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Geometry of measures in R":
Distribution, rectifiability, and densities

By Davip Preiss

Introduction

We investigate to what extent the tangential and rectifiability properties of
measures are determined by the regular behaviour of the measure of balls. One

of the results of our investigation is the proof of the following conjecture. (See for
example, [11, 3.3.22].)

If 0 < m < n are integers, ® measures R", Borel sets are ® measurable,
and

(BP) 0< lin(l)d)(B(x, r))/r" < o
LN

at ® almost every x, the ® is m rectifiable, i.e., ® almost all of R" can be

covered by countably many m dimensional smooth submanifolds of class one
of R".

Most of the arguments used in the paper are based upon the fundamental
work of A. S. Besicovitch [2], [3], [4], upon the techniques discovered by
H. Federer [10] in the proof of his famous projection theorem, as well as upon
the work of other mathematicians on different problems of geometric measure
theory. Since these ideas may be found in the excellent book [11] (see also [12]),
we restrict ourselves to a brief description of those results connected with the
above conjecture and of those arguments used in their proofs which mainly
influenced the present development and which might help to explain the results
and arguments used here.

The case m =1 and n =2 was proved in a different but equivalent
formulation by A. S. Besicovitch [3, Theorem 18]. (Because of this we use the
notation (BP) meaning “Besicovitch Property”.) In the above formulation this
case was proved in [22] and the case m = 1, n arbitrary in [21]. If m = 1, the
situation is much simpler since the restriction of the one dimensional Hausdorft
measure to a continuum of finite measure is 1 rectifiable. (If n = 2, see [3] or, for
a new treatment, [9]. For the general case see [8].) No comparable statement
holds if m > 2. (See, for example, [11, 4.2.25].) This is the reason why even the
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case m = 2 and n = 3 of the above conjecture remained open. Nevertheless, a
partial result follows from the work of J. M. Marstrand [17] (if m = 2 and
n = 3) and of P. Mattila [18] (in the general case):

If a measure ® over R" fulfils

(BP*) 0< lin(l)fb(B(x,r))/r"'
™~

= limsup ®(S)/((diamS)/2)" < o0

diam(S)\O0, S=x
almost everywhere, then it is m rectifiable.

An important observation used by these authors is that m rectifiability is
implied by the existence of “m dimensional weak tangents”. (It should be noted
that the term “weak tangent” has been used differently, e.g. in [9, page 51]). We
formulate this notion more explicitly than the original authors did, since it is one
of the main starting points of our investigation:

(WT) A measure ® over R" is said to have m dimensional weak tangents if
for ® almost every x there is ¢(x) € (0, 00) such that for every p € (0,1) the
following statement holds for all sufficiently small r > 0: There is an m dimen-
sional affine subspace V or R" passing through x such that
(WT,) (1= pe(x)s™ < ®(B(z,5)) < (1 + p)e(x)s”
for every z € B(x,r) N V and for every s € [pr, r]. (One should notice that V
may depend not only upon x but also upon r!)

We shall not describe the ingenious argument of Marstrand used in [17] and
[19] to prove that a measure satisfying the (BP*) has m dimensional weak
tangents. Unfortunately, it does not seem to be applicable even if Hausdorff
measures are replaced by spherical measures or, in our language, if (BP*) is
replaced by

(BP**) 0 < lirr(])CD(B(x,r))/r"’
= lin(])sup{d)(B(z, s))/s™ z€ B(x,r), s € |z — x|, 7]} < 0.

Another corollary of our investigation is a generalization of the following
result of J. M. Marstrand [15], [16], [18]: If « is a real number and a measure ®
over R" fulfils

(BP..) 0< lin(])d)(B(x,r))/r" < o0
™
almost everywhere, then ® almost every x fulfils:

(WT*) For every p € (0,1) one can find arbitrarily small r > 0 for which
there is an affine subspace V of R" passing through x such that

(1 — p)t9™V®d(B(x,r)) < ®(B(z,tr)) < (1 + p)t™Vd(B(x,r))
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for every 2 € VN B(x, r) and for every t € [p,1]. (One should notice that
(WT *) is a weaker form of (WT)!)

We prove (considerably more than) that (WT *) holds if ® has the (BP,,) for
some positive function h. (When ® measures R", liminf, _,h(2r)/h(r) = 2"},
and h fulfils a mild regularity condition, this was proved by M. Chlebik [6].)

A striking corollary of Marstrand’s result is that, if (BP,.) holds for some
nonzero measure ® over R" then « is an integer (and 0 < a < n). (When
n = 1, this was proved already by A. S. Besicovitch [1]; see also [5].) Similarly,
our results lead to substantial progress in the following more general problem:
For which functions h is there a nonzero measure over R" having the
(BP,)? When n =1, P. Mattila [20] proved that 0 <lim, ,h(r) < oo or
0 < lim, _oh(r)/r < o. As we shall see, the situation is more intricate if n > 2.

It should be also noted that the above formulations of (WT) and (WT *) are
stronger than necessary. For example, if ® has the (BP*), an equivalent
definition of (WT) is obtained by replacing (WT,) by

(WT,) ®[B(x,r) = B(V, pr)] < pr™.

A simple proof of this fact is given in [17] and [19]. If @ is supposed to have the
(BP) only, the question whether (WT,) may be replaced by (WT,) is more
complicated. In fact, M. Chlebik’s positive answer to this problem (private
communication) and my attempt to give a different proof (see 3.13) were
probably the main starting points for the results presented here.

Last but not least, the source of the ideas used in this paper were long
discussions with Professor Casper Goffman as well as with other participants in
the Special Year in Real Analysis at the University of California at Santa Barbara.

I would also like to thank Professors H. Federer and P. Mattila for a number
of corrections to and comments on the preliminary version of this paper.

It might be worthwhile to show informally how our main arguments may be
used to give relatively simple proofs of (BP,.) = (WT *) and [(BP*) = (BP**)
= (WT). First we introduce the notion of “tangent measures”: When @
measures R", x € R", and r > 0, we denote by ®, , the measure defined by the
formula ®, (E) = ®(x + rE). By Tan(®, x) we denote the set of all tangent
measures of ® at x, i.e. the set of all nonzero, locally finite limits (in the vague
topology) of the form

lim ¢, ®

x,nr>
k— o0 sk

where r, \y 0 and ¢, > 0.

It is easy to see that (WT *) is equivalent to: There is a linear subspace V of
R" such that # 4™V V € Tan(®, x). (#™LE denotes the restriction of the m
dimensional measure to the set E.) From (BP,) we infer that for ® almost every
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x every ¥ € Tan(®, x) has the “Global Besicovitch Property”:
(GBP*) V(B(z,7)) = ¥(B(0,r)) < o0

for every z belonging to the support of ¥ and for every r > 0.

For every measure ¥ let (V) denote the closure (in the vague topology)
of the set {c¥_,; z € spt ¥, ¢ > 0, r > 0}. Since one of the general properties
of the tangent measures ensures that, for ® almost every x, 0(¥) C Tan(®, x)

whenever ¥ € Tan(®, x), we just need to prove that every measure having the
(GBP *) fulfils:

(WT **) There is a linear space V such that J#4mVLV € M(¥). (We do
not need the above property of tangent measures if we just want to prove that
(BP,.) may hold for a nonzero measure only if « is an integer.)

If h(r) = r® one also knows that ¥(B(0, r)) = cr®, where c is a positive
constant. Assuming that (WT **) is false even for such measures, we find the
smallest nonnegative integer n for which there are a and a nonzero measure ¥
over R" such that ¥(B(z, r)) = r* for each z € spt ¥ and each r > 0 and such
that

M(¥) N {#™VLV; V is a linear subspace of R"} = @

Then spt ¥ # R" since otherwise ¥ would be a constant multiple of the
Lebesgue measure. Hence there are u € R" — spt ¥ and x € spt ¥ such that
|lu — x|| = dist(u, spt ¥). We find ¥ € Tan(¥, x) and we finish the proof by
showing that the dimension of the linear span of spt ¥ is less than n. To prove
this, we use a simplified version of Marstrand’s argument [15], [16], [18]: For
each r > 0, let b(r) € R" be the center of mass of the restriction of ¥ to
B(x, r); i.e.

(b(r),v) = f (z,0)d¥(z)/¥B(x,r) forevery v € R".
B(x,r)

If b(r) = x for every r > 0, we easily see that spt ¥ is a subset of the orthogonal

complement of u — x. If b(r) # x for some r > 0, we use the equality

Lo =tz =) d¥(z) = [ (e =z - x)?) d¥()
B(y, 1) B(x, )

(where y € spt ¥) to conclude that there is a constant C such that |(b(r) —
x,y — x)| < C|ly — x||* for every y € spt ¥. Consequently, spt ¥ is a subset
of the orthogonal complement of b(r) — x.

It is not difficult to modify the above argument to show that (GBP*) =
(WT **). (Cf. 3.8.) Another way to prove this statement is to use the result of
(13] according to which for every measure ¥ with the (GBP*) there are an
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integer m = 0,..., n and an m dimensional analytic submanifold E of R" such
that ¥ is a constant multiple of ™ LE.

If we attempt to use the notion of tangent measures to prove (BP) = (WT),
we first note that, if (BP) holds, (WT) is equivalent to:

Tan(®, x)
C {c#™LV; ¢ >0 andV isan m dimensional linear subspace of R" }

for ® almost every x. To prove this equivalence, we could assume much less than
(BP) (cf. 5.6(4)). The full strength of (BP) is used to prove that ® almost every x
has the property: Every tangent measure of ® at x is a constant multiple of a
measure ¥ for which

(GBP) ¥(B(z,r)) = ¥(B(0, 7)) = a(m)r™

whenever z € spt ¥ and r > 0. (Here a(m) denotes the m dimensional volume
of the m dimensional unit ball.) Hence (BP) = (WT) would be proved if the
following seemingly plausible conjecture were true.

(C) If a nonzero measure ¥ over R" has the (GBP) then there is an m
dimensional linear subspace V of R" such that ¥ = #"LV.

If m =0o0r m=n, (C)is easy. If m = 1, an elementary proof of (C) is an
easy exercise. If m = 2, the proof seems to be more complicated, but (C) still
holds. (See 3.17; for the case m = 2 and n = 3 see also [14].) Unfortunately, if
m = 3and n = 4, (C) fails. (See 3.20.) Because of this, the proof of (BP) = (WT)
needs a more detailed study of measures fulfilling the (GBP). On the other hand,
if ¥ fulfils the (BP*) (or only the (BP**)), the above argument shows that we
need to prove (C) only under the additional assumption that ¥(B(z,r)) <
a(m)r™ for every z € R". This weaker form of (C) holds for every m. (See 3.18.)
A relatively simple proof of it may be obtained in the following way:

Let b, € R" be defined by

(booy= [ (r*=1Izl*)(z, 0) d\I'(z)/f (r® = 1Iz)1*) d¥(2)
B, r) B, r)
for every v € R", and let Q, be the quadratic forms on R" defined by
Qo) =2f  (nofdr(a)|[ (= a1 ata)
B, r) B(0, 1)

for every v € R". One easily sees that Trace(Q,) = m. Thus there is a sequence
1, = oo such that the sequence @, converges to a quadratic form Q such that
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Trace(Q) = m. Using the inequality

J,

and the equality

Lo s = w2 d¥z) = [ (2= a2 d (=)
B(x, 1)

B(0, r)

(=l = ul®)’d¥(z) < [ (2= |2)%)"d¥(s)  (u€R")

(u,r) B, r)

(x € spt ¥),
we find a constant C such that
2(b,, u) + Q,(u) — |lull® < Cllu|®/r (ueR", 7> 0)
and
12(b,, x) + Q,(x) — |Ix|I?| < C||x||>/r (x € spt ¥, r>0).

From the first of these inequalities we see that the b, converge to zero as r — oo
and that Q(u) < ||u||? for every u € R". Using the second inequality, we see
that

spt ¥ © {x € R Q(x) = ||x]|2}.

Recalling that Trace(Q) = m and Q(u) < ||u||?, we infer that spt ¥ is a subset
of an m dimensional linear subspace V, which easily implies that ¥ = #™LV.

We complete the introduction with a more detailed survey of the contents
of the paper.

In the first chapter we set out the notation to be used (1.1-1.9) and we
recall some of the results concerning the differentiation of measures (1.7), the
distance between measures and the vague convergence of measures (1.10-1.14,
where, for the convenience of the reader, we also give short proofs).

In the second chapter we study the general properties of tangent measures.
We start with the concepts of a d-cone of measures (2.1(1)), of its basis (2.1(2)),
and of the distance of a measure from a d-cone (2.1(3)). Some simple properties
of this distance are given in 2.1(4-7). In 2.2 we prove various characterizations
of d-cones with compact bases. The definition of the set Tan(®, x) of all tangent
measures of ® at x (where x € R" or x = o0) is introduced in 2.3(1,2). We
notice that Tan(®, x) is a d-cone (this was the reason for studying d-cones
separately) and that there are simple relations between tangent measures of ®
and of its multiple by a function (2.3(3, 4)). In 2.5 we prove the existence of the
tangent measures. Theorem 2.6 establishes important connectedness properties
of Tan(®, x). Its corollaries 2.7 and 2.8 show how the compactness of the basis
of Tan(®, x) is connected with the behaviour of ® near x. In 2.9-2.11 we study



GEOMETRY OF MEASURES IN R" 543

the situation to be encountered in Chapter 3, namely, measures ® and ¥ with
Tan(®, x) equal to the cone generated by ¥. Theorem 2.12 is an equivalent
formulation of the general property of tangent measures mentioned in the sketch
of the proof of (BP.) = (WT*). Finally, in 2.13 we give again some general
properties of the d-cones and in 2.13(5) we use them to obtain a useful corollary
of 2.12.

The third chapter is devoted to the study of uniformly distributed measures
over R". This notion (defined in 3.1(1)) is very close to (GBP*); in fact, the
family U(n) introduced in 3.1(2) is the family of all nonzero measures over R"
having the (GBP *). Theorem 3.3. compares uniformly distributed measures with
close supports; its statement 3.3(2) assuring that uniformly distributed measures
are (up to a constant multiple) determined uniquely by their supports holds even
in arbitrary metric spaces. (See [7] or, for a further generalization, [23].) In 3.4
we introduce and give some estimates of the moments b, (®) of measures
e *I:°® (® € U(n)). Practically all our main results are based upon the ex-
istence of the asymptotic expansions of these moments for s — oo and for s \y 0
(the latter being the more important) proved in 3.6. In 3.7 we introduce various
d-cones of “flat” measures. Theorem 3.8 is a slightly stronger version of the
implication (GBP*) = (WT**). In 3.10 and 3.11 we study the tangential
behaviour of a uniformly distributed measure ® at any point x € (spt ®) U {o0}.
It turns out that Tan(®, x) is a cone generated by a single measure ¥ € 1l(n)
and that ¥ has the (GBP). The corresponding integer m = 0,1,..., n is the
same for all x € spt ®. Hence we introduce in 3.12(1,2) two dimensions of a
unformly distributed measure: dim @ and dim ®. In 3.12(3-8) we notice some
properties of these dimensions. (We should also remark that from 3.11(2; i, iv)
and from 5.6 one sees that every uniformly distributed measure ® is dim ,®
rectifiable. Since considerably more is proved in [13], we do not go into it here.)
In dependence upon the “flatness” of Tan(®, co), the uniformly distributed
measures are partitioned into two subclasses: measures flat at co and measures
curved at co. The fact established in 3.14 that these classes are very far from
each other turns out to be the first decisive step towards the proof that
(BP) = (WT). The second decisive step towards this proof are the algebraic
properties of (the moments of) measures flat at co proved in 3.15. In fact, from
3.15(x, v) one easily sees that a measure flat at co having the (GBP) is of the form
A "LV for some m dimensional linear space V. (We prove more in 3.16.) Using
this fact, 3.14, and 2.6, one can easily finish the proof that (BP) = (WT). (Our
proof in Chapter 5 is more involved since we give a more general result.)
Corollary 3.17 proves (C) for those m and n for which it holds while Example
3.20 disproves it in the remaining cases. In 3.18 we give flatness criteria similar
to those used in the above sketch of the proof of (BP**) = (WT). From 3.19
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and 3.12(3) one can infer some information about uniformly distributed mea-
sures over R" with dimensions > n — 1. Finally, in 3.21 we pose some open
problems.

In Chapter 4 we study tangential properties of (&-) approximately uniformly
distributed measures over R". Roughly speaking, these are the measures for
which the ratio of the measures of close balls with the same small radius is close
to one. The formal definition and some criteria are given in 4.1-4.3. For
example, according to 4.3(1) every measure having the (BP,) for some h is
approximately uniformly distributed. Another important subclass consists of
those measures for which

lim ®(B(x,2r))/®(B(x,r))

rNO

exists ® almost everywhere (4.3(2)). We allow for the “error” & because it
enables us to study also measures for which

0 < limsup®(B(x, r))/h(r) < (1 + e)lier}NiOnf(I)(B(x,r))/h(r) < o0

rNO

for almost every x. After establishing in 4.4 some elementary properties of
measures approximable by “flat” measures (4.4(5,6) are simple rectifiability
criteria), we deduce in 4.5-4.6 the main tangential properties of general
e-approximately uniformly distributed measures. Corollary 4.7(1) shows that
approximately uniformly distributed measures are precisely those for which
tangent measures are uniformly distributed. (Its “error version” 4.6(1) and 4.2(5)
imply that our “unilateral” definition 4.1 is, up to a rescaling of &, equivalent to
the “bilateral” one.) From 4.7(2) we see that every approximately uniformly
distributed measure fulfils (WT*). In 4.8-4.10 we find sufficient conditions
under which all tangent measures of a given measure are “flat”. Some equivalent
conditions are established in Theorem 4.11. Finally, in 4.12 we define the
concept of the dimension of an approximately uniformly distributed measure at a
point and we derive some of its properties.

In Chapter 5 we study the connections among m rectifiability (defined in
5.1(1)), m dimensional densities (defined in 5.1(2)), and “flatness” of tangent
measures. Except for the rectifiability criterion 5.3 the results are obtained as an
easy application of 4.8-4.11. (Since 5.3 is a more precise version of the
rectifiability criterion used in [17] and [19], it may be proved also by an
argument similar to that used by these authors. Our proof of 5.3 might seem to
be more complicated, since Lemma 5.2 is formulated in a way which can be used
also in 6.4.) The main rectifiability criteria involving the densities are given in
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5.4. Corollary 5.5 establishes the existence of positive constants &(n, m) such
that every measure ® over R" fulfilling (at almost every point x)
0 < limsup®(B(x,r))/r™ < (1 + &(n, m))limionfCD(B(x, r))/r™ < o
rNO N

is m rectifiable. This result is illustrated in 5.7 by demonstration that
lim,_, &(n,2) = 0. I believe that this is one of the reasons why the proof of
(BP) = (WT) for m > 2 differs so much from the case of m = 1 as well as from
the proof of (BP*) = (WT). (E. F. Moore [21] proved the estimate &(n, m) >
.01 and M. Chlebik [6] improved the result of [19] by showing that there are

positive constants &(m) such that every measure in (any) R" fulfillling (at almost
every x)

0< limsup @&(S)/((diamS)/2)"

diam(S)\O0, S=x
<(1+ [«S(m))limionfd)(B(x, r))/r™ < oo
N

is m rectifiable.) Theorem 5.6 reformulates some of the conditions of 5.4 as
necessary and sufficient for m rectifiability and Examples 5.9 illustrate the need
for the density assumptions in 5.6(3,4). These examples are based on a more
general construction 5.8 which is used also in 6.5 and in 6.11. _

The final Chapter 6 studies density functions in R", i.e. those positive
functions h on (0, c0) for which there is a nonzero measure over R" with finite
and nonzero h density almost everywhere. (The definition 6.1(1) of the h density
differs slightly from the usual one used in the formulation of the (BP,). The
functions h for which there is a nonzero measure over R" with the (BP,) are
termed exact density functions in R".) In 6.1(2-5) we notice some properties of
the h densities. As a consequence, we formulate in 6.2(2) a simple connection
between exact density functions and density functions. In 6.2(6) we define
Dim(h) as the set of all integers m for which there are arbitrary small r > 0
such that h(tr)/h(r) is close to ¢™. Theorem 6.3 stating that Dim(h) # @ is a
considerable generalization of the results of [18] and of [6] mentioned earlier. We
call a density function regular if lim, ,h(tr)/h(r) exists for some (or, equiv-
alently, all) ¢t > 0, t # 1. (See 6.2(4,5).) Theorem 6.5 characterizes (exact)
regular density functions. (One of the corollaries of 6.5 is that r|Inr| is not a
density function in any R" while r/|In r| is an exact density function in R2.)
Theorem 6.7 asserts that, if h is not a density function in R" then there is ¢ > 0
such that for every measure ® over R" the upper h density is at least (1 + ¢)
times the lower density. (I do not know whether an analogous statement holds if
all h densities involved are replaced by the usual h densities.) In 6.11 we discuss
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the dependence of ¢ upon h and n and we formulate some open problems
connected with it. In 6.8 and 6.9 we show for which sets M of nonnegative
integers one can construct (irregular, or even more special) density functions h
such that Dim(h) = M. We just mention three particular cases: a (nonexact)
irregular density function in R (6.9(2)), an exact irregular density function in R*
(6.9(3)), and an exact irregular density function in R weakly equivalent to
r (6.9(1)). (In the language of [11] the last example may be reformulated
as a construction of a purely (5!, 1) unrectifiable set E C R® and of a function
h such that 0 < #Y(E) < o0 and
0< lin:)jfl(B(x,r) NE)/h(r) < oo

for #! almost every x € E.) We have already seen that Mattila’s result [20] is
confined to the one dimensional space and to the exact density functions.
Nevertheless, in 6.10 we connect it to an open problem concerning exact density
functions in higher dimensional spaces.

1. Preliminaries

1.1. We shall denote by || - ||, dist(+,- ), and ( - ,- ) the Euclidean norm,
distance, and inner product in R", respectively. If E is a nonempty subset of R"
and r > 0, we denote

B(E,r) = {x € R";dist(x, E) < r},
B(E,r) = {x € R%;dist(x, E) <1},

Int(E) and Clos( E) the interior and closure of E, respectively, and diam(E) the
diameter of E.

If x € R", we let B(x,r) = B({x},r) and B%x, r) = B({x}, r). Sometimes
we shall use the notation B,(x, r) to indicate that the ball is in R".

1.2. Whenever V is a linear space of finite dimension, we denote by OV
the set of all symmetric klinear forms on V. These forms will be naturally
identified with the linear forms on the k-th symmetric tensor power @kV of V.
The k-th symmetric tensor power of x € V will be denoted by x*. If W is a
subspace of V and b € OFV, we define the restriction of b to W by the
formula (bLW )(x*) = b(x*) for x € W. (Since the notation { - ,- ) is reserved
for the inner product, we use here the usual function notation.)

If V and W are linear spaces, Hom(V, W) denotes the space of all linear maps
of V into W.

If V is an inner product space and b € OV, we denote by Trace(b) the trace
of the linear automorphism of V which represents b.
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1.3. The set of all m dimensional linear subspaces of R" will be denoted by
G(n,m). If V& G(n, m), we denote by V * its orthogonal complement and by
x + V (where x € R") the m dimensional affine subspace of R" passing through
x and parallel to V.

i1.4. If E C R", x denotes the characteristic function of E. Whenever f:
R" — R, we define Lip( f) € [0, co] as the smallest constant for which |f(x) —
fly)] < (Lip(f))||x — y|| for all x, y € R". The functions with Lip( f) < oo are
termed Lipschitzian. We also define the support of f by the formula

spt(f) = R" — {x € R"; there is r > 0 such that f(z) =0

for every z € B(x,r)}.

1.5. In this paper, a measure over R" is a map @ of the family of all subsets
of R" into [0, o] such that

®(A) = inf{ Y. ®(B); F is a countable cover of A by Borel subsets of R"}
BeF

for every set A € R", and ®(A U B) = ®(A) + ®(B) whenever A and B are
disjoint Borel subsets of R".

In other words, @ is a Borel regular outer measure such that all Borel sets
are ® measurable. (Recall that E is called ® measurable if ®(T) = ®(T N E)
+ ®(T — E) for every set T.)

1.6. Suppose that ® measures R".

(1) The expression “® almost” is used in the usual way. For example, the
phrase “f-is defined ® almost everywhere” means that the complement of the
domain of f has ® measure zero.

(2) A ® measurable function is a map f of a subset of R" into [ — o0, o0] for
which £~ !(G) is measurable whenever G is an open subset of [ — o0, 00].

(3) If f is a ® measurable function defined ® almost everywhere, we define

ffdd>=ff(z)d<1>(z)=]0°°«1>{zenn; flz) > r)dr

— j:oQ{zER”; flz) <—r}dr

provided that at least one of the integrals on the right is finite. The equivalence
of this definition with other definitions of the integral ([11, 2.4.4]) follows easily
from the Fubini’s theorem ([11, 2.6.2]).
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(4) If f: R" - [0, 00] is ® measurable, the measure f® is defined by the
formula ( f®)(E) = [fxzd® for every ® measurable set E C R". We note that

[e(z)d(£2)(2) = [e(2)f(z) d®(2).

(5) If E c R", the restriction of ® to E is defined by the formula
(PLE)(A) = ®(A N E) for every Borel set A C R". We also denote [, fd® =
[fd(®LE).

(6) The support of ® is defined by

spt ® = {x € R"; ®(B(x,r)) >0 forevery r> 0}.

One easily sees that ®(R" — spt ®) = 0 (or, equivalently, ® = ®Lspt ®) and
that spt @ is the smallest closed set with this property.

(7) If T: R" — R™ is Borel measurable, the image of ® under T is defined
by the formula

T[®](E) = ®(T Y(E)) forevery Borel set E C R".

Whenever E is a Borel subset of R" and g: E — [— o0, 0] is Borel
measurable, then

[elw) dr[®](u) = [ g(1(t)) do(t).
E T Y(E)
(8) @ is said to be locally finite (almost finite, respectively) if for every

x € R* (for ® almost every x € R", respectively) there is r > 0 such that
®(B(x, 1)) < c0. One readily sees that @ is locally finite if and only if every
compact subset of R" has a finite measure and that @ is almost finite if and only
if ® almost all of R" can be covered by an (increasing) sequence of open sets
with finite ® measure.

1.7. When ® measures R", a point x € R" is called a ® density point of a
set E C R" if x € spt ®, ®(B(x, s)) < oo for some s > 0, and

li\r‘r(l)(D(B(x, r)NE)/®(B(x,r)) = 1.

The density theorem asserts that, if ® is almost finite, almost every point of any
set E is a ® density point of E. This follows from the differentiation theorem,
according to which, if ¥ and ® measure R" and ¥ + ® is almost finite, then,
with the convention ¢/0 = oo for ¢ > 0, the function

flx) = lim¥(B(x, 7)) /(B(x, 1))
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is defined ¥ + ® almost everywhere, ®{x; f(x) = o0} = 0 and

V(E) = W(E 0 (5 flx) = 0}) + [ f(z) d®(2)
for every Borel set E. (See [11, 2.9.15 and 2.9.7].)

1.8. We shall denote by .#" the Lebesgue measure over R", by a(n) the
Z" measure of B(0,1), and by #™ the m dimensional Hausdorff measure over
R". (See [11, 2.6.5 and 2.10.2].)

1.9. (1) When ® measures R" and D is a compact subset of R", we denote
F(®) = [dist(z,R" — D) d®(z).

(2) When ® and ¥ measure R", D is a compact subset of R", and
Fp(®) + Fp(¥) < o0, we define

ffd@—ffd\lf

(We note that F(®) = F(®,0).)
(3) We shall also use the simplified notation F, = Fg, ,,.
(4) Whenever ®, is a sequence of measures over R" and ® measures R",

we shall say that the sequence ®, converges to ® (and denote ® = lim, _, ®,)
if

o, ) = sup|

;spt(f) € D, £> 0, Lip(f) < 1}.

(1) @ is locally finite,
(ii) lim sup, _,  Fp(®,) < oo for every compact set D C R", and
(iii) lim, _,  Fp(®,, ®) = 0 for every compact set D C R".
(5) When x € R" and r € R — {0}, we define the maps T, ,: R" — R" by
the formula T, (z) = (z — x)/r. We note that
(i) T, ,[®](B(O, s)) = ®(B(x, sr)) for every s > 0,
(i) [f(z)dT, [®](z) = [f((z — x)/r)d®(z) whenever at least one of
these integrals is defined,
(iti) Fy, ,(®) = rF(T, ,[@]), and
(V) Fyip (@) = 1F(T, [®),T, [¥]).
(6) We also define T, , = T, , ,,.

1.10. ProposiTiON. Suppose that ® and ¥ measure R", D is a compact
subset of R", and ®(D) + ¥(D) < oo. Then

(1) Fp(@,¥) < max(F(®), F(¥)),

(2) Fy(®) < L®(D)diam(D) and Fy(®) > s®(E) whenever s > 0 and
B(E, s) C D;

3) If s >0, ECR", and B(E, s) C D, then

®(E) < ¥(B(E,s)) + Fp(®,¥)/s.
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4) If0<t<s<(1+1/2n)t,a> 0, and ®(B(z,t)) < ¥(B(z,5s)) +a
and Y(B(z,t)) < ®(B(z, s)) + a whenever B(z, s) C D, then
Fp(®,¥) < [4s + ((s/t)" — 1)diam(D)]
X [®(D) + ¥(D)] + at "(diam(D))""",

and
(5) If Fo(¥) > 0, 7€ (0,1), and Fy(®,¥) < 7F(¥), then F(®) > 0
and Fo(® /F (@), ¥ /F (¥)) < 27.

Proof. (1) and (2) are obvious.
(3) Let h(z) = min(1, dist(z, R" — B(E, s))/s). Then

®(E) < fhdcb < fhd\If + (Lip(h))Fp(®, ¥)

< V(B(E, s)) + Fp(®,¥)/s.

(4) Suppose that f is a function on R", Lip(f) < 1, spt(f) € D, and
f=0. Let A={z€ D; B(z,s) CD} and for every t <r <s let g(x) =
(a(n)r™) Yy n g f(2)dL"(z). We easily see that |g(x) — flx)| < 2s for
every x € R". Hence

ffdcp < 2s®(D) + /g,(z) dod(z)
= 25@(D) + (a(n)t) " [ flz)@(B(z, 1)) d2"(2)
< 25®(D) + (a(n)t /f ¥(B(z, s)) dL"(z)
+a(a(n)t") "Fp(£")
< 25®(D) + (s/t)"/gs(z)d\lf(z) + at~"(diam D)" "
< (s/t)"ffd‘l’ + 25®(D) + 2s(s/t)"¥(D) + at"(diam D)" "

< [quf + ((s/t)" = 1)(diam D)¥(D) + 2s®(D)
+4S\P(D) + at "(diam D)" "
< /fd‘l' + [43 + ((s/t)" — l)diam(D)]

x[®(D) + ¥(D)] + at "(diam D)""".
This and a similar estimate of [fd¥ imply (4).
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(5) Fp(®) > 0 since |Fp(®) — Fp(¥)| < F(¥). The last statement fol-
lows from '

Fp(®/Fp(®), V/Fp(¥)) < Fp(®,¥)/Fp(¥)

+|Fp(®) — Fp(¥)|/Fp(¥) < 27.

L.11. ProposiTioN. Let ®, be a sequence of measures over R" such that
limsup, , F(®,) < oo for every compact set D and let ® measure R". Then
the following statements are equivalent.

(1) lim, _, @, = ®.

(2) lim,_,,[fd®, = [fd® for every nonnegative Lipschitzian function
with compact support.

(3) lim, _,  [fd®, = [fd® whenever the following condition holds: There
is a function g: R" — [0, o] such that

(i) limsup, _,  [gd®, < oo,

(ii) for every e > 0 there is r > 0 such that |f(z)| < e|g(2)| if If(z)| >r
or ||z]| > r, and

(iii) fis continuous ® almost everywhere.

(4) ®(D) = limsup, _, @ (D) for every compact set D C R" and

®(G) < liminf, | ®,(F) for every open set G C R".
(5) There is a continuous function f: R" — (0, o) such that lim, , f®, =

10

Proof. (1) = (2) and (3) = (2) are obvious.
(2) = (4). If e > 0and s > 0 are such that ®(B(D, s)) < D(D) + &, we
let f(z) = min(1, dist(z, R — B(D, s))/s) and conclude
®(D) +e> [fd® = lim [£d®, = limsup@y(D).
k— oo k— oo

If ¢ <®(G), DC G is a compact set with ®(D) > ¢ and s > 0 is such
that B(D, s) C G, we define f as above and conclude

¢ < /fdcb = lim /fdd)k < liminf®,(G).

(4) = (3). We may assume that f > 0. From the continuity of f ® almost
everywhere we infer that

ffd«b = /0°°<1>(1nt{z; flz)>t))dt = fooo@(Clos{z; flz) > t))dt.
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Hence
[fao < foolikminfd)k(lnt{z; Flz) = t))dt
0 k—oo

< liminf "0 (Int(z; f(z) > ¢)) dt
— 00 0

< lim inf JECL

For every ¢ > 0 we find r > 0 with the property described in (ii) and we
estimate

lim sup ffdfbk < limsup -[B(o )min(r, f(z))d®(2)

k— oo k— oo
+ lim supefgd@k
k—o00

< lim sup frfbk(Clos{z € B(0,r); flz) =t})dt
0

k— o0

+ elim sup /gd‘bk

k— o0

< fr(ID(Clos{z € B(0,7); f(z) = t})dt

+ ¢lim sup fgd@k

k— o0

< ffd@ + elimsup/gd@k.

k— o0

(2) = (1). Let D be a compact subset of R" and let
L={f:R"~ [0,00); spt(f) € D and Lip(f) < 1}.

For every € > 0 there is a finite set S C L such that for every f € L one may
find g € L with |f — g| < e If fand g have this property, then

[~ [edo] < @,D) < eFyp (@)

and

’ffd«l) - fgdcb < 6®(D) < eFyp (@) = ¢ lim Fyp 1(®y).

Hence

lim sup F)(®,, ®) < 2elimsup Fy f, (®,).

k— oo k— o0
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Since we have already proved that the statements (1)-(4) are equivalent,
(1) < (5) is obvious.

1.12. ProposiTiON. (1) Let ®, be a sequence of measures over R" such
that limsup, , ®,(B(0, 7)) < oo for each r > 0. Then ®, has a convergent
subsequence.

(2) The set of all locally finite measures with the metric

o0

Y. 27”min(1, F,(®, ¥))

p=0
is a complete separable metric space. The notion of convergence in this space
coincides with that described in 1.9(4).

Proof. (1) Let S be a countable family of continuous functions with com-
pact supports satisfying:

(*) Whenever p = 1,2,..., f is a continuous function with spt(f) C
B(0, p), and & > 0, then there is g € S such that spt(g) C B(0, p) and |f — g|
<e.

Using the usual diagonal procedure, we find a subsequence (I)k such that
l m;_[g d(I) exists for every g € S. From (*) we infer that AS) =

m;_, [ fd‘D K, IS well defined for every continuous function with compact
support. Hence the Riesz representation theorem ([11, 2.5.13]) provides us with
a measure ® over R" such that A(f) = [fd®. Clearly, 1.11 shows that ® =
lim ] - ooq)k

(2) follows easily from (1).

1.13. LemMma. Suppose that ®, and ®, measure R", g = 0,1,...,n, Pand
Q are the orthogonal projections of R"=R? X R""9 onto R? and R" 9,
respectively, a > 0, [eFId(®, + ®,)(z) < oo, and

(+) Jee 0z, 0x)P ddy(2) = [Pz, Qx)P ddy(2)
for every p = 0,1,... and every x € R" with ||x|| < a. Then &, = ®,.
Proof. Dividing the p-th equality in (*) by p! and summing up, we get
/e<“”‘> d®,(z) = /e“”t> d®,(z)
for every x € R" with ||x|| < a/2. Hence
fe“<"y>d¢>l(z) = fe“””d@l(z) = fe<:’sy>d¢>2(z)
= [er= ddy(z)
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whenever y € R", s € R, and |s||ly|| < a/2. By analyticity, this equality
extends to complex s such that |Re s|||y|| < a/2. Thus the Fourier transforms
of ® and of ®, coincide.

1.14. ProposiTiOoN. Let ®, be measures over R" such that
limsup, _,  fe**ld®(z) < oo for each a > 0. Then the sequence ®, converges
to a measure ® if and only if [e*V* d®(z) < oo for each a > 0, and

klgr:of<z, x)?d®,(z) = f(z,x)”dfb(z)
foreachp = 0,1,... and for each x € R".

Proof. The implication = follows from 1.11(3). To prove the converse, we
note that 1.13 (with ¢ = 0) and 1.11(3) imply that, if a subsequence of the
sequence ®, has a limit, then this limit equals ®. Thus the statement follows
from 1.12(1).

2. Tangent measures

2.1. (1) A set M of nonzero locally finite measures over R" will be called a
cone if c¥ € M whenever ¥ € M and ¢ > 0. It will be called a d-cone if it is a
cone and if T, [¥] € M whenever ¥ € M and r > 0.

(2) The basis of a d-cone I is, by definition, the set { ¥ € IM; F(¥) = 1}.
We shall say that 9t has a closed (compact, respectively) basis, if its basis is
closed (compact, respectively) in the topology from 1.12(2). We also observe that
a d-cone has a closed basis if and only if it is a relatively closed subset of the set
of all nonzero locally finite measures over R”.

(3) Whenever M is a nonempty d-cone of measures over R", ® measures
R", s > 0,and 0 < F(®) < o0, we define

d(®, M) = inf{F,(®/F(®),¥); ¥ € M and F,(¥) = 1.
We also define
d(®, M) =1 if F(®)=0o0r F(®) = oo.

We easily see that

(4) d(®, M) < 1 (1.10(1)),

(5) d(®, M) =d (T, ,[®], M) (1.9(5; iii, iv)), and

(6) it ® = lim, ,  ®, and F(®) > 0, then d(®, M) =
lim,_, d(®,, M).
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2.2. ProposiTiON. If a d-cone M of measures over R" has a closed basis,
then the following statements are equivalent.

(1) M has a compact basis.

(2) Whenever ¥, € It and lim, _, F\(¥,) = 0 then lim, ¥, = 0.

(3) There are q € (0, o0) and bounded sets C, D C R" such that

0€e Int(C) C Clos(C) c Int(D) and ¥(D) < q¥(C) forevery ¥ € M.

(4) There is q € (0, 0) such that ¥(B(0,2r)) < q¥(B(0,r)) for every
r > 0 and every ¥ € M.

(5) For every A > 1 there is v > 1 such that F,(¥) < AF(¥) for every
¥ € I and every r > 0.

Moreover, these statements imply

(6) 0 belongs to the support of every ¥ € I, and

(7) the integral [e” *V¥I dW¥(z) converges for every a > 0 and every ¥ € M.

Proof. (1) = (2). Let ¥, € M, lim,_  Fy(¥,) =0, t>1, £¢>0, and
F(¥,) > e(k=12,...). Let ¥, = T, , [¥,], where

r.=sup{r € [L,¢]; F(¥,) < F(¥,) + 1/k}.

Then Fl(\Ifk) >0 and lim, t/,(‘I'k)/Fl(\I'k) = 00. Hence the sequence
¥, /F,(¥,) has no convergent subsequence.
(2) = (3). If ¥, € M and ¥, (B(0,2)) > k¥, (B(0, 1)), then

kli_)m F\(¥,/¥,(B(0,2))) =0 and Fy(¥,/¥,(B(0,2))) > 1.

Since this contradicts (2), (3) holds with C = B(0,1) and D = B(0,2).
(3) = (4). Let A > 1 be such that A\C € D andlet 0 < t < s < oo be such
that B(0, ¢) € C C B(0, s). We also note that

Y(ArC) =T, ,[¥](AC) < qT; . [¥](C) = q¥(+C)

for every r > 0 and every ¥ € M. Hence, if p > 1 is an integer such that
AP > 2s/t, then

¥(B(0,2r)) < ¥(2rC/t) < q"¥(2rC/A"t) < qP¥(B(0, r))

for every r > 0 and every ¥ € It.

(4) = (1). This implication follows easily from 1.12(1).

(1) = (5). Suppose that A > 1, 7, N 1, r, > 0, ¥, € M, and F, ,(¥,) >
AF,(¥,). Let ¥ be the limit of some subsequence of the sequence
T, [V /F(T, ., [V]). We easily see. that 1 = F(¥) > AF(¥) for every

0, 71
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r € (0,1). But this is impossible, since the monotone convergence theorem
implies that lim, , F(¥) = F ().
The implications (5) = (3), (4) = (6), and (4) = (7) are obvious.

2.3. (1) Suppose that ® measures R" and x € R* U {o0}. A nonzero
locally finite measure ¥ over R" is said to be a tangent measure of ® at x if
there are sequences r, \y 0 and ¢, > 0 such that ¥ = lim, _, ¢, T, @)

(2) The set of all tangent measures of ® at x will be denoted by Tan(®, x).

(3) We observe that Tan(®, x) is a d-cone with a closed basis.

(4) If @ is an almost finite measure over R", we infer from 1.7 that

(i) whenever E C R" then Tan(®LE, x) = Tan(®, x) for ® almost every
x € E, and

(if) whenever f> 0 is a ® measurable function such that the measure
® = f® is almost finite, then Tan(®, x) = Tan(®, x) for ® almost every x.

2.4. LEmMa. If ® measures R", t > 1, and E is an open subset of R" with
®(E) < o0, then

lim limsup ®{x € E; ®(B(x, tr)) = ¢®(B(x, 7))} = 0.

=00 10
Proof. For each &€ > 0 we find a compact set D C E such that ®(E — D)
<e/2.If ¢ > (2(t + )" ®(E) /e,
r <dist(D,R" — E)/4t, and A = {x € E; ®(B(x,tr)) > c®(B(x,r))},
then ®(B(z,(t + 1)r)) > c®(B(z, r/2)) whenever B(z,7/2) N A + @. Hence
®(A N D)

= a(n) Y(r/2)" fB(AnD r/g)(D(A N DN B(z,1/2) dL"(z)

IA

(2(t + 1))"c la(n) (¢t + 1)r)*"]<p(E N B(z,(t + 1)r)) d2"(2)
< (2(t+1))"c '®(E) <e/2.
Thus ®(A) < &, which proves the statement of the lemma.

2.5. Tueorem. If @ is an almost finite measure over R" then
Tan(®, x) # @ for ® almost every x € R™.

Proof. Whenever ¢ > 0 and E C R" is an open set with ®(E) < o0, we use
2.4 to find ¢, > 0 and s, > 0 such that

®{x € E; ®(B(x, kr)) > ¢,®(B(x,r))} < e/2F
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forevery 0 <r <s, (k=1,2,...). Let
A, = {x € E; ®(B(x, kr)) > ¢, ®(B(x,r)) forsomek=1,2,...

such that kr < sk}, and

o0 o0
A=UnN Ay

j=1i=j
Since ®(A,) < &, ®(A) < & Finally, we observe that for every x € E — A there
is a sequence r; s 0 such that

lim sup ®( B(x, krj))/Q(B(x, r)) < ¢
jo oo

for each k = 1,2,... . Hence we may use 1.12(1) to infer that some subsequence

of the sequence T, ,j[‘I)] /®(B(x,1;)) converges to some (obviously nonzero)
locally finite measure.

2.6. THEOREM. Let ® measure R" and x € R" U {o0}.

(1) If M is a d-cone of measures over R" with a compact basis,
M N Tan(®, x) # &, and 0 < e < limsup, od (T, [P], ), then there is
¥ € Tan(®, x) such that d (¥, M) = e and d (¥, M) < & for every r > 1.

(2) If the basis of Tan(®, x) is compact then Tan(®, x) is a connected set.

Proof. (1) Let ¥ € M N Tan(®, x), s, \ 0 and ¢, > 0 be such that V=
lim, ¢, T, , [®] For each k = 1,2,... we find the smallest r, € [0, s;] such
that d (T, ,[®], M) < & for every r, < r < s;. Since limsup, _od (T, ,[P], M)
> ¢, we have r, >0 and, denoting ®, =T, [®], d(®,, M) > ¢ if k is
sufficiently large.

If there is a sequence k) <k, < --- such that limjﬁoork]_/sk]_ =t>0,
we infer that d(T, [¥], M) > e Since T, [¥] € M, this is impossible.
Hence lim, /s, =0, which implies that lim,_ d(®,, M) =¢ and
limsup, _, . d,(®,, M) < ¢ for every r > 1. We also note that for every r > 0,
0 < F(®,) < oo if k is sufficiently large.

Since € <1 (21(4)), A=2/(1 +¢)>1 and there is 7> 1 with
F. (V) <AF(V) for every ¥ € M and every s >0 (2.2(5)). Whenever
r>1 and k is sufficiently large, there is ¥ € I such that F,(¥) =1 and
F. (®,/F.(®,),¥) < & Hence F(®,)/F.(®,) = F(¥) — & > (1 — ¢)/2. Thus
limsup, _,  F.»(®,)/F(®,) < ((1 —¢)/2)"? for each p = 1,2,... and 1.12(1)
implies that the sequence ®,/F,(®,) has a convergent subsequence. Clearly,
this subsequence converges to a measure having the desired properties.

(2) We easily see that each component of Tan(®, x) is a d-cone with a
compact basis. Hence the statement follows from (1).
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2.7. CoROLLARY. Suppose that ® measures R", x € R", and Tan(®, x) #
. Then x € spt ®, ®(B(x, s)) < oo for some s > 0, and the following state-
ments are equivalent.

(1) lim sup, . (®(B(x,2r))/®(B(x, 1)) < co.

(2) There are bounded sets C, D C R" such that 0 € Int(C) C Clos(C) C
Int(D) and limsup, . ®(x + rD)/®(x + rC) < co.

(3) Tan(®, x) has a compact basis.

Proof. One easily sees that x € spt ® and ®(B(x, s)) < oo for some s > 0.
The implication (1) = (2) is obvious and (2) = (3) follows from 2.2(3).
(3) = (1). Let g > 0 be such that ¥(B(0,2r)) < q¥(B(0, r)) for every
¥ € Tan(®, x) and every r > 0 (2.2(4)). We prove that
lim SupFl(Tx,Zr[(I)])/Fl(Tx,r[q)]) < 2q

rNO

Indeed, if r, \ 0 and Fy(T, ,, [®]) > 2gF (T, , [®]), then

Fl(Tx,Zrk[(I)]/FI(Tx,Qrk[q)])’ ‘I') = F1/2(\I,)

- Fl/Z(Tx,Qrk[‘I)])/FI(Txﬁrk[q)])
>1/2qg — 1/4q = 1/4q
whenever ¥ € Tan(®, x) and F;(¥) = 1. Hence 2.6 with I = Tan(®, x)
provides us with a measure ¥ & Tan(®, x) — Tan(®, x), which is impossible.
Now, we easily estimate

limS(?p@(B(x,%))/‘P(B(x, r) < limS(l)lpFl(Tw[‘P])/Fl(Tx,,[‘1’]) < (29)".

2.8. CoroLLARY. Suppose that ® measures R" and Tan(®, o) # @. Then
® is nonzero and locally finite and the following statements are equivalent.

(1) limsup, _,  ®(B(0,2r))/P(B(0, r)) < co.

(2) There are bounded sets C, D € R" such that 0 € Int(C) € Clos(C) C
Int(D) such that limsup, , ®(rD)/®(rC) < oo.

(3) Tan(®, o0) has a compact basis.

The proof is similar to that of 2.7.

2.9. CoroLLARY. Suppose that ® measures R" and x € R" U {o0}. Then
the following statements are equivalent.

(1) There is a measure ¥ such that Tan(®, x) = {c¢¥; ¢ > 0}.

(2) There is a map r— c(r) (r € (0, 0)) such that lim,  ,c(r)T, [®]
exists and is a nonzero measure.

(3) lim, T, [®]/F(T, ,[®]) exists.
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Proof. (1) = (3). For every sequence r, \, 0 we use 1.12(1), 2.7, and 2.8 to
find k; <k, < --- such that the sequence T, , [®]/F(T, , [®]) converges.

] ]

Since its limit belongs to Tan(®, x), it equals ¥ /F,(¥). Hence
li\z?)Tx,r[(D]/Fl(Tx,r[q)]) = \I,/Fl(‘l,)

The implications (3) = (2) = (1) are obvious.

2.10. THEOREM. Let ¥ be a nonzero locally finite measure over R". Then
the following statements are equivalent.

(1) There are a measure ® over R" and x € R" U {00} such that
Tan(®, x) = {¢¥; ¢ > 0}.

(2) Tan(¥,0) = {c¥; ¢ > 0}.

(3) Tan(¥, 0) = {c¥; ¢ > 0}.

(4) For every t > 0 there is c(t) > 0 such that T, ,[¥] = c(t)V.

(5) There is a > 0 such that T, [V] = t*V for every t > 0.

(6) The set {c¥; ¢ > 0} is a d-cone.

Proof. Since the implications (1) = (6) = (4), (5) = (2) = (1), and (5) =
(3) = (1) are obvious, it suffices to prove (4) = (5). From 1.9(5; iii) we see that
F(¥)/t =c(t)F (V). Hence F(¥) > 0 and ¢(t) is a continuous function on
(0, 00). Using 1.9(5; iii) once more, we infer that c(ts) = c(t)c(s) for t, s > 0.
Thus there is « € R such that ¢(t) = ¢* for every t > 0. Moreover, a > 0 since
t*¥(B(0, 1)) = ¥(B(0, t)) is a nondecreasing function of ¢.

2.11. ProprosiTiON. Suppose that ¥ is a nonzero locally finite measure over
R", « 20, and T, ,[¥] = t*¥ for every t > 0.

(1) If a = 0, there is 6 > 0 such that ¥ = 05¢°L{0)}.

@2 If a >0, k=0,1,..., u€R", and f is a Borel function on (0, c0)
such that |f(t)| < Ke " for some K > 0 and a > 0, then

SRRz 0 d¥(z) = (k + ) [k e [ (2wt dw(z).

B(0,1)
(3) If ® measures R", Tan(®, co) = {c¥; ¢ > 0} and there are B € [0, 0)
and v > 0 such that

s fe 1) 2% dtb(z)/fe—""”z d®(z) = B+ o(s") ass N0,

then there is C € (0, 00) such that

lim r °T, ,[®] = CV.

r— o0
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(4) If ® measures R", x € spt @, sup{ ®(B(x,2r))/P(B(x,r));r > 0} <
00, Tan(®, x) = {c¥; ¢ > 0}, and there are B € [0, 00) and y > 0 such that

sfe_s”‘_"”znz — x||? d@(z)//e‘s“:"”qu)(z) =B +o(s)
as s —> o0, then there is C € (0, 00) such that
limr“"Tx,,[d)] =CV.

rNO

Proof. (1) is obvious.
(2) If f is the characteristic function of [0, r], we compute

JRUEN Gzt d¥(z) = [zt d¥(z)
=t ()t [¥]()

=rk+"‘f (z, u)*d¥(z)
B(O, 1)

(k + a)fowf(t)t“a—ldt/B (z, wkd¥(z).

0.1)

Hence the statement holds if f is a linear combination of such functions. Since
Je W (2, u)|Fd¥(z) < oo (2.2(7)), the general statement follows by ap-
proximation.

(3) Let g(s) = In fe *¥I" d®(z). From 2.8(1) we easily see that g(s) is
well defined and differentiable for s > 0. Our condition says that — sg’(s) =
B + o(s?) as s \\ 0. Hence there is a > 0 such that

(*) g(s)=a— Blns+ o(l) e;ss\,O.

Let @ =T,  ,[®]/F(T, ,[®]). From 2.8(1) we infer that

r

limsup, o/ e I dd (z) < oo for every ¢ > 0. Hence 1.11(3) implies that
(**)  limet* " /F(T, ,[®]) = lim [e 1" d® (2)
O ? rNO
- /e_sal;”z d¥(z)/F(¥) = Cys°

(€= fer awta)/p(v)
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whenever s > 0. Consequently,
lim e8#™) /ge™ = 9«
O
On the other hand, (*) implies that
limeg(‘lfz)/eg(rz) =48,
rNO

Hence B = a/2 and, using this in (**) with s = 1, we obtain
lim,  qe‘r */F(T, ,[®]) = C,. Thus

limr°T, [®] = eV /C,F\(¥),

O

which is the statement of (3).
The proof of (4) is similar to that of (3).

2.12. THEOREM. Let ® measure R". Then ® almost every x € R" has the
following property. Whenever ¥ € Tan(®, x) and u € spt ¥ then

T, ,[¥] € Tan(®, x).

Proof. For each p = 1,2,... and each g = 1,2,... let E, , be the set of
all x € R" for which there are ¥, € Tan(®, x) and u, € spt ¥, such that

Fp(Tu,,l[\Px]’ CTx,r[q)]) > ]-/p

for every ¢ > O and every 0 < r < 1/q.
If ®(E, ,) >0, we use the separability of the space of all locally finite
measures to find a set E C E  such that

®(E) >0 and F(T, ,[¥].T, ,[¥,]) <1/2p

for every x, y € E. Since Tan(®, z) # & for each z € E, each point of E is
contained in an open set with finite ® measure and we may use 1.7 to find
x € E which is a ® density point of E. Let ¢, > 0 and r, \y 0 be such that
¥, = lim; _, ¢TI, , [®], and let x; € E be such that

|2 — (x + ru,) || < dist(x + ru,, E) + r,/k.
We prove that
(*) kl:n; dist(x + r,u, E) /1, = 0.

Assuming that that is not the case, we find & € (0, ||u,||) such that
dist(x + ru,, E) > 8r, for infinitely many values of k. Since x is a ® density
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point of E,
1= lim ®(E N B(x,2ru,l))/®(B(x, 2rlu,l))

k— o0

IA

1- hgninfd)(B(x + nu,, 8r,))/®(B(x,2r|u,ll))

1= ¥,(B%(u,, 8))/¥(B(0,2l|u,)) <1
Thus (*) holds and, consequently, lim, _, _||x, — (x + ru,)|| /7. = 0. Hence
hm T, [®] = hm Tm /ml [cka,,k[CD]]

u,, 1 [\I,x] :
Therefore there is k such that r, < 1/q and

Fp(Tu,‘,l[\I’x]’ ckak,rk[q)]) < l/2p

IA

Consequently,
l/p < F(Tu ,l[ ] Ck X, rk[q)])

< E|(T, ([¥,]. T [%]) + B(T, \[¥] oT, . [®])

<1/p.
Hence ®(E, ,) = 0 for each p and g, which implies 2.12.

2.13. (1) Whenever It is a d-cone of measures over R" and o > 0, we let
9.72 [o] denote the set of all nonzero locally finite measures ¥ over R" such that
T, ,[¥], M) < o for every u € {0} U spt ¥ and every r > 0. Clearly Ii[o]
is a d—cone with a closed basis.
We prove the following facts.
(2) If M has a compact basis and ¢ € [0, 1) then
(i) the set of all locally finite measures ¥ over R" such that d (¥, ) < o
for each r > 0 is a d-cone with a compact basis, and
(i) M [o] has a compact basis.
(3) If M has a closed basis, ¥, and ¥ are nonzero measures over R",
lim, , ¥, = V¥ and lim,_, F(¥,)d (¥, M) =0, then ¥ € .
(4) If M has a closed basis then

N Mlo] =Mm[0] = {¥; T, ,[¥] €M foreveryu e {0} Uspt ¥} C M.

>0

(5) If ® measures R" then Tan(®, x) C M [0] for ® almost every x € R"
for which Tan(®, x) C .

Proof. (2) According to 2.2(5) there is 7 > 1 such that
F (V) <4F(¥)/(3 +0) forevery ¥ & M.

T
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Whenever c},(‘f’, M) < o and F(¥) = 1, we find ¥ € M such that F(¥) = 1
and F(V,V¥) < (1 + 0)/2. Then

F(¥)=F(¥)-(1+0)/2>(1-0)/4

Hence FT(\'I") < 4F1(“I") /(1 — o), which easily implies (i). The statement (ii)
follows from (i).
(3) Let ®, € M be such that F(®,) =1 and

kliﬂ; F (V) F (¥ /F(¥,), @) = 0.

Then lim, _,  Fi(¥,, Fi(¥,)®,) = 0 and, consequently,
k— o0

(4) This statement follows easily from (3).
(5) It suffices to use (4) and (2.12).

3. Uniformly distributed measures over R"

3.1. (1) A measure ® over R" is said to be uniformly distributed if
®(B(x, 1)) = ®(B(y, r)) < oo whenever x,y € spt ® and r > 0.

(2) The set of all uniformly distributed measures ® over R" with 0 € spt ®
will be denoted by U(n).

(3) If ® € 1(n), we shall denote I(s) = fe *I*I d®(z).

(4) We note that c¢T, ,[®] is uniformly distributed whenever @ is uniformly
distributed, x € R*, r # 0, and ¢ > 0.

3.2. LEmma. Let ® € U(n). Then

(1) ®(B(x, 1)) < (1 + 2r/s)"®(B(0, s)) whenever 0 < s < r < o0,

(2) 0 < I(s) < oo forevery s > 0,

(3) I(s/4) < 5"I(s) for every s > 0,

(4) [e VI z||* d®(z) < 5"k*/2s */2I(s) for every s > 0 and every k > 0,
and

(5) Z‘}‘;1(sj/j!)fe‘s”"'2(2f<z, ) — ||x||*) d®(z) = O for every s > 0 and
every x € spt ®.

Proof. (1)
(B(x,r) = (a(n)(s/2)") " [ @(B(z,5/2) d2"()

B(x, r+s/2)

< (a(n)(s/2)") " [ ®(B(0, 5)) d.L"(2)

B(x,r+s/2)
= (1 + 2r/s)"®(B(0, s)).
The statements (2) and (3) follow easily from (1).
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(4) Since the function z — — 3s||z||> + kIn||z|| attains its maximum for
llz|| = (2k/3s)'2, it does not exceed the value (k In k — k In s) /2. Hence

fefs||z||2+kln||z|| d(I)(z) < /e—s||:||2/4+(kl.nk—klns)/2 dq)(z)

< k%7K 2[(s/4) < 5rkF2s7R2(s).
(5) Since @ is uniformly distributed and since 0 € spt @,

/e—suz—xu2 dd(z) = /e—snzn2 d®(z)

for every x € spt ®. Hence
/ [ L (s7/jl)e1(2i(z, 1)) — ||x||2f)] d®(z)
j=1
- f[e—s||z||2+2s<z,x> — oIS g (z)

= es”x”zf(efs”;fx"z — e IHP) dd(z) = 0 (x € spt ®)

and it suffices to show that one may interchange the integration and the
summation. But this follows from

o0

X (si/f1) fo =20z, x)1 — 12| d@(2)

j=1

< ¥ sl Je Izl d@(z) /3! + eI (s)
]'=

0

<5"I(s Z (24717%5172||x||1) /! + e FI(s) < o0.

3.3. THEOREM. Let ® be a uniformly distributed measure over R" and let
¥ measure R".

(1) If G is an open subset of R", G N spt ¥ C spt ® and V(B(x,r)) =
Y(B(y, r)) whenever x,y € GNspt¥, r>0, and B(x,r) U B(y,r) C G,
then either

(i) lim,  ¥(B(x,7))/®(B(y,r)) = o0 whenever x € G N spt ¥ and
y € spt®, or

(i) G Nspt¥ is a relatively open subset of spt® and YLG =
c®L(G N spt V) for some ¢ > 0.

(2) If V¥ is uniformly distributed and spt ¥ = spt ®, then there is ¢ > 0
such that ¥ = c9.
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(3) If ® # 0 and if ®, is a sequence of uniformly distributed measures
over R" then the following statements are equivalent.
(i) There is a sequence c, > 0 such that lim, _, ¢, ®, = ®.
(ii) For every infinite set N of positive integers

spt ® = ﬂClos( U sptCI)k).

p=1 Nak>p

Proof. (1) We may assume that ®(G) > 0 and ®(G) > 0. Let
ue GnsptV. If lim, o¥(B(u,r))/®(B(u,r)) = oo, (i) holds.
If liminf,  ¥(B(u, r))/®(B(u, r)) < o, 1.7 implies that 0 < ¢ =
lim, ¥ (B(u, r))/®(B(u,r)) < o0 and ¥YLG = c®PL(G N spt ¥).

Let x€GnNspt¥ and let s> 0 be such that B(x,4s) € G and
W(B(u, r))/P(B(u,r)) > (1 — 7 ")c for every 0 <r < 2s. If y € (B(x,s) N
spt @) — spt ¥, we find the largest r > 0 such that B%(y,r) Nspt ¥ = &. We
also note that r < s. Let z € B(y, r) N spt ¥. Then

®(B(z,2r) Nspt ¥) = ¥(B(z,2r))/c = ¥(B(u,2r))/c
> (1= 7")®(B(u,2r)).

Since 3.2(1) and 3.1(4) imply ®(B(z,2r) — spt ¥) > ®(B%y, r)) >
7 "®(B(u,2r)),

®(B(u,2r)) = ®(B(z,2r) — spt ¥) + ®(B(z,2r) Nspt ¥) > &(B(u,2r)).

This contradiction proves that G N spt ¥ is a relatively open subset of spt ®.
(2) We use (1) with G = R". Since one may interchange the roles of ® and
¥, (1; i) is impossible. Consequently, (1; ii) implies (2).
(3) We may assume that ® € U(n).
(i) = (ii). If k ; is an increasing sequence of positive integers, x; € spt @ Ky
= lim x ., and r > 0, then

j—»oo j,

®(B(x,r)) > lim supckjcbki(B(xj, r/2)) = ®(B(0, r/4)).
] 0
Hence spt ® contains the set on the right hand side of (ii). The opposite
inclusion is obvious.
(ii) = (i). We note first that lim, _, _dist(0, spt ®,) = 0. Hence F(®,) > 0
for sufficiently large k and, according to 3.2(1) and 1.12(1), each subsequence of
the sequence ®, /F (®,) has a convergent subsequence. If ¥ is the limit of such

a subsequence, we may use the implication (i) = (ii) to conclude that spt ¥ =
spt @. Since F\(¥) = 1, (2) implies that ¥ = ® /F(®), which proves (i).
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3.4. (1) Whenever ® € l(n), s > 0,and k = 1,2,..., we define symmet-
ric k linear forms b, | € O*R" by the formula

by (u,© -+ Ouy) = (2s) (1(s)k!) ™" /e‘s”z”z(z, u)...(z,u,) d®(z).

If it is necessary to explain to which measure the forms b, ; belong, we shall
write b, (®)(u, © --- Owu,) instead of by (u; © -+ O uy).
We prove that

(2) by (4, © -+ Ouy)| < 2557 K* 252wy || . flug | /K]
whenever k = 1,2,..., u,,...,u, € R", and s > 0;

29 il qa+1/2
(3) Y b [(24) = X sMIxlP /R < 57 (s|x))?)

k=1 k=1
whenever s > 0, g =1,2,..., and x € spt ®; and
(4) bk,s(TO,t[q)]) = tkbk,sfz(q))
whenever s > 0, ¢t > 0,and k=1,2,....

Proof. (2) follows immediately from 3.2(4).
(3) We note that

Y okkk2 skl = Y 8kkk/(2k)!
k=1

k=1

+8172 Y 8k(k + 1/2)2/(2k + 1)
k=0

< Y 8k/kl + 822 Y 8k/k! < 4e®.
k=1 k=0

If s||x||> > 1, we use (2) to compute
2q q
X (b (25| + X Kl /R
k=1 k=1

2q 00
< 5" Y 2KKR2(s)1x|12) 2 /K + (sl|x)12)! X 1/K!
k=1

k=1

< 5n(s||x|l2)q468 + (S||x||2)qe < 5n+9(sl|x||2)q < 5n+9(S||x||2)q+l/2‘
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If s||x||? < 1, we use 3.2(5) to estimate

2q q
2 b (x%) = X sK|x| 2 k!
k=1

k=1
o0 o0
< X b &)+ X sHx)*/k
k=2g+1 k=qg+1
<5 Y 2KkR2(sx)|2) Pkl + (sl|x))2) e
k=2g+1

< 57(sllx)|2) " *ae® + (s)x]1?) " e < 57 (s)x)12) 2
(4) is obvious.

3.5. LEMMA. Let V be a finite dimensional linear space with an inner
product. Let P\,..., P, € Hom(V, V) be orthogonal projections (i.e. P,P, = P,
and Ker(P;) = (Range(P,))*) such that NI_,Ker(P;) = 0. Then for every linear
subspace E of V there are a > 0 and an analytic map s € (— a,a) = Q, €
Hom(V, V) such that

(i) for each s € (— a,a), Q, is a projection onto E (i.e. QQ, = Q, and
Range(Q,) = E), and

(ii) for each s € (— a, a) — {0}

Ker(Q {Zs (x); eri}
Proof. For k =1,2,...,q let

F,=E*n N (Ker(P,)) N
k<j<gq

E*tn N (Ker(Pj))]l

k<j=<gq

and let E, be the image of F, under P,. (As usual, we let N
We prove that
q
(a) V=Eeo DE,.
k=1

In fact, if x # 0 is orthogonal to E U U;-LIE]., let k=1,...,q be the
smallest number such that x € N, _ j<qKer(P))). Since x € E*, there is u €
E* N N, (Ker(P)) such that x — u € F,. Thus Py(x) = P(x — u) € E,.
Hence x is orthogonal to P,(x). Consequently, P,(x) = 0, which contradicts the
choice of k. Counting the dimensions, we prove () and

(8) B @R

Since (a) holds, there are projections T,T),...,T, € Hom(V,V) onto
E E,,..., E_ respectively, such that x = T(x) + X{_,T,(x) for every x € V.

(Ker(P))) = V.)

g<j=<gq

q’
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Also, since F, N Ker(P,) = {0}, there are S, € Hom(E,, F,) such that P,S,(x)
= x for every x € E,.
Let

q k
A(x)=Tx)+ Y ¥ s* TIPS, Ty (x).
k=1j=1
Then s € R — A, € Hom(V,V) is an analytic map and A, is the identity.
Since the set of all invertible operators on V is open and since the map assigning
to each invertible operator its inverse is analytic, there is a > 0 such that the
map s = A ! is well defined and analytic on (— a, a).
We put Q, = TA; ' Since A(x) = x and T(x) = x for x € E and since
Range(T) = E, (i) holds. Let s € (— a,a) — {0}. Then x € Ker(Q,) if and
only if there are z, € Fy,..., z, € F, such that

q k
x=A(P(z) + - +P(z,) = ¥ X" P(z)

q
= Z Zsk_lpj(zk)
k=1 j=1
(since Py(z,) =0 if j > k). Denoting s*z, = u,, we see that x € Ker(Q,) if and
only if there are u, € F,..., u, € F, such that

- % - Fonful

k=1 j=1 j=1 k=1
In view of (), this implies (ii).

3.6. THEOREM. Let ® € U(n).

(1) There are symmetric forms by’ = bi(®) € O'R" (k=1,2,..., j=
1,2,...) such that

(i) by, =X9_1s'by /! + o(s?) as s \ O for every k = 1,2,... and every
g=1.2,...,

(i) by’ = 0 whenever k > 2i, and

(iii) 29 ,bP(x*) = ||x||? for every q = 1,2,... and every x € spt ®.
Moreover, the forms b\’ are determined uniquely by (i).

(2) There are symmetric forms b)) = bi(®) € OR" (k =1,2,..., j=
1,2,...) such that

(i) s *by , = E;?=ls’fl3‘f)/j! + o(s ) as s > oo for every k=1,2,...
and every q = 1,2,..., and

(ii) by’ = 0 whenever k > 2i.
Moreover, the forms by’ are determined uniquely by (i).
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Proof. Since the asymptotic expansions are determined uniquely, it suffices
to fix g =1,2,... and to find forms by, b (k=1,...,2q, j=1,...9)
depending possibly upon g such that the statements of 3.6 hold if k < q and
i<gq.

Let V= 65?11 @JB” and let P, € Hom(V, V) be the canonical projection
onto @kR" (k =1,...,2q). Multiplying the usual inner product on @J.R" ([11,
1.10.5]), by 27/(j!)?, we construct an inner product ({ - ,- )) on V such that
each P, is an orthogonal projection and

{u, © -+ Ouy, x5y =2Kuy, x) ... (uy, x) /k!
whenever k = 1,...,2q, u,,...,u;, € R", and x € R".
Let ,, € OR" be such that by (x2*) = ||x[|2*/k! (k= 1,..., q) and
let w, € Hom(V, R) (s € R) be defined by w(u) = L{_ s Dy ( Pyy(u)).
For each s > 0 let b, € Hom(V, R) be defined by the formula

by(u) = k}:flbk,sm(u))

=1I(s) " fe_s”z”2< < k;qls"Pk(u), kilzk>> d®(z).

(1) Let ECV be the linear span of the set {x + x®+ --- +x29
x € spt @} and let Q, be the projections constructed in 3.5 (with q replaced
by 2q). Since b(u) = 0 if u € Ker(Q,) and since b(u) = w(u) + o(s?) if
u € E (3.4(3)),

b,=bQ,=wQ, +o(s?) ass\0.
Since the maps s = w,/s and s — Q, are analytic at s = 0, (i) holds. The
statement (ii) follows from 3.4(2). To prove (iii), we use 3.4(3) to infer that, for
every x € spt @,
q

29 q
Yo Y sib(x%) /i = Y sHx||1** k! + o(s7) as s N\ O.
k=1 j=1 k=1
Hence Y37 ,b'9(x%) /q! = ||x]|>7/q!, which is (iii).
(2) Let E C V be the orthogonal complement of {u € V; b(u) = w((u)

for every t > 0} and let Q, be the projections constructed in 3.5 (with g
replaced by 2q). Also, let
2q

b(u) = Z Skbk,l/s(Pk(u))

k=1

=1(1/s) " /e‘”z”g/s <<u, ;Zj: zk>> dd(z).
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If u € Ker(Q,), we find v € E* such that u = X7 s~ *P,(v) and we infer
that

2q

Bs(u) = Bs( Z SkPk(U)) = bl/s(v) = wl/s(v)

k=1

= ws( i s"‘Pk(v)) =w,(u).
k=1

Let v, € V be such that ((v,,u)) = b(u) — w(u) for every u €V
(t > 0). Using 3.4(3) and 3.2(4), we obtain

|1b,(v,)| = I(l/s)_lf “I=E/5(b, — w, (Zz )

< 5" 0211 s) [ )20t d ()
< 52n+9tq+1/2(2q + 1)q+1/2sq+1/2.

Since E is spanned by {v,; t > 0}, Bs(u) = o0(s9) as s \\ O for every u € E.
Hence

b,=b,(ld - Q,) + bQ, =w, (Id — Q,) + o(s?) ass\ 0,
which implies (i). The statement (ii) follows from 3.4(2).
3.7. (1) Whenever V € G(n, m), we define
M, y={cHA™V;c>0}.

We also denote ¢, ,, = Uy ccipmP, v, and M, =U; _ M
2.2(4) and 3.2(1), we see that

(2) each of the sets M, M
compact basis.

Using

n,m*

P, v, and U(n) is a d-cone with a

n, m>

3.8. THEOREM. For every nonnegative integer n and every positive number
p there is a constant w, = w,(n, p) € (0,1] with the following property:
Whenever ® is a uniformly distributed measure over R", x € spt ® and r > 0,
then there are y € B(x, 1) N spt ® and s € [w,r, r] such that d (T, [®], M)

< p.

Proof. Assume, to the contrary, that one can find the smallest nonnegative
integer n such that the statement of the theorem does not hold for some p > 0.
Clearly, n > 1 since w,(0, p) = 1 has the desired properties. (We observe that
R° = {0}; hence spt ® = {0} and d (T, ,[®], M,) = 0.)
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Let @, be uniformly distributed measures over R" such that, for some
x, €spt® and 1, >0, d(T, [®,], M) >p whenever y € B(x;, r,) N
spt @, and s € [2 %7, r,].

Let ® be the limit of some subsequence of the sequence
T, o+, [Pul/F(T,, -+, [Pi]). (See 3.7(2).) Then d (T, ,[®], M) > p whenever
y €Espt® and s > 0. From 3.3(2) we see that spt ® # spt ¥" = R". Let
z € R" — spt ® and let g > 0 be the largest number such that B(z, q) N spt ®

= @.If x € B(z,q) N spt ® and ¥ € Tan(®, x), then
(a) spt¥ € {u e R*;(u,z—x) <0}, and
(B) dl(Ty’s[\I'], M,) > p whenever y € spt ¥ and s > 0.

Using 3.2(1) and 1.11(3), we see that
/e—||u||2<u, z— x> d‘If(u)/fe_”“”Z d‘I’(u)

1
= lim —b, (T, ,[®])(z—x)=0
s—o0 28 ’
according to 3.6(2; i). Hence («) implies spt ¥ C {u € R"; (u, z — x) =0}
which, in view of (), contradicts the minimality of n.

3.9. Lemma. If ®@ is a uniformly distributed measure over R™ then M, N
Tan(®, x) # & for ® almost every x € R™.

Proof. Since Tan(®, x) C U(n) for every x € spt ®, the statement follows
directly from 2.12 and 3.8.

3.10. THEOREM. Let ¥ € U(n) be such that {c¥; ¢ > 0} is a d-cone.
Then there are an integer m = 0,1,..., n and a constant C € (0, o0) such that

() T, ,[¥] = |t|™V¥ for every ¢t # 0,

(2) ¥(B(0, 1)) = Ca(m)r™ for every r > 0,

(3) whenever u € spt ®, e € R™, ||u|| = ||e|]| and whenever f is a non-
negative Borel function on R?, then

[ FUR1% (o)) d¥(z) = Cf fllz11 (2, )) d2(2),

(4) by | (V) =0 and by (V) = s*b(¥)/k! for every s> 0 and
every k=1,2,...,

(5) spt ¥ C {x € R b{(¥)(x*) = ||x||** for each k = 1,2,...}, and

(6) if x € spt ¥ and A € R, then A\x € spt V.
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Proof. According to 2.10 there is m > 0 such that T, ,[¥] = ¢t™¥ for every
t > 0. Let x € spt ¥ be such that M N Tan(¥, x) # 2. Since ¥ € U(n),
any measure ¥ € M, N Tan( ¥, x) fulﬁls ‘I'(B(O r)) = cr™ for some ¢ > 0.
Hence m is an 1nteger and m < n. This proves (1) for ¢t > 0 and (2).

(4) Since, for each t > 0, T, ,[¥] is a constant multiple of ¥, 3.4(4) implies
by, = s*/?b, | for each k = 1,2,... and each s > 0. If k is odd, we see from
3.6(1; i) that b, , = 0 for each s > 0. If k is even, the statement follows again
from 3.6(1; i).

(5) It suffices to use (4) and 3.6(1; iii).

(1) Since we already know that this statement holds for ¢ > 0, it suffices to
prove that T, |[¥] = V. But this follows from 1.13 since, according to (4),

fe_"z”z<z, u) d¥(z) = /efuz"?z, uydT, \[¥](z),

for each k =0,1,....
(3) We prove that

(%) /e’s”z”z(z, u)?d¥(z) = Cfe“”‘”z(z, e)?dL™(z)

for every s > 0 and every p = 0,1, ... .
If p =0, (*) follows from (2).
If p is odd, we use (4) to deduce that the left-hand side of ( *) equals zero.
If p=2k, k=1,2,..., we use (4) and (5) to compute

(25)% / e I 2, u)k AW (z) / [(zk)z f e slal? dqf(z)]

boi (¥)(u®) = s* by (u®) /kl = s¥||u||**/k! = s¥||e||* /k!

= (25)% [e Iz, ) d.2™(z) / [(zk)! e dé”’"(z)].

Hence, (*) follows from the case p = 0.
Finally, we use 1.13 to deduce (3).
(6) follows easily from (1).

3.11. THEOREM. Let ® be a nonzero uniformly distributed measure over
R".
(1) There are an integer m = 0,1,...,n, a constant C € (0, o0), and a
measure ¥ € W(n) such that
(i) lim, _, ®(B(x,r))/r™ = C for each x € R",
(ii) lim, , T, [®]/r™ = ¥ for each x € R", and
(iii) Tan(®, o0) = {c¥; ¢ > 0}.
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(2) There are an integer p = 0,1,..., n and a constant Ce (0, 00) such
that for every x € spt ® there is ¥ € 1l(n) with the following properties.
(i) lim, ,®(B(x, r))/r” = C.
(i) lim, (T, [®]/r? = ¥, and
(iii) Tan(®, x) = {c\I'; c > 0}.
Moreover,
(iv) ¥ e D, , for @ almost every x € R".

Proof. We may assume that ® € 11(n). For each r > 0 let

o = e||~||2T0,r[(1)]//e—uzu2/r2 do(z).
From 3.2(3) we see that

hmsupf AN dd(z) < oo and hmsupf A dd,(z) < oo

r— 00 O

for each a > 0. Moreover, 3.6(1; i, ii) implies

lim f<z u)*dd,(z) = 1 if k=0
= 27%k! lim r*b, ,»(®)(u*) = 0 if k is odd, and
= 2 KK/ 2 (D) (uk) if k > 2is even.

From 1.14 we infer that lim, , ®, exists. Consequently, (see 1.11(5)) there
is ¥ € U(n) such that

r— o0

lim Toy,[CD]/fe“"'z/’gd(D(z) =¥

Clearly, Tan(®, o) = {c\if; ¢ > 0}. According to 3.10 there is m =
0,1,...,n such that T, ,[¥] =r™V¥ for each r > 0. Moreover, since 3.6(1; i)
implies

s e 141" 512 dcp(z>/ [e " d@(z) = Trace(b, ,) /2

= Trace(b") /2 + o(s¥/2) as s\ O,

we infer from 2.11(3) that there is ¢ € (0, o0) such that

A

lim T, [®]/r" = éV.
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It is clear now that (1; i) and (1; ii) hold if x = 0. Moreover, if x € R",
t >0, f: R" = R, spt(f) € B(0, ¢) and Lip(f) < 1, then

lim v [f(z) dT, ,[@](z) = [f(z)dT, ,[@](2)
< lm r" f|fl(z = x)/r) = flz/r)|d®(2)

IA

rlirl;r*"”lllxll‘D(B(O,(t + |lxl)r)) = 0.

Hence (1; ii) and, consequently, (1, i) hold for each x € R". The statement (1;
iii) is obvious.

To prove (2), we first note that, since @ is uniformly distributed, the values
of p and C cannot depend upon x € spt ®. Hence it suffices to consider x = 0.
Arguing similarly as in the proof of (1), we use 3.6(2; i, i), 1.14, 1.11(5), 3.10 and
2.11(4) to conclude that there are p =0,1,...,n and ¥ € l(n) such that
lim, (T, ,[®]/r" = V. This and 3.9 imply all the statements of (2).

3.12. Let ® be a nonzero uniformly distributed measure over R".

(1) The number m from 3.11(1) will be denoted by dim _®.

(2) The number p from 3.11(2) will be denoted by dim .

(3) If dim,® = n, 3.3(1) implies that @ is a constant multiple of #".

(4) If ¥ € Tan(®, 0), we use 3.11(1; ii) and 3.10 to infer that dim & =
dim,¥ = dim ¥.

(5) If x € spt® and ¥ € Tan(®, x), we use 3.11(2; ii) and 3.10 to infer
that dim® = dim,¥ = dim V.

(6) If x € R" and t # 0, then dim T, ,[®] = dim @, Tan(T, ,[®], ) =
Tan(®, o), and dim T, ,[®] = dim®.

(7) If ® € l(n), dim & = m, and ¥ € Tan(P, ), we see from 1.11(3)
that

b{(®)(x*) = 22"k!fef||z||2<z, x)z"d\If(z)/[(zk)!/e—u:u2 d\If(z)]
for each k = 1,2,... and x € R". Hence (4) and 3.10(3) imply
Trace( h{P(®)) = 2/6_”:“2||z||2 df,S,”'"(z)/fe”:”2 d#™(z) = dim_®.

(8) If dim_® = m and if ® is a nonzero uniformly distributed measure
over R" such that dim ® # m, then

liminf F,(®/F(®), ®/F,(®)) > 1/3(m + 2).
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Indeed, let dim_® = k > m, ¥ € Tan(®, ), ¥ € Tan(d, c0), F(¥) =
F(¥)=1,and t = (m + 1)/(m + 2). Then
lim F,(®/F,(®),®/F(®)) = F,(¥,¥) > F(¥) - F(¥)

r— o0
= ¢l gkl (] — ) > 1/3(m + 2).

(9) We shall say that the measure ® is flat at co if Tan(®, 0c0) C I . If the
measure is not flat at oo, we shall say that it is curved at co.

We note that, if x € R" and ¢t # 0, then ® is flat at oo if and only if T, ,[®]
is.

3.13. LEmMaA. For every nonnegative integer m and every 7 > 0 there is
a number k= k(m, 1) € (0,1/2) with the following property. Whenever
n>m >0 are integers, ® measures R", V€ G(n,m), x € spt®, r >0,
C >0,

C(1 — k)a(m)s™ < ®(B(z,s)) < C(1 + k)a(m)s™

for every s € (kr, r) and every z € B(x, r) N spt ®, and
f dist}(z — x,V)d®(z) < kCa(m)r™+*2,
B(x,r)

then
(i) d(T, ,[®], M, y) <7, and
(ii) B(z,27Y™*Vr) N spt ® + & whenever z € (x + V) N B(x, r).

Proof. Assume, to the contrary, that there are a nonnegative integer m, a
number 7 > 0, a sequence ®, of measures over R"¥(n, > m), a sequence
V, € G(n,, m), and sequences x; € spt ®;, r, > 0, and C; > 0 such that

Ck(l — 2*(m+3)(k+l))a(m)sm < ‘I)k<Bnk(z’ s))
< Ck(l + 27(m+3)(k+l))a(m)sm

for every z € B(x,, r,) N spt ®, and every s € (2~ "3k Dy gy,

[ dists - 5 Vi) day(z) = 20 IGa(m)
B(xy, 1)
and dl(Txk,,k[ibk], MW, y) =T
We may shift, dilate, and rotate the measures ®, and multiply them by
suitable constants to achieve that x, = 0, r, = 1, C; = 1, and V, is spanned by

the first m vectors of the standard basis. Hence each V, may be naturally
identified with R™.
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If y € [B,(0,1—27%) — B (R",2 ¥)] N spt , then
[ iz, ,) doy(s) = 2 200, (B(y, 2 01)
B(0, 1)

> 272(k+1)(1 _ 2—(m+3)(k+l))a(m)2—m(k+1)
> 2—(m+3)(k+1)a(m),
which contradicts our assumptions. Hence
Bnk(O,l -2 F) Nnsptd, C Bnk(R"‘,2‘k).

Let P, be the orthogonal projection of R"™ onto R™ and let ¥, =
P,[®,LB, (0,1 — 275)].

Whenever f is a function on R" such that spt( f) € B(0, 1) and Lip(f) < 1
then

>

[ d0,:) - [fz) av,z)

<[ | f(z) = f(Pi(2))] d®y(z) + 2+, B(0,1)]
BO,1-27K)

< 275 2(m).

Consequently, lim, _, F(®,, ¥,) = 0.

On the other hand, since ¥, (R™) = ¥(B, (0,1 — 27%)) < 2a(m), some
subsequence of the sequence ¥, converges to a measure ¥ over R". We easily
see that 0 € spt ¥ and ¥(B,(z, 1)) = a(m)r™ whenever z € spt ¥, ||z]| < 1,
and r < 1 — ||z||. Using 3.3(1), we see that ¥LB2(0,1) = Z™LBY(0, 1). Hence

lim F\(@,, #"R"™) = 0 < (" R") /2,
— o0

which, in view of 1.10(5), gives a contradiction.
To prove (ii), we note that z € (x + V) N B(x, r) and B(z, 27V™*Vr) N
spt ® = & imply 7 < 1 and

d|(T, [®], M, ) 2 Fueen(L™)/F (L") =7

3.14. TreoREM. For every nonnegative integer m there is a constant w(m)
€ (0, 1) such that the following two statements hold.

(1) If n>m >0 are integers, ® € 1(n), dim @ = m, and m < 2, or
m = n, or there is W € G(n,n — m) such that Trace(bP(®)LW) < w(m),
then ® is flat at oo.
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(2) If n > m > 0 are integers, ® is a uniformly distributed measure over
R", dim @ = m, and ® is curved at oo, then
(i) n>m > 3,
(ii) Trace(b§A @)L W) > w(m) for every W € G(n, n — m),
(iii) liminf,__d(®, M,) > w(m)/3(m + 2), and
(iv) there is r, > 0 such that
(@) [B(O, 1) — B(V, w(m)r/(m + 2))] N spt ® # @ for each r > 1, and
each V € U7L,G(n, j), and
(b) [V N B(0,r)] — B(spt @, w*(m)r/(m + 2)°) # @ for each r>r,
and each V € Ui_.G(n, j).

Proof. We show that the statement holds with
w(m) = K( J2(m + 1)) 1)

where k(m, 7) are the constants from 3.13.

Suppose that ® € U(n) and dim ® = m. Let a; > 0y > -+ > a, > 0
be the eigenvalues of b{"(®) and let ¢, e,, ..., e, be an orthonormal basis of R"
formed by the corresponding eigenvectors. Let V be the linear span of en...,e,

and let ¥ = clim, , T, ,[®]/r™, where ¢ > 0 is chosen so that Y(B(0,t)) =
a(m)t™ for each ¢ > 0. (See 3.12(4), 3.11(; i), and 3.10(2).)

(1) We claim that a; = 0 if j > m.

If m = 0, this follows from X%_,a; = Trace b{" = 0.

If m = 1, we note that spt ¥ # {0} and we use 3.10(6) to find y € spt ¥
with |ly|| = 1. Hence «; > b§"(y®) = 1 (3.10(5)) and, since £}_,a, = 1, a; =0
for j =2,3,.

If m= 2 we use the same argument as in the case m = 1 to find
y1 € spt ¥ with ||y,|| = 1. From 3.10(3) we deduce that ¥{z € R"; [{z,y,)|

< 1} = oo. Using also 3.10(6), we infer that there is y, € spt ¥ such that
||y2|| =1 and (y,,y,) = 0. Hence a, + a, > b‘”(y ) + b{M(y2) = 2 (3.10(5))
and, since Yi_ o = 2, a; = 0 for j = 3,4,.

If m = n, the validity of our claim is obvious

Finally, suppose that 3 < m < n and that Ll 1@ < w(m). From 3.12(7),
3.11(1) and 2.11(2) we infer that

bO(x%) = (m + 2)a(m) /B(O 1)<z, x)2d¥(z)

for every x € R". Hence

f dist*(z,V) d¥(z) < a(m) ¥ a
B(0,1)

j=m+1

< k(m, [2(m + 1)] _m—l)a(m)

and 3.13(ii) shows that there is x € spt ¥ such that ||x — el <1/(m+ 1) If
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a, < 1, we note that
a,—1<(m-1)(1-a,) fori=1,...,m—1, and
ajsam<1 forj=m+1,....n

Since x € spt ¥, we use 3.10(5) to infer

m

= Y (0~ D(xe) < 2 (a - 1(x,e)?

< (m—1)(1 - am)"i (x, e + (a, — 1)(x, 6,)°

<A-a)|m-Dm+1)>~(1-1/(m+ 1)

-2

=—(1-aqa,)(m*-—m+1)(m+1) " <0.

Since this is impossible, a,, > 1. Using also L7_,a; = m, we finish the proof of
our claim.
From 1.11(3) we infer that

2/6‘“’”2dist2(z,‘7) d\If(z)/fe"'z”zd\If(z)

= lims ™ 'Trace(b, (®)LV*)

sNO
= Trace(b’LV *) = 0.

Hence spt ¥ C V and 3.12(3) implies that ¥ = »#™LV. Thus ® is flat at co.
(2) The statements (i) and (ii) follow from (1).
Before proving (iii) and (iv) we note that (1) implies:
(*) If [ dist®(z, V(I — |1z]]) d¥(z) < 20(m)F(¥)/3(m + 2) for
some V € G(n, m), then ® is flat at co.
In fact, using m > 3, 3.12(7), and 2.11(2), we see that

Trace(bP(@)LV *) = (m + 2)(m + 3)(m + 1)~!
X/B«) l)dist2(z,V)(1 — l120) d¥(z) /F(¥) < w(m).

(iii) If d (¥, M) =lim,_ d(P, M,) < w(m)/3(m + 2), we deduce
from 3.12(8) that there is V € G(n, m) such that

d(¥, M, v) <w(m)/3(m +2).
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Hence

Lmﬁﬁ@WﬂLﬂMﬂN@VMw)

< fB o, U= VI = 21 d¥ (=) /()

<2d,(¥, M, ) < 2w(m)/3(m + 2)
and the statement follows from ( ).
(iv) Clearly, it suffices to prove (a) and (b) for V € G(n, m) only. If (a)
does not hold, there is V € G(n, m) such that B°0,1) N spt ¥ C
B(V, w(m)/(m + 2)). Hence

fB(O 1)dist2(z, V(L = |I211) d¥(z) < w(m)*F,(¥)/(m + 2)°

< 2w(m)F,(¥)/3(m + 2).

If (b) does not hold, we denote s = w(m)/(m + 2)> and we infer from
3.3(3) that there is V € G(n, m) such that B(spt ¥, s2) O V N B(0,1). Hence

¥{z € B(0,1); dist(z,V) < s} > a(m) s fmm L ¥(B(z, 5)) do(2)
>s ™1 —s)"a(m)(s —s2)"

= a(m)(1 - $)*" > a(m)(1 — 2ms).
Thus

/B(O l)di5t2(1>V)(1 ~ |1z]|) d¥(z) < s*F|(¥) + 2msa(m) /4

= s’F (V) + m(m + 1)sF(¥)/2
< 2w(m)F,(¥)/3(m + 2).

Consequently, the statement follows from (*).

3.15. Tueorem. If ® € U(n) is flat at oo and dim ® = m, then there are
orthogonal projections P and Q of R" onto some V € G(n, m) and onto V * ,
respectively, such that

(i) Tan(®, c0) =M, .
(ii) bY(x2*) = ||P(x)||2* for each x € R" and each k = 1,2, . .. .
(iii) bYY) LV =0 foreachk=1,2,... .
(iv) spt ® € {x € R b{"(x) = || Q(x)||*}.
(v) spt® C (x € R Q(x)] < Y]}
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(vi) There is 1, > 0 such that B(u, 1,) N spt ® # & for every u € V.
(vii) b{(u' © v*"') = 0 whenever u€e V, veV*, k=12,..., j=
,2,....,k— 1 andi=0,1,...,2(k — j) — L

(viii) 20 B O(a7) + (2k + 1B ((P(2)™ © Q(2))

j=1

) -%(k; 1)“P<z)u”(ba“[o(z)])"“‘f=o

for every z € spt ® and every k = 1,2,... .
(ix) For every u € V there is v € V* such that b{"(v) = ||v||* and

b () + (2k + DRI (u* O v) = (k + Dljul**b(v) = 0

foreach k = 1,2,....

(x) 4||bP)12/(m + 2) < Trace(by) < 2||b{V||%, and

(xi) If bV = 0 then by’ = 0 whenever k =1,2,..., j=12,..., and
k # 2j.

Proof. Let ¥ = lim, _ T, [®]/a(m)r™. (See 3.11(1; ii).) Since ® is flat at
oo and dim,¥ = m (3.12(4)), there are V€ G(n, m) and C > 0 such that
¥ = C#™LV. Let P and Q be the orthogonal projections onto V and onto V *,
respectively. Then (i) holds and (ii) follows from 3.12(7) and 3.10(4,5), since
spt ¥ = V.

(iii) From (ii) and 3.6(1; iii) we see that there is ¢ > 0 such that

_ 2k _
be (2271 = |xl|2* — | P(x) |7 = (L + [|x[|**2)

if x € spt ®. Hence 3.3(3) implies that b\ (u? ') > 0 for every u € V.
(iv) Use 3.6(1; iii) with ¢ = 1.
(v) This statement follows from (iv), since b{"'(x) = b{P(Q(x)) according to
(iii).
(vi) Let k = k(m,4™ ™). (See 3.13.) Let 7 > 0 be such that
C(1 — k)a(m)s™ < ®(B(0, s)) < C(1 + «)a(m)s™

for every s > 7. Finally, let r, = max(7, 2||b{"||(1 + «))/x.
If u e Vand B(u, 1)) N spt® = &, we find the smallest r > 0 such that
B(u,r) N spt® # . Let x € B(u, r) N spt ®. Since (v) implies

/ dist®(z — x, V) d®(z) < 4||bV||2®(B(x, r)) < kCa(m)r™*2,
B(x,r)
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we infer from 3.13(ii) that
Bu,r) Nspt® D B(x +u— P(x),r/2) Nspt® # &.
But this contradicts the minimality of r.

(vii) We use (v) and 3.2(4) to estimate

lim
sNO

s¥il(s) ! /e’s”"'?z, u){z, v) 1 dd(z)

< IBOIF ol flull lims*iI(s) " e 5| d(z)
sNO
< 5" BOYF o) *lu) Tim sk-I7172 = 0.
sNO

(viii) For every z € spt ® we have

2k+2 k+1

L w35 ire e <o

i=0 i=0

(see 3.6(1; iii)). Moreover, (ii), (iii), (iv), and (vii) imply
bECH(22) =[P 10(2) [P = B(Q(2)), and

B (27 1) = (2k + DB IY((P(2))*0Q(z)).

(ix) For every u € V we use (vi) to find sequences ¢, of positive numbers,
u, €V, and v, € V* such that lim,_ t, = oo, t,u + u, + v, € spt ®, and
lu;, + v,]| <1, Since ||v,||] < 1,, we may also assume that the sequence v,
converges to some v € V *.

For each k = 1,2,... we use t,u + u; + v; € spt ® and (viii) to infer that

2k
Y b;"“’((tiu +u, + vi)j) + (2k + l)b(z’;frll)((t,.u +u)* 0O v,-)

j=1

k .
-y (" : 1)nt,.u P (BP(0)) T = 0,
i=0

Dividing this equation by ¢2* and taking the limit i — oo, we get (ix).
(x) Let beV* be such that b{¥(x) = 2(b,x) for every x € R™
(See (iii).) Since (ii) implies that b$"LV + = 0,

Trace(bPLV *) = 1i{1})4fe’s""'2||()(z)||2 do(z)/I(s).
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Using also (iv), we infer that
Trace(bPLV *) = lirr(|)8 eI 2, bY d®(z)/I(s)
s\

= 4b{(b) = 2(|BV.

Since Trace(h$’) = Trace(hPLV) + Trace(bPLV *), we need to show
only that

(*) 0 > Trace(bPLV) = — 2m||b{V||2/(m + 2).

Since this is obvious if m = 0, we shall assume that m > 1.
Let w be the linear map of @2V into V * defined by the formula

(w(u?), v) = 3bP(u*Ov) — 4|[ul|Xb, v)
for every v € V. Also, let b € OV be defined by the formula
b(u®) = bP(u?) + (w(u?), b) for every u € V.
Whenever u € V and ¢ € V *, we note that
b(u?) + (w(u?), 8) = bP(u?) + 3b2(u20 (b + b))
— 2)lull®b(b + 6).

If ve V* fulfils (ix), we let 4 = v — b and we infer that ||d| = ||b|| and
b(u?*) + (w(u?), 8) = 0. Consequently,

(a) (B(uz))2 < ||w(ug)||2 |b||*> foreachu € V.
Whenever z € spt @, we may use the case k = 1 of (viii) to conclude that
0 = bP(z) + bP(3?) + 3bP((P(2))’OQ(z))
= (B(Q2)) = 2 P(:) I(B(0(2))
= B((P(=))?) + (w((P(2))%). Q=) — b) + b2(2)
+2bP(P(z) ©Q(2)) + BP((0(2))°) — (B(Q(=)))"
Hence there is K € (0, c0) such that

[B((P())) + (w((P(2))°), ©(2) = BY| < K(lisl + 1)
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for every z € spt ®. Using 3.2(4), we infer that

(B) tim s fe~ 1= [B((P(:))?) + (w((P(2))%, ©(2) = b)] d(2)/1(s)

IA

liir(l)ste_s”:”z(HzH +1)d®(z)/I(s)

IA

lim (5"Ks'/? + Ks) = 0.
sN\O

Next we prove that

(v) £i$8fe’s""'2||P(z)||2<z = b,0)d®(z)/I(s) = 0

for every v € V +.
In fact, the limit in question exists, since, in view of 3.6(1; i, ii), it can be
computed with the help of b{" and b{?. On the other hand, it is equal to

(.Y/) hm C—l,n,fm/2sl+m/2 fe—s||:||2||z||2<z _ b’ U> dq)(z),

sN\NO

since

lims [ Q() | (z = b, v) |d®@(z)/1(s)
sN\NO
< lim (s|bQ 2| [loll) = 0
sNO

because of (v) and (iv), and since lim,. ,s™/2I(s) = C7™/2. Since m > 0, we
may compute (y’) using the L’Hopital rule and

lim C g~ m/2gm/2 fe‘s”"'z(z —b,0)d®(z)
sN\O
=b{(v)/2 — (b, v) = 0.
Whenever u € V and v € V*, we use (ii) and the definition of b{® and
b§" to infer that

(8) lin(l)SSfe‘s”"'2<z,u>2<z— b,v)d®(z)/I(s)
s\

= 36(u200) — 4llull¥(b, ) = (w(u?), ).

Let y be the measure over V defined by the formula y(E) =

(2m) /%[ e FIF/2 d¢™( ). Since [, (y, u)*dy(u) = 3|y||* for each y € V,
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the polarization formula implies that
[ (v 0z wy* dy(u) = 2y, 2)° + Nyl

for each pair y, z € V. Consequently, whenever y € V and v € V* | we may
use (8) and (y) to compute

fv (y, w)¥w(u?), v) dy(u)

= lim 8sfe_s”‘“2<z - b, v)[fv(y, WYXz, u)?dy(u)| do(z)/I(s)

sNO

= lim 163/6"”"'2<z —b,v){(z,y)>dd(z)/I(s)

sNO
+ lim 8s)ly|)* [~ P(2) [*(z = b, v) d®(z) /1(s)
sNO

2(w(y?), v).
Using the last result, (a), (8), (8), 1.11(3) and ¥ = Cs#™LV, we obtain

(e) [ (B(u?))"dv(u)

< 1B [ [[eo(w?)[*dy(w)
= |Ib]*lim fv[sze‘S""'?z, wyXz = b, w(u?)) d@(z)/l(s)] dy(u)
= WbiPtms fo 1| [ (2, wz = b wlu?)) d(w)| av(z) /105

= 1BIPlim 165 [ "1V (w((P(2))°), Q=) = b) d®(z)/1(s)

- 16||b||2£i{rg)sfe‘s""'213((P(z))z) d®(z)/I(s)

= 8]1b|*lims [~ 1"1*/2b((P())") d®(z)/1(s/2)

— 8IIb|I* [ 141°/2b((P(2))) d‘If(z)/fe‘ 121°/2 4 z)

- 8||b||2/V13(u2>dv(u).
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Let é,,..., ¢, be an orthonormal basis of V formed by the eigenvectors of
b and let B,,..., B, be the corresponding eigenvalues. Then

[ =3L g2 T g,

l<i<j<m
2

+2 i B2 = (1+ 2/m)(1i Bi)g

i=1 =1

- (fﬁ

- @ 2/m)| [ B avtw)]

Using this inequality in (&), we obtain

(1+ 2/m)(/vio(u2) dv(u)) <= 8)1b* [ b(u?) dy(u).
Hence
0> fvi;(u2) dy(u) = — 8m||b||2/(m + 2) = — 2m||bL||2/(m + 2).

Since, according to (y) and (9),
Trace(b@LV )

= [ pEu?) dv(u)
= fv[bg2>(u2) + lii‘l(l)sze_s”z“?z, uYz—b,b)d®(z)/I(s)| dy(u)

= [[p£(u?) + Cwlw?), )] dv(u) = [ b(u?) dy(w),

0 > Trace(bPLV ) > — 2m|| b2/ (m + 2).

Thus (*) holds and the proof of (x) is finished.

(xi) If bV = 0, (iv) implies that spt ® C V. Hence b, (x*) = b, ((P(x))")
for every k = 1,..., every s > 0, and every x € R". It follows that b{/)(x*) =
bY((P(x))¥) for every x € R", every j, and every k.

Whenever j = 1,2,... and x € spt ®, we use

2
S b(xk) — Jlx)% = 0 (3.6(1; i),
k=1

bY(x%) =||P(x)[” (ii), and

=1 = | P(x) " (spt® c V)
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to conclude that

2j-1

Y b(x*) = 0.

k=1
Hence (vi) and spt ® C V imply that b{’LV = 0 whenever 1 <k < 2j — L.
Since b{/)(x*) = bY((P(x))¥) for every x € R", this proves the statement of (xi)
if 1 <k<2j— 1.1If k> 2j+ 1, the statement holds because of 3.6(1; ii).

3.16. CoroLLARY. If 0 <m < n are integers, ® € U(n) is flat at oo,
dim ® = m, and

®(B(0,7))/r™ > lim ®(B(0, s))/s™

§— 00

for every r > 0, then there is V € G(n, m) such that ® is a constant multiple
of #MLV.

Proof. Let h(r) = ®(B(0,r)), C = lim
s1tm/2[%e =5 th(r) dr. Using

4f'(s) =s 1tm2 [)w{%(e_”z@srz - m)) h(r) dr

(B0, 7)) /r™, and f(s) =

r — 00

=—g 1*m2 fe‘s"z"2(2s||z||2 —m)d®(z)

and Trace(b$) = m (3.12(7)), we infer that
Trace(s 'b, ,) — Trace(b®) = — 4I(s) 's'~™/2f"(s).
Since lim, _os™/2I(s) = Ca(m)~'w™/2 (3.11(1), 3.2(3), and L11(3), the
L’Hopital rule implies
Trace(b®) = — 8C~la(m)m /2 lirr(l)f’(s)
N
=—8C 'a(m)r "/ lims™/? fwe‘”zr"’“(r‘"’h(r) —-C)dr.

sNO 0

Since Trace(h$”) > 0 according to 3.15(x), we infer that Trace(b$”) = 0.
Hence 3.15(x, xi) imply that b{"’ = 0 and Trace(b{®) = 0 for each k > 2. Using
the last fact with k > 2 + m /2, we conclude that

0 = — Trace(b$F) /(4k!C~ la(m)m~"/2)

— llIl’(l) ws—k+2+m/2e—sr2rm+l(r—nlh(r) _ C) dr
SN\ 0

> fwr’"“(r_"‘h(r) - C)dr.

0
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Since h is right continuous, h(r) = Cr™ for each r > 0. Consequently, dim ,®
= m.

Finally, we use b{" =0 and 3.15(iv) to find V € G(n, m) such that
spt ® C V and we infer from 3.3(1) that @ is a positive multiple of #™LV.

3.17. CoroLLARY. Suppose that 0 < m < n, ® is a nonzero measure over
R, and ®(B(x,r)) = a(m)r™ for every x € spt ® and every r > 0. If m = 0,
1, 2, or n, then there is an m dimensional affine subspace V of R" such that
O ="V,

Proof. Since we may assume that 0 € spt @, the statement follows directly
from 3.14(1) and 3.16.

3.18. Tueorem. (1) If ® € U(n), each of the following four conditions
implies that ® is flat at co and b{P(®) = 0

(i) ®(B(z,1)) < ®(B(0, r)) for every z € R" and every r > 0.

(ii) Whenever D C R" is a compact convex set with 0 € Int(D) and
whenever x € spt @, then ®(x + D) = ®(D).

(iii) x + spt ® = spt ® for every x € spt ®.

(iv) BT, ([®]) = O for every x € spt ®.

(2) If ® € U(n) is flat at oo, bP(P) = 0, and dim @ > dim PO, then
(I) € mn,dimwd)‘

Proof. (1). (i) = (iv). For every x € spt ® and every s > 0, the function
2+ e *I>=xI* d@( z) attains its maximum at z = x. Considering its first deriva-
tive, we get

fe’“'“"”?z —x,u)d®(z)=0

for each u € R". Hence (iv) holds.

(ii) = (iii). Let x € spt ® and y € R" — {0}. For each s € (0, ||y /2) let
D, be the convex hull of B(0,s) U B(y, s) and let D, = {z € D;; (z,y) <
(1 — s)|lyl|%}. Then ®&(D, — D,) = ®(x + (D, — D,)) for each s € (0, ||y|| /2).
Hence y € spt @ if and only if x + y € spt ®.

(ili) = (iv). Let x € spt ® and let ¥ = T |[®]. From the assumption of
(iii) we see that spt ¥ is a symmetric set (i.e., u € spt ¥ implies — u € spt ¥).
For each u € spt ¥ we use 3.6(1; iii) to infer that

bP(¥)(u) + bP(¥)(u?) = IIuII2 and
PO(Y) (= u) + BO(Y)((— w)) = || -

Hence b{(¥)(u) = 0 for each u € spt V. Since b{"( ‘I')(u) = 0 whenever u is
orthogonal to spt ¥, this implies (iv).
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(iv) For every x € spt ® and every u € R" we use 3.2(4) and 3.4(2) to
compute

2I(s)" fe‘s"‘_""2<z, u) d®(z)

_ e—s||x||21(s)—1 /e—sllz|I2 i ok sk(z, xY(z, u) /k! dD(2)
k=0

(o]

=1 Y (k+ Dby, (x*Ou)/s

k=0
=b, (u)/s +2by (xOu)/s+o0(l) ass—0.
Hence
BO(T, | [®])(u) = BP(@)(u) + 2b§(®)(xOu) — 2(x, u)
for every x € spt ® and every u € R". Thus the assumption of (iv) implies that
spt ® € V= {x € R"; b{’(xOu) = (x,u) foreveryu e R"}.

Since b{" is a nonnegative quadratic form and since Trace(by’) = dim @,
V € G(n,m) for some m < dim_®. Hence ® is flat at oo according to
3.14(2; iv, a).

(2) From 3.15(v) we see that there is V € G(n,dim_®) such that
spt ® C V. Hence ® € M, , according to 3.12(3).

3.19. TueoreM. If ® € U(n) is flat at co and if dim(® > dim ® = n — 1,
then there are V. € G(n,n — 1) and e € V * such that ® is a constant multiple
of HM (VU (e + V).

Proof. If b)(®) =0, ® € M, ,_, according to 3.18(2). If b{'(®) # 0,
we conclude from 3.15(iv) that there are V€ G(n,n — 1) and e € V*+ — {0}
such that spt ® € V U (e + V). Moreover, 3.15(iii) implies that

(e+V)Nsptd+ o,

We prove that spt ® = VU (e + V). In fact, otherwise we find
x€ VU (e+ V) and z € spt ® such that |z — x| < |le]|/4 and
BO%x, ||z — x||) N spt® = &. But then 3.3(1) implies that ®LB(z, |lel/2)
is a constant multiple of S#™L(V U (e + V)), which contradicts x & spt ®.
Hence spt ® = VU (e + V) and the statement follows from 3.3(2).

320. If C= {x € R% x2 =2} + x5 + 23} and if ® = #°LC, an elemen-
tary calculation shows that ®(B(x, r)) = 47r®/3 for every x € C and every
r > 0. (See also [14].) This example illustrates the need for the alternative
assumption of 3.14(1) as well as the need for considering the special values of m
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in 3.17. Moreover, considering the direct product of ® and #* and embedding
the resulting measure into a space of higher dimension, we see that 3.17 gives
actually all pairs m, n for which its statement holds.

3.21. Problems. (1) It is not difficult to give a simple description of (1)
and of { ® € 1(2); spt ® is bounded}. (See [13].) To give a similar description of
uniformly distributed measures in higher dimensional spaces is a natural, though
probably hopeless, question.

(2) A special case of (1) is to describe all measures ¥ € 1(n) such that
Y(B(0, 7)) = a(m)r™ for every r > 0. If m = 0, 1, 2, or n, this is done in 3.17.
For m = n — 1 the problem is solved in [14], where it is shown that, if ¥ is not
flat, then (after a rotation) ¥ = ® ® .#"*, where ® is the measure from 3.20.
In fact, all the known examples of measures ¥ € l(n) with ¥(B(0,r)) =
a(m)r™ are obtained from 3.20 and from .£* by direct products.

(3) The reason for the following question should be clear from the results of
Chapter 4: If ® € U(n) is flat at 0o, x € spt @, and ¥ € Tan(P, x), is ¥ flat
at oo?

4. Approximately uniformly distributed measures over R*

4.1. Let ® measure R".
(1) For each r > 0 and ¢ € (0, 1) we denote by Y,(®, ¢) the set of all points
x € R" such that

®{y € B(x,r/e); ®(B(y, /(1 +¢)) = (1 + ¢)®(B(x,1)))}
< e®(B(x,71)) < 0.

(2) Let € € (0,1). The measure ® is said to be e-approximately uniformly
distributed if ® almost every point of R" belongs to the set

U N Y(2.e).

s>0re(0,s)

(3) The measure ® is said to be approximately uniformly distributed if it is
e-approximately uniformly distributed for every & € (0, 1).

4.2. We make the following observations.

(1) If @ is e-approximately uniformly distributed and if ¢ < € < 1, then ®
is é-approximately uniformly distributed.

(2) If x € Y(®,¢) and s € [r, /€], then

®(B(x,s)) <5 (s/r)"®(B(x,71)).
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3) If
®{y € B(x,r/e); ®(B(y,r/(1 +¢))) > (1 +¢e)®(B(x, 7))}
< (e/5)""'®(B(x, r/¢)) <
then x € Y(®, ¢).
(4) If ®(B(x,2r/¢)) < oo and
®(y < Blx. 1/e)s ®(By, r/(1 + €)) < (1 + )@ (B(x, )}
> (1 - (8/5)"“)@(B(x, r/¢))

then x € Y, (D, ¢).
(5) If d(T, ,,,[®], U(n)) < (e/6)""° then x € Y(®, £). Moreover,

®{y € B(x,r/¢); ®(B(y,r/(1 + ) > (1 + ¢)®(B(x,r)) or
(B(y, (1 + ¢)r)) < ®(B(x, 7)) /(1 + &)}
< e®(B(x,r1)).

Proof. The statement (1) is obvious.
(2)
®(B(x,s)) < ®(B(x,r)) + ®{y € B(x, s); ®(B(y, r/2)) < 20(B(x,r))}
< ®(B(x, r))
+a(n) a7 [ ®{y € B(z, r/4);

B(x, s+7/4)
®(B(y,r/2)) < 2®(B(x,r))} dL"(=)
< ®(B(x,r)) + 2(r/4) "(s + r/4)"®(B(x, 1))
< 5" "Ys/r)"®(B(x,r)).
(3) Similarly as in the proof of (2) we see that
®(B(x,1/¢)) < (¢/5)" " '®(B(x, r/¢))
+2(r/4) "(r/e + r/4)"®(B(x, 1)).
Hence ®(B(x, r/e)) < 5" e "®(B(x, r)), which implies x € Y(®, ¢).
(4) The set
(v € B(x. 1/¢); ®(B(y, /(1 + #))) < (1 + &)O(B(x, 1))}
is relatively open in B(x, r/¢). Hence it is ® measurable and we may use (J).

(5) Let & = Tx,2,/5[(I>]/F1(Tx,2,/s[(l>]) and let ¥ € U(n) be such that
F(¥)=1and F(®,¥) < (g/6)" "3 Also, let s = ¢/2. Since

1=F,(¥) < (1+12/55)"¥(B(0,5s5/6)) < (6/2)"¥(B(0,55/6))
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according to 3.2(1),
6F,(®,¥)/(es) < e¥(B(0,55/6)) /3.
Hence 1.10(3) implies
®(B(0, s)) = ¥(B(0, (1 — £/6)s)) — 6F (D, ¥)/(es)
> (1 - ¢/3)¥(B(0,(1 — ¢/6)s)),
®(B(0, s)) < (1 + &/3)¥(B(0,(1 + ¢/6)s)), and
®[B(0,1/2) — B(spt ¥, es/6)] < e¥(B(0,(1 — ¢/6)s))/3 < e®(B(0, 5)).

Whenever y € B(0,1/2) N B(spt ¥, es/6), we find z € spt ¥ such that
lly — z|| < &s/6 and we use 1.10(3) to infer that

®(B(y, s/(1 + ¢)))
< &(B(z, (1 — ¢/3)s)) < (1 + &/3)¥(B(0,(1 — ¢/6)s))
< (3+6)3—¢) '®(B(0,s)) < (1+e)®BO,s)), and
®(B(y, (1 + ¢)s))
> ®(B(z,(1 + ¢/3)s)) = (1 — ¢/3)¥(B(0,(1 + ¢/6)s))
> (3—¢)(3+e) 'B(B0,s)) > (B0, s)/(1 +¢)).
4.3. ProposITION. Suppose that ® is an almost finite measure over R",

e € (0,1, ECR", his a positive function on (0, 00), and ® almost every
x € E fulfils

(1) 0< limsup(I)(B(x,(l + e)vl/gr))/h(r)

rNO

<(1+ e)lim\ionf(I)(B(x,(l + e)l/gr))/h(r) < o

or

(2) lim sup ®( B(x, tr)) /®(B(x, 1))

rN\NO

< min(1 + &/2, t‘/‘gl"(z/e)))limionf(I)(B(x, tr))/®(B(x, r))
N

for some t > 1.
Then ® almost every point of E belongs to the set U, . (N, c o ;)Y (®, ¢).
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Proof. Let ¢ and d be positive numbers and let

E = {x € R"; ch(r) < <I)(B(x,(l + e)l/zr)) and
<I>(B(x,(1 + e)_l/zr)) <c(l + e)h(r) whenever0 < r < d}.

For almost every x € E we use 1.7 to find s € (0, d) such that ®(B(x,r) N E)
> (1 — (¢/5)""H®(B(x, r)) for each r e (0,s). If re (0, es) and
y € B(x,r/e) N E, then

O(B(y,r/(1 +¢))) <c(l + e)h((l + e)_l/zr) <(1+¢&)®(B(x,r)).

Hence x € Y(®, ¢) according to 4.2(4). Consequently, ® almost every point at
which (1) holds belongs to

U N Y.(2,e).

s>0 re(0, s)
Let
A(t) = min(1 + g, t/B0E/e0),
Whenever c, d are positive numbers and g = 1,2,..., let
F = {x € R"; there is ¢t > 1 such that t9 ' <2¢ > < ¢9
and c¢®(B(x, r)) < ®(B(x, tr)) <
cA(t) ©(B(x, r)) whenever r € (0,d)}.
If x € F, we find the corresponding ¢ and we note that
O(B(y, 1/(1 + ¢))) < ¢ "®(B(y, t'1/(1 + ¢)))
< c_"(D(B(x,(e_l + (1 + e)_lt")r))
< c 9®(B(x,t%))
< A(t)'®(B(x, 1))
whenever r € (0,t %) and y € B(x,r/e) NF. If g=1, A(t)? = A(t) <
1+e If g>1 then t7<4e *<(e/2)* and A(t)7 < (g/2) /@lE/®)

= e*2 < 1 + & Hence 4.2(4) implies that every point of F which is a ® density
point of F belongs to U, . oM, c 0., Y ®, €).

Finally, we use 2.4 to infer that ® almost all of the set where (2) holds may
be covered by countably many sets of the above form.

4.4. (1) We recall the definition of the d-cones 9, M, ., M [o],
M, ,.[o] and U(n)[a]. (See 3.1(2), 3.7(1), and 2.13(1).) To simplify the nota-
tion, we shall write 1(n, o) instead of U(n)[o]. We also note that, if o € [0, 1),
each of these d-cones has a compact basis. (See 3.7(2) and 2.13(2; ii).)
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We prove the following statements.

2 M, [oe]N M, [o] = & whenever0 < k,m <n, k# m,and0 <o
< 1/(6n + 6).

(3) If @ is an almost finite measure over R", ¢ € [0,1/(6n + 6)], and
E = {x, d(¥,M,) <o for every ¥ € Tan(®, x)}, then for ® almost every
x € E there is an integer m(x) = 0, 1,..., n such that Tan(®, x) c M . [o].

(4) If ® measures R", m =0,1,...,n, Ve G(n,m), 06 €(0,1/5), t > 0,
and d(®, M, ) < 6™"3, then

®[B(x,7) N B(V,0%/(m + 1))] = (1 — 50)(r/s)"®(B(y, s))

whenever x,y € VN B0,(1 — 0)t), ot <r < (1 — o)t — ||x|, and ot < s <

(1 = o)t — |lyll.
(5) If ® is an almost finite measure over R", m =0,1,...,n, and
V € G(n, m), then ® almost all of the set

{x € R"; Tan(CI), x) C Emn’v[(%))imig]}

can be covered by countably many graphs of Lipschitzian maps from V to V *.
(6) If @ is an almost finite measure over R" then ®{x} > 0 for ® almost
every x for which Tan(®, x) ¢ I, ,[1,/8000].

Proof. (2) See 3.12(8).

(3) Let N, = {¥;sup,.,d(¥, M, ) <o} From 3.12(8) and 2.6(2) we
see that for every x € E there is m = m(x) such that Tan(®, x) € N, . Since
M, .[o] = N, [0], the statement follows from 2.13(5).

(4) We may assume that t = 1 and F,(®) = 1. Let

¥ = (m+ a(m) 'oemLv.
Then F(¥) =1 and F\(®, ¥) < 6™ "3 Hence, denoting ¢ = ¢2/(m + 1), we
may use 1.10(3) to estimate

®[B(x,r) N B(V,q)]/®(B(y. s))

> [(m+ 1)(r—q)" = 0""/ql/[(m + 1)(s + )" + 0" "*/q]
= (r/9)"[(L=q/r)" = o™ /"] /[(1 + q/5)" + o™ /]
> (r/s)"(1 — 0 —mq/0)/(1 + 0 + 2mq /o)

> (r/s)"(1 — 206)/(1 + 30) = (1 — 50)(r/s)™.

(5) ® almost all of the set from (5) may be covered by countably many sets
E c R" for which there is s > 0 such that diam(E) < s and d (T, ,[®], M, )
< (19) ™3 whenever x € E and r € (0,400(m + 1)s). Let P be the or-

thogonal projection of R" onto V. If x, y € E and ||P(x) — P(y)|| < ||x — y|| /2,
welet a = ||y —x||, 0 =1/19, t = (m + 1)ao 2/3, r = t/2, and we use (4)
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to infer that
®[B(x,r) — B(x + V,a/3)] <506®(B(x,r)) and
®[B(y,r+a) — B(y + V,a/3)] <506®(B(y,r + a))
<50(1 —56) (r+a)"(r—a)™"
X®(B(y,r — a))
<506(1 = 50) (1 + 3ma/r)®(B(x, r)).
Since B(x + V,a/3) N B(y + V,a/3) = &,
®(B(x,r)) < 50[1 + (1 - 50) (1 + 3ma/r)| ®(B(x,r)) < ®(B(x, r)).

This contradiction proves that the inverse of the restriction of P to E exists and
is Lipschitzian.
(6) This statement follows easily from (5).

4.5. THEOREM. For each integern = 1,2,... and each o € (0, 1) there is a
constant w, = wy(n, o) € (0,1) with the following property. Whenever ® mea-
sures R" and

®[B(0,7) N Y,(®, w,)] > (1 — w,)®(B(0, r))

for every r, s € (wy,1/w,), then
(1) d(®, U(n)) <o, and
(2) there are s € (w,, 1) and an integer m = 0,1,. .., n such that

®{x € B(0,1); d|(T, ,[®], M, ,.) =0} <o®(B(0,1)).

Proof. Assume that for some n = 1,2,... and some o € (0, 1) there is no
w, with the above property. Then there is a sequence ®;, ®,,... of measures
over R" such that, for each k = 3,4,...,

®,[B(0,7) N Y(®,,1/k)] > (1 - 1/k)®,(B(0,r))

for every r, s € (1/k, k) and
(1) d(®,, U(n)) > g, or
(2) ®,(x € BO,1); d(T, [0,], !
s €(1/k,1) and each m = 0,1,..., n.
Clearly, we may also assume that ®,(B(0,1)) = 1 for each k = 3,4,....
Whenever 1 /k < s <r <(k—1)s < k,wefind y € B(0, s) N Y(D,,1/k)
and we infer from 4.2(2) that

(*)  ©(B(0,7)) < @(B(y,r+5)) <5" r+s)"s"0(B(y, s))
<5""Yr+s)"s "®,(B(0,2s)).

) >0} > 0®,(B(0,1)) for each

n,m
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Using (*) with s = 1/2, we conclude from 1.12(1) that the sequence ®,
has a convergent subsequence. To simplify the notation, we may assume that the
whole sequence ®, converges to a nonzero locally finite measure ® over R".

Let x,y €spt®, s >r>0,and ¢t = ||x|]| + ||y|]| + r + s. Since

klim ®,[B(0,t) N Y,(®,,1/k)] /@,(B(0,t)) =1
and

limsup®, [B(0,t) — B(x, )] /®,(B(0,t))

k— oo

1= liminf®,(B(x, 7)) /0,(B(0, 1))

1 — ®(B%x,7))/®(B(0,t)) <1

for every 7€ (0,r), there is a sequence x, € Y(®,,1/k) such that x =
lim, _,  x,. Since the sequence

fI>k{z € B(x,,2t); ®(B(z,s/(1 + 1/k)))
> (1 + 1/k)®,(B(x, 3))}/(1)1((3(7510 s))
converges to zero as k — oo, and since

liminf ®,(B(y, 7))/, B(x,. 5)) = @(B(y, 7)) /@(B(0, 1)) > 0

IA

for every T € (0, r), there is a sequence y, € R" such that y = lim, _, y, and

q)k(B(yk’ s/(1 + l/k))) <(1+ l/k)q)k(B(xk’ 3))

Hence

®(B(y, 1)) < ®(B%(y, (s +1)/2)) < liminf &, (B°(y, (s + r)/2))
liknlior;f(bk(B(yk, s/(1 + 1/k)))
< liminf (1 + 1/k)®,(B(x,,s)) < ®(B(x, s)),

IA

which implies that ® is uniformly distributed. Moreover, from (*) with r = 1,
we infer that 0 € spt ®. Thus ® € U(n).

Let m = dim®. Using 3.11(2), we find s € (0, 1) such that the set
E={y € B(0,1) Nnspt ®; d,(T, [®], M, ) <0/6)

has ® measure greater than ®(B(0,1)) — o ®(B°0,1)). Let 7=9"" 2% and
H = B(0,1) — B%(E, 7s). Then H is compact and ®(H) < o ®(B°(0, 1)). Hence
there is k > 1 /s such that

F,(®,,®) < oF,(®)/6 and ®,(H) < o®,(B(0,1)).
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Since d(®,, W(n)) < 2F(®,, ®)/F(®) < ¢ according to 1.10(5), (1’) does
not hold for this k.

If xe B(0,1) — Hywefindy € Eand ¥ € I
F\(T, [®]) = F,(¥), and

F\(T, ,[®],¥) < oF,(¥)/6.
Using also 1.9(5; iii, iv) and 3.2(1), we estimate
F\(T, [®].¥)
< F\(T, ,[®,]. T, ,[®]) + F\(T, ,[®],T, ,[®]) + F(T, ,[®],¥)
< Fy(®,, ®)/s + 7®(B(y,2s)) + oF(¥)/6
< oF,(®)/6s + 9"7®(B(y, s/2)) + oF,(¥)/6
< oF(¥)/6+ 9" 7F\(T, ,[®]) + oF\(¥)/6
< oF,(V¥)/2.

Hence 1.10(5) implies that d (T, ,[®,], M, ,.) < o for every x € B(0,1) — H.
Consequently, (2”) also does not hold for our value of k. This contradiction
finishes the proof of 4.5.

such that ||x — y|| < 7s,

n,m

4.6. CoroLLARY. If @ is an wy(n, o)-approximately uniformly distributed
measure over R" then for ® almost every x € R",

(1) Tan(®, x) € U(n, o), and

(2) there is ¥ € Tan(®, x) such that d (¥, M) < o.

Proof. (1) Whenever r >0 and x €spt® is a ® density point of
Nyco.nY(@, w,y), we infer from 4.5(1) that d (¥, U(n)) <o for every
¥ € Tan(®, x). Hence the statement follows from 2.13(5).

(2) If this statement does not hold, we find r > 0 such that the set

{x e N Y,(®,w);d(T. , [®],M,) >0 foreveryte (0, r)}
s€(0,r)
has positive ® measure. But 4.5(2) implies that this set cannot contain a ®
density point.

4.7. CoroLLARY. (1) An almost finite measure ® over R" is approximately
uniformly distributed if and only if Tan(®, x) C U(n) for ® almost every x.

(2) If ® is an approximately uniformly distributed measure over R" then
Tan(®, x) N M, # T for ® almost every x.

Proof. (1) See 4.2(5), 4.6(1), and 2.13(4).
(2) For ® almost every x we deduce from 4.6(2) that there is ¥ € Tan(®, x)
such that d (¥, M) = 0. Hence @ # Tan(¥,0) C Tan(®, x) N M.
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4.8. TueoreM. For each integer n = 1,2,... and each o € (0,1/3) there
is a constant w; = wy(n, o) € (0,0) with the following property: If m =
0,1,...,n, ® measures R", 0 € E C B(0,1), 0 < a < w;, and if for every
x € Eand every r, s € (wsa,1/w;)

(1) ®[B(x, 1) N Y,(®, w3)] > (1 — w;)®(B(x, )),

(2) thereist € [1 + 0,1/0] such that

O(B(x,tr)) < (1 + w3)t"®(B(x, 7)), and

(3) thereist € [1,1/0] such that

O(B(x,tr)) > (1 + o)t™ '®(B(x, 1)),
then

®{x € E; d\(T, ,[®], M, ,,) > o forsomes € (a,w;)} < a®(B(0,1)).

Proof. Assuming that for some n = 1,2,... and some o € (0,1/3) there is
no constant w; with the above property, we let 7, = w,(n, 0/k)/k and we find
an integer m = 0,1,..., n, measures ®, over R", sets 0 € E, C B(0,1), and
numbers 0 < a, < 7, such that for each k = 1,2,... the assumptions (1), (2),
and (3) hold with @, E, a, and w, replaced by ®,, E,, a,, and 7, respectively,
and

o {x € E; d\(T, ,[®], M, ,.) = o for some s € (a,, n)} > o®(B(0,1)).

Using 4.5(2), we see that for each k =1,2,... there are an integer
m, =0,1,...,n, anumber s, € (kn,, 1), and a point x, € E, such that

(@) d(T,, [P, M, ,, ) <o/k and

Xp, Sk n,m

(b) dl(Txk,s[d)k], M, ) = o for some s € (a,, n;).
Let 6 = (0,/20)"3w(m). (See 3.14.) If k > 1/6, (a) and 4.4(4) imply that

(1 — 0/4)t™®(B(x,, s,/2))
< @,(B(xy, ts,/2))
<(1- 0/4)_ltmkq)k(B(xk, $1/2))

for every t € [o,1]. Using (2) with r = o5, /2, we find t € [1 + 0,1 /6] such
that

(1 — 0/4)(ta) ™ @, (B(x,, 5,/2)) < ®y(B(x, tos,/2))

< (L + n)t"®,(B(xy, 05,/2))

< (T+m)(1—0/4) 't"0™®(B(xy, 5,/2)).
Hence t" ™ > (1 — 6/4)/(1 + n,) > (1 + o) !, which implies that m > m,.
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Similarly, using (3) with r = o5, /2, we infer that m < m,. Hence

(¢) my=mif k>1/6.

For each k> 1/6 let r, € [a,, s,] be the smallest number such that
d(T, ,[®,.], M, ,,) < G whenever r, <r < s,. From (c), (a), and (b) we easily
see that a, < r, <s,. Hence

@ dyT, [0, R}, ,) = 6.

Clearly, (d), (a), and (c) imply that

(e) lim,_, r./s,=0.

Because of (1) and of 4.5(1), dy(T, ,[®], U(n)) < 1/k whenever
r € (r./k, kr;). Hence the sequence

Txk,rk[(pk]/q)k(B(xk’ "))
has a subsequence converging to a measure ¥ € 1(n). Since (e) implies that
d (¥, M, ) <6 for each r > 1, we conclude from 3.14(2; iii) and 3.12(8) that
¥ is flat at oo and dim ¥ = m. Finally, we use (2) to infer that for each r > 0
there is t € [1 + 0,1/0] such that Y(B(0, tr)) < t™¥(B(0, r)). Hence
Y(B(0, 1)) /r™ = lim__, ¥(B(0, s))/s™ for every r > 0 and we conclude from
3.16 that ¥ € M, .. But this contradicts (d).

4.9. CoroLLARY. If @ is an ws(n, o)-approximately uniformly distributed
measure over R, and m = 0,1,..., n, then Tan(®, x) c M, [o] at ® almost
every x at which

limsup, . inf{ ¢ "®(B(x, tr))/®(B(x,r)); t € [1 + 0,1/0]} <1+ w;,,
and
liminf, _,sup{t ™" '®(B(x, tr))/®(B(x,r)); t € [1,1/0]} > 1 + 0.

Proof. If #> 0 and if E is the set of those x € N, ,Y,(®, w3) such that
inf{t "®(B(x,tr))/®(B(x,r));t € [1 +0,1/0]} <1+ w,
and
sup{t " "'®(B(x,tr))/®(B(x,r)); t € [1,1/0]} > 1+ 0

whenever r € (0, 7), and such that for every r € (0, 7) there is s € (0, r) with
d(T, ,[®], M, ,,) > o, then 4.8 implies that E cannot have a ® density point.
Hence

n,m

Tan(q), x) - {\I,a dl(\I,’ s')'/Rn,m) < O'}

for @ almost every x for which the assumptions of 4.9 hold. Because of 2.12, this
implies the statement of 4.9.

4.10. CoroLLARY. For every integer n =1,2,..., every o € (0,1) and
every t >0, t+ 1, there is a constant A(n,o,t) > 1 with the following
property. Whenever ® is an almost finite measure over R" such that for ®
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almost every x there is t > 0, t # 1, with

lim sup ®( B(x, tr)) /®(B(x, r))

rNO
< A(n, o, t)lim ionftl)(B(x, tr))/®(B(x, r)),

then Tan(®, x) C M, [o] for ® almost every x € R™.

Proof. Clearly, it suffices to find for every n =1,2,..., every ¢ € (0,1)
and every k = 3,4,...,k > 1/0 a constant A > 1 having the following prop-
erty: If @ is an almost finite measure over R" and H is the set of all x € R" for
which there is t € (1 + 2/k, k) such that limsup,  (®(B(x, tr))/®(B(x, r)) <
Aliminf,  (®(B(x, tr))/®(B(x, r)), then Tan(®, x) C M, [o] for ® almost ev-
ery x € H.

Let n, o, and k be given. Let 7 € (0,1/2k) be such that (1 — 7)% >
(1 + 1/k)1 +2/k)"and (1 + 7)1 — 1)~ 1 < 1 + wy(n,1/k). We put

€= %min(wg(n,l/k), wz(n,('r/S)Ma)) and
A= min(l +7,1+¢/2,(1+ l/k)e/(91n(2/e))).

If ® and H are as above, we use 4.3(2) to infer that almost every x € H
belongs to U . N, c Y (P, ¢). Hence 4.5(2) and 4.4(4) imply that for @
almost every x € H there are m(x) = 0,1,...,n and a sequence r, \y O such
that

(I —7)s™® < likminfd)(B(x, sr))/®(B(x, 1))

IA

lim sup ®(B(x, sr,))/®(B(x, 1)) < (1 — 1) 'sm®

k— o0

for every s € [1,1/2]. Consequently, for ® almost every x € H there is
t € (1 + 2/k, k) such that

lim sup ®(B(x, tr)) /®(B(x,r)) < A(1 — 7) " '¢m®
rNO

< (1 + wy(n,1/k))t™= and
liminf ®(B(x, tr))/®(B(x,r)) = A Y1 — 7)t™®

O
> (1 + 1/k)¢me-1,

Since & < wy(n,1/k), the statement follows easily from 4.8 and from 2.12.

4.11. THEOREM. Let ® be an almost finite measure over R". If one of the
following eight statements holds ® almost everywhere then all of them hold ®
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almost everywhere,
(1) Tan(®, x) C M.
(2) Thereis m(x) = 0,1,..., n such that Tan(®, x) C M
(3) Thereis m(x) = 0,1,..., n such that

lin(l)fD(B(x, tr))/®(B(x,r)) = t™™ for every t > 0.
™~

n, m(x)*

(4) lim,  (®(B(x, tr))/®(B(x, r)) exists for some (or for all) t > 0, t # 1.
(5) hm Suprxosup:EB(x,r/e)q)(B(z’ 1'/(1 + 8)))/®(B(x, T)) < 1 fOT every
e> 0.

(6) Whenever D C R" is a bounded, symmetric, convex set such that
0 € Int(D), then

lim sup ®(z+1D)/®(x+rD)=1 foreverye > 0.

™0 zex+rD/e
(7) Whenever D C R" is a bounded convex set such that 0 € Int(D), then
lim®{z e x+rD/e; ®(x + D) /(1 + &)

rNO
<®(z+1D) < (1 +¢)®(x+1D)}/®(x+1D/e) =1 foreverye > 0.
(8) Tan(®, x) € U(n) and b{P(¥) = 0 for every ¥ € Tan(®, x).

Proof. (1) = (2). See 4.4(3).
(2) = (3),(6),(7). Whenever x € R" is such that

@ # Tan(®,x) Cc M

n, m(x)
and 1, 0, we use 2.7 to find k; <k, < -+ and ¢; >0 such that the
sequence ¢, T_ . [®] converges to a measure ¥ € N

Iy n, m(x)*

(3) We con’lpute
lim ®(B(x, trkj))/CD(B(x, r,)) = ¥(B(0, ) /¥(B(0,1)) = t"x.

jooo
(6) If there are t > 1 and z, € x + r,D/e such that ®(z, + r,D) >
t®(x + r, D), we may also assume that the sequence T rk.(zk,-) converges to

some z € R". Since D is symmetric, ¥(z + Clos(D)) = ¥(— z + Clos(D)).
Hence the Brunn-Minkowski theorem ([11, 3.2.41]) implies

2(¥(z + Clos(D)))"™™
= (¥(z + Clos(D)))""™™ + (¥(— z + Clos(D)))"/"*

< (¥(2Clos(D)))"™™ = 2(¥(Clos(D)))"™*.
Noting that ¥(Bdry(D)) = 0 ([11, 3.2.35]), we infer that ¥(z + Clos(D)) <
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Y (Int(D)). Hence
t < lim (D(zk +1 D)/®o(x + 7k,D) < ¥(z + Clos(D))/¥(Int(D)) < 1

i
(7) Let 0 > 0 be such that
¥(B(D,20)) < (1 +&)¥{y € D; B(y,20) c D}.

Whenever z; € (x + n,D/e) N T, l(B(spt ¥, 0)) and lim; _, T, ,k(z ) = z, we
estimate

lim 1nf(I>(z + 1, )/<I>(x +1,D)>¥(z+ Int(D)) /¥(Clos(D))

j= oo !

>(1+e) "
and
lim sup<I>(z + 1 )/tb(x + rij) < ¥(z+ Clos(D))/¥(Int(D)) < 1 + &.
]_’OO

This easily implies (7).

The implications (3) = (4) and (6) = (5) are obvious.

(4) = (1). See 4.10 and 2.13(4).

(5) = (8). Whenever (5) holds for some x, we easily see that ¥( B(z,1)) <
Y(B(0, r)) for every ¥ € Tan(®, x), every z € R", and every r > 0. Using also
2.12, we infer that Tan(®, x) C U(n) for ® almost every x. Hence (8) follows
from 3.18(1; i).

(7) = (8). If (7) holds for some x, ¥ € Tan(®, x), r, \ 0, ¢, >0,
¥ =1lim;_, T, [®], z€spt¥, and D is a compact convex set with
0 € Int(D), we find a sequence z;, € R" such that

limsup®(z, + r,.D)/®(x + r,D) <1 and klim T, . (z) = z.
k— oo -
Hence ¥(z + Int(D)) < ¥(D). This easily implies that ¥(z + D) < Y(D) for
every z € spt ¥ and every compact convex set D such that 0 € Int(D). Now
(8) follows from 2.12 and from 3.18(1, ii).

(8) = (1). Let x € R" be such that @ # Tan(®, x) C U(n) and
b{(T, \[¥]) = 0 for every ¥ € Tan(®, x) and every u € spt ¥. Let m =
min{dim ¥; ¥ € Tan(®, x)}. Whenever ¥ € Tan(®, x) and dim ¥ = m, we

use Tan(¥,0) C Tan(®, x) and 3.12(5) to infer that dim,¥ > m. Hence
3.18(1, 2) imply that

Tan(®,x) N (¥ € U(n); dim ¥ =m} c M, .

If Tan(®, x) ¢ M, ., we use 2.6 to find & € (0, 1/(3m + 6)) and
¥ € Tan(®, x) such that d (¥, M, ) =¢eand d (¥, M, ) < e for every
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r > 1. But then 3.12(8) implies that ¥ & M, ., which is impossible. Hence
Tan(®, x) € M, whenever x fulfils our assumptions. Moreover, according to
2.12, these assumptions hold for ® almost every x € R".

4.12. (1) Whenever ® measures R" and x € R", we denote by Dim (®)
the set of all integers 0 < m < n such that Tan(®, x) N M, ,, #* 2.

(2) Let ® be an approximately uniformly distributed measure over R".
Then the following four statements hold for ® almost every x € R".

(i) Dim (®) = {m = 0,1,..., n; there is a sequence 7, \, 0 such that

klim ®(B(x, tr,))/®(B(x,r,)) =t™ forevery t > O}
= {dim¥; ¥ € Tan(®, x) N U(n))

= {dim ¥; ¥ € Tan(®, x) N U(n)} # 2.

(ii) If n € Dim (@) then Tan(®, x) = M,
(iii) If Dim (®) = {n — 1} then
Tan(®, x) € {c#" 'L [VU (e + V)]; VEG(n,n—1),e €R", ¢ > 0}.
(iv) If Dim (®) = {n — 1} and
lim sup ®(B(x, tr)) /t" '®(B(x, r)) < (1 +(1- t_z)("_l)/z)
rNO
for some ¢ > 1, then Tan(®, x) c M, , _,.

(3) If ® is an approximately uniformly distributed measure over R”"
then, according to (2; ii), for ® almost every x either Dim (®) = {n} or
Dim (®) € {0,1,...,n — 1}. Conversely, whenever M = {n} or @ # M
C {0,1,...,n — 1}, one can construct a nonzero approximately uniformly
distributed measure over R" such that Dim (®) = M for ® almost every
x € R". In fact, considerably more will be proved in 6.9(2).

In connection with (2, ii) one should also consult 5.9(1).

Proof of (2). (i) For m=0,1,...,n let
E, = {x € R" thereis ¥ € 1l(n) N Tan(®, x) such that
¥(B(0,7)) = a(m)r™ for each r > 0}.

Since Tan(¥,0) U Tan(¥, 0c0) C Tan(®, x) for every ¥ € Tan(®, x), we may
use 3.12(4, 5), 3.11, and 3.10(2) to reduce the proof to showing that m € Dim (®)
for @ almost every x € E,. But this follows from 3.11(2, iv) and 2.12.

(ii) It suffices to use (i), 4.7, and 3.12(3).

(iii) Let

~

M= {cA" "[VU(e+V)];VEG(n,n—1),ecR", ¢c> 0}.

n*
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If x € R" is such that Tan(®, x) C U(n), Tan(®, x) N M, _, # T, and dim ¥
=n — 1 for each ¥ € Tan(®, x), and if Tan(P, x) ¢ M, we use 2.6(1) to find
0<e<wn-—1)/@3n+3)and ¥ € Tan(®, x) such that d (¥, M) = ¢ and
d (¥, M) < ¢ for every r > 1. Then 3.14(2; iii) implies that ¥ is flat at oo and
hence ¥ € I according to 3.19. Since this is impossible, the statement follows
from (i) and from 4.7.

(iv) Suppose that V€ G(n,n — 1), e € V+ — {0} and the measure

¥ =" VU (e + V)]
belongs to Tan(®, x). Since

¥ (B0, tlle]))) /¥ (B0, llel})) = t"~H{1 + (1 — ¢72)" "7,
there is 0 < a < ||e|| so close to ||e|| that

¥(B(0, ta))/¥(B(0,a)) > lim s(;lpCD(B(x, tr))/®(B(x,r)).

™
If r, N O and ¢, > 0 are such that ¥ = lim, _, ¢, T, , [®], we easily see that
limsup ®(B(x, tr))/®(B(x,r)) > ¥(B(0, ta))/¥(B(0, a))

rNO

> limsup ®(B(x, tr)) /®(B(x,1)).

O

This contradiction shows that (iv) follows from (iii).

5. Rectifiability

5.1. Suppose that ® is an almost finite measure over R" and that 0 < m < n
is an integer.

(1) The measure ® is said to be m rectifiable if it is absolutely continuous
with respect to »#™ and if ® almost all of R" can be covered by countably
many m dimensional submanifolds of class one of R".

(2) We define upper and lower m dimensional densities of ® at a point
x € R" by the formulas

D,(®,x) = limsup®(B(x,r))/a(m)r™
rNO
and

D, (®,x) = limionf(D(B(x, r))/a(m)r™.
™~

If the upper and lower m dimensional densities of ® at x coincide, we
denote their common value by D, (®, x).

5.2. LEMMA. Suppose that 1 < m < n are integers, r > 0, ¢ € (0,2" ™ %],
=01 —¢/m)r, p=2""m 3% and k € [0,8mpu]. Suppose further that ®
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measures R", z € spt ®, ®(B(z, 1)) < o0,
Z = {(x,s,V) €B(z,1) X(xkr,1] X G(n,m); ®(B(y, 1))
> (1 —&)(t/r)"®(B(z,1)) whenevery € B(x,s) N (x+ V)
andt € [ps, s]},
and E is a compact subset of B(z, r,) such that z € E,
®[B(z 1) — E] < u"0(B(z, 1)),
and such that for every x € E and every s € (kr,r — ||x — z||] there is
Ve G(n, m) with (x,s,V) € Z.
Let W be an affine subspace of R" passing through z such that
(z,7,W — z) € Z and let P be the orthogonal projection of R" onto W.
For every u € W N B(z, 1)) let s(u) € [kr,r] be the smallest number
having the following property:
Whenever s(u) < s < r, then EN P Y (W N B(u, s/4m)) # &, and
®[B(z,7) NP YW N B(u,s))| <p "(s/r)"®(B(z,71)).
Finally, let
A={ue WnB(z,1);s(u) =xr},
A ={ueWnB(z,1n); s(u) > krand

®[B(z,7) N P~{W N B(u, s(u)))] = e Ys(u)/r)"®(B(z,1))},
and
A, ={ue Wn B(z,1); s(u) > krand
®[(B(z,7) — E) n P~YW N B(u, s(u)/4m))]

> L(s(u)/4mr)"®(B(z,1))}.

Then

(1) s(u) < 8mpur for every u € W N B(z, 1,);

(2) The function u — s(u) is lower semicontinuous on W N B(z, r}); con-
sequently, the set A is compact;

(3) WN B(z,1)) CAUA,UAy;

(4) "W N B(z, 1) — A] < 2™ 3ea(m)r™;

(5) For every s € (kr, er/m] there is x € E such that

O(B(x,s)) < (1 + 2™ *e)r ™(kr +s)"®(B(z,7));

(6) If k =0 then P(EN P Y(A)) = A, #™(EN P YA)) > 0, and there

are constants 0 < ¢ < C < oo such that

cHA™(ENPYA)) <®(ENPYA)) <C#"(ENPYA));
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and

(7) If k = O then there is an m dimensional submanifold E, of class one of
R" such that #™(E, N E N P~Y(A)) > 0.

Proof. (1) Let u € W N B(z, 1) and let 8mpur < s < r. Then
(a)
®[B(z,r) N P"Y(W N B(u, s))] < ®(B(z,r)) <p "(s/r)"®(B(z,r)).
Moreover, we may find v € W N B(z, r;) such that
B(v, ur) € B(z,1,) N B(u,2pr).
Since (z,7r, W — z) € Z,
@(B(v, pr)) = (1 - e)u"®(B(z, 1)) > ®(B(z,1,) - E).
Hence
(B) ENnP Y Wn B(u,s/4m)) D EN B(v,ur) + 2.

Clearly, (a) and () imply that s(u) < 8mupur.
(2) Let u € WnN B(z, ;) and let kr < s < s(u) be such that

(a) ®[B(z,r) N P~{Wn B(u,s))] > (1L+7)u"(s/r)"®(B(z,71))
for some T > 0, or
(B) ENnP Y {Wn B(u,s/4m)) = @.

If ve Wn B(z,r)) is sufficiently close to u, then s+ |jo —u| <r
according to (1),

®[B(z,7r) N P (W N B(v,s+ |Jo—ul))]
> p (s + llo — ull)/r)"®(B(z,71))
if () holds, and
ENnP Y (Wn B(v,(s — ||v—ul|)/4m)) = &

if (B) holds. Hence s(v) > s — ||v — u]| for v sufficiently close to u.

(3) Suppose that u € [W N B(z, ;)] — [A U A,]. Using the compactness
of E, we easily see that s(u) > kr,

ENnP Y Wn B(u,s(u)/4m)) # @, and
EnP Y{Wn B%u,s(u)/4m)) = &.

We choose x € E N P~YW N B(u, s(u)/4m)) and denote s = 16ms(u) /e
and o = (2m — 1)e/(32m?). Using (1), we infer that

(a) kr <s(u) <s<2m’ur/e=r—r, and p<o<1l.
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Let V be an affine subspace of R" such that (x, s,V — x) € Z. We claim
that

(B) IP(y) — P(x)|l = olly — x|| foreveryy € V.
In fact,if y € V, ||y — x|| = 1, and ||P(y) — P(x)|| < o, we infer from
os + s(u)/4mo = s(u)[1 — 1/2m + 8m/((2m — 1)¢)]
<27'm %21 — 1/2m + 8m/((2m — 1)e)]r < er/m

and from
os +s(u)/d4m = (1 — 1/4m)s(u)
that
(v) B((1 —t)x + ty,0s) C B(z,r) N P~{W N B(u, s(u)))

whenever |t| < s(u)/4mo. Hence the Fubini theorem implies

®[B(z,7) N P~Y{W N B(u, s(u)))]

> (205) " [ @(B((1 - t)x + 1y, 05)) dt

—s(u)/4mo
> (205) " (s(u)/2mo)(1 — ¢)(os/r)"®(B(z, 1))
= (1 —-¢)(1 - 1/2m)"16m*(2m — 1) % Y(s(u)/r)"®(B(z, r))
> e '(s(u)/r)"®(B(z,71)),
which contradicts u & A,.
Therefore (B) holds; in particular P maps V onto W and there is y € V

such that P(y) = u and ||y — x|| < s(u)/4mo. From the inequalities used in
the proof of (y) we easily see that

B%(y, s(u)/4m) c B(z,r) 0 P~ (W N B(u, s(u)/4m))
C (B(z,r) = E) n P~ W N B(u, s(u)/4m)).
Consequently,
©[(B(z, 1) = E) N P~YW N B(u, s(u)/4m))]
> (1 — e)(s(u)/4mr)"®(B(z,7)).

Hence u € A,, which proves (3).
(4) For every 7> 0let D C A, be a countable set such that the family
{ B(u, s(u)); u € D} is disjointed and the family { B(u,(2 + 7)s(u)); u € D}
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covers A,. (Cf. [11, 2.8.4].) Then
®(B(z,1)) = ¥, @[B(z, 1) N P~(W N B(u, s(u)))]

ueD

>e ! ) (s(u)/r)"@(B(3,7)).

ueD

Hence ¥, < p(s(u))™ < er™ and
H™A) <a(m)2+7)" Y (s(u)™ <2+ 7)"ea(m)r™.
ueD
Consequently, J#™(A,) < 2™ea(m)r™.
Similarly, for every 7> 0 we may find a countable set D C A, such

that the family {B(u,s(u)/4m); u € D} is disjointed and the family
{B(u,(2 + T)s(u)/4m)- u € D} covers A,. Then

®(B(z, 1) ZD‘I’[ (B(z,1) — E) n P"{(W N B(u, s(u)/4m))]
> %@(B(z,r)) ZD(s(u)/élmr)m‘
Hence
ZD(s(u)/4m)m < 2r™®(B(z,r) — E)/®(B(z, 7))

< 2r™[e® + ®(B(z,r) — B(z,1))/®(B(3, r)] < der™.

Consequently,

H"(Ay) <a(m)2+7)" Y (s(u)/4m)™ < (2 + )" Pea(m)rm.

ueD

Finally, we use (3) to estimate
H#™(W N B(z,r) — A)
<#™(W N B(z,r) — B(z, 1)) + #™(A)) +H#"(A,)
< [e+2me + 2™ 2] a(m)r™ < 2™ Pea(m)r™.
(5) Assuming that s € (kr, er/m] and
®(B(x,s)) = (1 + 2"+ 4e)r ™(kr + s)"®(B(z, 1))
for every x € E, we deduce that
®[B(z,7) NP Y (B(u,kr +s) N w))
> (1 + 2™ *e)r ™(kr + 5)"®(B(z, 1))
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for every u € A. Hence

®(B(z,7)) = a(m) ‘(kr +s)™"
X fcp[B(z, r) N P (B(u, kr + s) 0 W) do#™(u)

> a(m) (kr+s) (1 + 2" ) r " (kr + 5)"
X®(B(z,r))(1 — 2™ *3e)a(m)r™
> ®(B(z,71)).
This contradiction proves (5).

(6) If k =0, s(u) =0 for every u € A and the compactness of E implies
P(EN P Y(A)) = A. Since #™(A) >0, #™ENP YA)) >0. For every
x€ ENP Y(A)and every s € (0, r — r,) we have

®(B(x,s)) < [u‘ma(m)_lr_"‘CI)(B(z, r))]a(m)s'"
and

®(B(x,5)) > [(1 - e)a(m) '+ "®(B(z, )| a(m)s™.
From these inequalities the statement easily follows. (Cf. [11, 2.10.19(1, 3)].)

(7) Let A be the set of all u € A such that
®[B(z,7) N P~ B(u,s) N W)] <21 — &)’(s/r)"®(B(z,r))

for all sufficiently small positive numbers s. According to the Vitali covering
theorem, 5™ almost all of A — A may be covered by a sequence B(u,, s;)
(k=1,2,...) of disjoint balls such that u, € A — A and

®[B(z,r) NP Y B(uy, s,) N W)]| =201 — ¢)*(s,/r)"®(B(z,1))
for each k =1,2,... . Hence

®(B(z,71)) > 2(1 — ¢)’®(B(z,r))r ™ Z sy

and
i o0 1 _2 32
HA"A—A)<a(m) Y sp<=(1—¢) "a(m)r™< —a(m)r™
= 2 49
From (4) we see that
HMA) = (1 - 2" 3)a(m)r™ = 2a(m)r™ > Za(m)r™.
Assured by (2) that A is #™ measurable, we find a compact set A C A
and & € (0, er/m) such that #™(A) > 0, diam(A) < 8(1 + m/¢e) !, and
(a) CD[B(z, r) NP YB(u,s) N W)] <2(1 - e)z(s/r)mq)(B(z, r))
for every u € A and every s € (0, §).
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Since P(E NP YA))=ADA, there is a map f: A — E such that
P(f(u)) = u for every u € A.
If u,v € A and ||f(u) — f(v)] > 2m|lu — v|| /¢, then

B(f(u), m|lu — v|| /&) N B(f(v), m|lu — v||/e) = &

and, consequently,
®[B(z,7) N P~YB(u,(1 + m/e)|u — v|]) N W)]
> 2(1 = e)((1 + m/e)|lu — ol /r)"®(B(z, 1))

> 2(1 — &)*((1 + m/e)|lu — vl /r)"®(B(z, 1)).
But this contradicts (a), since u, v € A and diam(A) < 81 + m/e)~! imply
(1 + m/¢)||lu — v]| < 6. Hence f is a Lipschitzian map of A onto f(A).

Since f”‘(f(z&)) ZQfm(P(f(A))) = 9?’"(1&) > 0 and since P(f(u)) = u
for every u € A, there exists a map g W= W+ of class one such that
H"ue A; flu) #u+ g(u)} < H™(A). (See [11, 3.1.16].) Thus (7) holds
with Eq = {u + g(u); u € W}.

5.3. THEOREM. Suppose that 1 < m < n are integers, ® is an almost finite
measure over R",

(a) lirrn\ionf [®(B(x,r))] '®{z € B(x,r);

®(B(z,s)) < (1 —2 ™ ¢)(s/r)"®(B(x, r)) forsomes € (0,r)} =0
and

(b) liminf sup inf
rNO VeG(n,m) ze(x+V)NB(x,r)

[®(B(x,7))] '®(B(2,8 " °m~%)) > 0
at ® almost every x € R". Then ® is m rectifiable.

Proof. Let ® measure R", H, C H, C --- C R" be a sequence of open
sets with finite ® measure such that ®(R" — UY_,H,) = 0, and let ® fulfil the
assumptions (a) and (b) of the theorem.

Let G; € H; be Borel sets such that ®LG; is m rectifiable and ®(D) <
(G)) + 277 whenever D is a Borel subset of H; and ®LD is m rectifiable
(j=12,...). Also, let G = U;‘; 1Gj. Then ®LG is m rectifiable and it suffices
to show that ®(R" — G) = 0. To prove this, we assume that ®(R" — G) > 0
and we find k = 1,2,... such that ®(H, — G) > 0. We claim that:

(a) The set H, — G contains a Borel set M of positive ® measure such that
®LM is m rectifiable.
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To prove (a), we denote ¢ = 8 ™ °m~* and
Z(d) = {(x,s,V) € (H,— G) x (0,d) x G(n, m);
®(B(y, 0s)) = d®(B°(x, s))
whenever y € (x + V) N B(x, s)}.
Using (b), we infer that there is d, € (0, 1) such that the set
E, = {xe€ (H,— G) Nnspt®; B(x,2d,) c H, andforeverys < (0,d,)
there is V € G(n, m) such that (x,s,V) € Z(d,)}

has positive ® measure. We easily see that E, is a relatively closed subset of
H, — G; hence it is ® measurable. Let z;, € E, be a ® density point of E, at
which (a) holds and let 7 = (4™™ "m~%)"*2d% Using (a), we find d € (0, d,/3)
such that

®{x € B(z,,d); ®(B(x,s)) < (1 —2 " 9)(s/d)"®(B(z,,d)) for
some s € (0,d)} < d,r>®(B(z,,d))
and
®[B(z,,s) — E,| <7®(B(z,,s)) foreveryse (0,d).
Let
E,={x € B%z,,d); ®(B(x,s)) > (1 —2 " %)(s/d)"®(B(z,,d))
forall s € (0,d)},

and

E,= {x € E,; ®[B(x, s) — E,| < 7®(B(x,s))

foreach s € (0,d — ||x — z,])}.

Let x; € E, N E, — E; and s; € (0,d — ||x; — z,||) be such that the balls
B(x, s;) are disjoint, ®(B(x, s;) — E;) > 7®(B(x, 5;)), and

E,NE,— E; cU,;B(x,,3s;).
Since x; € E, and 3s; < d,,
CD(BO(xj,Ssj)) < CI)(B(xj,Bosj))/dl < (D(B(xj, sj))/dl.
Hence

®(E,NE,— E,;) < Z@(BO(xj,ssj)) < dI‘IZCD(B(xj, s;)
<din! Z((I)[B(x]" s;) — Ez])

<d;7'®[B(z,,d) — E,]
< 1®(B(z,,d)).
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Consequently,
®[B%(z,,d) — (E, N E;)] <37®(B(z,,d))
and there is a compact set E, C E, N E; such that
®[B%(z,,d) — E,] < 47®(B(z,,d)).

We intend to find a point z € R", a positive number r, and a set E C R" so
that the assumptions of 5.2 hold with ¢ = 277 and « = 0.
From z, € E, we infer that

®(B(z,,20%d)) = d2®(B°(2,,2d)) > 47®(B(z,,d)).
Hence
B%(z,,0d) N E, > B(z,,20%d) NE, # @.
Let z € E, be such that ||z — z,|| <od and let r=(1 —0)d and E =

E, N B(z,(1 — 27" °m™Yr).
Then z € E and, in the notation of 5.2 with ¢ = 2™ and k = 0,

®[B(z,7,) — E|] < ®[B%z,,d) — E,] < 47®(B(z,,d))

<411 -2 " Yd/r)"®(B(z, 1)) < " '®(B(z,1,)).

Whenever x € E and s € (0,r — ||x — z||], we find V € G(n, m)
such that (x,s, V) € Z(d,). For every y € (x + V) N B(x,s) we find
gy €(x+ V)N B(x,s) such that B(y, os) C B(y,30s) N B%x, s). Using
®(B(y, 05)) = d ,®(B°(x, 5)), ®[B%x,s) — E,;] < 7®(B%x,s)), and 7 <d,,
we infer that E, N B(y, 0s) + @. Let w € E, N B(y, os). For each t € [us, s]
we estimate

®(B(y, t)) = ®(B(w, t — 30s)) = (1 — 27" °)((t — 30s)/d)"®(B(z,,d))
> (1-2""°)(1 - 0)"(1 = 30/p)"(t/r)"®(B(z,1))
> (1—2" ™ 5)(t/r)"®(B(z,71)).
Hence the assumptions of 5.2 are satisfied and (a) follows from 5.2(6, 7).
Therefore there is a Borel set M € H, — G such that ®LM is m rectifiable and
®(M) > 0. But then ®L(G; U M) is m rectifiable for every j=1,2,... and

consequently, ®(G; U M) < ®(G;) + 277 for j=k,k+ 1,... . Since this con-
tradicts M N G = & and ®(M) > 0, the theorem is proved.

5.4. CoroLLARY. Forn =1,2,... let »(n) = (8" 'n*)"""3. Suppose that
m=20,1,...,n, v €(0, »(n)], his a positive nonincreasing function on (0, c0),
and

limsuph(vr)/h(r) < (1 — 2v)/».

O
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Then, if ® measures R", each of the following three conditions is sufficient to
guarantee that ® is m rectifiable.
(1) Tan(®, x) c M, . [v], and

0< limionf(I)(B(x,r))/r"'h(r) < 0
™
at ® almost every x € R™.
(2) Tan(®, x) € M, [(v/5)"**] and
0 < limionfCD(B(x,r))/r"’h(r) < ©
™

at ® almost every x € R".

(3) 0 < limsup®(B(x,r))/r™h(r)

rNO

< (1 + wy(n, V))limionftb(B(x, r))/r™h(r) < o0
™
at ® almost every x € R™.

Proof. (1) If m = 0, we easily see that ®{x} > 0 for ® almost every x. If
m > 1, we verify the assumptions of 5.3.
(a) Whenever s and t are positive numbers, let

E(s,t) = {x € spt ®; th(r)r™ < ®(B(x,r)) < oo foreachr e (0,s)}.

Since the sets E(s, t) are closed, the sets
E(s,t) = N [E(s,(1 = 27"7%)t) — E(s/p, t)]
p=1

are ® measurable, We easily see that 5.3(a) holds at every point of E(s,t)
which is a @ density point of E(s, t). Moreover, since 0 <
liminf, (®(B(x,r))/r™h(r) < 0 almost everywhere, ® almost all of R" can be
covered by countably many sets E(s, t).

(b) The condition 5.3(b) follows immediately from 4.4(4).

(2) Let x€R" and p=0,1,...,n be such that & # Tan(®, x) C
M, ,[(v/5)"**] and

0< limionfd)(B(x,r))/r'"h(r) < 0.
™
Using 4.4(4), we find s > 0 such that ®(B(x, s)) < oo,
(1 — »)t?®(B(x,r)) < ®(B(x,tr)) < (1 — ») 't?®(B(x, r))
and h(vr) < v~ Y1 — 3v/2)h(r) for each r € (0, s] and each ¢ € [»r, r]. Then,
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for each k = 0,1,... and each r € [v**s, v*s], we have
(1= »)""(r/s)" "@(B(x, 5))/5"h(s)
2 (1= )" X(1/5)"®(B(x. 5))/r"h(r) = ®(B(x, 7)) /r"h(r)
> (1 —»)""Y(r/s)?®(B(x, s)) /r™h(v**1s)

> (1= )1 = 30/2) ok (1/5)P " ®B(B(x, 5))/s"h(s).
Using 0 < liminf, (®(B(x,r))/r"h(r) < oo, we infer that p = m. Hence
4.4(3) implies that Tan(®, x) € M, ,.[(»/5)""*] for ® almost every x. Thus (2)
follows from (1).
(3) For ® almost every x we estimate
lim sup»™®(B(x, r/v))/®(B(x,r))

rNO

< limsup [®(B(x, /7)) /(r/v)"h(r/v)|[r"h(r) /®(B(x, 1))]

N0
<1+ wy(n,»)
and
lirrrLiOnfv"‘_ld)(B(x,r/v))/d)(B(x,r))

> lhr]l,,ionf [V_lh(r/v)/h(r)]
X liErLi()nf [®(B(x, r/v))/(r/v)"h(r/v)|[r"h(r) /®(B(x, 1))]

>(1-20) 1+w) '21-20)"1+»)'>1+0

Since 4.3(1) implies that ® is wy(n, ) approximately uniformly distributed,
we infer from 4.9 that Tan(®, x) € M, , [v] for @ almost every x € R". Hence,
to finish the proof of (3), it suffices to use (1).

5.5. COROLLARY. If 0 < m < n are integers, ® measures R", and 0 <

I_),"(CI), x) < (1 + wy(n, »(n)))D,(P, x) < oo at ® almost every x, then ® ism
rectifiable.

Proof. Use 5.4(3) with h(r) = a(m) and » = »(n).

5.6. THEOREM. Whenever ® is an almost finite measure over R", the
following conditions are equivalent.

(1) ® is m rectifiable.

(2) 0 <D, (®,x) < oo at ® almost every x € R".

(3) For ® almost every x € R"

D, (®,x) <o and Tan(®,x)=M,, forsomeV e G(n,m).
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(4) For ® almost every x € R"
0<D,(®,x) < oo and Tan(®, x) c M .

Proof. (1) = (2),(3). If E is an m dimensional submanifold of class one of
R" and if ® = #™LE, one easily sees that, for every x € E, D, (®, x) = 1 and
Tan(®, x) = M,  for some V € G(n, m). (Cf. [11, 3.2.19].) Hence (2) follows
from 1.7 and (3) follows from 2.3(4).

(2) = (1). See 5.5.

(3) = (4). Using 4.4(5) and 2.3(4), we reduce the problem to the special
case when spt @ is a subset of the graph of a Lipschitzian map from R™ to
R~ ™. We easily see that J#™LE is locally finite and D, (#™LE, x) > 0 for
every x € E. Hence

{(x € E; D,(®,x) =0} C{x € E; h‘nl‘ionfdJ(B(x, r))/#™(E N B(x,r)) = 0}

and 1.7 implies that ®{x; D,(®, x) = 0} = 0.
(4) = (1). See 5.4(2).

5.7. Whenever 1 < m < n are integers, let &(n, m) be the largest number
having the property: If ® measures R" and
0<D,(®,x) <(1+&(n,m))D,(®,x) < o

then ® is m rectifiable.

According to 5.5, &(n, m) > 0. Nevertheless, our method does not give any
lower estimate of &(n, m). Here we show that inf ,&(n,2) = 0. This fact should
be compared with the estimate &(n, 1) > .01 given in [21].

Let Z denote the set of integers, X = {0,1}%,

Y = {x € X; thereis p € Z such that x, = 0 foreach k <p},
and let ¥ be a Borel measure over Y defined by the requirement
VY{xeY;x,=y, fork<p} =277 wheneverpe Z and y€Y.

If x €Y and ¢ > 0 is irrational, we find ¢ € Y such that t = ¥, _,0,27%
and we compute

vlyey; Ty -xl2* <t
keZz

= Y ¥{yeY; |y, — x| =0, fork<p and |yp—xp|=0<1=op}

pEZ

= ) 27P=t,

PEZ,0,=1
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By continuity, we infer that

‘I’{y eY; Z ly, — x,|27F < t} =t
keZ
whenever x € Y and t > 0.
Let n >4 and let e,,..., ¢, be an orthonormal basis of R". We define
€rvjn =€ Whenever k=1,....,n and j€Z, and f(x) = X;.,2 " 2xe,
whenever x € Y.

We easily see that the map f: Y — R" is Borel measurable. If x, y € Y, we
compute

2
1Ax) = F)I° =| L (xx — gp)2 %,
keZ
= Z |x) — yk|2—k
keZ
+2 Z Z (x) — yk)(xk+jn - yk+jn)2_k_jn/2-
keZ j=1
Hence
| £(x) = )P < ¥l — wel2 41 + 2022 - 1) 7]
kez
and

1Ax) = F) P = ¥ jx — w2 *[1 — 20272 — 1) 7Y].

keZ
Let ® = f[¥]. Whenever x € Y and r > 0, we estimate

®(B(f(x), 1)) = ¥{y; | flx) = flw) P < v} < [1 — 222 - 1) 7| 7 'p2
and

O(B(f(x),7) = [1+2022 - 1) 2
Thus

(1) [1 + 2(2n/2 — 1)_1]—172 < (I)(B(z, 1‘)) < [1 _ 2(2,,/2 _ 1)—1]—1T2

for every z € spt ® and every r > 0.

fxeY, r>0 VeEG(n,?2), and d(Tg,, [®], M, ) <5 %, we find
k € Z such that 27172 < y < 27(*=2/2 3pd we note that for each j = 0,1,2
there is ¢; = +1 such that flx) + ¢,2**1/%, . € spt ®. Since the vectors
€;-€x 11> €x 1o are orthonormal, there is j = 0, 1,2 such that

B(f(x) + tiser s/3) N (flx) +V) =g,
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where s = 27 **)/2 Thus (1) and 4.4(4) with 6 = 5~ imply
[1+222 = 1)7"] '(s/9)° < ©(B(f(x) + t;se,. ;. 5/4))
< ®(B(f(x),5s/4) — B(f(x) + V, 0%/2))
< 50®(B(f(x),5s/4))
<501 — 20272 — 1) '(55/4)%

But this implies 0 > 5732"/% — 3) /(2"/2 + 1) > 5~ *, which is a contradiction.
Thus

(2) dy(T, ,[®], M,) > 5 % whenever z € spt ® and r > 0.

Clearly (1), (2), and 5.6 show that &(n,2) <4/(2"2— 1) for n > 4.
Moreover, this example also illustrates the behaviour of the (optimal values) of
the constants wy(n, ) from 4.5. Namely, we obtain w,(n,5 %) < 4/(2"/2 — 1)
if n > 4.

An amusing variant of this example is obtained by replacing R" by an
infinitely dimensional Hilbert space H and by taking an orthonormal system
{ews k € Z}. The above construction then gives a rather singular nonzero Borel
measure over H such that ®(B(z, r)) = r2 for every z € spt ® and every r > 0.

5.8. The following construction of a measure ® over R? will be used in 5.9
to give examples illustrating the need for the density assumptions in 5.6(3, 4). It
will be also used in 6.5.

Let ¢=0, 1/2, or oo and let a,,a,,... €[0,1/400] be such that
limsup, _,  k'%a, < ¢ <TI_ (1 + a}). Also, let 7, = sup{a,, a;.,--.}-

Let e, e, be the standard basis of R? and for every e € R? let e* =
(e,e5)e, — (e, ep)e,.

Whenever k=0,1,..., i=0,1,...,25— 1, and t € (i27%,(i + 1)275),
we define s, (t) = (— 1)‘*V/2 Let A, = (0,1) — {i27% i=0,1,...,2%} be
the domain of the function s,.

We put g(t) =e, for t € (0,1) and ¢, = 1/400. By induction we shall
define maps g, of A, into R? functions §, defined on A, and constants ¢, as
follows:

Suppose that k > 1 and that g; and ¢; have been defined for all 0 < j < k.
If t € A,, we put

§,(t) =0 ifthereis u € A, such that |u — t| < 27%*2
sp_y(u) =s,_,(t) and ||g](u)|| <c+3¢_, for
each j=0,...,k—1, and

§,(t) = &_,s,(t) in the opposite case.
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Finally, we put

gi(t) = (1 + $i(t))gi_i(2) + aksk(t)gk—l(t)l , and
g =¢g_, if $1<t € Ay gj(t)” >c+ 24¢,_, foreach j=0,1,..., k}

2 &y,

& = g, if yl{t €A g(t)] < min(l/sk_l, 11+ a?))

foreach j = 0,1,..., k} >¢g_,, and

& = & _,/2 in all other cases.

We easily see that

(a) the function g, is constant on (i2 7% (i + 1)2°5), and

(b) [lgx(t)II* = T} ,[(1 + §,(£))* + a2].

We prove the following statements.

(©) llg(®)ll = & + min(c, 1/2) for every ¢ € A,.

dDIf k>g>1, i=01,...,297 = 1, and (2i+1)279 -2 %< ¢ <
(2i+ 1279 < f<(2i + 1)2794 2k then

le(?) — gu(t)]| < 8(e,, + r)min{|gy(v)[|; v € [¢, ] N 4,).
(e) lim,_ ¢ = 0.
(B liminf, _  |lg,(¢)]| = ¢ for £' almost every t € (0, 1).

(2) If TTE_ (1 + af) = oo then limsup, , _||g. ()] = o for £ almost
every t € (0,1).

Proof. (c) If k = 0, this is obvious. If the statement holds for k — 1 then

ledt) > (1 +a}) g ()] = llge-i(t)| = &, + min(e, 1/2)

if §,(¢t) = 0 and

led)l = (1+a})""(1 = e Dlles(6)] = (1 - &) + 36,_,)

> g + min(c,1/2)

if §,(t) # 0.

(d) Whenever v € [t,f] N A,, we use (a) to infer that g, (t) = gq_l(f)
= g,-1(v) and we recall that

g,(t) = (1+38,(t))g,_1(v) + a,s5,(t)e, (v)*

and

gq+l(t) = [(1 + §q+l(t))(l + §q(t)) - aq+laqsq+l(t)sq(t)]gq—l(v)

+[(l + §q+1(t))aqsq(t) + (1 + §q(t))aq+lsq+l(t)]gq—l(v)l .
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Hence
le (?) — g, (t)]| < 2(e,-, + a,)|gq 1(v)]
and
lgqe1(®) = g i(t)]| < T(eg—y + 7))l gk 1(0) ]
Since [|g (v)|| = (1 —¢,_,)llg,—(v)]l and

lgq (o)) = (1 = e, 1) e, -u(0)],

and since (1 —e, ;)7®> <8/7, this implies (d) if k=q or k=g + 1. If
k>q+ 1, we notethat s(t)—s(t)—s(v) for each ]—q-l-l , k and

that, consequently, §,(t) = § (t) = §,(v) for each j=q +2,...,k. Hence, by
induction,

len(®) — gu(®) ]| = [(1 + 8(0)* + a2] s (£) — ges(t)]]
< 8(e,_y + 1)[(1+ 8,(0)) + a2] | g_i(v)]

= 8(e,_1 + 7,)| gi(v) .

(e) Assume that there is p such that e, = ¢,,, = ... . Then at least one of
the sets

(o]
E={t€ N A;; t)||>c+24ep foreachj=0,1,...}
k=0

and

0

g].(t)” <min|1/e,; [](1+ a?)) for each
Ty

o0
k=0

j=0,1,... andeach k = 1,2,...}

has positive Lebesgue measure.

Suppose first that #'(E) > 0. Then clearly ¢ < oo and, consequently,
lim, , a, =0. Let p>p be such that 7, <e, Whenever k> p, t €E,
(t—27%2t+2 K2 CcA,,,, ueA, |u— t| <27%*2 and s, (u) =
$,_,(t), we conclude from (a) and (d) that

”gk(u) - gk(t)” = 8(873 + Tﬁ)”gk(t)H = gsp”gk(t)“'

Hence ||gk(u)|| > ¢ + 3¢,. Consequently, there are a set EcE and )
such that ZYE) > 0, a, < k™3, and §,(t) = ¢ »Si(t) for each k > g and each
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teE. Finally, using the law of the iterated logarithm, we conclude that

k 1/2
liminf | g,(t) ]| = limint 1‘[ (1+3,¢)) n (1 +a2/(1+5,(t))) /

k— o0 ]

IA

[k k
liminfexp| }° §,(¢) + Za?}
=1 ’

k— oo j=1

IA

I k
liminfexp|q + 3(k + 1) + €, s].(t)} =0

k— o0 i=q

for #! almost every ¢t € E. But this obviously contradicts £ E) > 0 and
ECE.

Suppose next that #'(H) > 0. Since ||g,(t)|| = 1, we easily see that
T (1 + az) =o0. Let a€(0,1/¢,), p>p, and Hc H be such that

LY(H) > 0, sup{llg,(D)ls j=p.p+ L...) <a and limsup, __ g (0)] >

a-—ce, foreverytEH

Let t € H be an £! den51ty point of H and let g > $ be such that
llg ()l > a —e, and LI — H) < £YI)/2 whenever I is an interval con-
taining ¢ and .QI(I) <279

We claim that |Igi(t)ll = llg,(t)ITT}_,, (1 + a5)'/® for each k=g,
g+1,.... If k=g, this is 0bv10us Suppose that our claim holds for some
k>gq and that §,,,(t) # 0. Let I be the component of A, containing ¢. Then

LHuel; §i y(u) = e,} =LYI)/2
and, consequently,
LN /2 >P - H) > LHuel g, (u) =glt) + e,} =ZLYI)/2.

Hence §,, (t) = 0, which implies

1/2
lgwar(t) ] =llex()lI(1 + at.,)

This proves the above claim. But, since IT52,(1 + a} ) = 00, the validity of our
claim obviously contradicts ¢t € H.

(f) If ¢ = oo, II7 (1 + a%) = o0 and §; = 0 for each j. Hence the state-
ment follows from (b) If ¢ <o, we see from (e) that inf{||g,(¢)|; k =
0,1,...} < c for £' almost every t € (0, 1). Hence the statement follows from
(c).

(g) This follows easily from (e).

For each k =0,1,... let f, be an indefinite integral of g, such that
fi0) = 0.
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If I is a component of A, then f,,, = f, at its end points. Since
llgx+(w) — gl < (& + 7)llgx(t)|| whenever u, t € 1,
[ fira(t) = file)| < (e + m)llgu(t) [LH(T) /2 = 275 ey + )| &al) |

for every t € I. Since, according to (b), ||gi(t)|| < (3/2)*/? the sequence f,
converges to a continuous map f: [0,1] — R2 Moreover, for each k = 0,1, ...
and each t € A

B A0 - A0 s T2 e+ n)ladolie2)

<275 g + )|l en(t) |-
We prove that:
I k=0,1,..., 0<t<u<l 2 '<y—t<2* and q is the
smallest integer such that (¢, u) — A, # &, then
(1 - 24(Eq—l + 1-q—l))llgk(v)H(u - t)
<[ flu) = AL)|l
< (1+24(e, , + 7, 1))l g(v)[(u — ¢)
for every v € A, N [¢t, u].
In fact, we easily see that g < k + 1 and that (a) (if g = k + 1) or (d) (if
g < k) imply
| fillu) = £it) = (u —t)gulov) | < 8(£q—l + Tq—l)Hgk(U)”(u —t)
for every v € (t, u) N A,. Using also (h), we obtain
[ £(u) = £(t) = (u = t)gi(v)]
< 8(8q—l + qul)Hgk(U)”(“ —t)
+275 e,y + 7,00)(leau) | +[len(e)])
= 8(8q—l + Tq—l)”gk(v)”(u —t) + 2_“3(%71 + Tq—l)”gk(v)”
=< 24(%—1 + Tq—l)”gk(U)H(u —t)
if u,t € A, and v € (¢, u) N A,. By continuity, this inequality extends to all ¢,
uand v € [¢t,u] N A,.

Whenever t € N?_,A, and r € (0,1], we note that |g,(¢)|| =1 > 2%
and lim,_, 27 ¥|gu(¢)|| <lim,_ 27%3/2)*/?2 = 0. Hence we may find the
largest integer k = k(¢, r) such that ||g,(t)|| = 2*r. We also define h(t,r) =
7/ |&€xk(t. »(t)|l. We shall need the following facts.

() k(t,1) = 0.

(k) If s € [(3/8)"/2,1] then k(t, r) < k(t, sr) < k(t,r) + 1.

(m) 27Kt < 971/2

(n) I ¢g=0,1,..., 7=30(g, +7,), and r < 479 2dist*(¢,[0,1] — A,),
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then
(t— (@ +7)h(t,r), t+ (1 + 7)h(t, 1))
“HB(f(t), 1))
D(t—(1=7)h(t,r),t+ (1 —71)h(t,r)).

Proof. (j) If j > 1 then ||g (t)|| < (3/2)7/* < 21.
In the proof of the remaining statements we shall denote k = k(¢, r).
(k) The inequality k < k(t, sr) is obvious. If j > k + 2 then

le;(6)] < (3/2)7 V% g i(0) ] < (3/2)77F P 22k+ 1y < 2isr,

Hence k(t, sr) <k + 1.
(m) Since (2/3)** V7% < ||g,, ()| < 257,

9-k-1 o g-(k+1)/4 _ [2 k- 1(2/3)(k+1)/2]1/2 2

(n) Suppose that j=0,1,..., ue(0,1), 277 ' < |ju—t¢t <27/, and
lf{u) — f(t)|| <r. From (i) we infer that

le(t)ll < 2]g,(t)] < 27*2/(3lu — t]) < 2(8r/3)

whenever i > j. Hence (k) implies that j > k — 1. Using this, (m), and (i), we
obtain

lu—t < (1-24(e, +7,)) 'v/]g,(t)]
< (1—24(e, +7,)) (1 +e,+7)r/l2u(t) | < (1+ 7)h(t,r)
if j <k, and
lu—t] <27 < /gt < (1 —¢,) 'r/llgt)]| < (1 + r)h(t,r)

if j > k. This proves the first inclusion in (n).

If lu—t| <(1—7)h(t,r) then |u — t| < 2 % Hence u € (0, 1) accord-
ing to (m) and there is j > k such that 277! < |u — ¢| < 277. Using (m) and
(i), we obtain

I £(u) = )] < (1 + 24(e, + 7)) &,() |lu — ¢
< (l +e, + ’Tq)(l + 24(£q + Tq))||gk(t)|||u — t|
<(1+e,+7)1+24,+7))1—-T)r<r
if j <k+1,and
IA(w) = AE)] < (1 + 24(e, +7,))(3/2)7 "V gy (¢) l277
< (1 + 24(e, + 7,))(3/2)9 7 %k itly < 4
if j>k+ 1



622 DAVID PREISS

Finally, we define ® = f[.#'(0,1)] and we summarize some of the previ-
ous results in the following statements.
For #' almost every t € (0, 1):

(1) (1 - 301imsupak) < lim inf ®(B(£1(t), 7)) /(2h(t, 1))

< limsup ®(B(f(t),r))/(2h(t, 1))

rNO

< (1 + 301imsupak),

k— oo
(2) D@, f(t)) = 1/c,
(3) I TIZ. (1 + a3) = o then D(®, f(t)) = 0, and
(4) If lim, _, _a; = O then Tan(®, f(t)) C M, ,.

Proof. The statement (1) follows immediately from (n). To prove (2) and
(3), we use first (j), (k), and (m) to conclude that for #! almost every t € (0, 1)
the values of k(t, r) run through all nonnnegative integers and lim, _k(t, r) =
oo. Hence (f) and (g) imply

limsuph(t,r)/r = l/liminf||gk(t)|| =1/c
0 k— 0

and

limionfh(t, r)/r =1/limsup|/g.(¢)]| =0
™ k— oo

if TIP_ (1 + a?) = .
If ¢ < o then lim, , a, = 0 and (2) and (3) follow from (1). If ¢ = oo
then (1) implies

lim®(B(£(t), r))/2r

< lim (h(e, 1)/1) lim ®(B((1), 1) /(2h(t, 7))

< 2k1111:°<1/“gk(t)”) = 2klj[1(l " a%)—l/z Yy
Finally, to prove (4), we use (k) to infer that

(1+¢+ ak)_l”gk(t)H s”gk(t,sr)(t)” < (1 +e+a)elt)]
if s € [3/4,1] and k = k(t, r). Consequently
lii‘?)h(ta sr)/h(t, 1) = Slrig(l) “gk(t,r)”/“gk(t,sr)” =s

for every s € [3/4,1]. Since this implies that lim, ,h(t, sr)/h(t,r) = s for
every s > 0, (4) follows from (1) and from 4.9.
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5.9. Examples. (1) There is a finite, nonzero measure ® over R such that
D\(®, x) = oo and Tan(®, x) = M | for ® almost every x € R.

(2) There is a finite, nonzero measure ® over R? such that D(®, x) = 2,
D(®, x) = 0, and Tan(®, x) € M, , for ® almost every x € R

(3) There is a finite, nonzero measure ® over R? such that D (®, x) = co,
D(®, x) =0, and Tan(®, x) € M, , for ® almost every x € R

(4) There is a finite, nonzero measure ® over R? such that D(®, x) =0
and Tan(®, x) € M, , for ® almost every x € R

Proof. (1) We use 5.8 with c =0 and a, =a, = --- = 0. We easily see
that the resulting measure is in fact concentrated on the real line. Hence we may
consider ® as a measure over R. This and 5.8(4) imply that Tan(®, x) = M |
for ® almost every x € R. Moreover, from 5.8(2) we see that 1—71(<I>, x) = oo for
® almost every x € R which, in view of 1.7, implies that D,(®, x) = oo for ®
almost every x € R.

(2,3,4) We use 5.8 with ¢ =1/2, 0, and oo, respectively, and with
a, = k~*2/400. The resulting measures have the desired properties according
to 5.8(2, 3, 4).

6. Densities

6.1. (1) If h is a positive function on (0, c0), ® measures R", and x € R",
we define the upper and lower h densities of ® at x by the formulas

D,(®, x) = lim lim sup ®(B(x, tr)) /h(r)
t71 O

and

D,(®, x) = lim liminf ®(B(x, tr)) /h(r).
tN1 rNO

If the upper and lower h densities of ® at x coincide, we denote their common
value by D,(®, x).

(The densities introduced in 5.2 correspond to the functions h(r) = a(m)r™.
(Cf. also (3) below.) We shall not use them in this chapter and hence the slight
inconsistency in the notation cannot lead to any confusion.)

Whenever h is a positive function on (0, 00) and ® measures R", we
observe that:

(2) D,(®, x) < limsup ®(B(x, r)) /h(r),

rNO

D,(®,x) > lim iOnf<I)(B(x, r))/h(r),
™
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(3) The inequalities in (2) become equalities provided that
lim sup, . \lim sup, . ,h(tr)/h(r) < 1,

(4) Dy(®, x) < D(®, x) for ® almost every x € R", and

(5) If 0 <D,(®P,x) < oo almost everywhere then ® is approximately
uniformly distributed.

FProof. The statements (Z) and (3) are obvious.
4) ¥ D)(®,x) >a>b>Dy(P, x) and if ¥ € Tan(?, x), we find ¢ > 0
and s > 0 such that

¥(B(0,5)) > b¥(B(0, (1 + &)’s)) /a
and
ah(r/(1 + &)) < ®(B(x,r)) < bh((1 + €)r)
for all sufficiently small r > 0. Then

®(B(x,r)) < b®(B(x,(1 +¢)’r))/a
for all sufficiently small r > 0. Consequently

¥(B(0, 5)) < b¥(B(0, (1 + ¢)’s)) /a.

Hence the statement follows from 2.5.
(5) See 4.3(1).

6.2. (1) A positive function h defined on (0, c0) is said to be a density
function (an exact density function, respectively) in R" if there is a nonzero
measure ® over R" such that

0<D,(P,x) <o (0 < lin(1)<I>(B(x,r))/h(r) < oo,respectively)
™

at ® almost every x € R".

The function h is said to be an (exact) density function if it is an (exact)
density function in some R".

(2) From 6.1(2, 3) we see that:

(i) Every exact density function (in R") is a density function (in R"), and

(ii) If h is a density function (in R") and

lim sup limsup h(tr)/h(r) =1
N1l rNO

then h is an exact density function (in R").

(3) If limsup, ,h(r) > 0, we easily see that h is an (exact) density
function if and only if 0 < lim, ,h(r) < co.

(4) A density function h will be called regular if lim, ,h(tr)/h(r) exists
for each t > 0.

(5) From 4.11(4) we see that for irregular density function h the limit
lim,  ,h(tr)/h(r) fails to exist for every ¢t > 0, t # 1.



GEOMETRY OF MEASURES IN R" 625

(6) If h is a positive function on (0, c0), we define

Dim(h) = {m = 0,1,...; there is a sequence 7, \y 0 such that
klim h(tr,)/h(r,) =t™ foreach t > 0}.
— 0

(7) From 6.1(5) and 4.12(2) we see that, whenever ® is a nonzero measure
over R" and 0 < D, (®, x) < oo at ® almost every x, then Dim(h) = Dim (®)
for ® almost every x € R".

6.3. THEOREM. If h is a density function in R" then @ # Dim(h) C

{0,1,...,n}.
Proof. See 6.2(7) and 4.12(2).

6.4. ProposiTION. For each n = 1,2,... and each \ > 1 there is a con-
stant & = 8(n, A) > 0 with the following property:

For every density function h in R" there is ¥ > 0 such that, whenever
0<a<b<# m=1,...,n, and (1 — 8§)2™h(r) < h(2r) < (1 + §)2™h(r)
for every r € (8a, b/§), then h(a) < A(a/b)"h(b).

Proof. Let ¢ € (0,2 ""°) and o € (0,2 'n"3¢2) be such that
(1—e) " Q+2"%)(1+¢e"<A and (1-0)">1—¢.

We also denote 6 = (e6,/60n)"*> and w = wy(n, 6). (See 4.8.) We prove that
6.4 holds with § = (w/5)"*L

Suppose that h is a density function in R", ® is a nonzero measure
over R", and 0 <D, (®,x) < oo at ® almost every x € R". Let 7 =
(1 + &)/@n*Db_ Multiplying ® by a suitable constant, we achieve that
®{x e R, 1 <Dy(®,x) <7y} >0.

Let A C spt ® and s, > 0 be such that ®(A) > 0 and ®(B(x, nr)) > h(r)

> 0 '®(B(x, r/n)) for every x € A and every r € (0, s,). Using the den51ty
theorem twice, we find A C A c A and 0 < s, < s, < s, such that ®(A) > 0,

®(B(x,r) N A) > a- 8)®(B(x, 1)) for every x € A and every r € (0, $1)»
and ®(B(x,r) N A) > (1 — 8)<I)(B(x 1)) for every x € A and Levery r € (0, s,).

We may assume that 0 € A is a ® density point of A. Hence there is
0 < s5 < s, such that

®(B(0,7r) N A) > (1 — 8§)®(B(0,r)) foreveryr e (0,s,).

We prove that the statement of 6.4 holds with 7= §%s,. Assume, to the
contrary, that there are 0 <a <b <7 and m = 1,...,n such that h(a) >
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A(a/b)™h(b) and
(1 —8)2™h(r) < h(2r) < (1 + 8)2™h(r)

for every r € (8a, b/$).
Let

E = {x<B(0,b) N A; d4T, ,[®], MW, ) <6 foreverys e [a,b]}.
Since A C Y,(®, w) for every s € (0,6b/w?) and since
®(B(x,277°r)) < qh(2n7'r) < (1 + 8)n2"h(n"'r)
< (1+8)n2"®(B(x,r)) < (1 + @)(2n?)"®(B(x, 1))
and
®(B(x,29%)) = h(2r) = (1 — 8)2"h(yr)
> (1+6)(29%)" '®(B(x, r))

for every x € A and every r € (wa,6b/w?), we infer from 4.8 that
®[(A — E) n B(0, b)] < 6B(B(0,6b)). Hence 4.2(2) implies that

®(E) > ®(B(0, b)) — 26®(B(0,6b))
> ®(B(0, b)) — (6/2)""'®(B(0, eb/n)).

From 4.4(4) we infer that:

(a) For every x € E and for every r € [a, b] there is V € G(n, m) such
that ®(B(y, t)) > (1 — o)(t/s)"P(B(z, s)) whenever y, z € B(x, r) N
(x+ V)and or < s,t < 3r.

Consequently,

(b) (1 —0)’h(r) < (1 - 0)*®(B(x,9r)) < (1 — o)™ ®(B(x, 1))
< ®(B(x,7)) < (1 — o) '9"®(B(x, /7))
<(1-0) 9" h(r) < (1 - 0) 2h(r)

for every x € E and every r € [a, b].
Since E # &, we infer from (a) and (b) that
(¢) h(u)/u™ < (1 — 6) °h(v)/v™ whenever a < u < v < b and u > ov.
Let

r=inf{s € [a, b]; h(s)/s™ < h(b)/b™)}

and let r, = r(1 — g/m). Also, let E be the closure of E. We claim that
(d) There is z € E such that ®(B(z,1,) — E) < o™ *"'®(B(z, r))).
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Indeed, let X C E N B(0, b — ,) be a maximal set such that ||x — y|| > 2r,
whenever x, y € X and x # y. If (d) does not hold, we use also (a) to infer that

(0/2)""'®(B(0,b —1,))
> ®(B(0,b) - E) > ¥, ®(B(z,1,) - E)

zeX

> 0™ Y ®(B(z,1)) =22 (1 —o)e™*! ) ®(B(z,2r)))

zeX zeX

>2""(1-0)o™" ' ®(B(0,b—r)NE)
> 2" "(1 - o)™ '®(B(0,b —1,)).

Since 0 € spt @, this proves (d).

Let z € E be such that (d) holds and let E = B(z, r,) N E. We prove that
the assumptions of 5.2 hold with the above defined r,e, r,, and with
p=2""m3%and k = a/r.

From (c) we easily see that k < 0 < 8mp.

Whenever x € E and s € (kr,r], we use (a), (b), and (c) to find
V € G(n, m) such that

®(B(y, t)) = (1 - 0)(t/s)"®(B(x,5)) = (1 — 0)*(t/s)"h(s)
> (1= 0)X(t/r)"h(r) = (1 - 0)"(t/r)"®(B(z, 1))
> (1 - e)(t/r)"@(B(z, 1))
whenever y € B(x, s) N (af + V) and ¢t € [ps, s]. By approximation, we easily
see that for every x € E there is V€ G(n,m) such that ®(B(y,t)) >
(1 — &)(t/r)"D(B(z, r)) whenever y € B(x,s) N (x + V) and t € [ps, s]. (V,
of course, depends also upon s € (kr, r].)
Finally, (d) implies that
®(B(z,1,) — E) <o™"'®(B(z,1))) < p""'®(B(z,1))).
Hence the assumptions of 5.2 hold and, since
kr=a<a/e <ea/(8m’u) < ea/(mk) = er/m,

5.2(5) provides us with a point x € E such that

®(B(x,a/¢e)) < (1 + 2™ *)(a + a/e)"r "®(B(z,1)).
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Let y € E be such that ly — x|| <oa. Using (a), (b), (c), and the
definition of r, we obtain

h(a) < (1 -~ 0) *®(B(y,a)) < (1 —0) " *e"®(B(y, (1 - 0)a/e))
< (1 —-0)" ’em®(B(x, a/e))
<(L=0) ™ %1 +2m")(1 +¢&)"(a/r)"®(B(z,1))
< (L=0)""7(1+ 2™ %) (1 + &)"(a/r)"h(r)
< (1—0) "1+ 2™ )1 + )" (a/b)"h(b) < A(a/b)"h(b).
Since this contradicts our assumptions, 6.4 is proved.

6.5. THEOREM. Letn = 1,2,... and let h be a positive function defined on
(0, ). Then the following statements are equivalent.

(1) h is a regular density function.

(2) h is a regular exact density function.

(3) (a) There is an integer m = 0,1, ..., n such that

0 < limh(r)/r™ < o, or
O

(b) There is an integer m = 1,...,n — 1 such that lim, oh(r)/r™ = 0,
lim, ,h(tr)/h(r) =t™ for each t > 0, and lim, | ysup, ¢ o 1yt~ "h(tr)/h(r)
= 1.
Moreover, the condition (b) is equivalent to:
(b’) There are an integerm = 1,...,n —landa positive, nondgcreasing
function h defined on (0, 00) such that lim, ,h(r) = 0, im, o h(tr)/h(r) = 1
for each t > 0, and lim, ,h(r)/(r™h(r)) = 1.

Proof. (1) = (3). From 6.3 we see that there is an integer m = 0,1,..., n
such that lim, _ ,h(tr)/h(r) = t™ for every ¢ > 0.

If m = 0, we infer from 4.9 and from 4.4(6) that 0 < lim, ,h(r) < oo.

If m > 1, we infer from 6.4 that lim, _ ,sup, o ;¢ ~"h(¢r) /h(r) = 1. Using
this, we easily see that 0 < lim, h(r)/r™ < co. If 0 < lim, _,h(r)/r™, (3; a)
holds. If lim,  yh(r)/r™ = 0 and m < n — 1, (3; b) holds. Finally, we note that
the case m = n and lim, ,h(r)/r™ = 0 is impossible because of 1.7.

(3; b) = (3; b’). Let h(r) = min(1,sup h(s)/s™ 0 <s <r). Let ¢t >0,
qg>1, e€(0,1), and 7> 0 be such that h(r) < er™, t™h(r)/q < h(tr) <
qt™h(r), and h(1r) < q7™h(r) for every r € (0, ) and every 7 € (0,1]. Then
h(r) <,

h(tr) =sup{h(ts)/(ts)";0 <s<r} > sup{h(s)/qs™; 0 <s<r}=h(r)/q,
h(tr) < sup{qh(s)/s™; 0 <s <r} = qh(r),
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and

h(r)/r™ < h(r) < sup{h(s)/s™;0 <s <1} < gh(r)/r™
for every 0 < r < #/(1 + ¢).
The implications (3; a) = (2) and (3; b’) = (3; b) are obvious.
(3; b)) = (2). Let o =(160001)"/2/400 and let 7€ (0,1) be such
that h(2r) < oh(r) whenever r € (0,7]. We put g(r) = min(1, A(r)/h(F)),
and s, = sup{r € (0,1]; rg(r) <27%} (k=0,1,...). Clearly, s, =1 and

lim, _, s, = 0. Moreover, since (r/2)g(r/2) < rg(r)/2, sp = 83, = s,/2 for
each k=0,1,....

Let a;, = [(g(sx_1)/8(sp)® — 11?2 (k= 1,2,...). Then
0 < a < [(g2s0)/a(s0)” = 1] < (% - 1) = 1/400,

lim o, < lim [(g(25,)/2(s)" = 1] = 0,

k— o0

and

F1(1+a2) = fim 1/g(5," = o
If k>1and s,,, <r<s,, we note that
rg(sx_1) < 0%rg(sp,y) <o®27F <270
and
rg(s;) > 0 rg(4s;) 2072270V >271 i j>k+2.

It follows that for each r € (0,1] there is the largest integer k(r) such that
18(sk) < 2757 and that k—1<k(r) <k+1 if r€ (s, s;]. Conse-
quently

1=limg(r/4)/g(r) < limg(s,,,,)/g(r)
rNO rNO
< limg(4r)/g(r) = 1.
N0

Using 5.8 with ¢ = oo and with the sequence a,, a,, ... defined above, we
find a finite, nonzero measure ® over R? such that lim, (®(B(x, r))/(rg(sx,)))
= 2 for ® almost every x € R% (See 5.8(1).) Hence lim, ,®(B(x, r))/(rg(r))
=2 for ® almost every x € R% Identifying R> X R™"! = R™*! c R", we
define a measure ¥ over R™"*! (C R") by the formula ¥ = ® ® #™ !, Then,
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for ¥ almost every z = (x, y) € R X R™"" !, we compute

limsup ¥(B,,, ,(z,7))/h(r)

rNO

= h(7)™* limsupf

r~0 VB, ,(0,1)
< h(#) la(m),
and, for each t € (0, 1),
hfrrl‘iélf‘l'(BmH(z, r))/h(r)

|@(By(x, r(1 = ul®)"?))(rg(r))] d.2™(u)

> k(7)™ lirrrlionf[g((l - tz)l/zr)/g(r)]

X i fnf f,gm_l(o,,)[q’(Bz(x, r(1= 1)) %) (rel(1— 2)2r) | d 2™ ()
> h(7) 'a(m)t™.
(2) = (1). See 6.2(2; i).

6.6. LEmMa. There is a decreasing sequence 1, 1,,... € (0,1/8) with the
following property. Whenever n > 1 is an integer, 1,,1,,... are positive num-
bers, and for each k = 1,2,...

(a) ®, are measures over R",

(b) E,, E,, E, are subsets of R" such that 0 € E,cE,CE,Cspt®,,

(¢) ®(B(0,7,_,) < 0 and 1, < T2 1741,

(d) (1 = 1)@, (B(y, (1 = 7)r)) < PY(B(x, 1))

<1+ 7)P (B(y, (1 + 7)r))
foreveryx € E,, y € E, |, andr € [1,1,, 1],

(e) ®(B(x,r) NE}) > (1— 7)P(B(x,71))
for every x € E, and 1 € [1yr, 7],

(®) @ (B(x,7) NE) > (1 — 1)@ (B(x, 1))
for every x € E; and r € [11, 1], and

(&) ©B(0,7) N E,) > (1 - 1,)®,(B(O, 1))
for every r € 11, 1],
then there are a finite measure ® over R" and a compact set E C R" of positive

® measure such that for every x € E and every k = n,n + 1,... there exists
% € E, fulfilling

271k@ (B(%,27 V%)) < ®(B(x, 1)) < 2V%®,(B(%,2Y*r))

for every r € [47,r, 451 _ 1]
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Proof. Let t),t,,... €(1,2) be such that TT%2,¢/**7 < 2% for each
k=12,.... Let 0, =(t, —1)/40 and let ¢ =2 % lo}*3 From 1.10(3)
we infer that there are m, € (0,1/2) such that, whenever ¥ measures R,
m=20,1,...,k, Ve G(k,m),and d (¥, I, ) < n, then there is ¢ > 0 such
that

tleoA™(VN M) < ¥(B(M,¢g)) < tie™(B(M,2¢,) N V)

whenever M C B(0,2) and M NV # &.

Let 7, > 0 be such that, whenever ¥ measures R* and d,(¥, IM,) < 7,
then d(T, ,[¥], M,) < n, for every s € [wy(k, n;)/3,1].

Let a, = o,wy(k, n)wy(k, ;) and let p, > 5 be integers such that
(pk _ 4)—152k+2a’:k < 0.

Finally, we find a decreasing sequence 7, 7,,... € (0,1/32) such that
7, < 573k 1eka2kP for each k = 1,2,... .

Let n, r,, ®,, E,, E,, and E, fulfil the assumptions of the lemma. By
induction, we shall define a sequence ¥, of finite measures over R" and
sequences F, and ﬁk of subsets of R" (k =n,n + 1,...) such that, for each
k=nn+1,...,

(i) F, c F, are bounded subsets of spt ¥,,
(i) B(F,, 1) C B(F,_,7,_,)if k>n+1,

(i) ¥y (B(x,7) N F) = (1 = 7)¥(B(x, r))
whenever x € F, and r € [1,7,, 1],

(iv) For every x € F, there is ¥ € E, such that
¥ (B(x, 1)) = ®,(B(%, r)) for every r € (0,417, _ 1, _)),

vy Hk>n+1, x€ B(F,, 1), and r > r,_,, then

AT, (B(x, tchr)) < W(B(x, 1)) < 6034 ((B(x, 7)),

(vi) If k > n + 1 then for every x € B(F,, r;) there is x € F, _, such that

AT, ((B(E,t.%r)) < Wi(B(x, 7)) < 6225, \(B(%, t7_,7))
whenever r > 271,_,r,_,, and

(viiy ¥ (E) >0, ¥ (F,) > V(B(F, 1))/2 >0 if k>n+1, and
Y (F) =t 27", (F,_)ifk>=n+2

We put ¥, = ® LB(0,r, ,), F, = E, N B(0,2r,),and E, = E_ N B0, 1,).

Assume that k > n and that ¥,, F,, and F, have already been defined.
Let B be the family of all balls B(x,s) such that x € F, N Y (¥, a,/5),
s € (aprr, ayn ], dy(T, [¥, ], M,) <n;, and there is y € E,., such that
dy(T, [®y1], M) < ;. Using [11, 2.8.4], we find a (necessarily finite but, at

this stage, possibly empty) disjointed sequence B(x;, s;) € B such that for every
B(x, s) € B there is i for which s, > s/2 and B(x, s) N B(x;, s;) # 9.
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For each i, let y,€ E,,,, m,m,=0,1,...,n, V,€ G(n,m,;), and
W, € G(n, ;) be such that

( [‘I,k] §)Jén V) < Mk and d ( Yis S [(I)k+1] EIRn W) < M-

Because of the choice of 7,
(a) There are constants c;, ¢; > 0 such that:

e ((x, + V) N M) < V(B(M, gs,))
< tie;#™((x, + V;) N B(M,2¢;s,))
whenever M C B(x,,2s;) and M N (x, + V;) # &, and
te 6™ ((y, + W) N M) < @, ,(B(M, &,5,))
< 8™ ((y, + W,) 0 B(M, 2¢;s,))

whenever M C B(y,,2s,) and MnN(y, + W)+ 2.

Using the special cases M = B(x;, 1), M = B(y,, r), (iv), and (d), we infer
that

tEkrEOm™ > PR > V. (B(x;, s;))/¥u(B(x;, 5/2))
> t; 2@, (B(y;, si/t:))/ @ 1(Bly,, tes;/2)) =t F 2™,

Since tJ%*% < 2, m; < m,. Similarly we prove that m; < m,. Hence m;, = m,
and there are isometries Q of R" such that Q,(y;) = x; and Oy, + W) =
x;, + V.
Let

A(t) =B(x;,(1 -0, = teg)s;) N B(x + Vz’( - tek) )
ift=— 1,01 A, =A[0), A=U,A, and

D,(t) = B(x,, (1 — o, — to?)s;) N B(x, + V;,(3 — t)&s;)
if t =1,2. We define

Vo) = [¥L (R - A)] + Z(Qi[q)k+1]LAi)’

F,,, = U(DJ1) N Qi(E,,,)), and

ﬁk+1 = U(Di(z) N Qi(ék+1))~
We prove that (i)—(vii) hold with k replaced by k + 1. The conditions (i)
and (ii) are obvious and (iii) follows from (e) and from &s; > 7,1, = 7445 If
x € A, N F,,,, weuse gs; > 4** 21,7, to infer that (iv) holds with ¥ = O (x).
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Before proving the remaining conditions we note that (a), m, = m;, (iv),
and (d) imply
5.‘“("‘1’)3;"‘ = tk®k+1(B(yia tkSi)) < tfq’k(B(xi’ tk(l + Tk)Si))
< t32mic,a(m;)si.

This and a similar inequality obtained by interchanging the roles of @, , and ¥,

show that

(B) t3 %k, < ¢ <t e,
Whenever x € R", r> s,07/4, and B(x,r) N A, N (x;+ V) # &, we

note that B(x, t,r) N A(1) N (x; + V,) contains an m; dimensional ball with

radius o?s;. Hence

(A (= 1) N B(x, t,r) N (x;,+ V)
<H#™(A,(1) N B(x,t,r) N (x,+ V)
+#™[(A(=1) = A(D) N (x, + V)]
<#™(A,(1) N B(x, t,r) N (x, + V,)) + a(m;)2" e s
< (1 + 2103 ) o™ (A1) 0 B(x, tyr) N (x, + V)
<t #™(A,(1) N B(x, t,r) N (x; + V).
Consequently, (a) and (8) imply that
(v) ¥ i(B(x, 1) N A,) <t (B(x, tfr) N A,), and
Y (B(x,r) NA,) <82, (B(x, tdr) N A,).
Let x € A, N B(F,,,, 7, ,)- Then («) implies that
V,(B(x,5¢.s,;)) = t; 'c; ™ (B(x,4¢.s,) N (x; + V,))
> t; c;eka(m,)sm >tk ek ™i(B(x,, tys;) N (x;, + V)
> 359, (B(x,, 8,)) > n¥W(B(x,, 5,)).

Since x; € Fk and B(x,5¢.s;) C B(x;, s;), we may use (iii) to find a point
% € F, N B(x,5¢s,). If r>o0ps,/4, we observe that r> ofs;/4 and
B(x, t;r) N A; N (x; + V;) # @ whenever B(x,r) N A; # @. Denoting by %’
the summation over those indices j for which B(x,r) N A, # &, we use (y) to
estimate

Vi o(B(x, 1)) < ¥ (B(x,r) — A) + Z/‘I’k+l(B(x’ tr) N Aj)
< ¥ (B(x,r) — A) + t8 YW (B(x, tir) N A))
< 1929, (B(x, 1fr))
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and, similarly,
¥, (B(x, 1)) < tf+2*¥,, (B(x, tir)).
Thus (v) holds and, since
Vi B(%, 1;°r)) < ¥i(B(x, t*r)) < Wi(B(x, tir)) < ¥,(B(%, £r)),

(vi) holds if r > o2s,/3. If 27,1, < 1 < 0ps,/3, we find £ € F,; N B(x,27,,,)
and we use (iv) and (d) to estimate

Ve (Blx, 1)) < ¥, ((B(%, 7)) < t¥,(B(%, t7r))
and, similarly,
¥ (Blx, 1) = 17, (B(F, 1)),
Thus (vi) is provgd.
From y, € E, | and from (f) we infer that

(8) YA, 0 By) |
= ¢)k+l(B(yi + W, gs;) N B(yi’(]' - 2(’k)si))
- Tk+l¢k+1(B(yi’(1 - 201()31'))
> (t717F = tyre ) a(my)Esm™ = £ 2 *a(m;)és™
>t % ka(m,)c;s™ > t; %Y, (B(x,, s,)).
From (8) and (y) we conclude that
2%, ((Fey) 2 26629, (B(Fey 1o 1es1)) 2 Y (B(Fiy s 141))-
We shall need to know that
(¢) F, N B(F,, ajr,) € Y,(¥,, a,/5)

if r € (ai*'n,air) and j=3,4,...,p, — 1. To prove it, we derive from (iv)
and (v) that

¥, (B(x,r)) > (1 - Tk)z‘l’k(B(y’(l - ’rk)gf))

whenever x,y € F, and r € 27,1, ). Thus (iii) and 4.2(4) show that
F x € Y, (¥, b), where b = ag-. Using these remarks, (iii), and 4.2(2), we see
that, whenever x € F,, z€ F,, ||x — z|| < 2akrk, and r € (al*'r,, ajr), then

¥, (B(x,51/a;) N Fy) = ¥,(B(x,57/a,)) — n¥,(B(z, 1))
> V,(B(x,57/a,)) — 5"“7 b= *¥,(B(z, br,))
> (1 = 5% 1, b~ %)W, (B(x,57/a,))
> (1 — (a,/25)" 1)\I'k(B(x,Sr/ak)).
Hence (&) follows from 4.2(4).
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Next we observe:

(n) For each ze€ Fk and each j=3,4,...,p,— 2, there are
x € F, 0 B(z, ajr,) and s € (2a{*'r,, air,) with B(x, s) € B.

In fact, using (e), (iii), and 4.5(2), we find x € F, N B(z, ajr,) and
§ € (wy(k, My )air, /3, ajr,) such that d(T, ;[¥,], M) < 7. From (d) and (e)
we see that Ek+1 C Y(®,,,, a;) for every r € (a;s, s/a,). Hence 4.5(2) and
(g) imply that there are y € B(0, §) N E,, , and s € (wy(k, 1,)5/3, §) such that
dy(T, [®,,], M,) <ny. Since s € (2a]"'r,, alr,), our observation follows
from the definition of the constant 7, and from (¢).

From (7) it follows that the sequence B(x;, s;) is nonempty. Consequently
(6) implies that

‘I'k+1(B(Fk+1”k+1)) 2 ‘I,k+l(ﬁk+l) > 0.

If k>n+ 1, let G(t) =U(B(x,ts); s, € (a]*'r, alr]), G, = G,D),
and G = U?'G,. Using (1), we see that

A j—z
F,c Gj(3 +1/a;) U Gj—1(3) U U Gi(ty)

i=1

for every j = 3,4,..., p, — 2. Since x; € Y (¥,, a;/5), we may use 4.2(2) to
estimate

V,(G,(3 + 1/a,) U G;_,(3)) < 557125, X, (G;) + 55" 13*¥,(G,_,)
< 5%+ la KW, (G;) + ¥ (G, ).
Moreover (a) implies that
¥, (B(x,, t,s;)) < ti ¥ c,a(m,)s™ < t273¥,(B(x;, s,)).
Hence
¥, (F,) < 5% N9, (G)) + ¥,(G,_))) + t273*¥,(G)

for each j = 3,4,..., p, — 2. Summing up these inequalities and using ¥, (G)
< VY, (B(F,, 1)) < 2¥,(F,) (which follows from the induction assumption (vii),
since k > n + 1), we obtain

‘I’k(ﬁk) < 2(py — 4)_152k+1¢11:k‘1’k(c') + 1 (G)
< (pp — 4) '3 2% (F,) + 124%¥,(G)
< Uk‘l'k(ﬁk) + P (G).

Hence ¥,(G) = t;3_3k‘Pk(ﬁ‘k) and, using also (8), we conclude that ‘I’kﬂ(ﬁkﬂ)
> t; 27k (F,). This proves the last inequality in (vii).
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Since, according to (v),
o0
¥,(R") < ¥, (R") [Tt (< o),
j=n

the sequence ¥, has a subsequence converging to a finite measure ® over R".
Let E = N7, B(F}, ;). For every k > n + 2 we infer from (i), (ii), and (vii) that

¥

k
D B(F]., Tj)) = ¥, (B(F,, 1)) = q’k(ﬁk)

= \I,n+l(ﬁn+l) X ]._[ tj_g_7j (> 0)

j=n+1

Since the sets B(F;, r;) are compact, we conclude that ®(E) > 0.

Let x€E and let k=n,n=1,.... Since x € B(F;,,,7,,), there
is x € F, such that (vi) holds with k replaced by k + 1. Using x € F, we
find £ € E; such that (iv) holds with x replaced by x. Whenever
r € (411, 457,71 _,], we use (v), (vi), and (iv) to estimate

®(B(x, 1)) < limsup ¥;(B(x, t,1))

joo

s‘l’k+1(B(x,tkr I1 t;‘)) [T ¢)+2i

j=k+1 j=k+1

o] o0
< \Ifk(B(i, tir 11 t].“)) Htjﬁmj < 2V, (B(x,2Y*r))
j=k+1 i=k

= 2%, (B(%,2"*r))
and

®(B(x,7)) > li;’[_l)ilgf‘l’j(B(x, r))

2‘I'k+l(B(x,r I1 tj“‘)) [T ¢62
j

j=k+1 j=k+1

o0 0
> \Ifk(B(i, teor 11 t].—‘*)) [1¢6°%
j=k+1 j=k
> 27 VA (B(x,27 V) = 27 V@, (B(%,27*r)).
6.7. THEOREM. If h is not a density function in R", there is ¢ >0
(depending upon h and n) such that
®{x €R;0<Dy(®,x) <(1+eDy(®,x) <00} =0

for every measure ® over R".
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Proof. Let 7, be the sequence from 6.6 and let ¢, = min(2'/%, (1 + 7,)/?).
Suppose that h is a positive function on (0, c0) such that for each ¢ > 0 there is
a measure ® over R" with

®{x€R;0<D,(®,x) <(1+e)D,(P,x) < o0} >0.

Multiplying these measures by suitable constants and using 6.1(4), we find a
sequence @, ®,,... of measures over R" such that

@ {x€R1<D,(®,x) < D,(®,x) <t} >0.

Let E, C spt ®, and §, > 0 be such that ®,(E,) > 0 and ®,(B(x, t,r)) >
h(r) and ®,(B(x, r/t;)) < t h(r) whenever x€E, and r € (0, §,). Using the
density theorem twice, we find sets E, D E, D E, and numbers §, > §, > 8k
such that fIDk(Ek) >0, ®(B(x,r) N E) > (1 )P (B(x, 1)) for every x € Ek
and every r & (0, 8k) and @, (B(x,7) N Ek) > (1 — 7,)®(B(x, 1)) for every
x € Ek and every r € (0, 8k)

Shifting the measures ®, if necessary, we may assume that 0 € E, and that
0 is a ®, density point of E,. Hence there are s, € (0, gk /2) such that
®, (B0, r) N E,) > (1 — 7,)®,(B(0, r)) for every r € (0, s,).

Let 7, r;,... be positive numbers such that r, < min(s,, s,,,) and r, ; <
. fx€E,, y<€E.,,and 0 <r<r, then

O (B(x, 7)) < (L + n)h(tyr) < (1 + 1)@, (Bly, tity, 1))
<(1+ 'rk)CI)kH( (y,(l + 'rk)r))

and

®,(B(x,7)) 2 h(r/t;) = (1 = 7,)®, (B(y, (1 — )r)).

This proves the condition (d) of 6.6. Since the other conditions of 6.6 are
obvious, we conclude that there are a finite measure ® over R" and a compact
set E of positive ® measure such that for every x € E and every
k=n,n+ 1,...there is £ € E, fulfilling

(I)(B(x,r)) < 2l/k(I)k(B(f’2l/kr)) < 4l/kh(4l/kr)
and
®(B(x, 7)) = 2—1/k(I)k(B(f,2~1/kr)) > z—l/kh(4—1/kr)

whenever r € [47,1,, 4%, _ 1, _|].

Thus D,(®,x) =1 at ® almost every point of E. Using the density
theorem, we conclude that D, (®LE, x) = 1 at ®LE almost every point of R".
Hence h is a density function in R".
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6.8. ProposITION. Let h be a density function in R".
(1) If n € Dim(h) then 0 < lim, ,h(r)/r" < co.
(2) If Dim(h) = {n — 1} and there is t > 1 such that
limsuph(tr)/h(r) < [1 +(1- t_z)("_l)/zlt"_1
rNO
then h is regular.
(3) If Dim(h) = {n — 1} then 0 < lirr(1)h(r)/r"‘1 < o0.
™

Proof. (1) From 6.2(7) and 4.12(2; ii) we see that h is regular. Hence it
suffices to use 6.5.

(2) See 6.2(7) and 4.12(2; iv).

(3) If n =1, the statement is obvious. If n > 1 and h is regular, the
statement follows from 6.5. Hence we may assume that n > 1 and that h is
irregular. Using 6.4, we find § € (0,(3/4)"~Y/2) and r, > 0 such that, whenever
0<a<b<r and (1 —8)2" 'h(r) < h2r) < (1 + §)2" 'h(r) for every
r € (8a, b/8), then h(a) < 3(a/b)" 'h(b).

Let g = n®/8% By induction we define a sequence r, (k =0,1,...) of
positive numbers as follows. If 7, has been already defined, we use the irregular-
ity of h and (2) to infer that

t, = sup{r € (0,7,/q); 2" ""h(2r)/h(r) & (1 - 8,1 + 8)}

is well defined and we choose 7, € (t, /2, t,] so that 2! ""h(2r,, ) /h(1,,,) &
(1-28,1+59).

We prove that there is p > 1 such that for each k > p

(a) h(r,/q) < 2q7>""*h(qr),

(b) h(r) < §(r/ar)" 'h(qr,) for every r € [r,/q, qr,], and

(c) 2! "h(2r)/h(r) € (1 — 8,1 + §) for every r € [, /q% 1, /qd].

To prove this statement, let ® measure R" and let x € R" be such that
D,(®,x) =1 and

@ # Tan(®,x) C {c#" 'L[VU (e+ V)]; VE G(n,n-1),
e€ R", ¢ > 0}.

(See 6.2(7) and 4.12(2; iii).) Whenever s; \s 0 is a subsequence of the sequence
7w ¢; > 0, and the sequence c,T, j[<I>] converges to a measure ¥ € Tan(¢, x),

17 %8

we find Ve G(n,n— 1), e € V*, and ¢ > 0 such that
¥ = " W[V U (e + V).

Since n > 2, lim;_, ,c;h(tr;) = ¥(B(0, t)) for every t > 0. Moreover, the con-
vergence is uniform for ¢ belonging to a compact subset of (0, c0). Computing
the ¥ measures of balls B(0,t), we see that 2 > |le|| > 8/n (since
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21 "¥(B(0,2))/¥(B(0,1)) & (1 — 8,1 + §)) and that, consequently,
¥(B(0,1/q)) < 3q7>"**¥(B(0, q)),

4
7
¥(B(0,1)) < §(t/q)" "¥(B(0, q))
for every t € [1/q, q], and
217"¥(B(0,2t))/¥(B(0,t)) € (1 — §/2,1 + §/2)
for every t € [1/q% 1/q8). This easily implies (a), (b), and (c).
We claim that gr,,, < 1, /q and
(d) h(r) < 2(qr/r,)" 'h(r,/q) for every k> p and every r €
[a7i 1> /4] :
Indeed, from (c) we see that 7, < t, < r,/q> Moreover, since t, < 27,,,
< 8qre,, < 1./q8, (c) and the definition of ¢, imply that 2! "h(2r) /h(r) €
(1-28,1+8) for every r € (8qr..,,7./qd). Hence (d) follows from our
choice of §.
Finally, we use (a) and (d) to infer that h(qr,,,) < 2(r,,/n)" ‘h(qr,) if
k > p. Hence lim, , h(qr,)/(qr,)" * = 0 which, because of (b) and (d), im-
plies that lim, oh(r)/r"' = 0.

6.9. ProposiTiON. (1) Let 0 < m < n be integers. Then the following
statements are equivalent.

(i) There is an irregular density function h in R" such that

0 < liminfh(r)/r™ < limsuph(r)/r™ < oo.
rNO O

(ii) There is an irregular exact density function h in R™ such that
0 < liminfh(r)/r™ < limsuph(r)/r™ < .
™0 rNO

(i) 1<m<n-2.

@) Ifn>=1land @ # M C {0,1,...,n — 1}, there is an irregular density
function h in R" such that Dim(h) = M.

@) Ifn>1, d+McC{0,1,....,n—1}, and 0 & M or there is p € M
such that 1 < p < (n — 1)/2, there is an irregular exact density function in R"
with Dim(h) = M. ,

(4) If M # @ is a finite set of nonnegative integers and if M # {0}, there is
an irregular exact density function such that Dim(h) = M.

Proof. (1;ii) = (1; i). See 6.2(2; i).
(1; i) = (1; iii). See 6.2(3), 6.8(1), and 6.8(3).
(L; iii) = (1; ii); (2); (3). Let & # M C {0,1,...,n —1}. (We le

t M
{m} in the proof of (1; iii) = (1; ii).) HO& M orif M N [1,(n — 1)/2] =

g,
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let p,, p;,... be a sequence of elements of M containing each element of M
infinitely many times. f 0 € M and M N [1,(n — 1)/2] # &, let p,, p,,... be
a sequence of elements of M — {0} containing each element of M — {0}
infinitely many times and such that p, = p,,,; < (n — 1)/2 holds for infinitely
many values of k. For each k = 1,2,... let ¥, be defined as follows. (For
convenience we denote p,_, = p and p, = q.)

(a) \I'k=9£”"L{xER"; Xy,..., %,_, are integers and x; = 0
forp+1<j<n}

if p>gq.

(b) ‘I'k=9£”"L{xGR";(xp+l—1)2+x,2,+2+ ~+x2,,=1 and
x;=0 forq+2sjsn}

if p<g.

(c) ¥,=#"{xeR";x,€(0,1} and x,=0 forp+2<j<n)

ifp=g=0orp=g=n—-lor0€Mandp=gq>(n—1)/2.

(d) ¥, = X”L{x € R"; x,/2 is an integer, (x, — 1)* + 2 = 1,

and x; = 0 forp+3$j$n}

fl<p=g<(n—1)and0 & M.

e) ¥, =#?{x€R";x|,...,x areintegers, x;, =0 for 2p+2 < j<n,
k 1 p i J
2 _
and (x,,,—1) +x2,+ - +X3, ., =k 1/2}

fl<p=¢g<(n-1/2and0e M.

We note that ¥, € U(n), dim ¥, = p,_,, and dim ¥, = p,. Let C, =
lim, , W, (B(0,7))/r?, and ¢, = lim, ¥ (B(0, r))/rP Also let 7, 1p,...
be the sequence with the property described in 6.6 and let ¢, = min((1 + 7,)/*4,
1 + 27%). We find s, € (0, 72 /k) such that

t; '1CrP -1 < Vi (B(0, 1)) < t,C,rPe1 if r > 7, /ks,, and
ty e < Wi (B(0, 7)) < tyeprP if0 <71 <s,.
Let r, = 1 and let r, = s;s2,..., sf for k > 1. We define ®, = ¥, and
D, = ®(B(0, 1)) [‘I'k+1 (0,1/51,1)) ]_l 0, l/rkskH[ Yyl
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We shall consider the function h defined by the formulas h(r) = ® (B(0, r))

if r > r, and
h(r) =®,,(B(0,r)) ifk=1,2,... and r€ [r,,,n).
Using @, , (B(0, 7)) = ®,(B(0, ,)),
ti 2(r/1) " @ ( B0, 1)) < ®,(B(0, 7)) < t3(r/n)"®,(B(0, 1))

if0<r<r,and

ti 2(r/1) " @ 1(B(0, 7)) < @, 1(B(0, 7)) < te(r/1)" @51 (B(0, 7))
if r > 7,7 /k, we observe that h is nondecreasing,

ti 2(r/n)"h(n) < h(r) < t8(r/n)™h(r,) if r € [1r,/k, 7], and
(*) t *h(r) < ®(B(0, 1)) < tth(r) if r € [mr, 1]

Using the second observation and the definition of the measures ¥,, we
easily see that Dim(h) = M and that h is irregular. Because of (*), 6.6 is
applicable with E, = E, = E, = spt ® «- Hence there are a measure ® over R"
and a compact set E C R" of positive ® measure such that

27 1*®,(B(0,27*r)) < ®(B(x, r)) < 2/%®,(B(0,2'*))

whenever x € E, k=n,n+1,..., and r € [47,r,,47,_,r,_,]. Thus (*) im-
plies that

(% %) 2 Ve Ah(27 V%) < ®(B(x, 1)) < 2V5tfR(2VFr)

whenever x € E, k=n,n+1,..., and r € [d7r,, 477, ].

Let ¥ = ®LE. Then (* x) and the density theorem imply that D,(¥, x) =
1 at ¥ almost every x € R". Thus (2) is proved. Noting that in the remaining
cases p, # 0 for each k, we use the definition of the measures ¥, to find
constants a, € (1, 00) such that lim,_ _a, =1 and ¥, (B(0,2Y%)) <
a,¥,(B(0, r)) for each k =1,2,... and each r > 0. Hence we infer from (*)
and (* *) that

27 Vka 1t 2h(r) < ®(B(x, 1)) < 2Y%a,t2h(r)

whenever x € E, k=n,n+1,..., and r € [47,7,,47,_,r, _,]. Consequently,
lim,  ¥(B(x, r))/h(r) = 1 at ¥ almost every x € R", which proves (3).

Finally, assume that M = {m} where 1 < m < n — 2. We already know
that h is an exact density function in R". Moreover, all the measures ¥, are
defined by (d) and do not depend upon k. From (d) we easily see that C, = ¢,
and that there is a € (1, ) such that ¥, (B(x, tr)) < at™¥,(B(x, r)) for every
k=1,2,..., r>0,and ¢t > 1. Using also C, = c¢,, we infer that

t (1 /) () < h(rey1) < t(re /) ()
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for each k = 1,2,... . Consequently,

o TT62 ) < ) < of 1142 ) o

for each r € (0, r,), which proves (1; ii).
(4) If M # O is a finite set of nonnegative integers and M # {0}, we use

(3) with n = 1 + 2max(M) to find an exact density function h in R" such that
Dim(h) = M

6.10. 1 do not know whether 6.9(4) gives a characterization of possible set
Dim(h) for exact density functions. Using 4.12(2; iii), we can easily prove that, if
h is an exact density function in R and Dim(h) = {0} then 0 < lim, ,h(r) <
0. Because of 6.8(1), this assertion is equivalent to:

If h is an exact density function in R then

0 < limh(r) < o0 or 0< limh(r)/r < 0.
N0 N0

Since a simple proof of this fact was given by P. Mattila in [20], we do not

give the details here.

6.11. The behaviour of the (optimal values) of the constants & = &(n, h)
from 6.7 is not clear even for functions h(t) = t?, B € (1,2). Using 5.4 with
m = 2 and h(t) = t#~2, we see that

&(n,y) = inf{e(n, t?); B € (v,2)} >0

for every n = 2,3,... and every y € (1,2). I do not know whether inf, & n, v)
> 0. On the other hand, from 5.8 with ¢ = o0 and with a j constant we easily
see that

lim (2, t#) = 0.
i e(2, %)
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