MATH 301: Problem Set 7

1. Recall Euler's Theorem, which states that if gcd(a, m) = 1, then

 $a^{\varphi(m)} \equiv 1 \pmod{m},$

where $\varphi(m)$ is the number of positive integers less than m that are coprime to m.

- (a) Compute $\varphi(9)$.
- (b) Use Euler's Theorem to help compute $5^{123} \pmod{9}$.
- 2. Without doing any calculations, the true statement

 $179^{492} \equiv 373 \pmod{493}$

allows you to conclude something interesting about one of the numbers in the equation. Which number, and what is the conclusion? (Hint: what would Fermat's theorem say about this?)

- 3. Numbers like 11, 1111111, or 1111 that contain only the digit 1 are called **repunits**. Prove that *every* prime aside from 2 and 5 occurs as a factor of some repunit.
- 4. The **multiplicative order** of an integer *a* modulo *m* is the *smallest* positive integer exponent *k* so that $a^k \equiv 1 \pmod{m}$, if it exists.
 - (a) The multiplicative order is only defined for those integers a that are coprime to the modulus m. Why?
 - (b) Find the multiplicative orders of each element of $\mathbb{Z}/9\mathbb{Z}$ for which it is defined.
 - (c) Find the multiplicative orders of each element of $\mathbb{Z}/8\mathbb{Z}$ for which it is defined. Do your findings contradict Euler's Theorem?
- 5. Prove that the multiplicative order of a modulo m divides $\varphi(m)$.
- 6. (\bigstar) Compute the last two digits of 3 $\uparrow\uparrow$ 2000. The notation 3 $\uparrow\uparrow$ 2000 is called "Knuth's up-arrow notation" and it means $3^{3^{3\cdots}}$ (2000 3's total!!)