MATH 301: Problem Set 3

1. Consider the number system \mathbb{E} consisting of all positive even integers. An element $p \in \mathbb{E}$ is called "prime" if it cannot be written as a product $p=a b$ where both a and b are in \mathbb{E}.
Find the smallest element of \mathbb{E} that can be written as a product of "primes" in 2 different ways. (This shows that unique factorization fails for the number system \mathbb{E} !)
2. Find the smallest positive integer n such that $15120 n$ is a perfect square. [Hint: how would you identify a number as square from its prime factorization?]
3. Prove that there are infinitely many primes of the form $6 n+5$.
4. The number 100 ! ends with a long string of zeroes. How many zeroes exactly?
5. Prove there exist 1 million consecutive composite numbers.
6. This problem concerns the mysterious polynomial $f(x)=x^{2}+x+41$.
(a) Compute $f(n)$ for $n=1,2, \ldots 10$. Based on the type of numbers you're getting, make a conjecture about the possible values $f(n)$ when n is any positive integer.
(b) Either prove or disprove your conjecture from part (a).
(c) (\star) In fact, prove that for any polynomial of the form $f(x)=a x^{2}+$ $b x+c$ with a, b, c integers and $a \neq 0, f(n)$ will be composite for infinitely many positive integers n.
(d) $(\star \star)$ Find a quadratic polynomial $f(x)$ such that $f(n)$ is prime for infinitely many values of n. This is still a double starred problem, even though you're allowed to choose the polynomial!
