MATH 301: Problem Set 7

1. Recall Euler's Theorem, which states that if $\operatorname{gcd}(a, m)=1$, then

$$
a^{\varphi(m)} \equiv 1 \quad(\bmod m)
$$

where $\varphi(m)$ is the number of positive integers less than m that are coprime to m.
(a) Compute $\varphi(9)$.
(b) Use Euler's Theorem to help compute $5^{123}(\bmod 9)$.
2. Without doing any calculations, the true statement

$$
179^{492} \equiv 373 \quad(\bmod 493)
$$

allows you to conclude something interesting about one of the numbers in the equation. Which number, and what is the conclusion? (Hint: what would Fermat's theorem say about this?)
3. Numbers like 11, 1111111 , or 1111 that contain only the digit 1 are called repunits. Prove that every prime aside from 2 and 5 occurs as a factor of some repunit.
4. The multiplicative order of an integer a modulo m is the smallest positive integer exponent k so that $a^{k} \equiv 1(\bmod m)$, if it exists.
(a) The multiplicative order is only defined for those integers a that are coprime to the modulus m. Why?
(b) Find the multiplicative orders of each element of $\mathbb{Z} / 9 \mathbb{Z}$ for which it is defined.
(c) Find the multiplicative orders of each element of $\mathbb{Z} / 8 \mathbb{Z}$ for which it is defined. Do your findings contradict Euler's Theorem?
5. Prove that the multiplicative order of a modulo m divides $\varphi(m)$.
6. (\star) Compute the last two digits of $3 \uparrow \uparrow 2000$. The notation $3 \uparrow \uparrow 2000$ is called "Knuth's up-arrow notation" and it means $3^{3^{3^{3} \cdots 3^{3^{3}}}}$ (2000 3's total!!)

