Ai
x−11 x−12 · · · x−1i

)
+ 〈xi+2, xi+3, . . . , xn〉

)
(4.26)
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Proof sketch. The Gröbner basis property says that in(JA,c) is generated by the polynomials
obtained from the maximal minors of (4.22) by dividing by powers of ε and then setting ε
to zero. The resulting polynomials factor, and this factorization shows that they lie in each
of the ideals on the right hand side of (4.26). Conversely, each element in the product of the
ideals on the right hand side is seen to lie in in(JA,c). To complete the proof, it then suffices
to note that in(JA,c) is radical because its generators form a square-free Gröbner basis.

Example 4.4.8. Let n = 6 and d = 3. The matrix A might represent the three-dimensional
Klee-Minty cube. The decomposition of the initial ideal in (4.26) has three components:

in(JA,c) = 〈x5, x6〉 ∩ 〈det

(
x1A1 x2A2 x3A3 x4A4

1 1 1 1

)
, x6 〉 ∩ Inum,4

(
A1 A2 A3 A4 A5

x−11 x−12 x−13 x−14 x−15

)
.

For general A, the ideal JA,c defines an irreducible curve of degree 10, namely the central
path, in each of the 3-planes {Ax = b}. The three curves in its degeneration above are
irreducible of degrees 1, 3 and 6 respectively. The first is one of the lines in the arrangement
of six facet planes, the second curve is the central path inside the facet defined by x6 = 0,
and the last curve is the central path of the polytope obtained by removing that facet. �

In general, we can visualize the degenerated central path in the following geometric
fashion. We first flow from the analytic center of the polytope to the analytic center of its
last facet. Then we iterate and flow from the analytic center of the facet to the analytic
center of its last facet, which is a ridge of the original polytope. Then we continue inside
that ridge, etc.

4.5 The Gauss Curve of the Central Path

The total curvature of the central path is an important quantity for the estimation of the
running time of interior point methods in linear programming [23, 67, 99, 108, 103]. In this
section we relate the algebraic framework developed so far to the problem of bounding the
total curvature. The relevant geometry was pioneered by Dedieu, Malajovich and Shub [23].
Following their approach, we consider the Gauss curve associated with the primal central
path. The Gauss curve is the image of the central curve under the Gauss map, and its arc
length is precisely the total curvature of the central path. Moreover, the arc length of the
Gauss curve can be bounded in terms of its degree. An estimate of that degree, via the
multihomogeneous Bézout Theorem, was the workhorse in [23]. Our main result here is a
more precise bound, in terms of matroid invariants, for the degree of the Gauss curve of the
primal central curve. As a corollary we obtain a new upper bound on the total curvature of
that central curve.

We begin our investigation by reviewing definitions from elementary differential geom-
etry. Consider an arbitrary curve [a, b] → Rm, t 7→ f(t), whose parameterization is twice
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differentiable and whose derivative f ′(t) is a non-zero vector for all parameter values t ∈ [a, b].
This curve has an associated Gauss map into the unit sphere Sm−1, which is defined as

γ : [a, b]→ Sm−1 , t 7→ f ′(t)

||f ′(t)||
.

The image γ = γ([a, b]) of the Gauss map in Sm−1 is called the Gauss curve of the given curve
f . In our situation, the curve f is algebraic, with known defining polynomial equations, and
it makes sense to consider the projective Gauss curve in complex projective space Pm−1. By
this we mean the Zariski closure of the image of the Gauss curve under the double-cover map
Sm−1 → Pm−1. If m = 2, so that C is a non-linear plane curve, then the Gauss curve traces
out several arcs on the unit circle S1, and the projective Gauss curve is the entire projective
line P1. Here, the line P1 comes with a natural multiplicity, to be derived in Example 4.5.4.

If m = 3 then the Gauss curve lies on the unit sphere S2 and the projective Gauss curve
lives in the projective plane P2. Since a curve in 3-space typically has parallel tangent lines,
the Gauss curve is here expected to have singularities, even if f is a smooth curve.

The total curvature K of our curve f is defined to be the arc length of its associated
Gauss curve γ; see [23, §3]. This quantity admits the following expression as an integral:

K :=

∫ b

a

||dγ(t)

dt
||dt. (4.27)

The degree of the Gauss curve γ(t) is defined as the maximum number of intersection
points, counting multiplicities, with any hyperplane in Rm, or equivalently, with any equa-
tor in Sm−1. This (geometric) degree is bounded above by the (algebraic) degree of the
projective Gauss curve in Pm−1. The latter can be computed exactly, from any polynomial
representation of C, using standard methods of computer algebra. Throughout this section,
by degree we mean the degree of the image of γ in Pm−1 multiplied by the degree of the map
that takes C onto γ(C). From now on we use the notation deg(γ(C)) for that number.

Proposition 4.5.1. [23, Corollary 4.3] The total curvature of any real algebraic curve C in
Rm is bounded above by π times the degree of its projective Gauss curve in Pm−1. In symbols,

K ≤ π · deg(γ(C)).

We now present our main result in this section, which concerns the degree of the projective
Gauss curve γ(C), when C is the central curve of a linear program in primal formulation. As
before, A is an arbitrary real matrix of rank d having n columns, but the cost vector c and
the right hand side b are generic over Q(A). The curve C lives in an (n − d)-dimensional
affine subspace of Rn, which we identify with Rn−d, so that γ(C) is a curve in Pn−d−1.

Let MA,c denote the matroid of rank d+ 1 on the ground set [n] = {1, . . . , n} associated
with the matrix

(
A
c

)
. We write (h0, h1, ...., hd) for the h-vector of the broken circuit complex

of MA,c, as defined in (4.15). In the generic case, when MA,c = Ud+1,n is the uniform matroid,
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the maximal simplices in Br(MA,c) are {1, j1, . . . , jd} where 2 ≤ j1 < · · · < jd ≤ n. In that
case, the coordinates of the h-vector are found to be hi =

(
n−d+i−2

i

)
. For special matrices A,

this simplicial complex gets replaced by a pure shellable subcomplex of the same dimension,
so the h-vector (weakly) decreases in each entry. Hence, the following always holds:

hi ≤
(
n− d+ i− 2

i

)
for i = 0, 1, . . . , d. (4.28)

As indicated, this inequality holds with equality when MA,c is the uniform matroid.

Theorem 4.5.2. The degree of the projective Gauss curve of the primal central curve C
satisfies

deg(γ(C)) ≤ 2 ·
d∑
i=1

i · hi. (4.29)

In particular, we have the following upper bound which is tight for generic matrices A:

deg(γ(C)) ≤ 2 · (n− d− 1) ·
(
n− 1

d− 1

)
. (4.30)

The difference between the bound in (4.29) and the degree of γ(C) can be explained
in terms of singularities the curve C may have on the hyperplane at infinity. The relevant
algebraic geometry will be seen in the proof of Theorem 4.5.2, which we shall present after
an example.

Example 4.5.3. In the following two instances we have d = 3 and n = 6.
First assume that A is a generic 3 × 6-matrix. The arrangement of six facet planes

creates 10 bounded regions. The primal central curve C has degree
(
6−1
3

)
= 10. It passes

through the
(
6
3

)
= 20 vertices of the arrangements. In-between it visits the 10 analytic

centers of the bounded regions. Here the curve C is smooth and its genus is 11. This number
is seen from the formula (4.33) below. The corresponding Gauss curve in P2 has degree
2 · 10 + 2 · genus(C) − 2 = 40, as given by the right hand side of (4.30). Hence the total
curvature of the central curve C is bounded above by 40π.

Next consider the Klee-Minty cube in 3-space. Normally, it is given by the constraints

0 ≤ z1 ≤ 1 , εz1 ≤ z2 ≤ 1− εz1, and εz2 ≤ z3 ≤ 1− εz2.

To see this in a primal formulation (4.1), we use z1, z2, z3 to parametrize the affine space
{Ax = b}. The facets of the cube then correspond to the intersection of the coordinate
hyperplanes with this affine space. This is given by the matrices

(
A

c

)
=


1 1 0 0 0 0
2ε 0 1 1 0 0
2ε2 0 2ε 0 1 1
c1 c2 c3 c4 c5 c6

 and b =

1
1
1

 .
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Here ε is a small positive real constant. The above 4×6-matrix is not generic, and its
associated matroid MA,c is not uniform. It has exactly one non-basis, and so the h-vector
equals (h0, h1, h2, h3) = (1, 2, 3, 3). The central curve C has degree

∑3
i=0 hi = 9. In the

coordinates used above, the curve is defined by the 5×5-minors of the 5×6-matrix which is
obtained from the 4×6-matrix

(
A
c

)
by adding one row consisting of reciprocal facet equations:(

z−11 , (1− z1)−1, (z2 − εz1)−1, (1− z2 − εz1)−1, (z3 − εz2)−1, (1− z3 − εz2)−1
)
.

According to Theorem 4.5.2, the degree of the Gauss curve γ(C) in P2 is bounded above by
2
∑3

i=1 i ·hi = 34. However, a computation using Macaulay2 [37] reveals that degree(γ(C)) =
32 and thus the total curvature is bounded by 32π. �

Proof of Theorem 4.5.2. For the proof we shall use the generalized Plücker formula for
curves:

deg(γ(C)) = 2 · deg(C) + 2 · genus(C)− 2− κ. (4.31)

The formula in (4.31) is obtained from [79, Thm. (3.2)] by setting m = 1 or from [39,
Eq. (4.26)] by setting k = 0. The quantity κ is a non-negative integer and it measures the
singularities of the curve C. We have κ = 0 whenever the projective curve C is smooth, and
this happens in our application when MA,c is the uniform matroid.

In general, we may have singularities at infinity because here the real affine curve C has
to be replaced by its closure in complex projective space Pn−d, which is the projectivization
of the affine space defined by Ax = b. The degree and genus on the right hand side of (4.31)
refer to that projective curve in Pn−d.

The references above actually give the degree of the tangent developable of the projective
curve C, but we see that this equals the degree of the Gauss curve. The tangent developable
is the surface obtained by taking the union of all tangent lines at points in C. The pro-
jective Gauss curve γ(C) is obtained from the tangent developable by intersecting it with a
hyperplane, namely, the hyperplane at infinity, representing the directions of lines.

In the formula (4.31), the symbol genus(C) refers to the arithmetic genus of the curve.
We shall now compute this arithmetic genus for primal central curve C. For this we use the
formula for the Hilbert series of the central sheet due to Terao, in Theorem 1.2 on page 551
of [106]. See the recent work of Berget [11] for a nice proof of a more general statement.

As seen in the proof of Proposition 4.4.3, the Hilbert series of the coordinate ring of the
central sheet equals

h0 + h1z + h2z
2 + · · ·+ hdz

d

(1− z)d+2
.

The central curve C is obtained from the central sheet by intersection with a general linear
subspace of dimension n− d. The (projective closure of the) central sheet is arithmetically
Cohen-Macaulay since it has a flat degeneration to a shellable simplicial complex, as shown
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by Proudfoot and Speyer [85]. We conclude that the Hilbert series of the central curve C is

h0 + h1z + h2z
2 + · · ·+ hdz

d

(1− z)2
=
∑
m≥d

[
(
d∑
i=0

hi) ·m +
d∑
j=0

(1− j)hj
]
zm + O(zd−1). (4.32)

The parenthesized expression is the Hilbert polynomial of the projective curve C. The degree
of C is the coefficient of m, and we recover our result relating the degree and Möbius number:

degree(C) = |µ(A, c)| =
d∑
i=0

hi.

The arithmetic genus of the curve C is one minus the constant term of its Hilbert polynomial:

genus(C) = 1−
d∑
j=0

(1− j)hj. (4.33)

We now see that our assertion (4.29) follows directly from the generalized Plücker for-
mula (4.31).

For fixed d and n, the degree and genus of C are maximal when the matrix A is generic.
In this case, hi equals the right hand side of (4.28), and we need to sum these binomial
coefficients times two. Hence, our second assertion (4.30) follows from the identify

d∑
i=0

i ·
(
n− d+ i− 2

i

)
= (n− d− 1) ·

(
n− 1

d− 1

)
.

This complete the proof of Theorem 4.5.2.

Example 4.5.4. Let d = n− 2 and suppose A is generic. Here, the primal central curve C
is a plane curve. Our h-vector equals (1, 1, ..., 1). Theorem 4.5.2 reveals that the degree of
C is d + 1 = n − 1 and the genus of C is

(
d
2

)
. The Gauss curve γ(C) is the projective line

P1, but regarded with multiplicity deg(γ(C)) = (d + 1)d. This number is the degree of the
projectively dual curve C∨. The identity (4.31) specializes to the Plücker formula for plane
curves, which expresses the degree of C∨ in terms of the degree and the singularities of C. �

In the next section we shall establish a dictionary that translates between the primal
and the dual central curve. As we shall see, all our results hold essentially verbatim for the
dual central curves. In particular, the discussion in Example 4.5.4 above applies also to the
situation of Section 2, where we discussed dual central curves that live in the plane (d = 2),
such as:
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Example 4.5.5. Consider the DTZ snake in Figure 4.2. The curve shown there has degree
4 and its projective closure C is smooth in P2. So, we have deg(γ(C)) = 12, and Proposi-
tion 4.5.1 gives the upper bound 12π on the total curvature of the full central curve in R2. �

We close this section by showing how to compute the Gauss curve for a non-planar
instance.

Example 4.5.6. Let n = 5, d = 2 and A =

(
1 1 1 1 1
0 1 2 3 4

)
. The primal central curve has

degree 6 and its equations are obtained by clearing denominators in the 4×4-minors of
1 1 1 1 1
0 1 2 3 4
c1 c2 c3 c4 c5

(z1 − g1)−1 (−2z1 + z2 − g2)−1 (z1 − 2z2 + z3 − g3)−1 (z2 − 2z3 − g4)−1 (z3 − g5)−1

 .

The ci and gj are random constants representing the cost function and right hand side of
(4.1). To be precise, the vector g = (g1, g2, g3, g4, g5)

T satisfies Ag = b as in Section 4.6. The
linear forms in z = (z1, z2, z3) come from the change of coordinates BTz− x = g where B is
a 3×5 matrix whose rows span the kernel of A. Writing I for the ideal of these polynomials,
the following one-line command in the computer algebra system Macaulay2 [37] computes
the defining polynomial of the Gauss curve in P2:

eliminate({z1,z2,z3},I+minors(1,matrix{{u,v,w}}*diff(matrix{{z1},{z2},{z3}},gens I)))

The output is a homogeneous polynomial of degree 16 in the coordinates u, v, w on P2. Note
that deg(γ(C)) = 16 is consistent with Theorem 4.5.2 because h = (h0, h1, h2) = (1, 2, 3). �

4.6 Global Geometry of the Central Curve

In this section we return to the central path in its original primal-dual formulation, and we
study its geometric properties. We shall study how the central curve connects the vertices of
the hyperplane arrangement with the analytic centers of its bounded regions. This picture
behaves well under duality, as the vertices of the two arrangements are in natural bijection.

We begin by offering an algebraic representation of the primal-dual central curve that is
more symmetric than that given in Section 4.1. Let LA denote the row space of the matrix
A and L⊥A its orthogonal complement in Rn. We also fix a vector g ∈ Rn such that Ag = b.
By eliminating y from the system (4.5) in Theorem 4.1.1, we see that the primal-dual central
path (x∗(λ), s∗(λ)) has the following symmetric description:

x ∈ L⊥A + g , s ∈ LA + c and x1s1 = x2s2 = · · · = xnsn = λ. (4.34)
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The implicit (i.e. λ-free) representation of the primal-dual central curve is simply obtained
by erasing the very last equality “= λ” in (4.34). Its prime ideal is generated by the quadrics
xisi− xjsj and the affine-linear equations defining L⊥A + g in x-space and LA + c in s-space.

The symmetric description of the central path in (4.34) lets us write down the statements
from Section 4.4 for the dual version. For example, we derive equations for the dual central
curve in s-space or y-space as follows. Let B be any (n − d) × n matrix whose rows span
the kernel of A. In symbols, LB = L⊥A. The (dual) central curve in s-space is obtained by
intersecting the d-dimensional affine space LA + c = { s ∈ Rn : Bs = Bc } with the central
sheet L−1B,g in (4.20). To obtain the central curve in y-space, we substitute si =

∑d
j=1 ajiyj+ci

in the equations defining L−1B,g. This gives dual formulations of Theorems 4.4.4 and 4.5.2:

Corollary 4.6.1. The degree of the dual central curve of (4.2) equals the Möbius number
|µ(B,g)| and is hence at most

(
n−1
d−1

)
. The prime ideal of polynomials that vanish on the

central path is generated by the circuit polynomials (4.21), but now associated with the space
generated by the rows of B and the vector g, and the n − d linear equations in s given by
Bs = Bc.

Corollary 4.6.2. The degree deg(γ(C)) of the Gauss image of the dual central curve C is at
most

∑
i i ·hi, where h = h(Br(MB,g)). This implies the bound deg(γ(C)) ≤ 2 · (d−1) ·

(
n−1
d

)
.

Remark 4.6.3. It is worth noticing that Theorem 4.5.2 and Corollary 4.6.2 give a strength-
ening of Theorem 1.1 of [23]. Megiddo and Shub [65] have shown a lower bound on the total
curvature of d variable LP with d + 1 constraints of at least π

2
(d − 1), thus the bounds are

in general tight up to a constant. Our key contribution is to be able to adjust the bound for
the total curvature to the specific matroid of the constraint matrix A.

In algebraic geometry, it is more natural to replace each of the affine spaces in (4.34) by
a complex projective space Pn, and to study the closure C of the central curve in Pn × Pn.
Algebraically, we use homogeneous coordinates [x0 : x1 : · · · : xn] and [s0 : s1 : · · · : sn].
Writing x and s for the corresponding column vectors of length n+ 1, we represent

L⊥A + g by {x ∈ Pn : (−b, A) · x = 0} and LA + c by {s ∈ Pn : (−Bc, B) · s = 0}.
The projective primal-dual central curve C is an irreducible curve in Pn × Pn. Its bi-
homogeneous prime ideal in K[x0, x1, . . . , xn, s0, s1, . . . , sn] can be computed by the process
of saturation. Namely, we compute it as the saturation with respect to 〈x0s0〉 of the ideal
generated by the above linear forms together with the bi-homogeneous forms xisi − xjsj.
Example 4.6.4. Let d = 2, n = 4. Fix 2×4-matrices A = (aij) and B = (bij) such that
LB = L⊥A. We start with the ideal J in K[x0, . . . , x4, s0, . . . , s4] generated by

a11(x1 − g1x0) + a12(x2 − g2x0) + a13(x3 − g3x0) + a14(x4 − g4x0),
a21(x1 − g1x0) + a22(x2 − g2x0) + a23(x3 − g3x0) + a24(x4 − g4x0),
b11(s1 − c1s0) + b12(s2 − c2s0) + b13(s3 − c3s0) + b14(s4 − c4s0),
b21(s1 − g1s0) + b22(s2 − c2s0) + b23(s3 − c3s0) + b24(s4 − c4s0),

s1x1 − s2x2, s2x2 − s3x3, s3x3 − s4x4.
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The central curve C is irreducible in P4 × P4. It has degree (3, 3) unless A is very special.
The prime ideal of C is computed as the saturation (J : 〈x0s0〉∞). We find that this ideal
has two minimal generators in addition to the seven above. These are cubic polynomials in
x and in s, which define the primal and dual central curves. They are shown in Figure 4.4.

�

Returning to the general case, the primal-dual curve C is always irreducible, by definition.
Since it lives in Pn × Pn, its degree is now a pair of integers (dx, ds). These two integers can
be defined geometrically: dx is the number of solutions of a general equation

∑n
i=0 αixi = 0

on the curve C, and ds is the number of solutions of a general equation
∑n

i=0 βisi = 0 on C.
Corollary 4.6.5. Let c and g be generic vectors in Rn and let (dx, ds) be the degree of the
projective primal-dual central curve C ⊂ Pn × Pn. This degree is given by our two Möbius
numbers, namely dx = |µ(A, c)| and ds = |µ(B,g)|. These numbers are defined in (4.18).

Proof. The projection from the primal-dual central curve onto its image in either x-space or
s-space is birational. For instance, if x is a general point on the primal central curve then
the corresponding point s is uniquely obtained by solving the linear equations xisi = xjsj on
LA+c. Likewise, given a general point s on the dual central curve we can recover the unique
x such that (x, s) ∈ C. This implies that the intersections in Pn × Pn that define dx and ds
are equivalent to intersecting the primal or dual central curve with a general hyperplane in
Pn, and the number of points on that intersection is the respective Möbius number.

Next we discuss the geometry of this correspondence between the primal and dual curves
at their special points, namely vertices and analytic centers of the relevant hyperplane ar-
rangements. These special points are given by intersecting the primal-dual curve C with
certain bilinear equations. The sum of our two Möbius numbers, dx + ds, is the number of
solutions of a general bilinear equation

∑
i,j γijxisj = 0 on the primal-dual central curve C.

Two special choices of such bilinear equations are of particular interest to us, namely, the
bilinear equation x0s0 = 0 and the bilinear equation xisi = 0 for any i ≥ 1. Note that the
choice of the index i does not matter for the second equation because xisi = xjsj holds on
the curve.

Let us first observe what happens in Pn × Pn when the parameter λ becomes 0. The
corresponding points on the primal-dual curve C are found by solving the equations x1s1 = 0
on C. Its points are the solutions of the n equations x1s1 = x2s2 = · · · = xnsn = 0 on the n-
dimensional subvariety (L⊥A+g)×(LA+c) of Pn×Pn. This intersection now contains many
points in the product of affine spaces, away from the hyperplanes {x0 = 0} and {s0 = 0}.
We find the points by solving the linear equations xi1 = · · · = xid = 0 on L⊥A + g and
sj1 = · · · = sjn−d

= 0 on LA + c, where {i1, . . . , id} runs over all bases of the matroid M(LA)
and {j1, . . . , jn−d} is the complementary basis of the dual matroid M(LA)∗ = M(LB). These
points represent vertices in the hyperplane arrangements H and H∗, where

H denotes {xi = 0}i∈[n] in L⊥A + g and H∗ denotes {si = 0}i∈[n] in LA + c.
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The vertices come in pairs corresponding to complementary bases, so the points with param-
eter λ = 0 on the primal-dual central curve C are the pairs (x, s) where x is a vertex in the
hyperplane arrangement H and s is the complementary vertex in the dual arrangement H∗.

Imposing the equation x0s0 = 0 means setting λ =∞ in the parametric representation of
the central curve, and the points thus obtained have the following geometric interpretation
in terms of bounded regions of the hyperplane arrangements H and H∗. We recall that the
analytic center of the polytope P = {Ax = b,x ≥ 0} is the unique point in the interior of P
that maximizes the concave function

∑n
i=1 log(xi). The algebraic condition that characterizes

the analytic center is that the gradient of
∑n

i=1 log(xi), which is x−1, is orthogonal to the
affine-linear space L⊥A + g = {Ax = b}. This means that the vector x−1 lies in the row span
LA of A. Let L−1A denote again the central sheet, i.e., the coordinate-wise reciprocal of LA.
By passing to the Zariski closure, we regard L−1A as a subvariety in the projective space Pn.

Proposition 4.6.6. The intersection L−1A ∩ (L⊥A + g) defines a zero-dimensional reduced
subscheme of the affine space Pn\{x0 = 0}. All its points are defined over R. They are the
analytic centers of the polytopes that form the bounded regions of the arrangement H.

Proof. The analytic center of each bounded region is a point in the variety L−1A ∩ (L⊥A+g), by
the gradient argument in the paragraph above. This gives us |µ(A)| real points of intersection
on L−1A ∩ (L⊥A + g) . By replacing L−1A,c with L−1A in Proposition 4.4.3, we know that the

degree of L−1A is |µ(A)|. This shows that these real points are all the intersection points
(over C) and they occur with multiplicity one. This argument closely follows the proof of
Lemma 4.4.2.

Naturally, the dual statement holds verbatim, and we shall now state it explicitly.

Proposition 4.6.7. The intersection (L⊥A)−1 ∩ (LA+c) defines a zero-dimensional reduced
subscheme of the affine space Pn\{s0 = 0}. All its points are defined over R. They are the
analytic centers of the polytopes that form the bounded regions of the dual arrangement H∗.

The above picture of the curve C in Pn×Pn reveals the geometric correspondence between
special points on the primal and dual curves, coming from λ = 0 and λ =∞. We summarize
our discussion with the following theorem on the global geometry of the primal-dual central
curve. Figure 4.4 serves as an illustration of this global geometry for the case n = 4 and
d = 2.

Theorem 4.6.8. The primal central curve in x-space passes through each vertex of the
arrangement H as the dual central curve in s-space passes through the corresponding vertex
of H∗. As the primal curve passes through the analytic center of each bounded region in
H, the dual curve reaches the hyperplane {s0 = 0}. Similarly, as the dual curve reaches
the analytic center of each bounded region in H∗, the primal curve meets the hyperplane
{x0 = 0}.
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Figure 4.4: Correspondence of vertices and analytic centers in the two projections of a primal-dual
central curve. Here both curves are plane cubics.

The primal central curve misses precisely one of the antipodal pairs of unbounded regions
of H. It corresponds to the region in the induced arrangement at infinity that contains the
point representing the cost function c. For a visualization see the picture of the central curve
in Figure 4.3. Here a projective transformation of P2 moves the line from infinity into R2.

The points described in Propositions 4.6.6 and 4.6.7 are precisely those points on the
primal-dual central curve C for which the parameter λ becomes ∞. Equivalently, in its
embedding in Pn × Pn, these are solutions of the equation x0s0 = 0 on the curve C. Note,
however, that for special choices of A, the projective curve C will pass though points with
x0 = s0 = 0. Such points, which lie on the hyperplanes at infinity in both projective spaces,
are entirely independent of the choice of c and g. Indeed, they are the solutions of the
equations

s ∈ LA = kerB , x ∈ L⊥A = kerA, and x1s1 = x2s2 = · · · = xnsn = 0. (4.35)

The solutions to these equations form the disjoint support variety in Pn−1 × Pn−1, which
contains pairs of vectors in the two spaces LA and L⊥A whose respective supports are disjoint.

When studying the global geometry of the primal-dual central curve, it is useful to start
with the case when the constraint matrix A is generic. In that case, our matroids are
uniform, namely M(LA) = Ud,n and M(LB) = Un−d,n, and the disjoint support variety
(4.35) is empty. This condition ensures that the intersections of the curve C with both the
hypersurfaces {x0s0 = 0} and {x1s1 = 0} in Pn × Pn is reduced, zero-dimensional and fully
real. The number of points in these intersections is the common number of bases in the two
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matroids:

dx + ds =

(
n− 1

d

)
+

(
n− 1

d− 1

)
=

(
n

d

)
=

(
n

n− d

)
.

The intersection points of C with {x0s0 = 0} are the pairs (x, s) where either x is an analytic
center in H and s lies at infinity in the dual central curve, or x lies at infinity in the primal
central curve and s is an analytic center in H∗. The intersection points of C with {x1s1 = 0}
are the pairs (x, s) where x is a vertex in H and s is a vertex in H∗. Figure 4.4 visualizes
the above correspondences for the case n = 4 and d = 2. If we now degenerate the generic
matrix A into a more special matrix, then some of the above points representing vertices
and analytic centers degenerate to points on the disjoint support variety (4.35).

In Theorem 4.6.8 we did not mention the degree of the primal or dual central curve. For
the sake of completeness, here is a brief discussion of the geometric meaning of the degree dx:

Remark 4.6.9. Consider the intersection of the primal central path with a general level set
{cTx = c0} of the linear objective function c. Varying c0 produces a family of parallel
hyperplanes. Each hyperplane meets the curve in precisely dx points, all of which have real
coordinates. These points are the analytic centers of the (n−d−1)-dimensional polytopes
obtained as the bounded regions of the induced arrangement of n hyperplanes {xi = 0} in
the affine space {x ∈ Rn : Ax = b, cTx = c0}. We can see dx as the number of (n− d− 1)-
dimensional bounded regions in the restriction of the arrangement H to a general level
hyperplane {cTx = c0}. In particular, this gives a one-dimensional family of hyperplanes all
of whose intersection points with the central curve are real.

4.7 Conclusion

In this section, we will summarize the story and results of this chapter through a simple
non-generic example with n = 5 and d = 2 and offer a few remarks relating our algebro-
geometric results to the classical theory of linear programming, which was the language used
at the opening of this chapter. Consider the linear program (4.1) given by

A =

(
1 1 1 0 0
0 0 0 1 1

)
cT =

(
1 2 0 4 0

)
b =

(
3
2

)
.

The hyperplane arrangement H given by x1x2x3x4x5 = 0 in the 3-dimensional plane {Ax =
b} has only one bounded region, a triangular prism.

The matroid MA,c has circuits {123, 1245, 1345, 2345}. As defined in Section 4.3, we see
that the broken circuits are {23, 245, 345}. Thus the broken circuit complex Br(MA,c) is the
2-dimensional simplicial complex on {1, 2, 3, 4, 5} with facets {124, 125, 134, 135, 145}. This
has 5 vertices, 9 edges, and 5 facets, and so its f -vector is (1, 5, 9, 5). Using (4.15), we find
that h = (1, 2, 2).
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→ (1, 5, 9, 5) → (1, 2, 2)

Br(MA,c) f(Br(MA,c)) h(Br(MA,c))

This shows that the degree of the central curve is |µ(A, c)| = h0+h1+h2 = 5. As promised by
(4.19) and Remark 4.6.9, we see that this is the number of bounded regions in the hyperplane
arrangement induced by intersecting H with a hyperplane {cTx = c0}.

→

H H∩ {cTx = c0}

For every circuit C of MA,c, there is a unique (up to scaling) vector in the kernel of
the matrix

(
A
c

)
with support C. For example, the circuit 123 corresponds to the vector

(−2, 1, 1, 0, 0). From these vectors, we form the circuit polynomials hC as in (4.21):

C v hC
123 (−2, 1, 1, 0, 0) −2x2x3 + x1x3 + x1x2,
1245 (4,−4, 0, 1,−1) 4x2x4x5 − 4x1x4x5 + x1x2x5 − x1x2x4
1345 (4, 0,−4,−1, 1) 4x3x4x5 − 4x1x4x5 − x1x3x5 + x1x3x4
2345 (0, 2,−2,−1, 1) 2x3x4x5 − 2x2x4x5 − x2x3x5 + x2x3x4

By Proposition 4.4.3, these polynomials form a universal Gröbner basis for L−1A,c and by
Theorem 4.4.4, the prime ideal of the central path is generated by these circuit polynomials
and the d(= 2) linear equations Ax = b, namely x1 + x2 + x3 − 3 and x4 + x5 − 2.

From the discussion in Section 4.5, specifically (4.33), we see the closure of the central
curve C in P3 has genus 1−

∑2
j=0(1− j)hj = 2. Then Theorem 4.5.2 states that the degree

of the Gauss curve of C is bounded by 2(1h1 + 2h2) = 12, as C is non-singular. Thus

total curvature of C ≤ 12π,

which improves on the bounded for generic A ∈ R2×5, which is 16π.
Strong linear programming duality [2, 91, 107] says that the optimal points of the pair

of linear programs (4.1) and (4.2) are precisely the feasible points satisfying bTy− cTx = 0.
We prefer to think of the optimal solutions as points of intersection of the central curve with
the particular bilinear hypersurface xisi = 0. Indeed, any point (x,y, s) of the primal-dual



91

Figure 4.5: A degree 5 primal central curve in R3 and its degree 4 dual central curve in R2.

central path satisfies bTy − cTx = n · λ. It follows that, as λ → ∞, at least one of y or x
must approach its respective hyperplane at infinity, as seen in Theorem 4.6.8.

We can see this global geometry of the primal-dual central curve in our example by
computing the kernel B of the matrix A and a vector g such that Ag = b:

B =

1 0 −1 0 0
0 1 −1 0 0
0 0 0 1 −1

 and gT =
(
1 1 1 1 1

)
.

The dual hyperplane arrangement H∗ lives in the 2-dimensional plane {s : Bs = Bc} and
consists of 5 lines, three with normal vector (1, 0) and two with normal vector (0, 1). As b
is not parallel to any column of A, we see from Equation 4.7 that the dual central curve
has degree ds = 4. Thus in P3 × P2 the primal-dual central curve has bi-degree (5, 4). The
disjoint support variety (4.35) shares 3 points with the primal-dual central curve, namely
(x, s) =

([1−
√

3 : −2 +
√

3 : 1 : 0 : 0], [0 : 0 : 0 : 1 : −1]),
([1 +

√
3 : −2−

√
3 : 1 : 0 : 0], [0 : 0 : 0 : 1 : −1]),

([0 : 0 : 0 : −1 : 1], [1 : 1 : 1 : 0 : 0]).

The dual central curve has a singularity at [0 : 0 : 0 : 1 : −1], even though it is non-singular
in the affine plane {s0 = 1}. As λ → ∞, we see that the primal-dual central curve heads
toward one of three types of point inH×H∗: the analytic center ofH and the plane {s0 = 0},
one of the two analytic centers of H∗ and the plane {x0 = 0}, or one of the three points in
the disjoint support variety in {x0 = 0, s0 = 0}.

A main theme in this chapter (and thesis) is that projective algebraic geometry provides
an alternative view on optimality and duality in optimization, and more specifically provides
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powerful tools for analyzing interior point methods. This parallels the discussion of semidef-
inite programming in [92]. See also [105] for a statistical perspective on analytic centers and
central curves in the semidefinite context.

Our algebraic methods in Section 4.5 resulted in the first instance-specific bound for
the total curvature of the central curve. This raises the question whether one can derive
a similar bound for the central path within a single feasibility region, which is tied to the
investigations in [25, 24]. That our bounds on curvature are expressed in the language of
matroid theory was surely no surprise to those familiar with oriented matroid programming
and its beautiful duality [2], hinted at in Figures 4.4 and 4.5.
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Chapter 5

Convex Hulls of Curves

Section 5.1 will be published in Discrete & Computational Geometry under the same
title. Section 5.2 is a summary of computations done while working on Section 5.1. This is
work in progress that I hope to expand and publish.

5.1 The Barvinok-Novik orbitope

5.1.1 Trigonometric Moment Curves

Understanding the facial structure of the convex hull of curves is critical to the study of
convex bodies, such as orbitopes and spectrahedra. It also reveals faces of polytopes formed
by taking the convex hull of finitely many points on the curve. In 2008, Barvinok and Novik
[4] use this technique to derive new asymptotic lower bounds for the maximal face numbers
of centrally symmetric polytopes. To do this they study the symmetric trigonometric mo-
ment curve and the faces of its convex hull. Following [4], let SM2k denote the symmetric
trigonometric moment curve,

SM2k(θ) = (cos(θ), cos(3θ), . . . , cos((2k − 1)θ), sin(θ), sin(3θ), . . . , sin((2k − 1)θ)),

and B2k its convex hull,
B2k = conv(SM2k([0, 2π])).

Barvinok and Novik show that B2k is locally k-neighborly and use this to produce centrally
symmetric polytopes with high faces numbers. The convex body B2k is also an orbitope,
that is, the convex hull of the orbit of a compact group (e.g. S1) acting linearly on a vector
space, as studied in [94, §5]. It is also remarked that the convex hull of the full trigonometric
moment curve is the Hermitian Toeplitz spectrahedron, meaning that B2k is the projection
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of this Toeplitz spectrahedron [94]. For example,

B4 =

(x1, x3, y1, y3) ∈ R4 : ∃ z2 ∈ C with


1 z1 z2 z3
z1 1 z1 z2
z2 z1 1 z1
z3 z2 z1 1

 � 0


where zj = xj + iyj and “M � 0” denotes that the Hermitian matrix M is positive semidef-
inite. Smilansky [98] studies in depth the convex hulls of four-dimensional moment curves,
such as B4, and completely characterizes their facial structure.

As an orbitope, the projection of a spectrahedron, and convex hull of a curve, the centrally
symmetric convex body B2k is an interesting object in its own right, in addition to its ability
to provide centrally symmetric polytopes with many faces. The theorem of this section is a
complete characterization of the edges of B2k. This gives an affirmative answer to the first
question stated by Barvinok and Novik in [4, Section 7.4].

Theorem 5.1.1. For α 6= β ∈ [0, 2π], the line segment [SM2k(α), SM2k(β)] is

an exposed edge of B2k if |α− β| < 2π(k − 1)/(2k − 1),
a non-exposed edge of B2k if |α− β| < 2π(k − 1)/(2k − 1), and
not an edge of B2k if |α− β| > 2π(k − 1)/(2k − 1),

where |α− β| is the length of the arc between eiα and eiβ on S1.

Our contribution is to prove the second and third cases, when [SM2k(α), SM2k(β)] is not
an exposed edge. The existence of exposed edges is given by the following:

Theorem 5.1.2 ([4, Theorem 1.1]). For all k ∈ Z>0, there exists 2π(k−1)
2k−1 ≤ ψk ≤ π so that

for all α 6= β ∈ [0, 2π], the line segment [SM2k(α), SM2k(β)] is an exposed edge of B2k if
|α− β| < ψk and not an edge of B2k if |α− β| > ψk.

To prove Theorem 5.1.1, it suffices to show that for arbitrarily small ε > 0 and |α −
β| = 2π(k − 1)/(2k − 1) + ε, the line segment [SM2k(α), SM2k(β)] is not an edge of B2k.
By the S1 action on B2k, a segment [SM2k(α), SM2k(β)] is an edge of B2k if and only if
[SM2k(α + τ), SM2k(β + τ)] is an edge for all τ ∈ [0, 2π]. Thus is it suffices to show that
[SM2k(−θ), SM2k(θ)] is not an edge of B2k for θ = π(k − 1)/(2k − 1) + ε/2.

To study SM2k we will look at the projection onto its “cosine components”. Let

Ck(θ) = ( cos(θ), cos(3θ), . . . , cos((2k − 1)θ) ) ⊂ Rk.

By (5.1) below, Ck is the curve of midpoints of the line segments [SM2k(−θ), SM2k(θ)].

Lemma 5.1.3. If Ck(θ) lies in the interior of conv(Ck), then [SM2k(−θ), SM2k(θ)] is not
an edge of B2k.
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Proof. Let L = {x ∈ R2k : xk+1 = . . . = x2k = 0}. Note that for all θ ∈ [0, 2π], L ∩ B2k

contains the point

(Ck(θ), 0) =
1

2
SM2k(−θ) +

1

2
SM2k(θ), (5.1)

and the convex hull of these points is full-dimensional in L. As L contains the point (0, . . . , 0),
it intersects the interior of B2k. Thus the relative interior of B2k ∩ L and the intersection of
L with the interior of B2k coincide.

By assumption, Ck(θ) lies in the interior of conv(Ck), meaning that the point 1
2
SM2k(−θ)+

1
2
SM2k(θ) lies in the relative interior of L∩B2k. Thus the line segment [SM2k(−θ), SM2k(θ)]

intersects the interior of B2k and it cannot be an edge.

To prove Theorem 5.1.1, it now suffices to show that for small enough ε > 0, the point
Ck(

k−1
2k−1π + ε) lies in the interior of conv(Ck). It will be worth noting that cos(dθ) is a

polynomial of degree d in cos(θ), called the dth Chebyshev polynomial [90]. Thus Ck is a
segment of an algebraic curve of degree 2k− 1, parametrized by the Chebyshev polynomials
of odd degree evaluated in [−1, 1]. For example, the convex hull of C2 is pictured on the
right in Figure 1.1 on page 3.

5.1.2 Curves Dipping Behind Facets

Here we give a criterion for a curve C to dip inside of its convex hull after meeting a facet
of conv(C). Let C(t) = (C1(t), . . . , Cn(t)), t ∈ [−1, 1] be a curve in Rn where Ci ∈ R[t]. Let
F be a facet of conv(C) with supporting hyperplane {hTx = h0}. Suppose C(t0) is a vertex
of F with t0 ∈ (−1, 1) and that C is smooth at this point (i.e. C ′(t0) 6= 0). Let πF denote
the projection of Rn onto the affine span of F . See Figure 5.1 for an example.

Lemma 5.1.4. If πF (C(t0 + ε)) lies in the relative interior of F for small enough ε > 0
and any facet of F containing C(t0) meets the curve πF (C) transversely at this point, then
C(t0 + ε) lies in the interior of conv(C) and C(t0) is a non-exposed vertex of conv(C).

Proof. Let p be a point on C\F . Then conv(F∪p) is a pyramid over the facet F . We will show
that C(t0+ε) lies in the interior of this polytope. Suppose {hTx ≤ h0, a

T
i x ≤ bi, i = 1, . . . , s}

is a minimal facet description of conv(F ∪ p) with ai ∈ Rn, bi ∈ R. Then aTi x < bi for all x
in the relative interior of F .

The polynomial h0−hTC(t) ∈ R[t] is non-negative for all t ∈ [−1, 1]. As this polynomial
is non-zero, it has only finitely many roots. Thus, for small enough ε > 0, hTC(t0 + ε) < h0.

Now we show that aTi C(t0 + ε) < bi. As h0 − hTC(t) is non-negative and zero at t0 ∈
(−1, 1), it must have a double root at t0. This implies that hTC ′(t0) = 0, and thus, for any
ε, the point C(t0) + εC ′(t0) lies in the affine span of F . As C(t0) and C(t0) + εC ′(t0) both
lie in the affine span of F , we have that

aTi C(t0 + ε) = aTi C(t0) + εaTi C
′(t0) +O(ε2), and (5.2)

aTi πF (C(t0 + ε)) = aTi C(t0) + εaTi C
′(t0) +O(ε2). (5.3)
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-
πF

Figure 5.1: Projection of the curve C3 onto the facet {x3 = 1} of its convex hull. The tangent
vector C3(t0) + C ′3(t0) for t0 = 2π/5 is shown in red.

Our transversality assumption implies that, for each i = 1, . . . s, if aTi C(t0) = bi then
aTi πF (C ′(t0)) = aTi C

′(t0) 6= 0. Then for small enough ε > 0, aTi C(t0) + εaTi C
′(t0) is non-zero.

As πF (C(t0 + ε)) lies in the relative interior of F , aTi πFC(t0 + ε) < bi. By (5.3), this im-
plies that aTi C(t0) + εaTi C

′(t0) < bi. It then follows from (5.2) that aTi C(t0 + ε) < bi. This
completes the proof that C(t0 + ε) lies in the interior of conv(F ∪ p) ⊂ conv(C).

To see that C(t0) is a non-exposed vertex of conv(C), suppose that we can write C(t0)
as the intersection of conv(C) with some halfspace {aTx ≥ b}. The hyperplane {aTx = b}
is tangent to the curve C at this point and thus contains the line C(t0) + span{C ′(t0)}. As
C ′(t0) lies in the relative interior of F (see Remark 5.1.5), we can write C ′(t0) as

∑
i λivi

where λi > 0 and vi are the rays of the tangent cone of F at C(t0). Then aT (
∑

i λivi) = 0. As
the hyperplane {aTx = b} does not contain the facet F , we see that aTvi must be non-zero
and positive for some vi. The halfspace {aTx ≥ b} then contains the corresponding edge of
F , contradicting our assumption. Thus C(t0) is non-exposed.

Remark 5.1.5. The hypotheses of Lemma 5.1.4 are equivalent to the condition that for
small ε > 0, C(t0) + εC ′(t0) lies in the relative interior of F , or rather, that the vector C ′(t0)
lies in the relative interior of the tangent cone of F at C(t0). Given F , C(t0), and C ′(t0),
checking this condition is a linear program.

5.1.3 Understanding the Facet {xk = 1}
We will show that the hypotheses of Lemma 5.1.4 are satisfied using the curve C = Ck, facet
F = {xk = 1} ∩ conv(Ck), and point C(t0) = Ck(

k−1
2k−1π). To do this, we have to understand

this facet and the projection of Ck onto the hyperplane {xk = 1}.
Note that the intersection of Ck with the hyperplane {xk = 1} is k points given by

solutions to cos((2k − 1)θ) = 1 in [0, π], namely {Ck( 2j
2k−1π) : j = 0, . . . , k − 1}. The

projection of Ck onto this hyperplane is just (Ck−1, 1). Thus to understand the projection



97

æ

ææ

æ

æ

æ

ææ

P3

Q3

C2H2Π�5L

C2H4Π�5L
P4

Q4

Figure 5.2: The curve Ck−1 with simplices Pk and Qk for k = 3 (left) and k = 4 (right).

of Ck onto this facet, we need to look at the points {Ck−1( 2j
2k−1π) : j = 0, . . . , k − 1}. Let

θ0 =
π

2
and θj =

2j

2k − 1
π for j = 1, . . . , k − 1.

Define the following two polytopes (simplices) in Rk−1:

Pk = conv({Ck−1(0π)} ∪ {Ck−1(θj) : j = 1, . . . , k − 1})

Qk = conv({Ck−1(θj) : j = 0, . . . , k − 1}).

While Pk is the polytope we’ll use as F in Lemma 5.1.4, Qk is a simplex which sits inside
of Pk and has a more tractable facet description. We will show that Ck−1(

k−1
2k−1π + ε) lies in

Qk in order to show that it lies in Pk. We’ll often need the trigonometric identities stated in
Section 5.1.5.

To see that Qk ⊆ Pk, note that their vertex sets differ by only one element. It suffices to
write Qk’s extra vertex, (0, . . . , 0) = Ck−1(

π
2
), as a convex combination of the vertices of Pk.

By Trig. Identity 1, we have that for each l = 1, . . . , k − 1, 1/2 +
∑k−1

j=1 cos((2l− 1)θj)) = 0.

Putting these together gives that Ck−1(
π
2
) = (0, . . . , 0) = 2

2k−1(1
2
Ck−1(0π) +

∑k−1
j=1 Ck−1(θj)).

So indeed Qk ⊂ Pk.

Lemma 5.1.6. The curve Ck−1 meets each facet of Qk transversely and Ck−1(θ) lies in the

interior of Qk ⊂ Pk for θ ∈
{

( (k−1)π
2k−1 ,

π
2
) if k is odd

(π
2
, kπ
2k−1) if k is even.

Proof. The plan is to find a halfspace description of Qk, find the places where Ck−1 crosses
the boundary of each of these halfspaces, and deduce from this that Ck−1(θ) lies in each of
these halfspaces for the appropriate θ.
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First we find the facet description of Qk. For k ∈ N, and j ∈ {0, . . . , k − 1}, define the
affine linear functions hj,k : Rk−1 → R as

h0,k(x) = 1/2 +
k−1∑
l=1

xl, and

hj,k(x) =
k−1∑
l=1

(cos((2l − 1)θj)− 1) xl for j = 1, . . . , k − 1.

We will see that Qk = {x ∈ Rk−1 : hj,k(x) ≥ 0 for all j = 0, . . . , k − 1}. Note that each
hj,k gives a trigonometric polynomial by composition with Ck−1. For each j = 0, . . . , k − 1,
define fj,k : [0, 2π]→ R by

fj,k(θ) := hj,k(Ck−1(θ)).

To see that the hj,k give a facet description of Qk we will show that for each j = 0, . . . , k−1,
we have fj,k(θj) > 0 and fj,k(θi) = 0 for all i 6= j. To do this, we use trigonometric identities
which are stated in Section 5.1.5 below. By Trig. Identity 2,

f0,k(θj) =
1

2
+

k−1∑
l=1

cos((2l − 1)θj) = 0

for j = 1, . . . , k − 1. Moreover f0,k(θ0) = f0,k(
π
2
) = 1/2 +

∑k−1
l=1 0 > 0.

Now let j ∈ {1, . . . , k − 1}. Using Trig. Identities 2 and 3, we see that for every i ∈
{1, . . . , k − 1}\{j},

fj,k(θi) =
k−1∑
l=1

cos((2l − 1)θj) cos((2l − 1)θi)−
k−1∑
l=1

cos((2l − 1)θi)

= −1

2
− (−1

2
) = 0.

Also, we have fj,k(θ0) = fj,k(
π
2
) = hj,k(0) = 0. Finally

fj,k(θj) =
k−1∑
l=1

cos((2l − 1)θj)
2 −

k−1∑
l=1

cos((2l − 1)θj)

=
k−1∑
l=1

cos((2l − 1)θj)
2 +

1

2
(by Trig. Identity 2)

> 0.

So indeed Qk = {x ∈ Rk−1 : hj,k(x) ≥ 0 for all j = 0, . . . , k − 1}.
To prove Lemma 5.1.6, it suffices to show that all roots of fj,k have multiplicity one and

fj,k(θ) > 0 for the specified θ. We start by finding all roots of fj,k(θ) in [0, π].
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Remark 5.1.7. As Cd is an algebraic curve of degree 2d−1 in cos(θ), it meets any hyperplane
in at most 2d− 1 points (counted with multiplicity).

Thus for each j, the polynomial fj,k has at most 2k − 3 roots in [0, π]. We have already
found k − 1 roots of each, namely {θ0, . . . , θk−1}\{θj}. Now we find the remaining k − 2 to
complete the proof of Lemma 5.1.6.

(j=0). Note that cos(π − θ) = − cos(θ). Then by Trig. Identity 2, for i = 1, . . . , k − 2,

f0,k

(
2i− 1

2k − 3
π

)
=

k−1∑
l=1

cos

(
(2l − 1)(2i− 1)

2k − 3
π

)
+

1

2

= −1+
k−2∑
l=1

cos

(
(2l − 1)(2i− 1)

2k − 3
π

)
+

1

2
= −1 +

1

2
+

1

2
= 0.

Thus the roots of f0,k are {θi : i = 1, . . . , k − 1} ∪ { (2i−1)π
2k−3 : i = 1, . . . , k − 2}. As

there are 2k − 3 of them, we know that these are all the roots of f0,k and each occurs with
multiplicity one. Furthermore, since

k − 2

2k − 3
<

k − 1

2k − 1
<

k

2k − 1
<

k − 1

2k − 3
,

it follows that f0,k has no roots in the interval ( (k−1)π
2k−1 ,

kπ
2k−1). Thus the sign of f0,k is con-

stant on ( (k−1)π
2k−1 ,

kπ
2k−1). Since f0,k(

π
2
) > 0, we see that for all θ ∈ ( (k−1)π

2k−1 ,
kπ

2k−1), f0,k(θ) =
h0,k(Ck−1(θ)) > 0.

(j =1, . . ., k-1). Note that fj,k(π − θ) = −fj,k(θ). We’ve already seen that θi = 2iπ
2k−1

is a root of this function for i ∈ {1, . . . , k − 1}\{j}, so for each such i, (2k−1−2i)π
2k−1 is also a

root. Thus the 2k − 3 roots of fj,k(θ) are{π
2

}
∪
{

iπ

2k − 1
: i ∈ {1, . . . , 2k − 2}\{2j, 2k − 1− 2j}

}
.

For each j this gives that fj,k has k−1 roots of multiplicity one in [0, (k−1)π
2k−1 ] and no roots

in ( (k−1)π
2k−1 ,

π
2
). Note that fj,k(0π) < 0. The sign of fj,k(θ) changes at each of its roots, so for

θ ∈ ( (k−1)π
2k−1 ,

π
2
), we have that (−1)k−1fj,k(θ) > 0. By symmetry of fj,k(θ) over π/2, we see

that for θ ∈ (π
2
, kπ
2k−1) we have (−1)kfj,k(θ) > 0.

Now that we completely understand the facets of Qk and their intersection with the curve
Ck−1, we can use the previous lemmata to prove our main theorem.
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Figure 5.3: Here are two examples of the graphs of fj,k(θ). Note that fj,k(
π

2k−1 t) has roots
{1, . . . , 2k − 1}\{2j, 2k − 1− 2j}, all of multiplicity one.

5.1.4 Proof of Theorem 5.1.1

Proof. As discussed before, by [4, Thm 1.1] and symmetry of the faces it suffices to show
that for arbitrarily small ε > 0 and θ = k−1

2k−1π + ε, the line segment [SM2k(−θ), SM2k(θ)] is

not an edge of B2k. By Lemma 5.1.3, we can do this by showing that Ck(
k−1
2k−1π + ε) lies in

the interior of conv(Ck).
Note that Ck(

k−1
2k−1π + ε) lies in the interior of conv(Ck) if and only if Ck(

k
2k−1π − ε) lies

in the interior of conv(Ck). As the value of cos((k− 1)π) depends on the parity of k, we will
use Ck(

k−1
2k−1π + ε) for odd k and Ck(

k
2k−1π − ε) for even k.

We know that conv(Ck) has a face given by xk = 1. This intersects Ck at the points
{Ck(0π)} ∪ {Ck(θj) : j = 1, . . . , k − 1}. Thus, the intersection of convCk with {xk = 1} is
Pk as defined earlier sitting at height 1, and the projection of Ck onto {xk = 1} is Ck−1.

k odd. Since k − 1 is even, Ck(
k−1
2k−1π) lies on the face defined by xk = 1. Moreover,

for small enough ε > 0, Ck−1(
k−1
2k−1π + ε) is in the interior of Qk ⊂ Pk by Lemma 5.1.6. As

the curve Ck−1 meets the facets of Qk transversely at Ck−1(
k−1
2k−1π), it must meet the facets

of Pk transversely at this point as well (see Remark 5.1.5). Lemma 5.1.4 then shows that
Ck(

k−1
2k−1π + ε) lies in the interior of conv(Ck) for small enough ε > 0.

k even. Now k is even and Ck(
k

2k−1π) lies on the face defined by xk = 1. As before,

for small enough ε > 0, Ck−1(
k

2k−1π− ε) is in the interior of Pk and Ck−1 meets the facets of

Pk transversely at Ck−1(
k

2k−1π). Thus Ck(
k

2k−1π− ε) lies in the interior of conv(Ck) for small
enough ε > 0.

We now know all the edges of the Barvinok-Novik orbitope B2k. This leaves the chal-
lenging open problem of understanding the higher dimensional faces of this convex body.
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5.1.5 Useful Trigonometric Identities

This section contains the trigonometric identities used in the above proofs. These are follow
(with a bit of work) from the basic observation that the sum of the kth roots of unity e2πin/k

equals zero. They are also stated in [90], which describes in detail many nice relations of
Chebyshev polynomials and roots of unity.

Trig. Identity 1. For any k ∈ N and l ∈ {1, . . . , k − 1},

k−1∑
j=1

cos

(
(2l − 1)2j

2k − 1
π

)
= −1

2
.

Proof. By [90, Ex. 1.5.26], for l = 1, . . . , k − 1, we have that 0 = 1 +
∑2k−2

j=1 cos
(

(2l−1)j
2k−1 π

)
.

As −j ≡ 2k − 1− j mod 2k − 1 and cos(θ) = cos(−θ), this gives

0 = 1 +
2k−2∑
j=1

cos

(
(2l − 1)j

2k − 1
2π

)

= 1 +
k−1∑
j=1

[
cos

(
(2l − 1)j

2k − 1
2π

)
+ cos

(
(2l − 1)(2k − 1− j)

2k − 1
2π

)]

= 1 + 2
k−1∑
j=1

cos

(
(2l − 1)j

2k − 1
2π

)
.

Trig. Identity 2. For any k ∈ N and j ∈ {1, . . . , 2k − 2},

k−1∑
l=1

cos

(
(2l − 1)2j

2k − 1
π

)
= −1

2
.

Proof. By [90, Ex. 1.5.26], we have that for j = 1, . . . , 2k − 2,

0 =
2k−1∑
l=1

cos

(
(2l − 1)2j

(2k − 1)
π

)
= 1 +

2k−2∑
l=1

cos

(
(2l − 1)2j

(2k − 1)
π

)
.

From this, the claim follows by an argument similar to the proof of Trig. Identity 1.
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Trig. Identity 3. For any k ∈ N and i 6= j ∈ {0, . . . , k − 1},

k−1∑
l=1

cos

(
(2l − 1)2i

2k − 1
π

)
cos

(
(2l − 1)2j

2k − 1
π

)
= −1

2
.

Proof. As |i− j|, |i+ j| ∈ {1, . . . , 2k− 2}, this follows from Trig. Identity 2 and the identity
cos(α) cos(β) = 1

2
cos(α + β) + 1

2
cos(α− β).

The beautiful facial structure of Toeplitz spectrahedra, SO(2)-orbitopes, and, more gen-
erally, convex hulls of curves deserves more study. SO(2)-orbitopes are discussed more
generally in [97]. In the next section, we describe a method for the computing the facial
structure of such convex hulls of curves.

5.2 The Convex Hull of a Parametrized Curve

In this section, we describe a method for computing the faces of the convex hull of a
parametrized curve. This work was motivated by the desire to compute the faces of the
conv(Ck) in Section 5.1. We will end by computing all the faces of the 4-dimensional convex
body conv(C4).

Convex hulls of parametrized curves are nice objects for a variety of reasons. Didier
Henrion [45] shows how to write these objects as spectrahedral shadows. Their dual convex
bodies are sections of the cone of nonnegative polynomials. This class of convex semialgebraic
sets is small enough to prove tractable for computations but large enough to encompass many
interesting applications, such as discrete convex geometry (§5.1), algebraic statistics [74], and
computer-aided design [45]. A method for computing the algebraic boundaries of such convex
hulls has been described in [86] and [87]. We largely build off this work.

For the rest of the section we will consider the curve

C = { f(t) : t ∈ D } ⊂ Rn (5.4)

where f(t) = (f1(t), . . . , fn(t)) ∈ R[t]n≤d and D is a finite union of closed intervals in R.

5.2.1 Facial structure

One of the important goals of convex algebraic geometry is to understand the facial structure
of convex bodies, in particular convex hulls of varieties, spectrahedra, and spectrahedral
shadows. Here we describe a method to compute the facial structure of the convex hull of a
parametrized curve C as in (5.4).

Writing down the facial structure of spectrahedra is in general difficult because they often
have infinitely many faces with varying ranks and algebraic properties. In this section we
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Figure 5.4: Edge-vertex set of a curve in R3.

propose representing the facial structure of conv(C) by the semialgebraic subsets of Syms(D)
(for varying s) of points {a1, . . . , as} ⊂ D for which the points f(a1), . . . , f(as) ⊂ Rn are the
vertices of a face of conv(C).

Let’s start with two simple examples: the two curves in Figure 1.1 on page 3. On the
left, we have f = (t, 2t2−1, 4t3−3t) and D = [−1, 1]. Every point on C is a vertex of conv(C)
and any point on the curve shares an edge with the vertex f(1) and with the vertex f(−1).
The facial structure of the convex hull can therefore be represented by the two sets:

[−1, 1] ⊂ D and
{
{−1, a} : a ∈ [−1, 1]

}
∪
{
{a, 1} : a ∈ [−1, 1]

}
⊂ Sym2(D).

The curve on the right is parametrized by f = (t, 4t3 − 3t) and D = [−1, 1]. Its convex hull
can be represented by its faces:

[−1,−1/2] ∪ [1/2, 1] ⊂ D and {−1, 1/2}, {−1/2, 1} ⊂ Sym2(D).

In general it will be easier to work in Ds rather than Syms(D). We’ll define the sth face-
vertex set Face(s) of C to be

{(a1, . . . , as) ∈ Ds : f(a1), . . . , f(as) are the vertices of a face of conv(C)}. (5.5)

The computation of the semialgebraic set Face(s) can be done in three steps: 1) com-
puting algebraic varieties containing these sets using tools from computational algebraic
geometry, 2) computing a discriminant within each of these varieties, and 3) testing a point
in each component of the complement of this discriminant using semidefinite programming.

As our running example, we will use the more complicated

f(t) = (t, 4t3 − 3t, 16t5 − 20t3 + 5t) and D = [−1, 1], (5.6)

which parametrize C3 from Section 5.1. Its convex hull appears on the right in Figure 5.4.
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5.2.2 The Algebraic Boundary

The condition for the points f(a1), . . . , f(as) to be vertices of a face is that there exists a
polynomial g ∈ R{1, f1, . . . , fn} such that g ≥ 0 on D and g(a1) = . . . = g(as) = 0. For ai
in int(D), g ≥ 0 on D and g(ai) = 0 implies that g′(ai) = 0. Thus the points f(a1), . . . , f(as)
lie on a proper face of conv(C) if and only if there exists g ∈ R{1, f1, . . . , fn} with

g(ai) = 0 for all ai, g′(ai) = 0 for ai ∈ int(D), and g ≥ 0 on D. (5.7)

Then the Zariski-closure of Face(s) lies in the set of points (a1, . . . , as) for which there exists
g ∈ R{1, f1, . . . , fn} satisfying the equations in (5.7), but not necessarily “g ≥ 0 on D.” To
derive equations in a1, . . . , as, let’s consider this condition geometrically. The polynomial
g = c0 +cT f corresponds the the hyperplane {cTx = −c0} in Rn. Then g(ai) = 0 if and only
if the point f(ai) lies on the hyperplane {cTx = −c0}, and additionally g′(ai) = cT f ′(ai) = 0
if and only if the hyperplane is tangent to the curve C at this point. Using this, we can
eliminate g from our condition using simple linear algebra. For {a1, . . . , ar} ⊂ int(D) and
{ar+1, . . . , as} ∈ ∂D, the following conditions are equivalent:

(i) There exists g ∈ R{1, f1 . . . , fn} with g(aj) = 0 for all j and g′(aj) = 0 for aj ∈ int(D).

(ii) The r + s points
{
f(aj)

}
∪
{
f(aj) + f ′(aj) : aj ∈ int(D)

}
lie in a common hyperplane.

(iii) The matrix

(
1 . . . 1 0 . . . 0

f(a1) . . . f(as) f ′(a1) . . . f ′(ar)

)
has rank at most n.

Therefore the face-vertex set Face(s) defined in (5.5) lies in the algebraic variety cut out by:

minors

(
n+ 1,

(
1 . . . 1 0 . . . 0

f(a1) . . . f(as) f ′(a1) . . . f ′(ar)

))
. (5.8)

Let F s denote the Zariski closure of the set of points (a1, . . . , as) in Cs\{ai = aj}i 6=j satisfying
(iii). To obtain the ideal of F s, we saturate the ideal (5.8) by the polynomial

∏
i 6=j(ai− aj).

In the example (5.6), we calculate that F1 is all of D, F2 is a union of 7 lines, shown on
the left in Figure 5.4, and F3 consists of 2 · 3! points, namely the orbits of the two points
(1, cos(2π/5), cos(4π/5)) and (cos(π/5), cos(3π/5),−1) under symmetry.

Remark 5.2.1. Using a more complicated set up, we can also compute F s without satu-
ration. By (i) above, we see that a point a ∈ int(D)r × (∂D)s−r belongs to F s if and only

the two linear spaces R{1, f1, . . . , fn} and
(∏r

i=1(t− ai)2
∏s

j=r+1(t− aj)
)
R[t]d−r−s intersect

nontrivially in R[t]≤d. Working in the monomial basis {1, t, . . . , td} for R[t]≤d we can write
the latter as follows. Define the following (d− r − s+ 1)× (d+ 1) matrix

Pd(a) :=


p0 p1 . . . pr+s 0 . . . 0
0 p0 p1 . . . pr+s 0
...

. . . . . .
...

0 0 p0 . . . pr+s

 ,
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where pk is the coefficient of tk in the polynomial
∏r

i=1(t−ai)2 ·
∏s

j=r+1(t−aj). The rowspan

of Pd(a) is the linear subspace of R[t]≤d of polynomials divisible by
∏

i(t − ai)2
∏

j(t − aj).
Now, let Ker(f) be a (d− n)× (d + 1) matrix whose rows form a basis for the linear forms
on R[t]≤d that vanish on R{1, f1, . . . , fn} . A point a ∈ (intD)r × (∂D)s−r belongs to F s if
and only if the (d− n)× (d− r − s+ 1) matrix

Ker(f) · Pd(a)T (5.9)

has a right kernel (i.e. has rank at most d− r− s). While this method has the advantage of
circumventing a costly saturation, it may not be advantageous when d is very large relative
to r, s, and n.

5.2.3 The Boundary of a Face-Vertex Set

We now seek to distinguish Face(s) inside of F s. To do this we examine the algebraic
boundary of Face(s).

Define the Discr(F s) to be the Zariski closure of the boundary of Face(s) in F s. If Face(s)
is a proper full dimensional subset of F s then Discr(F s) will have codimension one in F s.
While Discr(F s) may be as difficult to determine as Face(s) itself, we see that it sits inside
of a more tractable algebraic subset of F s.

Central to this description will be the (s−1)-faces of higher dimensional faces on conv(C).
Formally, for k > s define the map πs which takes subsets of Dk to subsets of Ds by mapping
a point (a1, . . . , ak) to the

(
k
s

)
points

{
(ai : i ∈ I) : I ∈

(
[k]
s

)}
. For example, π2(Face(3)) is

the set of points (a1, a2) for which the line segment [f(a1), f(a2)] is the edge of a triangular
face of conv(C). In Figure 5.4, these are points describing edges of facets in Example (5.6).

Proposition 5.2.2. The subset Discr(F s) of F s lies inside

Sing(F s) ∪ πs(F s+1). (5.10)

Proof. For a ∈ Dr×(∂D)s−r, define Ld(a) to be the linear space of polynomials of polynomials
of degree at most d that vanish on the points ar+1, . . . , as and with multiplicity at least two
on the points a1, . . . , ar:

Ld(a) =
r∏
i=1

(t− ai)2 ·
s∏

j=r+1

(t− aj) · R[t]≤d−r−s ⊂ R[t]≤d.

If a ∈ F s then this linear space has nontrivial intersection with R{1, f1, . . . , fn}.
Now suppose a point a in the set of regular points Reg(F s) corresponds to the vertices of

a face of conv(C). Then some polynomial h in the intersection Ld(a) ∩ R{1, f1, . . . , fn} has
no addition roots in D. If we vary a continuously in Reg(F s) to a point â on the boundary of
Face(s) then Ld(â)∩R{1, f1, . . . , fn} contains some polynomial ĥ that vanishes on a1, . . . , as,
is non-negative on D, but also must have an additional root b in D. Then the point (â, b)
belongs to F s+1 and â lies in πs(F s+1), as desired.
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For the example (5.6) and s = 2, the set (5.10) is a union of points, coming from the
intersection points of the lines forming F2 as well as the π2(F3). Unfortunately, Proposi-
tion 5.2.2 is not useful when 2s < n, in which case F s+1 = Ds+1 and (5.10) is all of Ds.
However, in this case, we see that the collection of (s− 1)-faces on conv(C) does not form a
full-dimensional part of ∂ conv(C):

2s < n ⇒ dim(Face(s)) + s− 1 < n− 1 = dim(∂ conv(C)).

Then every (s−1)-face must belong to a larger face of conv(C) and Face(s) = ∪k>sπs(Face(k)).
For 2s ≥ n, the complement of the hypersurface (5.10) in F s may consist of multiple

connected components. Proposition 5.2.2 states that if a point in this complement belongs
to Face(s), then the entire connected component containing it also belongs to Face(s). As
we’ll see next, this can be tested using semidefinite programming and preorders, as described
in Sections 1.2 and 1.3.5 of the introduction.

5.2.4 Testing Faces

Suppose we have a representative point a for each connected component of F s\(Sing(F s) ∪
π(F s+1)). We want to test if there is a polynomial in Ld(a) ∩ R{1, f1, . . . , fn} that is non-
negative on D. If this intersection only contains a single polynomial h (up to scaling), then
we can do this by solving for the roots of h. More generally, {g ∈ R[t]≤d : g ≥ 0 on D} is
the projection of a spectrahedron and this test is a semidefinite program.

To obtain such a description, we need the right polynomial inequalities defining D. Fol-
lowing [64], let G be the following finite set of polynomials:

G = {1} ∪ {(t− c1)(t− c2) : c1 < c2 ∈ D with D ∩ (c1, c2) = ∅}
∪ {t− c, if c is the least element of D}
∪ {c− t, if c is the greatest element of D}.

The preorder generated by G, as in (1.6), contains all polynomials nonnegative on D.

Proposition [64, 2.7.3]. A polynomial g ∈ R[t] is non-negative on D if and only if g
belongs to the preorder PO(G).

In fact the proof of this proposition in [64] implies that any g ∈ PO(G) has a represen-
tation with lowest degree possible. That is,

g ≥ 0 on D ⇐⇒ g =
∑
S⊂G

σS
∏
h∈S

h, with σS ∈
∑

(R[t]≤DS
)2 (5.11)

where DS = b(deg(g) − deg(
∏

h∈S h))/2c. The cone
∑

(R[t]≤DS
)2 is the projection of the

cone of positive semidefinite matrices R(DS+1)×(DS+1)
�0 given by (1.13). This expresses the

condition (5.11) as an SDP.
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Now we can intersect the spectrahedral shadow {g ∈ R[t]≤d : g ≥ 0 on D} with the
linear space Ld(a) ∩ R{1, f1, . . . , fn}. The result is again a spectrahedral shadow, which is
nonempty if and only if the points f(a1), . . . , f(as) lie on a face of conv(C).

5.2.5 A Four-Dimensional Example

We finish by computing the facial structure of the four-dimensional curve

C = {(t, 4t3 − 3t, 16t5 − 20t3 + 5t, 64t7 − 112t5 + 56t3 − 7t) : t ∈ [−1, 1]}. (5.12)

This is the curve C4 of Section 5.1, which can be rewritten

C = {(cos(θ), cos(3θ), cos(5θ), cos(7θ)) : θ ∈ [0, 2π]}.

The convex hull of C is a projection of a Toeplitz spectrahedron:

conv(C) =

{
(x1, x3, x5, x7) ∈ R4 : ∃ x2, x4, x6 ∈ R s.t. (x|i−j|)i,j≤7 � 0

}
,

where x0 = 1. Using §5.2.2, we calculate that F1 = [−1, 1], F2 = [−1, 1]2,

F3 = {{1, a1, a2} : B(a1, a2) = 0} ∪ {{−1, a1, a2} : B(−a1,−a2) = 0}
∪ { {1,−1, a} : a ∈ D} ∪ {{0, a,−a} : a ∈ D }
∪ {{α cos(π/7), α cos(3π/7), α cos(5π/7) } : α ∈ R}, where

B(a1, a2) = 2a41a2 + 6a31a
2
2 + 6a21a

3
2 + 2a1a

4
2 + a41 + 7a31a2 + 13a21a

2
2 + 7a1a

3
2 + a42

+ 2a31 + 8a21a2 + 8a1a
2
2 + 2a32 + a21 + 3a1a2 + a22,

and F4 = {{1, cos(2π/7), cos(4π/7), cos(6π/7)}, {cos(π/7), cos(3π/7), cos(5π/7),−1}}.
We then use Sections 5.2.3 and 5.2.4 to calculate Face(s) for s = 1, 2, 3, 4. In Figure 5.5,

we see on the left F2 = [−1, 1]2 with projections of the curve F3 and points F4. On the right,
we see the two-dimensional semialgebraic set Face(2) along with the projections π2(Face(3))
and π2(Face(4)). This provides a visualization the four-dimensional convex body conv(C).

There are still many interesting open questions about these representations, which we
hope to address in further research. In particular:

• What geometric properties of Face(s) indicate that the corresponding face of conv(C)
is non-exposed?

• What are the dimensions and degrees of the sets F s and the resulting surface of faces
on ∂ conv(C)? How do these compare to the bounds in [87]?
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−→

Figure 5.5: Edge-vertex set of the curve (5.12) in R4.

• What are these degrees and the general structure of conv(S) when the polynomials fi
are monomial?

The formulation in of Face(s) in (5.7) makes it clear that this set depends only on the linear
space R{1, f1, . . . , fn}. For example, the edge-vertex set for (5.12) is precisely the same as
that of {(t, t3, t5, t7) : t ∈ [−1, 1]}. The discrete data of the faces conv(C) (for example,
number of facets) thus give a stratification of the real Grassmannian Gr(n,R[t]≤d).

• What is this stratification of Gr(n,R[t]≤d)?

When D = R, one could also hope to understand the asymptotic behavior of conv(C) through
the initial forms of f , as used in Chapter 2.

• What can conv({in(f)(t) : t ∈ R}) tell us about conv({f(t) : t ∈ R}))?

The relatively simple structure of parametrized curves enables us to address some of the
big questions in convex algebraic geometry for their convex hulls. In particular, we can
given a spectrahedral representation for and understand the facial structure of these convex
bodies. This is a beautiful and rich class of convex semialgebraic sets. Developing tools and
theory for this class is a step towards understanding more general objects.
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