MATH 301: Problem Set 2

1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(221,187)$.
(b) Find integers x and y so that $\operatorname{gcd}(221,187)=221 x+187 y$.
2. In this problem F_{n} indicates the nth Fibonacci number.
(a) Prove the identity $F_{n}=5 F_{n-4}+3 F_{n-5}$.
(b) Prove the following interesting property of Fibonacci numbers: if $5 \mid n$, then $5 \mid F_{n}$. (Hint: part (a) and induction)
3. Prove the following well-known divisibility rule for 4: "If the last two digits of a number form a number that's divisible by 4 , then the number is divisible by $4 "$. For example, 65732 is divisible by 4 because 32 is.
(Hint: you can express your number in the form $n=100 a+b$, where b is the number formed by the last 2 digits)
4. Is it true that $\operatorname{gcd}(x, y)=\operatorname{gcd}(x+y, x-y)$? If so prove it. If not, find a counterexample.
5. The paper you are holding measures 8.5 inches by 11 inches. Using this info, figure out a way to measure out a perfect 1-inch square. No rulers allowed!
6. (\star) What are the possible values of $\operatorname{gcd}\left(n^{2}+1,(n+1)^{2}+1\right)$? (You may wish to start by generating some data for small values of n and making a conjecture. Then see if you can prove your conjecture.)
