MATH 301: Midterm 1

1. Find integers $x, y \in \mathbb{Z}$ so that $12 x+29 y=1$.
2. Only one of the following two statements is true:

Statement A: "The sum of any 4 consecutive integers is divisible by $4 . "$
Statement B: "The sum of any 5 consecutive integers is divisible by 5 ."
For the true statement, provide a proof. For the false statement, give a counterexample.
3. Find the smallest number with exactly 20 divisors.
4. In this problem a, b, and n are positive integers.
(a) If $a|n, b| n$, and $\operatorname{gcd}(a, b)=1$, prove that $a b \mid n$.
(b) Give an example to show that the statement in part (a) is not necessarily true if you remove the $" \operatorname{gcd}(a, b)=1 "$ condition.
5. Choose one of the following statements to prove (both are true!)
(a) For any $k>1$, there are infinitely many n such that $\tau(n)=k$.
(b) $\tau(n) \leq 2 \sqrt{n}$ for all $n \geq 1$.
6. (\star) A number n is called abundant if $\sigma(n)>2 n$. Let's call a number n hyperabundant if $\sigma(n)>100 n$.
Do hyperabundant numbers exist? Either prove or disprove the existence of such numbers.

