MATH 301: Problem Set 8

- 1. For practice, compute the following values of Euler's phi function: $\varphi(21)$, $\varphi(42)$, $\varphi(43)$, and $\varphi(7!)$.
- 2. Prove that $\varphi(n) = \varphi(2n)$ if and only if n is odd.
- 3. Show that the product formula for $\varphi(n)$ can be rearranged to obtain the expression

$$\frac{\varphi(n)}{n} = \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right).$$

Then, interpret this as a statement about *probabilities*.

- 4. In lecture 13, we proved that a prime dividing a number of the form $n^2 + 1$ is necessarily of the form 4k + 1 (well, aside from the prime 2).
 - (a) Suppose instead of $n^2 + 1$ we consider $n^2 1$. As it turns out, the question of which primes can appear as divisors of $n^2 1$ is much less interesting. Why?
 - (b) Suppose we consider $n^2 5$ instead. Write down the numbers $n^2 5$ for $n = 3, 4, \ldots, 12$ and then find the prime factorization for each.
 - (c) Based on your data, make a **conjecture** about which primes can appear as divisors of $n^2 5$.
- 5. Find all values of n such that $\varphi(n) = 32$. There are many!
- 6. A number n is called **quasiperfect** if $\sigma(n) = 2n + 1$. Here $\sigma(n)$ is the sum of divisors function.
 - (a) (\bigstar) Prove that a quasiperfect number must be an odd square.
 - (b) $(\bigstar \bigstar)$ Do any quasiperfect numbers exist?