Problem 1. Suppose that \(\mu \) is a Radon measure in \(\mathbb{R}^n \). If \(\varphi \in L^1(\mu) \) and \(\varphi \geq 0 \), show that the measure \(\nu \) defined by
\[
\nu(E) = \int_E \varphi \, d\mu
\]
is also Radon.

Problem 2. Suppose that \(\mu \) is a finite Radon measure in \(\mathbb{R}^n \) such that \(\mu(\{x\}) = 0 \) for each \(x \in \mathbb{R}^n \). For any \(\alpha \) such that \(0 < \alpha < \mu(\mathbb{R}^n) \) there exists a Borel set \(B \) such that \(\mu(B) = \alpha \).

Problem 3. Let \((X, \mu) \) be a measure space and let \(1 \leq p < \infty \). Suppose that \(\{f_n\} \) is a bounded sequence in \(L^p(\mu) \), and that \(f_n \rightarrow f \) \(\mu \)-a.e. on \(X \).

1. Show that \(f \in L^p(\mu) \).
2. Give an example where such sequence \(\{f_n\} \) does not converge to \(f \) in \(L^p(\mu) \).
3. Show that if \(|f_n| \leq |f| \) on \(X \) for every \(n \), then \(f_n \rightarrow f \) in \(L^p(\mu) \).

Problem 4. Suppose that \(f \) is absolutely continuous on \((0,1)\), and that \(f' \in L^p \), where \(1 < p \leq \infty \). Let \(p^{-1} + q^{-1} = 1 \).

1. Suppose \(1 < p < \infty \). Show that for all \(a \in (0,1) \)
\[
(1) \quad \lim_{x \to a} \frac{f(x) - f(a)}{|x - a|^{1/q}} = 0.
\]
2. Suppose that \(p = \infty \), so \(q = 1 \). Show that in this case (1) is false in general. Identify those \(f \) for which it is true.

Problem 5. Show that an orthonormal set \(\{\phi_n\}_{n \geq 1} \) in \(L^2(a,b) \) is a basis if and only if for all \(x \in (a,b) \)
\[
\sum_{n=1}^{\infty} \left| \int_a^x \phi_n(t) \, dt \right|^2 = x - a.
\]