Covering Theorems

We present Vitali’s Covering Theorem, which plays a crucial role in the study of differentiation properties of functions and measures in Euclidean spaces.

Notation: If B is a closed ball in \mathbb{R}^n of center x and radius r then \hat{B} denotes the closed ball of center x and radius $5r$.

Definitions:

1. A collection F of closed balls in \mathbb{R}^n is a cover of a set $A \subset \mathbb{R}^n$ if
 \[A \subset \bigcup_{B \in F} B \]

2. F is a fine cover of A if, in addition,
 \[\inf \{ \text{diam} B | x \in B, B \in F \} = 0 \]
 for each $x \in A$.

Vitali’s Covering Theorem:

Let F be any collection of non-degenerate closed balls in \mathbb{R}^n with
 \[\sup \{ \text{diam} B | B \in F \} < \infty. \]
Then there is a countable family G of disjoint balls in F such that
 \[\bigcup_{B \in F} B \subset \bigcup_{B \in G} \hat{B} \]
Corollary 1: Assume that \mathcal{F} is a fine cover of A by closed balls and
\[
\sup \{ \text{diam } B | B \in \mathcal{F} \} < \infty.
\]
Then there is a countable family \mathcal{G} of disjoint balls in \mathcal{F} such that for each finite subset $\{B_1, B_2, \ldots, B_m\} \subset \mathcal{F}$, we have
\[
A \setminus \bigcup_{k=1}^{m} B_k \subset \bigcup_{B \in \mathcal{G} \setminus \{B_1, B_2, \ldots, B_m\}} B.
\]

Corollary 2: Let $U \subset \mathbb{R}^n$ be an open set. Let $\delta > 0$. There exists a countable collection \mathcal{G} of disjoint closed balls in U such that $\text{diam } B \leq \delta$ for all $B \in \mathcal{G}$ and
\[
\mathcal{L}^n \left(U \setminus \bigcup_{B \in \mathcal{G}} B \right) = 0.
\]

Corollary 3: Let $E \subset \mathbb{R}^n$ be a measurable set such that $\mathcal{L}^n(E) < \infty$. Let \mathcal{F} be a fine cover of E. Given $\epsilon > 0$ there is a finite disjoint subcollection $\{B_1, B_2, \ldots, B_m\}$ of \mathcal{F} such that
\[
\mathcal{L}^n \left(E \setminus \bigcup_{j=1}^{m} B_j \right) < \epsilon.
\]