MATH 301: Problem Set 8

1. For practice, compute the following values of Euler's phi function: $\varphi(21)$, $\varphi(42), \varphi(43)$, and $\varphi(7!)$.
2. Prove that $\varphi(n)=\varphi(2 n)$ if and only if n is odd.
3. Show that the product formula for $\varphi(n)$ can be rearranged to obtain the expression

$$
\frac{\varphi(n)}{n}=\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

Then, interpret this as a statement about probabilities.
4. In lecture 13 , we proved that a prime dividing a number of the form $n^{2}+1$ is necessarily of the form $4 k+1$ (well, aside from the prime 2).
(a) Suppose instead of $n^{2}+1$ we consider $n^{2}-1$. As it turns out, the question of which primes can appear as divisors of $n^{2}-1$ is much less interesting. Why?
(b) Suppose we consider $n^{2}-5$ instead. Write down the numbers $n^{2}-5$ for $n=3,4, \ldots, 12$ and then find the prime factorization for each.
(c) Based on your data, make a conjecture about which primes can appear as divisors of $n^{2}-5$.
5. Find all values of n such that $\varphi(n)=32$. There are many!
6. A number n is called quasiperfect if $\sigma(n)=2 n+1$. Here $\sigma(n)$ is the sum of divisors function.
(a) (\star) Prove that a quasiperfect number must be an odd square.
(b) $(\star \star)$ Do any quasiperfect numbers exist?

