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Abstract. These lectures were prepared for the first three weeks (May 8-22) of the 2007
(Pre)Doc Course on Integer Points in Polyhedra at the Free University in Berlin. The
main focus of these lectures is on the convex hull of integer points in a rational polyhe-
dron. This object is again a polyhedron and is known as the integer hull of the rational
polyhedron. Integer hulls play a fundamental role in integer programming and have been
studied extensively. In these lectures we will approach integer hulls from the point of view
of optimization. We will spend roughly half the time on understanding the structure of
integer hulls and algorithms for computing them. The other half will focus on the complex-
ity of these objects in terms of the size of the original rational polyhedron. No knowledge
of polyhedral or complexity theory will be assumed. We will develop the necessary basics
in the first week and during the course of the lectures, as needed.

The material in these notes is drawn from several existing sources, among which the
main ones are the book Theory of Linear and Integer Programming by Alexander Schrijver
[Sch86] and an unpublished set of lecture notes by Les Trotter titled Lectures on Integer

Programming [Tro92].

Please send all corrections and suggestions, no matter how trivial, to

thomas@math.washington.edu

Need to do: June 2007

• Make all corrections and incorporate suggestions from the students.
• Add figures.
• Add polymake exercises. Add more exercises overall, especially in the later chapters.
• Type up chapters 1 and 15 which are currently hand-written.
• Need to make lectures for all other chapters with a *
• What else can be added?
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CHAPTER 1

Why Integer Hulls and Integer Polytopes?

Have a hand-written overview. Need to type it up.
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CHAPTER 2

Farkas Lemma

The Farkas Lemma is sometimes called the Fundamental Theorem of Linear In-
equalities and is due to Farkas and Minkowski with sharpenings by Caratheodory and
Weyl. It underlies all of linear programming and is the first of several alternative theorems
that we will see in this course. It is can be interpreted as a theorem about polyhedral cones
which makes it a geometric statement and therefore, easier to remember.

Definition 2.1. (1) A non-empty set C is a cone if for every x,y ∈ C, λx + µy
is also in C whenever λ, µ ∈ R≥0.

(2) A cone C is polyhedral if there exists a real matrix A such that

C = {x : Ax ≤ 0}.

Such a cone is said to be finitely constrained.
(3) The cone generated by the set of vectors b1, . . . ,bm ∈ Rn is the set

cone(b1, . . . ,bm) := {
m

∑

i=1

λibi : λi ≥ 0} = {λB : λ ≥ 0}

where B is the matrix with rows b1, . . . ,bm. Such a cone is said to be finitely
generated.

One can check that a cone C is a convex set (i.e., if x,y ∈ C then λx + µy ∈ C
for all 0 ≤ λ, µ ≤ 1 and λ + µ = 1.) For a non-zero vector a ∈ Rn we call the set
{x ∈ Rn : ax ≤ 0} a linear half-space and the set {x ∈ Rn : ax ≤ β} for some scalar
β 6= 0, an affine half-space. Thus a polyhedral cone is the intersection of finitely many
linear half-spaces.

There is a classical elimination scheme for linear inequalities called Fourier-Motzkin
Elimination that we now describe. Suppose A ∈ Rm×n with rows a1, . . . ,am and b =
(b1, . . . , bm) ∈ Rm. Consider the inequality system

(1) Ax ≤ b.

The Fourier-Motzkin procedure eliminates xn from (1) to get a new system (2) by doing
the following operations:

(i) If ain = 0 then put aix ≤ bi in (2).
(ii) If for rows ai and aj of A, ain > 0 and ajn < 0 then put the following inequality

in (2).

ai1

ain
x1 + · · ·+ ain−1

ain−1
xn−1 + ain

ain
xn ≤ bi

ain

−
aj1

ajn
x1 − · · ·−

ajn−1

ajn−1
xn−1 −

ajn

ajn
xn ≤ −

bj

ajn

( ai1

ain
−

aj1

ajn
)x1 + · · ·+ (ain−1

ain
−

ajn−1

ajn
)xn−1 ≤ bi

ain
−

bj

ajn
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8 2. FARKAS LEMMA

Lemma 2.2. The system (1) is consistent if and only if the system (2) constructed as
above is consistent.

Proof. Clearly (1) implies (2) since all inequalities in (2) are non-negative linear com-
binations of those in (1).

Now suppose x1, . . . , xn−1 satisfies (2). We need to construct an xn such that x =
(x1, . . . , xn−1, xn) satisfies (1). Define xn as follows: Rearranging the inequality obtained
from (ii) we have that for all ain > 0 and ajn < 0, x1, . . . , xn−1 satisfies

1

ain
(bi − ai1x1 − · · · − ain−1xn−1) ≥

1

ajn
(bj − aj1x1 − · · · − ajn−1xn−1).

Therefore, there exists λ and µ such that:

λ := min(i : ain>0){
1

ain
(bi − ai1x1 − · · · − ain−1xn−1)}, and

µ := max(j : ajn<0){
1

ajn
(bj − aj1x1 − · · · − ajn−1xn−1)}.

If there does not exist any ai such that ain > 0 then set λ = ∞ and similarly, if there does
not exist any aj such that ajn < 0, set µ = −∞. Now if xn is chosen such that λ ≥ xn ≥ µ,
then x satisfies (1) since

1

ain
(bi − ai1x1 − · · · − ain−1xn−1) ≥ xn ≥

1

ajn
(bj − aj1x1 − · · · − ajn−1xn−1)

whenever ain > 0 and ajn < 0. Trivially, the inequalities from (i) are satisfied by x. �

Note that if the matrix A and vector b are rational in the system Ax ≤ b, then the
system (2) obtained by eliminating xn is also rational. Geometrically, eliminating xn is
equivalent to projecting the solution set of Ax ≤ b onto the x1, . . . , xn−1 coordinates.

Theorem 2.3. Weyl’s Theorem. If a non-empty cone C is finitely generated, then it
is also finitely constrained, or equivalently, polyhedral.

Proof. Let C = {λB : λ ≥ 0} be a finitely generated cone. Then

C = {x : x = λB, λ ≥ 0}
= {x : x − λB ≤ 0,−x + λB ≤ 0,−λ ≤ 0}
= {x : Ax ≤ 0}

where Ax ≤ 0 is obtained from the inequality system x − λB ≤ 0,−x + λB ≤ 0,−λ ≤ 0
by Fourier-Motzkin elimination of λ. �

Theorem 2.4. Farkas Lemma. Given a matrix A and a vector c, exactly one of the
following holds:

either yA = c, y ≥ 0 has a solution or there exists an x such that Ax ≤ 0 but cx > 0.

Proof. We first check that both statements cannot hold simultaneously. If there exists
a y ≥ 0 such that yA = c and an x such that Ax ≤ 0 and cx > 0 then

0 < cx = (yA)x = y(Ax) ≤ 0

which is a contradiction. Let C = {yA : y ≥ 0}. By Theorem 2.3, there exists a matrix
B such that C = {x : Bx ≤ 0}. Now c = yA, y ≥ 0 if and only if c ∈ C. If c 6∈ C then
there exists a row x of B such that cx > 0. However, since every row of A lies in C (by
using y equal to the unit vectors) , Ax ≤ 0. �
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Definition 2.5. The polar of a cone C ⊆ Rn is the set

C∗ := {z ∈ Rn : z · x ≤ 0 ∀ x ∈ C}.

Exercise 2.6. Prove the following facts for cones C and K:

(1) C ⊆ K implies that C∗ ⊇ K∗,
(2) C ⊆ C∗∗,
(3) C∗ = C∗∗∗,
(4) If C = {λB : λ ≥ 0} then C∗ = {x : Bx ≤ 0},
(5) If C = {x : Ax ≤ 0} then C = C∗∗.

Theorem 2.7. Minkowski’s Theorem. If a cone C is polyhedral then it is non-empty
and finitely generated.

Proof. Let C = {x : Ax ≤ 0}. Then, since x = 0 lies in C, C 6= ∅. Let L := {λA :
λ ≥ 0}. By Exercise 2.6 (4), C = L∗ and hence, C∗ = L∗∗. Since L is finitely generated, by
Theorem 2.3, L is also polyhedral which implies by Exercise 2.6 (5) that L = L∗∗ and hence
C∗ = L. Thus C∗ is finitely generated. Now since L is finitely generated, by Theorem 2.3,
L is also polyhedral. So repeating the same arguments as above for L, we get that L∗ is
finitely generated. But we saw that L∗ = C and hence C is finitely generated. �

Combining Theorems 2.3 and 2.7 we get the the Weyl-Minkowski duality for cones:

Theorem 2.8. A cone is polyhedral if and only if it is finitely generated.

Farkas Lemma provides analogs of Exercise 2.6 (4) and (5).

Corollary 2.9. (1) If C = {yA : y ≥ 0} then C = C∗∗.
(2) If C = {x : Ax ≤ 0} then C∗ = {yA : y ≥ 0}.

Proof. (1) Farkas Lemma states that either there exists y ≥ 0 such that c = yA or
there exists x such that Ax ≤ 0 and cx > 0. Let C = {yA : y ≥ 0}. By Exercise 2.6
(4), C∗ = {x : Ax ≤ 0}. The first statement of Farkas Lemma says that c ∈ C. The
second statement states that there exists x ∈ C∗ such that cx > 0, or equivalently, c 6∈ C∗∗.
Further, the two statements are mutually exclusive. Therefore, c 6∈ C if and only if c 6∈ C∗∗

which implies that C = C∗∗.
(2) If C = {x : Ax ≤ 0}, then by Exercise 2.6 (4), C = {yA : y ≥ 0}∗. Therefore by

part (1), C∗ = {yA : y ≥ 0}∗∗ = {yA : y ≥ 0}. �

Exercise 2.10. The Fundamental Theorem of Linear Equations says that given
a matrix A and a vector b exactly one of the following holds:

either Ax = b has a solution or there exists a vector y such that yA = 0 but yb 6= 0.

Prove this theorem.

Exercise 2.11. Prove the following two variants of Farkas Lemma.

(1) Given a A and a vector b exactly one of the following holds. Either the system
Ax = b, x ≥ 0 has a solution or there exists y such that yA ≤ 0 but yb > 0.

(2) Given a matrix A and a vector b exactly one of the following holds. Either the
system Ax ≤ b has a solution or there exists y ≤ 0 such that yA = 0 but yb > 0.





CHAPTER 3

Polyhedra

Definition 3.1. If a1, . . . ,ap ∈ Rn, we call
∑p

i=1 λiai,
∑p

i=1 λi = 1, λi ≥ 0 for all i,
a convex combination of a1, . . . ,ap. The set of all convex combinations of finitely many
points from a set S ⊆ Rn, denoted as conv(S), is called the convex hull of S.

Definition 3.2. (1) A set P ⊆ Rn of the form {x ∈ Rn : Ax ≤ b} for a matrix
A ∈ Rm×n and vector b ∈ Rm is called a polyhedron.

(2) The convex hull of finitely many points in Rn is called a polytope.

Theorem 3.3. Affine Weyl Theorem. If P = {yB + zC : y, z ≥ 0,
∑

zi = 1}
for B ∈ Rp×n and C ∈ Rq×n then there exists a matrix A ∈ Rm×n and b ∈ Rm such that
P = {x ∈ Rn : Ax ≤ b}.

Proof. If P = ∅, then we may choose A = (0 0 · · · 0) and b = −1. If P 6= ∅ but C is
vacuous, then the above theorem is Weyl’s Theorem for cones (Theorem 2.3). So assume
that P 6= ∅ and C is not vacuous. Define the finitely generated cone P ′ ⊆ Rn+1 as follows.

P ′ := {(y, z)

(

B 0
C 1

)

: y, z ≥ 0}

where 1 is the vector of all ones of length q and 0 has length p. Then P ′ = {(yB+zC,
∑

zi) :
y, z ≥ 0}. Note that x ∈ P if and only if (x, 1) ∈ P ′. Applying Weyl’s Theorem to P ′ we
get

P ′ = {(x, xn+1) : (A| − b)

(

x
xn+1

)

≤ 0}

for some matrix A ∈ Rm×n, b ∈ Rm and some m. Since x ∈ P if and only if (x, 1) ∈ P ′, we
get that P = {x ∈ Rn : Ax ≤ b}. �

Definition 3.4. If P and Q are two polyhedra in Rn then

P + Q = {p + q : p ∈ P, q ∈ Q} ⊆ Rn

is called the Minkowski sum of P and Q.

Remark 3.5. Note that Theorem 3.3 says that the Minkowski sum of a polyhedral
(finitely generated) cone and a polytope is a polyhedron.

We now prove that, in fact, every polyhedron is the Minkowski sum of a finitely gener-
ated cone and a polytope.

Theorem 3.6. Affine Minkowski Theorem. Let P = {x ∈ Rn : Ax ≤ b} for
some A ∈ Rm×n and b ∈ Rm. Then there exists B ∈ Rp×n and C ∈ Rq×n such that
P = {yB + zC : y, z ≥ 0,

∑

zi = 1}.

11



12 3. POLYHEDRA

Proof. If P = ∅ then we can take B and C to be vacuous (i.e., p = q = 0). If P 6= ∅
then define the polyhedral cone P ′ ⊆ Rn+1 as follows.

P ′ := {(x, xn+1) :

(

A −b
0 −1

)(

x
xn+1

)

≤ 0}.

Again, x ∈ P if and only if (x, 1) ∈ P ′. By Minkowski’s Theorem for cones, there exists a

D ∈ Rr×(n+1) such that

P ′ = {uD : u ≥ 0}.

Rearranging the rows of D so that the rows with last component zero are on the top and
rescaling the last component of all other rows to be one, we can assume that D is of the
form

D =

(

B 0
C 1

)

where B ∈ Rp×n, C ∈ Rq×n and p + q = r. Then (x, 1) ∈ P ′ if and only if x = yB + zC
with y, z ≥ 0, u = (y, z) and

∑

zi = 1. �

We proved both the affine Weyl and Minkowski theorems for polyhedra by a technique
called homogenization which lifts polyhedra to cones in one higher dimension and then uses
a theorem for cones followed by a projection back to the original space of the polyhedron.
The adjective “homogenous” refers to the right-hand-side 0 in the constraint representation
of a polyhedral cone. This is a standard technique for proving facts about polyhedra.

Exercise 3.7. Prove that a set P ⊆ Rn is a polytope if and only if P is a bounded
polyhedron.

Definition 3.8. The characteristic cone or recession cone of a polyhedron P ⊆ Rn

is the polyhedral cone

rec.cone(P ) := {y ∈ Rn : x + y ∈ P for all x ∈ P}.

Exercise 3.9. Prove the following facts about a polyhedron P = {x : Ax ≤ b}.

(1) rec.cone(P ) = {y : Ay ≤ 0},
(2) y belongs to rec.cone(P ) if and only if there exists an x ∈ P such that x+λy ∈ P

for all λ ≥ 0,
(3) P + rec.cone(P ) = P ,
(4) P is a polytope if and only if rec.cone(P ) = {0},
(5) if P = Q + C for a polytope Q and a polyhedral cone C, then C = rec.cone(P ).

Definition 3.10. The lineality space of a polyhedron P is the linear subspace

lin.space(P ) := rec.cone(P ) ∩ −rec.cone(P ).

Check that if P = {x : Ax ≤ b} then lin.space(P ) = {y : Ay = 0} and it is the largest
subspace contained in P .

Definition 3.11. A polyhedron P is pointed if its lineality space is {0}.

The last definition we want to make is that of the dimension of a polyhedron. To do
this, we first need some basics from affine linear algebra.

Definition 3.12. (1) An affine linear combination of the vectors a1, . . . ,ap ∈
Rn is the sum

∑p
i=1 λiai where λi ∈ R and

∑p
i=1 λi = 1.
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(2) The affine hull of a set S ⊆ Rn, denoted as aff.hull(S), is the set of all affine
combinations of finitely many points of S.

Example 3.13. The affine hull of two points p and q in Rn is the line through the two
points. The affine hull of a set S ⊆ Rn is the union of all lines through any two points in
S. (Prove this if needed.)

Check that for a matrix A and vector b, the set {x : Ax = b} is closed under affine
combinations and is hence its own affine hull. If b 6= 0 we call {x : Ax = b} an affine
subspace. If x0 is such that Ax0 = b, then {x : Ax = b} is the translate of the linear
subspace {x : Ax = 0} by x0.

Definition 3.14. The dimension of {x : Ax = b} is defined to be the dimension of
the linear subspace {x : Ax = 0}.

In fact, if S is any subset of Rn then there exists a matrix A and vector b such that
aff.hull(S) = {x : Ax = b}. Thus every affine hull has a well-defined dimension.

Proposition 3.15. If P = {x ∈ Rn : Ax ≤ b} and A′x = b′ is the subsystem
of inequalities in Ax ≤ b that hold at equality on P , then the affine hull of P equals
{x ∈ Rn : A′x = b′}.

Proof. If p1, . . . ,pt ∈ P then A′pi = b′ for all i = 1, . . . , t and therefore, if
∑t

i=1 λi = 1

then A′(
∑t

i=1 λipi) =
∑t

i=1 λiA
′pi = (

∑t
i=1 λi)b

′ = b′. This implies that aff.hull(P ) ⊆
{x : A′x = b′}.

To show the reverse inclusion, suppose x0 satisfies A′x0 = b′. If x0 ∈ P then x0 ∈
aff.hull(P ) since every set S is contained in its affine hull. If x0 6∈ P , then select a point
x1 ∈ P such that it satisfies all the remaining inequalities in Ax ≤ b with a strict inequality.
(Why should such an x1 exist in P?) Then the line segement joining x0 and x1 contains at
least one more point in P = {x : Ax ≤ b} and hence the line through x1 and x0 is in the
affine hull of P which implies that x0 is in the affine hull of P . �

Definition 3.16. The dimension of a polyhedron is the dimension of its affine hull.
The dimension of the empty set is taken to be −1.

Therefore, to calculate the dimension of a polyhedron P = {x ∈ Rn : Ax ≤ b}, we first
determine the largest subsystem A′x ≤ b′ in Ax ≤ b that holds at equality on P . Then the
dimension of P is n − rank(A′).





CHAPTER 4

Faces of a Polyhedron

Consider a polyhedron P = {x ∈ Rn : Ax ≤ b}. For a non-zero vector c ∈ Rn and a
δ ∈ R, let H = {x ∈ Rn : cx = δ} and H≤ = {x ∈ Rn : cx ≤ δ}. We say that H is a
supporting hyperplane of P if P ⊆ H≤ and δ = max{cx : x ∈ P}.

Definition 4.1. A subset F of P is called a face of P if either F = P or F = P ∩H for
some supporting hyperplane H of P . All faces of P except P itself are said to be proper.
The faces of P can be partially ordered by set inclusion. The maximal proper faces of P in
this ordering are called facets.

Remark 4.2. In the combinatorial study of polyhedra it is usual to include the empty
set as a face of a polyhedron. This makes the partially ordered set of all faces of a polyhedron
into a lattice. In this course, we do not include the empty set as a face of a polyhedron.

The problem maximize{cx : x ∈ P} is a linear program. If this maximum is finite,
then the set of optimal solutions of the linear program is the face F = P ∩ H of P . In this
case, δ is called the optimal value of the linear program maximize{cx : x ∈ P}. We write
F = facec(P ) to denote this. The improper face P = face0(P ). Every face of P is of the
form facec(P ) for some c ∈ Rn.

The dual of the linear program

maximize{cx : Ax ≤ b}

is the linear program

minimize{yb : yA = c, y ≥ 0}.

A linear program is infeasible if the underlying polyhedron is empty and unbounded if
it has no finite optimal value.

Exercise 4.3. Prove that the linear program max{cx : Ax ≤ b} is unbounded if and
only if there exists a y in the recession cone of P = {x : Ax ≤ b} with cy > 0.

Corollary 4.4. Given a polyhedron P , the linear program max{cx : x ∈ P} is bounded
if and only if c lies in the polar of the recession cone of P .

Linear programming has a famous duality theorem which we now state without proof.

Theorem 4.5. Linear Programming Duality. If max{cx : Ax ≤ b} has a finite
optimal value then

max{cx : Ax ≤ b} = min{yb : yA = c, y ≥ 0}.

Proposition 4.6. Let F ⊆ P . Then F is a face of P if and only if F 6= ∅ and
F = {x ∈ P : A′x = b′} for some subsystem A′x ≤ b′ of Ax ≤ b.

15



16 4. FACES OF A POLYHEDRON

Proof. Suppose F is a face of P . Then F 6= ∅ and F = P ∩ H for some supporting
hyperplane H = {x : cx = δ} of P . Further, δ = max{cx : Ax ≤ b} = min{yb :
yA = c, y ≥ 0} by linear programming duality. Let y∗ be an optimal solution of the dual
program and A′x ≤ b′ be the inequalities in Ax ≤ b indexed by all i such that y∗i > 0. If
x ∈ P then

x ∈ F ⇔ cx = δ ⇔ y0Ax = y0b ⇔ y0(Ax − b) = 0 ⇔ A′x = b′.

Hence F = {x ∈ P : A′x = b′}.
On the other hand, if ∅ 6= F = {x ∈ P : A′x = b′} for some subsystem A′x ≤ b′ of

Ax ≤ b, then take c :=
∑

{a′ : a′ is a row of A′} and δ :=
∑

b′i. Then F = facec(P ) since
if x ∈ F , then cx = δ while for all other x ∈ P , cx < δ since at least one inequality in
A′x ≤ b′ is satisfied with the strict inequality by such an x. �

Corollary 4.7. (1) A polyhedron has only finitely many faces.
(2) Every non-empty face of a polyhedron is again a polyhedron.
(3) If G is contained in a face F of a polyhedron P , then G is a face of P if and only

if G is a face of F .

Among the faces of F , the most important ones are the minimal and maximal proper
faces under set inclusion. We look at minimal faces quite carefully now.

Proposition 4.8. Let F = {x ∈ P : A′x = b′} be a face of P . Then F is a minimal
face if and only if F is the affine space {x : A′x = b′}.

Proof. Suppose F = {x : A′x = b′}. Then by Proposition 4.6, F has no proper faces
since all inequalities describing F are equalities. Therefore, by Corollary 4.7, F is a minimal
face of P .

To prove the converse, suppose F = {x ∈ P : A′x = b′} is a minimal face of P . Let
S = {x : A′x = b′}. Clearly, F ⊆ S. We need to prove that F = S. Since F is a minimal
face of P we may assume that if x ∈ F then x satisfies all inequalities in Ax ≤ b but not
in A′x ≤ b′ with a strict inequality.

Suppose x̂ ∈ F and x̄ ∈ S\F . Then the line segment [x̂, x̄] ⊂ S. Since x̄ ∈ S\F ,
x̄ 6∈ P . Therefore there exists at least one inequality ax ≤ β in Ax ≤ b but not in
A′x ≤ b′ such that ax̄ > β > ax̂. Now let λ := (ax̄ − β)/(ax̄ − ax̂). Then 0 < λ < 1 and
a(λx̂+(1−λ)x̄) = β. Let λ∗ be the minimum such λ over inequalities violated by x̄. Define
x∗ := λ∗x̂ + (1 − λ∗)x̄. Then x∗ ∈ S ∩ P = F and x∗ satisfies at equality a subsystem of
Ax ≤ b that properly contains A′x ≤ b′ which contradicts the minimality of F . �

Exercise 4.9. Prove that each minimal face of a polyhedron P = {x ∈ Rn : Ax ≤ b}
is a translate of the lineality space, {x ∈ Rn : Ax = 0}, of P .

The above exercise shows that each minimal face of a polyhedron P = {x ∈ Rn : Ax ≤
b} has dimension equal to n−rank(A). In particular, if P is pointed, then each minimal face
of P is just a point. These points are called the vertices of P . Each vertex is determined
by n linearly independent equations from Ax = b.

We can now refine the Affine Minkowski Theorem for polyhedra as follows.

Theorem 4.10. Let P = {x ∈ Rn : Ax ≤ b} with p minimal faces and let xi be a point
from the minimal face Fi. Then P = conv(x1, . . . ,xp) + rec.cone(P ).

Proof. Let Q = conv(x1, . . . ,xp) + rec.cone(P ). Then Q ⊆ P and by the Affine Weyl
Theorem (Theorem 3.3), Q is a polyhedron. Suppose x̄ ∈ P\Q. Then since x̄ 6∈ Q, there
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is some inequality in the inequality description of Q, say ax ≤ β that is violated by x̄.
Therefore, max{ax : x ∈ Q} = β < ax̄ ≤ max{ax : x ∈ P} := β̄. We now consider two
cases:

Case (1) β̄ < ∞: Let Fi be a minimal face of P contained in facea(P ). Then for all x ∈ Fi,
ax = β̄ > β. If we could show that Fi ⊆ Q, then ax ≤ β for all x ∈ Fi which
would contradict the previous statement. So we proceed to show that Fi ⊆ Q. If
Fi = {xi} then Fi ⊆ Q. Else, there exists a point yi(6= xi) ∈ Fi and therefore, the
line segment [xi,yi] ⊆ P . But since Fi is a minimal face of P , by Proposition 4.8,
Fi is an affine space and so, in fact, the line through xi and yi is contained in Fi

and hence in P . This implies that A(λyi + (1 − λ)xi) = A(xi + λ(yi − xi)) ≤ b
for all λ ∈ R which in turn implies that A(yi − xi) = 0. Therefore, yi − xi ∈
rec.cone(P ) = rec.cone(Q) and hence, yi = xi + (yi − xi) ∈ Q.

Case (2) max{ax : x ∈ P} is unbounded: In this case, by Exercise 4.3 there must exist
a vector y ∈ rec.cone(P ) such that ay > 0. But both P and Q have the same
recession cone and hence by the same exercise, the linear program max{ax : x ∈
Q} is also unbounded which contradicts that the maximum is β < ax̄ < ∞.

�

For completeness, we state some results about the facets of a polyhedron without proofs.
Facets are just as important as the minimal faces of a polyhedron and programs like Poly-
make convert between minimal faces and facets of a polyhedron.

An inequality ax ≤ β in Ax ≤ b is called an implicit equality (in Ax ≤ b) if ax = β
for all x such that Ax ≤ b. Let A′x ≤ b′ be the set of implicit equalities in Ax ≤ b and
A′′x ≤ b′′ be the rest. An inequality ax ≤ β in Ax ≤ b is redundant in Ax ≤ b if it is
implied by the remaining contraints in Ax ≤ b. An inequality system is irredundant if it
has no redundant constraints.

Theorem 4.11. [Sch86, Theorem 8.1] If no inequality in A′′x ≤ b′′ is redundant in
Ax ≤ b then there exists a bijection between the facets of P = {x : Ax ≤ b} and the
inequalities in A′′x ≤ b′′ given by F = {x ∈ P : ax = β} for any facet F of P and an
inequality ax ≤ β from A′′x ≤ b′′.

Corollary 4.12. (1) Each proper face of P is the intersection of facets of P .
(2) P has no proper faces if and only if P is an affine space.
(3) The dimension of any facet of P is one less than the dimension of P .
(4) If P is full-dimensional and Ax ≤ b is irredundant, then Ax ≤ b is the unique

minimal constraint representation of P , up to multiplication of inequalities by a
positive scalar.

Definition 4.13. An n × n real matrix A = (aij) is said to be doubly stochastic if
∑

j

aij = 1 (i = 1, . . . , n),
∑

i

aij = 1 (j = 1, . . . , n) and aij ≥ 0 ∀ (i, j = 1, . . . , n).

Definition 4.14. A 0, 1 matrix of size n×n is called a permutation matrix if it has
exactly one 1 in each row and column.

Exercise 4.15. Prove that the set of all doubly stochastic matrices of size n × n is a
polytope whose vertices are precisley the n! permutation matrices of size n × n.

The convex hull of all doubly stochastic matrices of size n × n is called the Birkhoff
polytope of size n.
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Exercise 4.16. Use Polymake to compute the Birkhoff polytope for small values of n.
Can you predict and prove an inequality description of this polytope from your experiments?
What is the dimension of the Birkhoff polytope as a function of n?

We now use Exercise 4.15 to prove a classical combinatorial theorem about bipartite
graphs. This is an example of how a geometric object like a polyhedron can imply theorems
about a purely combinatorial object like an abstract graph.

Definition 4.17. Given an undirected graph G = (V, E), a matching in G is a collec-
tion of edges in E such that no two edges share a vertex. A matching is perfect if every
vertex of G is incident to some edge in the matching.

Corollary 4.18. Every regular bipartite graph G of degree r ≥ 1 has a perfect match-
ing.

Proof. Note that if a graph has a perfect matching then it has to have an even number
of vertices. Therefore, we may assume that the two sets of vertices in the bipartite graph G
are {1, . . . , n} and {n + 1, . . . , 2n}. Also, note that every perfect matching of the bipartite
graph G can be recorded by an n × n permutation matrix. Now define a matrix A = (aij)
as

aij :=
1

r
(number of edges in G between i and n + j).

Check that A is doubly stochastic. Therefore, by Exercise 4.15, there exists some permu-
tation matrix B of size n × n such that if bij = 1 then aij > 0. This matrix B indexes a
perfect matching in G. �



CHAPTER 5

Elementary Complexity Theory

In this lecture we give a very informal introduction to the theory of computational
complexity so that we can analyze the objects and algorithms we will see in this course.
The treatment is more intuitive than precise.

The basic goal of complexity theory is to create a measure of the complexity or difficulty
of solving a problem. As a first step, we need to encode the problem using an alphabet.

Definition 5.1. (1) The alphabet Σ is a finite set.
(2) Elements of Σ are called letters or symbols.
(3) A string or word from Σ is an ordered finite sequence of letters from Σ. The empty

word is denoted as ∅. The set of all words from Σ is denoted as Σ∗.
(4) The size of a word is the number of letters in it. The empty word has size zero.

The objects we are interested in are usually numbers, vectors, matrices etc. These
objects need to be encoded as words in Σ and hence will have a size.

Example 5.2. In the binary encoding of numbers, the alphabet is Σ = {0, 1} and
a positive number p is expressed in base two and has size equal to ⌈log2(|p| + 1)⌉. For
example, 32 has the binary encoding 100000 which has size 6 = ⌈log2(33)⌉ while 31 has
encoding 11111 which has size 5 = ⌈log2(32)⌉.

Different alphabets and encoding schemes express the same object via different strings
and each such string has a size in that encoding. There are transformations between encod-
ing schemes which also transform between sizes. Under reasonable assumptions all these
sizes are linearly equivalent, or more formally, size1 = O(size2). For our purposes we fix a
concept of size of a string inspired by the binary encoding of numbers.

(1) For an integer p, size(p) := 1 + ⌈log2(|p| + 1)⌉ where the first bit encodes the sign
of the number and the rest encodes the absolute value of the number.

(2) For a rational number α = p
q
, we may assume that p and q are relatively prime

integers and q ≥ 1. Then size(α) := 1 + ⌈log2(|p| + 1)⌉ + ⌈log2(|q| + 1)⌉.
(3) For a rational vector c = (c1, . . . , cn), size(c) := n +

∑n
i=1 size(ci).

(4) For a rational matrix A = (aij) ∈ Qm×n, size(A) := mn +
∑

i,j size(aij).

(5) The size of a linear inequality ax ≤ β or equation ax = β is 1 + size(a) + size(β).
(6) The size of Ax ≤ b or Ax = b is 1 + size(A) + size(b).

A problem is a question or a task. For example, the problem could be Does the system
Ax ≤ b have a solution? or Find a solution of the system Ax ≤ b or determine that there is
none. The former is called a decision problem since the answer is a “yes” or “no”. Formally,
we think of a problem as a set Π ⊆ Σ∗ × Σ∗ and the job is, given a string z ∈ Σ∗, find
a string y ∈ Σ∗ such that (z, y) ∈ Π or decide that no such y exists. The string z is an
input or instance of the problem while y is an output or solution to the problem. A decision
problem can then be recorded as the set of tuples {(z, ∅)} as z ranges over all instances of
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the problem for which the answer to the problem is “yes”. In other words, (z, ∅) 6∈ Π if
and only if z is an instance of the problem for which the answer to the problem is “no”.
Going back to our examples, the problem Does the system Ax ≤ b have a solution? is the
set Π = {((A,b), ∅) : Ax ≤ b is feasible}, and the problem Find a solution of the system
Ax ≤ b or determine that there is none is the set Π′ = {((A,b),x) : x satisfies Ax ≤ b}.
Therefore, if Ax ≤ b is infeasible then the tuple ((A,b), ∅) would not belong to Π and
((A,b), ∗) would not belong to Π′ where ∗ means “anything”.

An algorithm A for a problem Π is a list of instructions that will “solve” Π. By this
we mean that given a string z ∈ Σ∗, A will either find a solution y of the problem Π
(i.e., find a y such that (z, y) ∈ Π) or stop without an output if no such y exists. We
are interested in the running times of algorithms. Since we don’t want this to depend on
the particular implementation of the algorithm or the speed of the computer being used,
we need a definition of running time that is intrinsic to the problem and algorithm. The
way out is to define the running time of an algorithm on an input z to be the number of
elementary bit operations needed by the algorithm before it stops, given the input z.

Definition 5.3. The running time function of an algorithm A for a problem Π is the
function fA : N → N such that

f(s) := max{z : size(z)≤s}( running time ofA for input z).

Note that we can always assume that running time functions are monotonically increas-
ing.

Definition 5.4. An algorithm is said to be polynomial-time or polynomial if its running
time function fA(s) is bounded above by a polynomial in s. A problem Π is polynomial-time
solvable if it has an algorithm that is polynomial.

The elementary arithmetic operations are addition, subtraction, multiplication, division
and comparison of numbers. In rational arithmetic these can be executed by polynomial-
time algorithms. Therefore, to decide if an algorithm is polynomial-time, it is enough to
show that the number of elementary operations needed by the algorithm is bounded by a
polynomial in the size of the input and that the sizes of all intermediate numbers created
are also polynomially bounded in the size of the input.

We now very informally describe the problem classes we are interested in.

(1) The class of all decision problems that are polynomial-time solvable is denoted as
P.

(2) The class of all decision problems for which a string y can be verified to be a
solution for an instance z in polynomial time is called NP. In particular, the
size of the “guess” y has to be polynomially bounded in the size of z. It is not
important how y is produced.

(3) The class of decision problems for which a string z can be verified to not be an
instance of the problem in polynomial time is called co −NP.

Therefore, NP ∩ co − NP consists of those decision problems for which a positive or
negative answer to a given instance z can be verfied in polynomial-time in the size of z.
If a decision problem is in P then it is in NP ∩ co −NP since we are sure to either have
a solution or decide there is none in polynomial time. However, it is a big open problem
(worth a million U.S. dollars) whether P = NP, or even whether NP = co −NP.
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The NP-complete problems are the hardest problems among all NP problems in the
sense that all problems in NP can be “reduced” to an NP-complete problem. By “re-
ducibile” we mean that there is a polynomial-time algorithm that will convert instances of
one problem into instances of another. So if an NP-complete problem had a polynomial-
time algorithm then P = NP. The prototypical example of an NP-complete problem is
the integer linear program

max{cx : Ax ≤ b, x integer}.

To finish this lecture, we look at some examples of problems that are in NP ∩ co−NP
and, in fact, in P.

Example 5.5. Consider the fundamental problem of linear algebra:
Π1: given a rational matrix A and a rational vector b does Ax = b have a solution?

(1) We first prove that if a rational linear system Ax = b has a solution, then it has
one of size polynomially bounded by the size of A and b. This requires several
steps, some of which we state without proofs and some as exercises.

Exercise 5.6. Let A be a square rational matrix of size s. Then the size of
det(A) is at most 2s. (On the other hand, det(A) itself can be exponential in the
size of A. Find such an example.)

Corollary 5.7. The inverse A−1 of a non-singular square rational matrix A
has size polynomially bounded by the size of A.

Proof. The entries of A−1 are quotients of subdeterminants of A. �

Theorem 5.8. If Ax = b has a solution, it has one of size polynomially
bounded by the size of A and b.

Proof. Assume that the rows of A are linearly independent and that A =
[A1 A2] with A1 non-singular. Then (A−1

1 b,0) is a solution of Ax = b of the size
needed. �

(2) Now it is easy to see that Π1 is in NP since by (1), a solution x of polynomial
size exists and clearly, we can plug this x into Ax = b to check that it is indeed a
solution, in polynomial time.

(3) By Exercise 2.10, either Ax = b has a solution or there exists a y such that Ay = 0
but yb 6= 0. By Theorem 5.8, the system yA = 0, yb = 1 has a solution of size
polynomially bounded by the sizes of A and b. Such a solution can be verified to
be a solution in polynomial time. Thus Π1 ∈ co −NP.

(4) It turns out that Π1 is actually in P which subsumes the above results. This
is done by proving that Guassian elimination is a polynomial-time algorithm for
solving linear equations.

Example 5.9. Consider the problem
Π2: given a rational matrix A and a rational vector b does Ax ≤ b have a solution?

As for Π1, we prove that Π2 ∈ NP ∩ co −NP. In fact, Π2 ∈ P.

Exercise 5.10. If the rational system Ax ≤ b has a solution it has one of size polyno-
mially bounded by the size of A and b.
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(Hint: Use the fact that the polyhedron P = {x : Ax ≤ b} has a minimal face
F = {x : A′x = b′} for a subsytem A′x ≤ b′ of Ax ≤ b (Proposition 4.8) and Theorem 5.8.)

This proves that Π2 is in NP.

Exercise 5.11. Use the variant of Farkas Lemma in Exercise 2.11 (2) to prove that
Π2 ∈ co −NP.

The fact that Π2 is in P is far more sophisticated than the corresponding proof for Π1.
It follows from the fact that linear programming is in P, a problem that was open for about
forty years until Kachiyan found the ellipsoid algorithm for solving linear programs in the
early 1980’s.



CHAPTER 6

Complexity of Rational Polyhedra

Lemma 6.1. [Sch86, Corollary 3.2d] Let A ∈ Qm×n and b ∈ Qm such that each row of
the matrix [A b] has size at most φ. If Ax = b has a solution, then

{x : Ax = b} = {x0 + λ1x1 + · · · + λtxt : λ1, . . . , λt ∈ R}

for certain vectors x0,x1, . . . ,xt of size at most 4n2φ.

Proof. The equation on display in the lemma is writing the affine space {x : Ax = b}
as the translate of the linear space {x : Ax = 0} by a vector x0 in the affine space.
Therefore, Ax0 = b and Axi = 0 for i = 1, . . . , t with x1, . . . ,xt a basis for {x : Ax = 0}.
We can choose x0, . . . ,xt such that by Cramer’s rule, each non-zero component of x0, . . . ,xt

is a quotient of subdeterminants of [A b] of order at most m ≤ n. The size of [A b] is at
most m + mφ ≤ nφ. Then by Exercise 5.6, the size of every subdeterminant of [A b] is at
most 2nφ. Therefore, each component of xi, i = 0, . . . , t has size at most 4nφ and hence,
each xi has size at most 4n2φ. �

Let C be a polyhedral cone. The only minimal face of C is its lineality space. Let t be
the dimension of lin.space(C). A face of C of dimension t + 1 is called a minimal proper
face of C. So if C is pointed, then t = 0 and the minimal proper faces of C are its extreme
rays.

Exercise 6.2. Let C = {x : Ax ≤ 0}. Prove that if G is a minimal proper face of C
then G = {x : A′x = 0, ax ≤ 0} where A′x ≤ 0 is a subsystem of Ax ≤ 0 and a is a row of A

such that rank

(

A′

a

)

= n− dim(lin.space(C)) and lin.space(C) = {x : ax = 0, A′x = 0}.

Exercise 6.3. For a polyhedral cone C with minimal proper faces G1, . . . , Gs, choose
for each i = 1, . . . , s a vector yi ∈ Gi\lin.space(C) and vectors z0, . . . , zt in lin.space(C)
such that lin.space(C) = cone(z0, . . . , zt). Then prove that

C = cone(y1, . . . ,ys, z0, . . . , zt).

Theorem 6.4. [Sch86, Theorem 8.5] Let P = {x : Ax ≤ b} be a non-empty polyhe-
dron.

(1) For each minimal face F of P , choose a vector xF ∈ F ;
(2) For each minimal proper face F of rec.cone(P ) choose a vector yF ∈ F\lin.space(P );
(3) Choose a generating set z1, . . . , zt of lin.space(P ). Then,

P = conv(xF from (1)) + cone(yF from (2)) + lin.space(z1, . . . , zt from (3)).

Definition 6.5. Let P ⊆ Rn be a rational polyhedron.

(1) The facet complexity of P is the smallest number φ such that φ ≥ n and there
exists a system Ax ≤ b describing P where each inequality has size at most φ.
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(2) The vertex complexity of P is the smallest number ν such that ν ≥ n and there
exists rational vectors b1, . . . ,bp and c1, . . . , cq each of size at most ν such that
P = cone(b1, . . . ,bp) + conv(c1, . . . , cq).

Theorem 6.6. [Sch86, Theorem 10.2] Let P ⊆ Rn be a polyhedron with facet complexity
φ and vertex complexity ν. Then ν ≤ 4n2φ and φ ≤ 4n2ν.

Proof. We first prove that ν ≤ 4n2φ. Since the facet complexity of P is φ, P = {x ∈
Rn : Ax ≤ b} with the size of each inequality at most φ. Note the following facts.

(1) By Proposition 4.8, each minimal face of P is of the form {x : A′x = b′} for some
subsystem A′x ≤ b′ of Ax ≤ b. By Lemma 6.1, each minimal face contains a
vector of size at most 4n2φ.

(2) The lineality space of P is {x : Ax = 0}. Again, by Lemma 6.1, this linear space
is generated by vectors of size at most 4n2φ.

(3) Let F be a minimal proper face of rec.cone(P ). Then by Exercise 6.2, F contains
a vector not in the lineality space of P of size at most 4n2φ.

Now use Theorem 6.4 to conclude that the facet complexity of P is at most 4n2φ.
Next we argue that φ ≤ 4n2ν. If n = 1 then P ⊆ R and we need at most two inequalities

to describe P each of which has size at most 1 + ν and hence the result holds. So assume
that n ≥ 2. Suppose P = conv(X) + cone(Y ) where X and Y are sets of rational vectors
each of size at most ν.

Suppose P is full-dimensional. Then each facet of P is determined by a linear equation
of the form

(2) det

[

1 1 · · · 1 0 · · · 0
x x1 · · · xk y1 · · · yn−k

]

= 0

where x1, . . . ,xk ∈ X, y1, . . . ,yn−k ∈ Y and x is a vector of variables of size n. Expanding
this determinant by its first column we obtain

n
∑

i=1

(−1)i(det(Di))xi = −det(D0)

where each Di is a minor of the matrix in (2). Each Di has size at most 2n(ν+1). Therefore,
the equation and the corresponding inequality for the facet have size at most 4n2ν.

If P is not full-dimensional, then as above, find inequalities of size at most 4n2ν defining
the affine hull of P . (How do we do that?) Further, there exists n − dim(P ) coordinates
that can be deleted to make P full-dimensional. This projected polyhedron Q also have
vertex complexity at most ν and hence can be described by linear inequalities of size at
most 4(n − dim(P ))2ν. By adding zero coordinates we can extend these inequalities to
inequalities valid for P . Now add in the inequalities of the affine hull of P to get an
inequality description of P of the required size. �



CHAPTER 7

Basics of Linear Programming*

main goal: prove the duality theorems
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CHAPTER 8

The Integer Hull of a Rational Polyhedron

Let P ⊆ Rn be a rational polyhedron. Recall that this means that we can assume

P = {x ∈ Rn : Ax ≤ b}

for some rational m × n matrix A and rational vector b. By clearing denominators in
Ax ≤ b we may assume without loss of generality that A ∈ Zm×n and b ∈ Zm.

Definition 8.1. If P ⊆ Rn is a rational polyhedron, then its integer hull

P I := conv(P ∩ Zn)

is the convex hull of all integer vectors in P .

Theorem 8.2. For any rational polyhedron P ⊆ Rn, its integer hull P I is again a
polyhedron. If P I is non-empty, then both P and P I have the same recession cone.

Note that the theorem is true if P is a polytope since P ∩ Zn is finite and hence its
convex hull is a polytope by definition. Also if C is a rational cone then CI = C since C is
generated by integer vectors.

Proof. Let P = Q + C where Q is a polytope and C is the recession cone of P . Let
y1, . . . ,ys ∈ Zn generate C as a cone and consider the parallelepiped/zonotope (a polytope):

Z := {
s

∑

i=1

µiyi : 0 ≤ µi ≤ 1, i = 1, . . . , s}.

To prove the theorem we will show that P I = (Q+Z)I +C. Since Q+Z is a polytope, so is
(Q + Z)I and hence P I will be a polyhedron. Also, if P I 6= ∅, then C will be the recession
cone of P I .

• (P I ⊆ (Q + Z)I + C): Let p ∈ P ∩ Zn. Then p = q + c for some q ∈ Q and
c ∈ C. Also c =

∑

µiyi for some µi ≥ 0. Since µi = (µi − ⌊µi⌋) + ⌊µi⌋, we get that
c =

∑

(µi − ⌊µi⌋)yi +
∑

⌊µi⌋yi = z + c′ where z ∈ Z and c′ ∈ C ∩ Zn. Therefore,
p = (q + z) + c′ and hence q + z = p − c′ ∈ Zn. This implies that p ∈ (Q + Z)I + C.

• (P I ⊇ (Q + Z)I + C): (Q + Z)I + C ⊆ P I + C = P I + CI ⊆ (P + C)I = P I . �

Now that we have a fundamental grip on P I , we can ask many questions such as these.

Problem 8.3. (1) How can we compute P I given P? If P I = {x ∈ Rn : Mx ≤ d}
then what is the dependence of M and d on A and b?

(2) What is the complexity of P I?
(3) How can we decide whether P I = ∅? Is there a Farkas Lemma that can certify the

existence or non-existence of an integer point in P?
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(4) When does P = P I?

We will see answers to these questions in later lectures. At this point, we should see an
example of an integer hull of a rational polyhedron. However, since we do not yet know a
systematic way to compute integer hulls, we will just have to do some ad hoc computations
on small examples. Of course, if we know that P = P I then no computation is needed to
calculate P I .

Definition 8.4. A rational polyhedron P ⊆ Rn is an integral polyhedron if P = P I .

Lemma 8.5. For a rational polyhedron P , the following are equivalent:

(1) P = P I ;
(2) each face of P contains integral vectors;
(3) each minimal face of P contains integral vectors;
(4) max{cx : x ∈ P} is attained by an integral x for each c for which the max is

finite;
(5) max{cx : x ∈ P} is an integer for each c ∈ Zn for which the max is finite;
(6) each rational supporting hyperplane of P contains an integral point.

Proof. • (1) ⇒ (2): Let F = {x ∈ P : αx = β} be a face of P with αx < β
for all x ∈ P\F . If x̄ ∈ F ⊆ P = P I , then x̄ =

∑

λix
i with xi ∈ P ∩ Zn, λi ≥ 0

and
∑

λi = 1. Thus β = α · x̄ =
∑

λiα · xi ≤ β. This implies that α · xi = β for
all i and hence xi ∈ F for all i.

• (2) ⇒ (3): Obvious.
• (3) ⇒ (4): If c ∈ Rn such that max{cx : x ∈ P} is the finite number β, then

the optimal face F = {x ∈ P : cx = β} contains a minimal face which in turn
contains an integral vector by (3).

• (4) ⇒ (5): Obvious.
• (5) ⇒ (6): Let H = {x ∈ Rn : αx = β} support P with α ∈ Qn and β ∈ Q.

We may scale α and β so that α ∈ Zn and α is primitive. Since H supports P ,
we may also assume that max{αx : x ∈ P} = β. By (5), β is an integer and
since g.c.d.(αj) = 1 divides β, αx = β has an integer solution. (If g.c.d(αj) = 1
then there exists integers {zj} such that

∑

αjzj = 1. If β is an integer then
∑

αj(βzj) = β.)
• (6) ⇒ (3): We will prove the contrapositive. Suppose F is a minimal face of

P without integral points. Let A′x ≤ b′ be a subsystem of Ax ≤ b such that
F = {x ∈ P : A′x = b′}. Since F is a minimal face, in fact, F = {x ∈ Rn : A′x =
b′}. If A′x = b′ does not have an integer solution, then there exists a rational
y such yA′ ∈ Zn but yb′ 6∈ Z. (This is an alternative theorem for the feasibility
of Ax = b, x integer that we will prove later.) Since A and b are integral, the
property that yA′ ∈ Zn but yb′ 6∈ Z remains so if we replace y by y + z where
z ∈ Zn. Hence we may assume that y > 0. Let α := yA′ and β := yb′. Then
H = {x : αx = β} supports P . To see this, check that x ∈ P ⇒ Ax ≤ b ⇒ A′x ≤
b′ ⇒ yA′x ≤ yb′ ⇒ αx ≤ β and x ∈ F ⇒ A′x = b′ ⇒ αx = β. But H cannot
contain any integer points since α ∈ Zn and β 6∈ Z. Therefore, (6) fails.

• (3) ⇒ (1): Let Fi, 1 ≤ i ≤ p be the minimal faces of P . For each Fi, choose an
integer point xi on it. Let Q := conv(x1, . . . ,xp) and K be the recession cone of
P . Then

P = Q + K = QI + KI ⊆ (Q + K)I = P I ⊆ P.
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This implies that P = P I .
�

See Remark 10.17 for a one line proof of (1) ⇔ (6) that follows from a non-trivial
theorem about integer hulls.

Remark 8.6. (1) If P is pointed, then P = P I if and only if every vertex of P is
integral.

(2) The convex hull of a finite set of integer points in Rn is an integer polytope (some-
times also called a lattice polytope). If the lattice points lie in {0, 1}n then we
call this lattice polytope a 0/1-polytope.

(3) Every integer hull of a rational polyhedron is an integer polyhedron. The inequality
description of this integer hull could be highly complicated.

(4) The basic integer program max{cx : x ∈ P ∩ Zn} over a rational polytope P
equals the linear program max{cx : x ∈ P I} over the integer hull of P if we can
find an inequality description of the integer polytope P I . However, this latter task
is difficult as we will see later creating the great divide between the complexity of
an integer program and a linear program. If P = P I then every bounded integer
program max{cx : x ∈ P ∩ Zn} can be solved in polynomial time.

Exercise 8.7. (1) Let A =

(

1 1 1 1
0 1 2 3

)

and b =

(

4
6

)

. Verify using the

computer or otherwise that the polytope P = {x ∈ R4 : Ax = b,x ≥ 0} is
integral.

(2) More generally, let A =

(

1 1 1 1
0 p q r

)

where 0 < p < q < r, p, q, r ∈ N,

gcd(p, q, r) = 1 and b =

(

r + q − p
qr

)

. Prove that P = {x ∈ R4 : Ax = b,x ≥ 0}

is integral. (These polyhedra arise in the theory of A-discriminants.)

We now look at matrices that give rise to integral polyhedra when the right-hand-side
vector is any integral vector. These matrices are very important in the study of integer
hulls.

Definition 8.8. An integral d × n matrix A of full row rank is unimodular if each
non-zero maximal minor of A is ±1.

Exercise 8.9. Let A be an integral matrix of full row rank. Prove that the polyhedron
{x : x ≥ 0, Ax = b} is integral for each integral vector b if and only if A is unimodular.

Definition 8.10. A matrix A is totally unimodular if each subdeterminant of A is
0, 1 or −1.

Exercise 8.11. (1) Prove that if A is totally unimodular and b is any integral
vector then the polyhedron {x : Ax ≤ b} is integral.

(2) Prove that A is totally unimodular if and only if the matrix [I A] is unimodular.
(3) Prove that A is totally unimodular if and only if for each integral vector b the

polyhedron {x : x ≥ 0, Ax ≤ b} is integral.

Example 8.12. (1) Let M(G) be the vertex-edge incidence matrix of an undi-
rected graph G. Then M(G) is totally unimodular if and only if G is bipartite.
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(2) A 0,±1-matrix with exactly one +1 and one −1 in each column is totally unimod-
ular. For instance, the vertex-edge incidence matrix of a directed graph is such a
matrix.

Most combinatorial optimization problems are integer programs over 0/1-vectors. These
problems are typically formulated in the form max{cx : x ∈ P ∩Zn} where the convex hull
of the feasible 0/1-vectors is the integer hull of P .

Exercise 8.13. Show that every 0/1-polytope in Rn can be expressed as the integer
hull P I of a rational polytope P in the unit cube {x ∈ Rn : 0 ≤ xi ≤ 1 ∀ i} where P is
given in the form Ax ≤ b with every entry of A one of 0, 1 or −1.

Example 8.14. The Maximum-Weight Matching Problem. Let G = (V, E) be
an undirected graph. Recall that a matching in G is a collection of pairwise disjoint edges
of G. The incidence vector of a matching M in G is the 0/1-vector in RE whose ith
entry is one if the ith edge is in M and zero otherwise. Here we fix some ordering of the
edges of G to construct R|E| and then the incidence vectors. The matching polytope of
G, Pmat(G), is the convex hull of all incidence vectors of all matchings in G.

The matching polytope Pmat(G) can be seen as the integer hull of the rational polytope

P (G) ⊂ R|E| described by the inequalities:

x(e) ≥ 0 ∀ e ∈ E,
∑

v∈e

x(e) ≤ 1 ∀ v ∈ V.

Clearly, the incidence vector of any matching satisfies the inequalities defining P (G).

What needs to be checked is that if x ∈ P (G) ∩ Z|E| then x is the incidence vector of a
matching in G. The inequalities defining P (G) imply that 0 ≤ x(e) ≤ 1 for all e ∈ E.
Since x is also integral, we get that x(e) ∈ {0, 1}. But any 0/1 vector that satisfies these
inequalities is clearly the incidence vector of a matching in G. Therefore,

Pmat(G) = P (G)I .

Now notice that P (G) can also be described by the inequalities:

x(e) ≥ 0 ∀ e ∈ E,
∑

v∈e

x(e) ≤ 1 ∀ v ∈ V,
∑

e⊆U

x(e) ≤
1

2
|U | ∀ U ⊆ V

since the new inequalities follow from the second inequalities and are hence redundant.
However, creating this redundancy allows an easy description of P (G)I . The polytope
P (G)I = Pmat(G) is described by the inequalities [Edm65]:

x(e) ≥ 0 ∀ e ∈ E,
∑

v∈e

x(e) ≤ 1 ∀ v ∈ V,
∑

e⊆U

x(e) ≤ ⌊
1

2
|U |⌋ ∀ U ⊆ V

We will see later that the above method of first adding redundant inequalities to a
rational polytope P and then rounding down the right-hand-sides is a special case of a
general method to construct P I from P called the Chvátal-Gomory procedure.

The maximum-weight matching problem assigns a positive weight c(e) on each edge
e ∈ E and asks for the matching in G of largest weight. The weight of a matching is the
sum of all weights on the edges in the matching. Hence it is the integer program

max{cx : x ∈ P (G) ∩ Z|E|}
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or equivalently, the linear program

max{cx : x ∈ Pmat(G)}.

Exercise 8.15. Calculate the matching polytope of the complete graph K4. Find all the
facet inequalities needed in the matching polytope that were not present in the description
of P (G).

Exercise 8.16. Given an undirected graph G = (V, E), a stable set of G is a collection
of vertices U ⊆ V such that no two vertices in U are connected by an edge in E. Let
Pstab(G) ⊂ R|V | denote the convex hull of the incidence vectors of the stable sets of G. Find
a rational polytope Q(G) such that Pstab(G) = Q(G)I .





CHAPTER 9

Hilbert Bases

Definition 9.1. A finite set of vectors a1, . . . ,at is a Hilbert basis if every integral
vector b in cone(a1, . . . ,at) is a non-negative integral combination of a1, . . . ,at.

If a1, . . . ,at is a Hilbert basis, we often refer to it as a Hilbert basis of cone(a1, . . . ,at).
In these lectures, we will only be concerned with integral Hilbert bases of rational polyhedral
cones. Therefore, we will not explicitly use the adjective “integral” from now on.

Example 9.2. The vectors (1, 0), (1, 1), (1, 2), . . . , (1, k) ∈ N2 form a Hilbert basis. How-
ever, any subset of the above set that leaves out one of the vectors (1, j), 1 ≤ j ≤ k−1 is not
a Hilbert basis. Note that cone((1, 0), (1, 1), (1, 2), . . . , (1, k)) is spanned by (1, 0) and (1, k).
Therefore, the input to this Hilbert basis calculation has size O(log k) while the output has
size O(k log k). Therefore, Hilbert bases computations cannot be done in polynomial time
in the input size as the output size can be exponentially larger than the input size.

Theorem 9.3. [Sch86, Theorem 16.4] Every rational polyhedral cone C is generated
by an integral Hilbert basis. If C is pointed there is a unique minimal integral Hilbert basis
generating C.

Proof. Let c1, . . . , ck be primitive integral vectors that generate C. Consider the
parallelepiped

Z = {
k

∑

i=1

µici : 0 ≤ µi ≤ 1}.

We prove that the set H of integral vectors in Z form a Hilbert basis of C. Since c1, . . . ck ∈
Z, H generates C. Suppose c is any integral vector in C. Then c =

∑k
j=1 λjcj where

λj ≥ 0. Rewrite as

c =

k
∑

j=1

(⌊λj⌋ + (λj − ⌊λj⌋))cj

and then again as

c −
k

∑

j=1

⌊λj⌋cj =
k

∑

j=1

(λj − ⌊λj⌋)cj .

Since the left-hand-side is integral, so is the right-hand-side. However, the right-hand side
belongs to Z and hence c is a non-negative integer combination of elements in H. This
proves that H is a Hilbert basis.

Now suppose C is pointed. Then there exists a vector b such that bx > 0 for all
x ∈ C\{0}. Let

H ′ = {a ∈ C : a 6= 0, a integral, a not the sum of two other integral vectors in C}.

33
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The set H ′ is finite since it must be contained in any integral Hilbert basis of C. If H ′ is
not a Hilbert basis of C, then we can choose an integral c ∈ C such that c 6∈ NH ′ and bc is
as small as possible. Note that this c must be in Z and hence there is one that minimizes
bx over Z. Then since c 6∈ H ′, there exists c1 and c2 non-zero integral vectors in C such
that c = c1 + c2. Since bc,bc1,bc2 are all positive and bc = bc1 + bc2, we get that both
bc1 and bc2 are less than bc. By assumption then c1 and c2 lie in NH ′ and hence so does
c = c1 + c2, a contradiction. �

Remark 9.4. (1) Note that if C is not pointed then there is no unique minimal
integral Hilbert basis. For instance if C = R2, then ±(1, 0),±(0, 1) form a minimal
Hilbert basis. But so does (1, 0), (0, 1), (−1,−1).

(2) Note that every element in a minimal Hilbert basis is primitive.

Example 9.5. The software package Normaliz [BK] can be used to compute Hilbert
bases of rational cones. For instance, suppose we wish to compute the unique minimal
Hilbert basis of the pointed cone in R4 generated by (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and
(1, 2, 3, 4). Then Normaliz is used as follows.

[thomas@rosa]more example.in

4 --- number of generators of cone

4 --- dimension of the vectors

1 0 0 0 --- the four vectors row-wise

0 1 0 0

0 0 1 0

1 2 3 4

0 --- computes Hilbert basis wrt the ambient integer lattice

[thomas@rosa] normaliz example

[thomas@rosa] more example.out

7 generators of integral closure: --- Hilbert basis has 7 elements

1 0 0 0

0 1 0 0

0 0 1 0

1 2 3 4

1 2 3 3

1 1 2 2

1 1 1 1

(original) semigroup has rank 4 (maximal)

(original) semigroup is of index 4

4 support hyperplanes:

0 0 0 1

0 0 4 -3

0 2 0 -1

4 0 0 -1

(original) semigroup is not homogeneous
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Hilbert bases play a crucial role in the theory of lattice points in polyhedra and in
integer programming. They are so important that they have been studied in their own
right. Two such questions were whether all Hilbert bases admit triangulations or covers by
unimodular cones that are generated by the elements of the Hilbert basis. All Hilbert bases
in R3 admit unimodular triangulations but not in R4 and above. For instance, the seven
element Hilbert basis in Example 9.5 does not admit a unimodular triangulation [FZ99].
Similarly, unimodular covers do not exist in R6 and above [BG99]. The cover question is
open in R4 and R5.

Definition 9.6. A rational polyhedral pointed cone in Rn is unimodular if it has at
most n extreme rays and the set of primitive integral vectors generating the extreme rays
form part of a basis for Zn.

Example 9.7. The cone generated by (1, 2) and (0, 1) is unimodular while the cone
generated by (1, 2) and (1, 0) is not.

Exercise 9.8. (1) Let u,v ∈ Z2 be two linearly independent vectors and let C be
the cone they span in R2. Let h1 := u,h2, . . . ,ht−1,ht := v be the elements in
the unique minimal Hilbert basis of C in cyclic order from u to v. Prove that the
cones cone(hi,hi+1) are unimodular for i = 1, . . . , t − 1.

(2) Let C be a pointed rational polyhedral cone in R2 generated by u,v ∈ Z2 and
let C ′ be the convex hull of all the non-zero lattice points in C. Prove that the
elements of the minimal Hilbert basis of C are precisely the lattice points that lie
on the bounded part of the boundary of C ′ between u and v. Give an example in
R3 to show that this result does not hold in R3.

Lemma 9.9. Let C = {x ∈ Rn : Ax ≤ 0} be a cone where A is an integral matrix with
all subdeterminants of absolute value at most ∆. If h is in the fundamental parallelepiped
spanned by a set of primitive generators of C, then ||h||∞ ≤ n∆.

Proof. We first show that it is possible to find integral generators of C whose infinity-
norms are at most ∆. Recall that every such generator is a solution to some subsystem
A′x = 0 of the system Ax ≤ 0. Assume that A′ has full row rank. This rank is less
than or equal to n − 1. Also assume that A′ = [U V ] where U is non-singular. Split x as
x = (xU ,xV ). Then to solve for A′x = UxU + V xV = 0, we can set xV to any arbitrary
value. Assume we set xV to a 0, 1-vector with a 1 in the k-th position. Then we have
UxU = −vk where vk is the k-th column of V . Applying Cramer’s rule, we can find a
solution xU of this square system with i-th component a ratio of two subdeterminants of A′

and hence A. All denominators of the components of xU are det(U) and all numerators are
at most ∆ in absolute value. Clearing the denominator, we get an integer x = (xU ′ ,xV ′)
where all components are at most ∆ in absolute value.

Suppose h is in the fundamental parallelepiped spanned by u1, . . . ,us. Then by Caratheodory’s
theorem , there exists n linearly independent vectors among the ui’s such that h is also state

Caratheodory
somewhere

in the fundamental parallelepiped spanned by these n vectors, say u1, . . . ,un. Therefore,
there exists 0 ≤ λ1, . . . , λn ≤ 1 such that h = λ1u1 + · · · + λnun. This implies that

|hj | ≤
n

∑

i=1

λi|uij | ≤ (

n
∑

i=1

λi)∆ ≤ n∆.

�
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We now give an application of Hilbert bases to solving integer programs. The statement
of the theorem comes from Theorem 17.3 in [Sch86]. Our proof here is slightly different.

Theorem 9.10. [Sch86, Theorem 17.3] Let A ∈ Zm×n with all subdeterminants at most
∆ in absolute value and let b ∈ Zm and c ∈ Rn. Let z be a feasible but not optimal solution
of the integer program max{cx : Ax ≤ b, x ∈ Zn}. Then there exists a feasible solution z′

such that cz′ > cz and ||z − z′||∞ ≤ n∆.

Proof. Since z is not optimal, there exists some z′′ ∈ Zn such that Az′′ ≤ b and
cz′′ > cz. Split Ax ≤ b into two subsystems A1x ≤ b1 and A2x ≤ b2 such that A1z ≤ A1z

′′

and A2z ≥ A2z
′′. Let C := {u : A1u ≥ 0, A2u ≤ 0}. Then z′′ − z is an integral vector in

the cone C. Let h1, . . . ,ht be a minimal Hilbert basis for C. Then

z′′ − z =
t

∑

i=1

λihi

for some λ1, . . . , λt ∈ N. Since 0 < c(z′′ − z) =
∑t

i=1 λichi, there exists an hi with λi ≥ 1

such that chi > 0. Consider the vector z′ := z + hi. Since z′′ − z =
∑t

i=1 λihi, we have

z′′ −
∑

j 6=i

λjhj − (λi − 1)hi = z + hi = z′.

Then Az′ = A(z′′ −
∑

j 6=i λjhj − (λi − 1)hi). Now using the fact that A1hk ≥ 0 for

k = 1, . . . , t, check that A1z
′ = A1(z

′′ −
∑

j 6=i λjhj − (λi − 1)hi) ≤ b1. Similarly, A2z
′ =

A2(z + hi) = A2z + A2hi ≤ A2z ≤ b2. Further, cz′ = c(z + hi) > cz since chi > 0.
Therefore, z′ is a feasible solution to the integer program max{cx : Ax ≤ b, x ∈ Zn} that
improves the cost value.

To finish the proof we have to argue that ||z′ − z||∞ = ||hi||∞ ≤ n∆. This follows from
Lemma 9.9. �

Theorem 9.10 says that every non-optimal solution to the integer program max{cx :
Ax ≤ b, x ∈ Zn} can be improved by another feasible solution to the program that is not
too far from the first solution. Improving vectors for integer programs are known as test
sets. The above theorem is a variant of a construction due to Jack Graver who first showed
the existence of test sets for integer programming. We only look at test sets briefly here
since our interest is not so much in studying them but in just using the above result to
study integer hulls as in the following theorem. Theorem 9.11 strengthens Theorem 8.2.

Theorem 9.11. [Sch86, Theorem 17.4] For each rational matrix A there exists an
integral matrix M such that for each vector b there is a vector d such that

{x ∈ Rn : Ax ≤ b}I = {x ∈ Rn : Mx ≤ d}.

If A is integral and all subdeterminants of A have absolute value at most ∆ then we can
take all entries in M to be at most n2n∆n in absolute value.

Proof. Assume A is integral with all subdeterminants of absolute value at most ∆.
Let

L := {u : ∃ y ≥ 0 : yA = u, u integral, ||u||∞ ≤ n2n∆n}.

In other words, L is the set of all integral vectors in the cone spanned by the rows of A
with infinity norm at most n2n∆n. Let M be the matrix whose rows are all the elements
of L. We will prove that M can be taken to be the matrix needed in the theorem. Recall
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that a vector c is bounded over the polyhedron {x : Ax ≤ b} if and only if c lies in the
polar of the recession cone C = {x : Ax ≤ 0} of the polyhedron. The elements in L come
from the polar of this recession cone and hence the linear functional mx, for each row m
of M , attains a finite maximum over every {x : Ax ≤ b} as b varies and hence also over
their integer hulls.

Fix b. If Ax ≤ b has no solution, then we can choose a d such that Mx ≤ d also has
no solution. (Note that the rows of A are among the rows of M and so we can choose d so
that the right-hand-sides of the inequalities from the rows of A are bi.)

If Ax ≤ b is feasible but does not have an integral solution, then its recession cone
{y : Ay ≤ 0} is not full-dimensional which means that it has an implicit equality, say
ax ≤ 0. Then both a and −a belongs to L and we can choose d so that Mx ≤ d is
infeasible.

So assume that Ax ≤ b has an integral solution. For each vector c ∈ Rn let

δc := max{cx : Ax ≤ b, x ∈ Zn}.

It suffices to show that

{x ∈ Rn : Ax ≤ b}I = {x ∈ Rn : ux ≤ δu ∀ u ∈ L}.

(By our earlier discussion, δu is finite for all u ∈ L.) Since we can think of the left-
hand-side as the intersection of all half-spaces cx ≤ δc as c varies over all the integer
vectors in the polar of the recession cone {x : Ax ≤ 0}, we get that the left-hand-side
is contained in the right-hand-side. To show the opposite containment, let cx ≤ δc be a
valid inequality for {x ∈ Rn : Ax ≤ b}I . We will show that cx ≤ δc is also valid for
{x ∈ Rn : ux ≤ δu ∀ u ∈ L} which will prove the containment. Let z be an optimal
solution of the integer program max{cx : Ax ≤ b, x ∈ Zn}. Consider the cones

K := cone{x − z : Ax ≤ b, x ∈ Zn} and

K ′ := cone{x − z : Ax ≤ b, x ∈ Zn, ||x − z||∞ ≤ n∆}.

Clearly, K ′ ⊆ K.

Exercise 9.12. (1) Using Theorem 9.10, prove that K ′ = K.
(2) Prove that K = {y : uy ≤ 0, u ∈ L1} for some subset L1 of L.

For each u ∈ L1, δu = uz. Also, for each y ∈ K, cy ≤ 0 which implies that c ∈ K∗.
Since K∗ is generated by all the vectors u ∈ L1, we get that

c = λ1u1 + · · · + λtut

for some λ1, . . . , λt ≥ 0 and u1, . . . ,ut ∈ L1. Further, δc = cz = λ1u1z + · · · + λtutz =
λ1δu1

+ · · · + λtδut
and hence the inequality cx ≤ δc is valid for

{x ∈ Rn : ux ≤ δu ∀ u ∈ L}.

�





CHAPTER 10

The Chvátal-Gomory Procedure

The main goal of this lecture is to present an algorithm for computing the integer hull
P I of a rational polyhedron P . This allows us to compute examples. Let F be a face of
the polyhedron P = {x ∈ Rn : Ax ≤ b}. We say that the row ai of A, or equivalently the
inequality aix ≤ bi, is active at F if for all x ∈ F , aix = bi.

Exercise 10.1. Let AF consist of the rows of A that are active at the face F of P and
let NP (F ) be the normal cone of P at F ; i.e.,

NP (F ) := {c ∈ Rn : cx ≥ cy ∀ x ∈ F, y ∈ P}.

Prove that cone(AF ) = NP (F ). Note that NP (F ) is precisely the set of all vectors c that
get maximized at F , or equivalently, all c such that F ⊆ facec(P ).

Definition 10.2. The rational system Ax ≤ b is totally dual integral (TDI) if for
each face F of P = {x : Ax ≤ b}, the rows of A that are active at F form a Hilbert basis.

Exercise 10.3. Prove that the rows of A form a Hilbert basis if and only if Ax ≤ 0 is
TDI. Hint. For the “only if” direction, prove that Ax ≤ b is TDI if and only if for each
minimal face F of P = {x : Ax ≤ b}, the rows of A that are active at F form a Hilbert
basis.

A TDI system Ax ≤ b is minimally TDI if any proper subsystem A′x ≤ b′ that also
describes P = {x : Ax ≤ b} is not TDI. Note that if a TDI system Ax ≤ b is minimally
TDI then the following hold:

(1) every inequality in aix ≤ bi in Ax ≤ b defines a supporting hyperplane of P since
otherwise the subsystem obtained by removing this inequality also cuts out P and
since ai was not active in any face of P , the removal of this inequality does not
affect the Hilbert basis property of all the AF ’s, and

(2) no inequality in Ax ≤ b is a non-negative integral combination of others.

Conversely, the above two properties imply that the TDI system Ax ≤ b is minimally TDI.

Theorem 10.4. [Sch86, Theorem 22.6] For each rational polyhedron P there exists a
TDI system Ax ≤ b with A integral and P = {x : Ax ≤ b}. If P is full-dimensional there
exists a unique minimal TDI system Ax ≤ b with A integral and P = {x : Ax ≤ b}. In
either case, if P is an integral polyhedron we can choose b to be integral.

Proof. For a minimal face F of P , construct a Hilbert basis a1, . . . ,at of the normal
cone NP (F ). Pick an x0 in F and compute βi := aix0 for each ai in this Hilbert basis.
Then the inequalities aix ≤ βi, i = 1, . . . , t are all valid for P . Take as Ax ≤ b the union of
all such sets of inequalities as F varies over the minimal faces of P . This is a TDI system
by construction that describes P . If P is full-dimensional then each normal cone NP (F ) is
pointed and hence has a unique minimal Hilbert basis by Theorem 9.3.
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In either case, if P is integral, then we can choose x0 in each minimal face F to be
integral which makes βi, and hence b, integral. �

Remark 10.5. Note that Example 9.2 can be modified to show that one cannot find a
minimal TDI system for a full-dimensional rational polyhedron in polynomial time.

Algorithm 10.6. The Chvátal-Gomory procedure
Input: A rational polyhedron P = {x : Ax ≤ b}

Initialize: Set Q := P
While Q not integral do:

(1) Replace the inequality system describing Q by a TDI system Ux ≤ u that also
describes Q.

(2) Let Q′ := {x : Ux ≤ ⌊u⌋}.
(3) Set Q := Q′.

Output: P I = Q.

The Chvátal-Gomory procedure is due to Chvátal [Chv73] and Schrijver [Sch80]. It
is based on the theory of cutting planes introduced by Gomory in the sixties. The
inequalities in Ux ≤ ⌊u⌋ are cutting planes that cut off fractional vertices of the polyhedron
Q. We will prove that the Chvátal-Gomory procedure is finite and that it produces the
integer hull P I when it terminates. First we compute an example.

Example 10.7. (c.f. Example 8.14 and Exercise 8.15)
We will compute the matching polytope Pmat(K4) starting from the polytope P (K4) de-
scribed in Porta as follows.

[thomas@rosa]more matchingk4.ieq

DIM = 6

VALID

1 0 0 0 0 0

INEQUALITIES_SECTION

x1 >= 0

x2 >= 0

x3 >= 0

x4 >= 0

x5 >= 0

x6 >= 0

x1+x6+x4 <= 1

x1+x5+x2 <= 1

x2+x6+x3 <= 1

x4+x5+x3 <= 1

END

[thomas@rosa lecture2]$ traf -v matchingk4.ieq

[thomas@rosa lecture2]$ more matchingk4.ieq.poi

DIM = 6

CONV_SECTION
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( 1) 0 0 0 0 0 0

( 2) 0 0 1/2 1/2 0 1/2

( 3) 0 1/2 1/2 0 1/2 0

( 4) 1/2 0 0 1/2 1/2 0

( 5) 1/2 1/2 0 0 0 1/2

( 6) 0 0 0 0 0 1

( 7) 0 0 0 0 1 0

( 8) 0 0 0 1 0 0

( 9) 0 0 1 0 0 0

( 10) 0 1 0 0 0 0

( 11) 1 0 0 0 0 0

( 12) 0 0 0 0 1 1

( 13) 0 1 0 1 0 0

( 14) 1 0 1 0 0 0

END

strong validity table :

\ I | |

\ N | |

P \ E | |

O \ Q | 1 6 | #

I \ S | |

N \ | |

T \ | |

S \ | |

---------------------------

1 | ***** *.... : 6

2 | **..* .*.** : 6

3 | *..*. *.*** : 6

4 | .**.. ***.* : 6

5 | ..*** .***. : 6

6 | ***** .*.*. : 7

7 | ****. *.*.* : 7

8 | ***.* **..* : 7

9 | **.** *..** : 7

10 | *.*** *.**. : 7

11 | .**** ***.. : 7

12 | ****. .**** : 8

13 | *.*.* ***** : 8

14 | .*.** ***** : 8

.................

# | 11111 19999

| 00000 0

Vertices 2,3,4 and 5 are fractional and need to be cut off. From the strong validity table
we see that inequalities 1,2,5,7,9,10 are active at vertex 2. Using Normaliz we compute
the Hilbert basis of the normal cone at vertex 2:

[thomas@rosa]more vert2round1.in

6

6
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-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 0 0 -1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 0 1 1 1 0

0

[thomas@rosa]normaliz vert2round1

[thomas@rosa]more vert2round1.out

7 generators of integral closure:

-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 0 0 -1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 0 1 1 1 0

0 0 1 1 0 1

The last element in vert2round1.out is new and so we need to add the inequality
x3 + x4 + x6 ≤ 3/2 to the TDI system describing P (K4). The right-hand side 3/2 is
computed by evaluating x3 + x4 + x6 at vertex 2 which was (0, 0, 1/2, 1/2, 0, 1/2). After
rounding down the right-hand-side we will get x3 + x4 + x6 ≤ ⌊3/2⌋ = 1 which will cut off
the fractional vertex 2. We repeat the same procedure at vertices 3,4 and 5 to get the new
inequalities

x2 + x3 + x5 ≤ 1, x1 + x4 + x5 ≤ 1, x1 + x2 + x6 ≤ 1.

After adding these inequalities we get the polytope:

[thomas@rosa]more matchingk4_1.ieq

DIM = 6

VALID

1 0 0 0 0 0

INEQUALITIES_SECTION

x1 >= 0

x2 >= 0

x3 >= 0

x4 >= 0

x5 >= 0

x6 >= 0

x1+x4+x6 <= 1

x1+x2+x5 <= 1

x2+x3+x6 <= 1

x3+x4+x5 <= 1

x3+x4+x6 <= 1

x2+x3+x5 <= 1

x1+x4+x5 <= 1

x1+x2+x6 <= 1

END
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We then ask Porta for its vertex description to discover that we now have the integer
hull Pmat(K4).

[thomas@rosa]traf -v matchingk4_1.ieq

[thomas@rosa lecture2] more matchingk4_1.ieq.poi

DIM = 6

CONV_SECTION

( 1) 0 0 0 0 0 0

( 2) 0 0 0 0 0 1

( 3) 0 0 0 0 1 0

( 4) 0 0 0 1 0 0

( 5) 0 0 1 0 0 0

( 6) 0 1 0 0 0 0

( 7) 1 0 0 0 0 0

( 8) 0 0 0 0 1 1

( 9) 0 1 0 1 0 0

( 10) 1 0 1 0 0 0

END

strong validity table :

\ I | |

\ N | |

P \ E | |

O \ Q | 1 6 11 | #

I \ S | |

N \ | |

T \ | |

S \ | |

--------------------------------

1 | ***** *.... .... : 6

2 | ***** .*.*. *..* : 9

3 | ****. *.*.* .**. : 9

4 | ***.* **..* *.*. : 9

5 | **.** *..** **.. : 9

6 | *.*** *.**. .*.* : 9

7 | .**** ***.. ..** : 9

8 | ****. .**** **** : 12

9 | *.*.* ***** **** : 12

10 | .*.** ***** **** : 12

......................

# | 88888 86666 6666

In this exercise we obtained the integer hull Pmat(K4) after one iteration of the Chvátal-
Gomory procedure.

Exercise 10.8. In the above example while computing Q′ in the first iteration of the
Chvátal-Gomory procedure, why was it sufficient to only add in inequalities coming from
the Hilbert bases of outer normal cones at the fractional vertices of the initial Q? Can we
modify the Chvátal-Gomory procedure in general to incorporate this short-cut?
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We now prove that the Chvátal-Gomory procedure works.
Suppose H is a rational half-space {x ∈ Rn : cx ≤ δ} where c is a primitive integer

vector, then note that the integer hull HI = {x ∈ Rn : cx ≤ ⌊δ⌋}. If c is not a primitive
integer vector then we only get HI ⊆ {x : cx ≤ ⌊δ⌋}.

Example 10.9. Consider the half-space H = {(x, y) ∈ R2 : y ≤ 1
2}. Then HI =

{(x, y) ∈ R2 : y ≤ ⌊1
2⌋ = 0}. On the other hand if G = {(x, y) ∈ R2 : 2y ≤ 1} then

GI = HI ⊂ {(x, y) ∈ R2 : 2y ≤ ⌊1⌋}.

Definition 10.10. The elementary closure of a rational polyhedron P is P (1) :=
∩{HI : P ⊆ H} where H is a rational half-space containing P .

Note that the intersection in the definition of P (1) can be restricted to rational half-
spaces whose hyperplanes support P . Since P ⊆ H, we get that P I ⊆ HI and hence
P I ⊆ P (1). Let P (i) denote the elementary closure of P (i−1) where P (0) := P . Then

P ⊇ P (1) ⊇ P (2) ⊇ P (3) ⊇ · · · ⊇ P I .

In order to prove the Chvátal-Gomory procedure it suffices to prove that

(1) P (1) is a polyhedron, and that

(2) there exists a natural number t such that P I = P (t).

Recall that by Theorem 10.4, we may assume that P = {x : Ax ≤ b} where Ax ≤ b
is TDI and A is integral. The usual definition of a TDI system is different from the one we
state in Definition 10.2. It is motivated by optimization. We state this traditional definition
as a theorem without proof. For a proof see Theorem 22.5 in [Sch86].

Theorem 10.11. A rational system Ax ≤ b is TDI if and only if for each integer vector
c for which the the minimum in the LP-duality equation

min{yb : y ≥ 0,yA = c} = max{cx : Ax ≤ b}

is finite, the min problem has an integer optimal solution y.

Corollary 10.12. If Ax ≤ b is TDI and b is integral then the polyhedron {x : Ax ≤
b} is integral.

Proof. If Ax ≤ b is TDI then for each integral vector c for which the max (= min) in
the above LP-duality equation is finite, the max is an integer since b is an integer and the
min problem has an integral optimum making the min an integer. Then by Lemma 8.5 (5),
{x : Ax ≤ b} is integral. �

The following theorem shows that P (1) is again a polyhedron and also that in Defini-
tion 10.10, we can get away with finitely many half-spaces H. For a vector b we let ⌊b⌋
denote the vector obtained by replacing each component of b with its floor.

Theorem 10.13. [Sch86, Theorem 23.1] Let P = {x : Ax ≤ b} be a polyhedron with

Ax ≤ b TDI and A integral. Then P (1) = {x : Ax ≤ ⌊b⌋}.

Proof. If P = ∅ then clearly P I = ∅ and the theorem is true. So assume P 6= ∅. Note
that P (1) ⊆ {x : Ax ≤ ⌊b⌋} since each inequality in Ax ≤ b defines a rational half-space
H containing P and the corresponding inequality in Ax ≤ ⌊b⌋ contains HI . So we need to
prove the reverse inclusion.



10. THE CHVÁTAL-GOMORY PROCEDURE 45

Let H = {x : cx ≤ δ} be a rational half-space containing P . We may assume that c is
a primitive integer vector so that HI = {x : cx ≤ ⌊δ⌋}. We have

δ ≥ max{cx : Ax ≤ b} = min{yb : yA = c, y ≥ 0}.

Since Ax ≤ b is TDI, and the max and therefore, min is finite, and c is integral, the min is
attained by an integral vector y0. Suppose x satisfies Ax ≤ ⌊b⌋. Then

cx = y0Ax ≤ y0⌊b⌋ ≤ ⌊y0b⌋ ≤ ⌊δ⌋

which implies that x ∈ HI . Since H was an arbitrary rational half-space containing P , we
get that {x : Ax ≤ ⌊b⌋} ⊆ P (1). �

To finish our program, it remains to show that there exists a natural integer t such that
P (t) = P I .

Lemma 10.14. [Sch86, §23.1] If F is a face of a rational polyhedron P then F (1) =

P (1) ∩ F .

Proof. Let P = {x : Ax ≤ b} with A integral and Ax ≤ b TDI. Let F = {x :
Ax ≤ b, ax = β} be a face of P with a and β integral. Since Ax ≤ b is TDI, the system
Ax ≤ b,ax ≤ β is also TDI as all it does is add in the redundant inequality ax ≤ β to the
original TDI description of P . By the same argument, the system Ax ≤ b,ax = β is also
TDI. Then since β is integral we get

P (1) ∩ F = {x : Ax ≤ ⌊b⌋, ax = β} = {x : Ax ≤ ⌊b⌋, ax ≤ ⌊β⌋,ax ≥ ⌈β⌉} = F (1).

We have also shown that if F (1) 6= ∅ then F (1) = P (1) ∩ {x : ax = β} is a face of P (1). �

Corollary 10.15. If F is a face of P and t is a natural number then F (t) = P (t) ∩ F .

Theorem 10.16. [Sch86, Theorem 23.2] For a rational polyhedron P there exists a

natural number t such that P (t) = P I .

Proof. Let P ⊆ Rn. The proof is by induction on the dimension d of P . If P = ∅
(i.e., d = −1) then P I = ∅ and ∅ = P I = P = P (0). If P is a point (i.e., d = 0), then either
P I = P or P I = ∅. In the former case, t = 0 works while in the latter case, t = 1 works.

So consider d > 0 and assume that the theorem holds for all rational polyhedra of
dimension less than d. Let the affine hull of P be {x : Ux = v}. If there are no integer
points in this affine space, then clearly P I = ∅. By Theorem ??, there exists a rational
vector y such that yU =: c is integral but yv = δ is not an integer. If x satisfies Ux = v
then cx = yUx = yv = δ and hence cx = δ is a supporting hyperplane of P . Then

P (1) ⊆ {x : cx ≤ ⌊δ⌋, cx ≥ ⌈δ⌉} = ∅

and so t = 1 works.
So now assume that x̂ is an integer point in the affine hull of P . Since translation by

the integer vector x̂ does not affect the theorem, we can assume that the affine hull of P
is {x : Ux = 0}. We may also assume that U is integral and has full row rank n − d.
By Theorem 13.2, there exists a unimodular matrix V such that UV = [W 0] where W is
non-singular. Since V is unimodular, for each x integral, there exists a unique z integral
such that x = V z. Thus the affine hull of P is

{x : Ux = v} ∼= {z : UV z = v} = {z : Wz = v} = {0}n−d × Rd.
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This implies that P is a full-dimensional polyhedron in Rd where Rn = Rn−d ×Rd. To each
hyperplane H = {x :

∑n
j=1 cjxj = δ} in Rn we can associate the hyperplane H ′ := {x :

∑n
j=n−d+1 cjxj = δ} of the form Rn−d × (hyperplane in Rd). While applying the Chvátal-

Gomory procedure to P , it suffices to restrict to hyperplanes of the form H ′ since pushing
H ′ until it contains an integer point will imply that H will also contain an integer point.
Thus we may assume that n − d = 0 and P is a full-dimensional polyhedron in Rn.

Since P I is a polyhedron, there exists a rational matrix M and a rational vector d such
that P I = {x : Mx ≤ d}. We may also assume that M is such that there also exists a
rational vector d′ such that P = {x : Mx ≤ d′} since we can take the rows of M to be
the union of all normals of two sets of sufficiently many inequalities that cut out P and
P I respectively and by choosing the right-hand-side vectors d and d′ to obtain the two
polyhedra. Let mx ≤ d be an inequality from Mx ≤ d and H = {x : mx ≤ d}. We will

argue that P (s) ⊆ H for some s. Since there are only finitely many inequalities in Mx ≤ d,
by taking t to be the largest of all the s’s, we will get that P (t) ⊆ P I . However, since
P I ⊆ P (t) it will follow that P I = P (t).

Suppose P (s) is not contained in H = {x : mx ≤ d} for any s. Let mx ≤ d′ be the

inequality with normal m in Mx ≤ d′. Then P (1) ⊆ {x : mx ≤ ⌊d′⌋}. Therefore, there
exists an integer d′′ and an integer r such that

⌊d′⌋ ≥ d′′ > d, P (s) ⊆ {x : mx ≤ d′′} and P (s) 6⊆ {x : mx ≤ d′′ − 1} ∀s ≥ r.

Let F := P (r) ∩ {x : mx = d′′}. Since mx ≤ d′′ is a valid inequality for P (r), F is a face of

P (r), possibly empty, but of dimension less than d = n. Moreover, F does not contain any
integral vectors since P I ⊆ H = {x : mx ≤ d} and d < d′′. By induction, there exists a

natural number u such that F (u) = ∅. Therefore,

∅ = F (u) = P (r+u) ∩ F = P (r+u) ∩ {x : mx = d′′}.

So P (r+u) ⊆ {x : mx < d′′} and hence P (r+u+1) ⊆ {x : mx ≤ d′′ − 1} which contradicts
our earlier observation. �

Remark 10.17. The above theorem provides a simple proof of the equivalence of (1)
and (6) in Lemma 8.5. If each rational supporting hyperplane of P contains an integral

vector then P = P (1) and hence P = P I .



CHAPTER 11

Chvátal Rank

Definition 11.1. The Chvátal rank of a rational system Ax ≤ b is the smallest
integer t such that {x : Ax ≤ b}I = {x : Ax ≤ b}(t).

If P = {x : Ax ≤ b}, then the Chvátal rank of Ax ≤ b is, roughly speaking, a
measure of complexity of P I relative to P . However, note that Chvátal rank is defined for
the system Ax ≤ b and not the geometric polyhedron P that these inequalities cut out.
Different descriptions of P by inequality systems therefore may yield different ranks and
the rank is not an invariant of the polyhedron.

Example 11.2. Example 10.7 shows that the Chvátal rank of the inequality system
used to describe P (K4) is one.

Recall that in Example 8.14, we saw the relaxation P (G) of the matching polytope
Pmat(G) of the undirected graph G where P (G) was cut out by the system

x(e) ≥ 0 ∀ e ∈ E,
∑

v∈e

x(e) ≤ 1 ∀ v ∈ V.

Edmonds [Edm65] proved that the inequality system

x(e) ≥ 0 ∀ e ∈ E,
∑

v∈e

x(e) ≤ 1 ∀ v ∈ V,
∑

e⊆U

x(e) ≤
1

2
|U | ∀ U ⊆ V

that also describes P (G), is TDI, and that Pmat(G) is obtained by rounding down the
right-hand-sides of this TDI system. Thus the Chvátal rank of

x(e) ≥ 0 ∀ e ∈ E,
∑

v∈e

x(e) ≤ 1 ∀ v ∈ V.

describing P (G) is exactly one.

Exercise 11.3. Compute the Chvátal rank of a one-dimensional polyhedron in R1.

In contrast to the above exercise, we now show that even when n = 2, the Chvátal rank
of a system Ax ≤ b may be arbitrarily high. This will prove that there is no bound on
Chvátal rank of a polyhedron that is a function of dimension alone.

Example 11.4. [Sch86, pp.344] Consider the family of matrices

Aj :=





−1 0
1 2j
1 −2j





and the polygons Pj := {x ∈ R2 : Ajx ≤ (0, 2j, 0)t}. The polygon Pj is the convex hull of
the points (0, 1), (0, 0) and (j, 1

2) and P I
j is the line segment joining (0, 1) and (0, 0).
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Exercise 11.5. (1) Check that P
(1)
j contains the vector (j − 1, 1

2).

(2) Show by induction that (j − t, 1
2) lies in P

(t)
j for t < j and hence P (t) 6= P I

j for
t < j.

This proves that the Chvátal rank of the system Ajx ≤ (0, 2j, 0)t is at least j.

Despite the above example, it is true that Chvátal rank of an inequality system is
bounded above by a function of dimension alone when there are no lattice points satisfying
the system. This result is due to Cook, Coullard and Turán [CCT].

Theorem 11.6. [Sch86, Theorem 23.3] For each natural number d there exists a number

t(d) such that if P is a rational polyhedron of dimension d, with P I = ∅, then P (t(d)) = ∅.

Proof. The proof follows by induction on d. If d = −1 (i.e., P = ∅), then t(−1) := 0.
If d = 0 then t(0) := 1. As in the proof of Theorem 10.16, we may assume that P is
full-dimensional. Note that we can assume that t(d) is an increasing function of d since
adding a positive number to t(d) for any d will also serve the same purpose that t(d) serves.

Now a famous result in the Geometry of Numbers (which you will see in Christian
Haase’s lectures) states that if a rational polyhedron P contains no lattice points then it
has to be “thin” in some direction c. More precisely, if P I = ∅, then there exists a primitive
integer vector c and a function l(d) that depends only on dimension such that

max{cx : x ∈ P} − min{cx : x ∈ P} ≤ l(d).

Let δ := ⌊max{cx : x ∈ P}⌋. We will first prove that for each k = 0, 1, . . . , l(d)+1 we have

(3) P (k+1+k·t(d−1)) ⊆ {x : cx ≤ δ − k}.

For k = 0, (3) says that P (1) ⊆ {x : cx ≤ δ} which follows from the definition of P (1).

Suppose (3) is true for some k. Now consider the face F := P (k+1+k·t(d−1))∩{x : cx = δ−k}.
Since the dimension of F is less than d, it follows from our induction hypothesis that
F (t(d−1)) = ∅. Therefore,

(P (k+1+k·t(d−1)))(t(d−1)) ∩ {x : cx = δ − k} = F (t(d−1)) = ∅

and hence, P (k+1+(k+1)·t(d−1)) ⊆ {x : cx < δ − k}. This in turn implies that

P (k+2+(k+1)·t(d−1)) = (P (k+1+(k+1)·t(d−1)))(1) ⊆ {x : cx ≤ δ − k − 1}

which shows that (3) holds for k + 1.
Now taking k = l(d) + 1 in (3) we have

P (l(d)+2+(l(d)+1)·t(d−1)) ⊆ {x : cx ≤ δ − l(d) − 1}.

Since P ⊆ {x : cx > δ−l(d)−1} it follows that if we set t(d) := l(d)+2+(l(d)+1)·t(d−1)

then P (t(d)) = ∅. �

We now use Theorem 11.6 to prove the main result of this section which says that for
a given rational matrix A, there is in fact a finite upper bound on the Chvátal ranks of all
inequality systems Ax ≤ b as b varies. This will allow us to define the Chvátal rank of an
integer matrix.

Theorem 11.7. [Sch86, Theorem 23.4] For each rational matrix A there exists a num-

ber t such that for each rational b, {x : Ax ≤ b}I = {x : Ax ≤ b}(t).
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Proof. Since all the data is rational we may assume that A and b are integral. We
will also assume that A has n columns. Let ∆ be the maximum absolute value of a subde-
terminant of A. Our goal will be to show that

t := max{t(n), n2n+2∆n+1(1 + t(n − 1)) + 1}

will work for the theorem.
Let Pb := {x : Ax ≤ b}. If P I

b
= ∅ then the above t works by Theorem 11.6. So

assume that P I
b
6= ∅. By Theorem 9.11, there exists an integer matrix M that only depends

on A and a d such that P I
b

= {x : Mx ≤ d}. Further all entries of M have absolute
value at most n2n∆n. Let mx ≤ δ be an inequality from Mx ≤ d. We may assume
without loss of generality that δ = max{mx : x ∈ P I

b
}. Let δ′ := ⌊max{mx : x ∈ P}⌋.

Then by Theorem 17.2 [Sch86], δ′ − δ ≤ ||m||1n∆ ≤ n2n+2∆n+1. Now use induction as in
Theorem 11.6 to show that for each k = 0, 1, . . . , δ′ − δ,

P
(k+1+k·t(n−1))
b

⊆ {x : mx ≤ δ′ − k}.

Hence, by taking k = δ′−δ, we see that P
(t)
b

⊆ {x : mx ≤ δ}. As mx ≤ δ was an arbitrary

inequality in Mx ≤ d, it follows that P
(t)
b

= P I
b
. �

Definition 11.8. The Chvátal rank of a rational matrix A is the smallest t such that
{x : Ax ≤ b}(t) = {x : Ax ≤ b}I for each integral vector b.

We extend the definition of a unimodular integer matrix slightly as follows.

Definition 11.9. An integral matrix of rank r is unimodular if for each submatrix B
consisting of r linearly independent columns of A, the g.c.d. of the subdeterminants of B
of order r is one.

Note that this definition does not conflict with our earlier definition in Definition 8.8
since there we only consider integer matrices of full row rank.

Exercise 11.10. Prove that the following conditions are equivalent for an integral
matrix A.

(1) A is unimodular.
(2) For each integral b, {x : x ≥ 0, Ax = b} is integral.
(3) For each integral c, the polyhedron {y : yA ≥ c} is integral.

Corollary 11.11. An integral matrix A has Chvátal rank zero if and only if At is
unimodular.

Characterizations (of matrices) of higher Chvátal rank are unknown. Chvátal ranks of
specific systems have been studied quite a lot.
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CHAPTER 13

An Integral Alternative Theorem

The goal of this lecture is to present an alternative theorem for the feasibility of a
system of rational linear equations Ax = b over the integers. This leads to the result that
the problem of deciding whether Ax = b,x ∈ Zn is feasible lies in both NP and co −NP.
This problem actually lies in P but we will not prove that here and will only allude to how
such a result can be proved.

Definition 13.1. A matrix A of full row rank is in Hermite normal form if it has the
form [B 0] where B is a non-singular, lower triangular, non-negative matrix with a unique
maximum entry in each row located on the main diagonal of B.

The following operations on the columns (or rows) of a matrix are called elementary
unimodular operations.

(1) exchanging two columns,
(2) multiplying a column by a −1,
(3) adding an integral multiple of one column to another column.

The Hermite normal form of a matrix is the integer analog of the row-echelon form
of a matrix from linear algebra obtained at the end of Gaussian elimination. In Gaussian
elimination, we use operations that keep the row-space of the matrix (as a vector space)
intact. In integer linear algebra, we want to keep the lattice spanned by the columns
(or rows) of the matrix intact. This is the reason for using unimodular operations while
manipulating the matrix.

Theorem 13.2. [Sch86, Theorem 4.1] Each rational matrix A of full row rank can be
brought to Hermite normal form by a series of elementary unimodular column operations.

Proof. Let A be a rational matrix of full row rank. Without loss of generality we may
assume that A is integral. Pick a column of A with a non-zero first entry and make it the
first column of A using operation (1). Then using operation (3), we turn all first entries
of all other columns of A to zero. Next, using operation (2) if needed, one can ensure
that the (1, 1)-th entry of the current matrix is positive. Continuing like this suppose at

some intermediate stage we have the matrix

[

B 0
C D

]

where B is lower triangular and

has a positive diagonal. Modify D using elementary column operations so that its first row
(δ11, . . . , δ1k) is non-negative and so that the sum δ11 + · · · + δ1k is as small as possible.
(There is a minimum sum since the sum is bounded below by zero and is an integer.) By
permuting columns, we may assume that δ11 ≥ δ12 ≥ · · · ≥ δ1k. Then, since A has full row
rank, δ11 > 0. If δ12 > 0, then subtracting the second column of D from the first column of
D we will keep the first row of D non-negative but will decrease the sum of the entries in the
first row of D which is contradicts the assumption that the sum was as small as possible.
So we conclude that δ12 = δ13 = · · · = δ1k = 0. Thus we have increased the size of B.
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Repeating this procedure, we will end with a matrix [B 0] with B lower triangular and
with a positive diagonal. This also makes B non-singular. Assume that B is a square
matrix of size d(= rank(A)). The only task left is to modify B so that the largest entry
in any row of B is on the diagonal. For each i = 1, . . . , d and j = 1, . . . , i − 1, add
an integer multiple of the i-th column of B to the j-th column of B so that the (i, j)-
th entry of B will be non-negative and less than Bii. We do this last step in the order
(i, j) = (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), . . .. �

The Smith normal form of a matrix A is obtained by doing both elementary column

and row operations on A. It has the form

[

D 0
0 0

]

where D is a diagonal matrix with

positive diagonal entries δ1, . . . , δk such that δ1|δ2| · · · |δk. The Smith normal form of a
matrix is unique and the product δ1 · δ2 · · · · · δi is the g.c.d. of the subdeterminants of A of
order i.

It turns out that every rational matrix of full row rank has a unique Hermite normal
form, but we will omit that proof here. So it is typical to refer to the Hermite normal form
of a matrix. The alternative theorem we are after can be stated and proved right away.

Corollary 13.3. [Sch86, Corollary 4.1a] Let Ax = b be a rational system. Then
either this system has an integer solution x or there is a rational vector y such that yA is
integral but yb is not an integer.

Proof. As usual we first check that both possibilities cannot co-exist. Suppose x is
an integer solution to Ax = b and y such that yA integral and yb not integer. Then
yb = yAx which is a contradiction since yAx is an integer.

So suppose that Ax = b does not have an integral solution. We need to show that then
there exists a y such that yA is integral but yb not an integer. We prove the contrapositive.
Suppose whenever yA is integral, yb is an integer. Then Ax = b has some solution (possibly
fractional) since otherwise, by the alternative theorem from linear algebra, we will have that
there is a y with yA = 0 and yb 6= 0. By scaling the y with this property, we can ensure
for instance that yA = 0 but yb = 1

2 . So we may assume that the rows of A are linearly
independent. Let [B 0] be the Hermite normal form of A. Then there is some unimodular
matrix U such that AU = [B 0] or in other words, A = [B 0]U−1. If x is an integer
solution to Ax = b then [B 0](U−1x) = b and U−1x is an integer solution to [B 0]z = b.
Conversely, if [B 0]z = b has an integer solution then so does Ax = b. So we may assume
without loss of generality that A is in Hermite normal form [B 0]. Hence we can replace
Ax = b with the square system Bx = b. Since B is non-singular, this system has the
unique solution x = B−1b which lifts to a solution of Ax = b by adding zero components.

To complete the proof we just need to argue that B−1b is integral. Note that B−1[B 0] =
[I 0]. If y is a row of B−1, then what this proves is that yA is integral. Hence by our
assumption, yb is an integer. Using all the rows of B−1, we conclude that B−1b is an
integral vector as needed. �

In the above proof we have used the non-trivial fact that the Hermite normal form of a
matrix A is of the form AU for some unimodular matrix U . See Corollary 4.3b in [Sch86]
for a proof of this. We could have avoided the use of this fact by simply noting that both
statements in the alternative theorem are unaffected by elementary column operations on
A. However, we need this unimodular U later and so we might as well start using it.
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Exercise 13.4. Let A ∈ Zm×n be a matrix of full row rank. Then prove that the
following are equivalent.

(1) the g.c.d. of the subdeterminants of A of order m is one.
(2) Ax = b has an integral solution x for each integral vector b.
(3) for each y, if yA is integral then y is integral.

Our final goal is to show that the problem of deciding whether a rational linear equation
system has an integral solution is both in NP and co−NP. Following the usual program, we
first need to argue that if Ax = b has an integer solution then it has one of size polynomially
bounded by the size of (A,b).

Theorem 13.5. [Sch86, Theorem 5.2] The Hermite normal form [B 0] of a rational
matrix A of full row rank has size polynomially bounded by the size of A. Moreover, there
exists a unimodular matrix U with AU = [B 0] such that the size of U is polynomially
bounded by the size of A.

Proof. We may assume that A is integral since multiplying A by a constant also
multiplies the Hermite normal form by the same constant. Let [B 0] be the Hermite normal
form of A and let bii be the i-th diagonal entry of B. Then note that the product of
b11, . . . , bjj is the determinant of the principal submatrix of [B 0] of order j and that all

other determinants of order j from the first j rows of [B 0] are zero. Therefore,
∏j

i=1 bii is
the g.c.d. of the subdeterminants of order j of the first j rows of [B 0]. Now elementary

column operations does not change these g.c.d.’s. Hence
∏j

i=1 bii is also the g.c.d. of the
subdeterminants of order j of the first j rows of A. This implies that the size of [B 0] is
polynomially bounded by the size of A.

To prove the second statement first assume, by permuting columns if needed, that

A = [A1, A2] where A1 is non-singular. Then consider the square matrix

[

A1 A2

0 I

]

and

its Hermite normal form

[

B 0
B1 B2

]

. The sizes of B, B1, B2 are all polynomially bounded

by the size of A. This implies that the size of the unimodular matrix

U =

[

A1 A2

0 I

]−1 [

B 0
B1 B2

]

is also polynomially bounded by the size of A and AU = [B 0]. �

Corollary 13.6. [Sch86, Corollary 5.2a] If a rational system Ax = b has an integral
solution it has one of size polynomially bounded by the sizes of A and b.

Proof. Assume A has full row rank and that the Hermite normal form of A is [B 0] =
AU where U is unimodular of size polynomially bounded by the size of A. Let x be an
integral solution of Ax = b. Then

B−1b = B−1Ax = B−1[B 0]U−1x = [I 0](U−1x)

is integral since U−1x is integral and has size polynomially bounded by the sizes of A and

b. Now check that x̃ := U

(

B−1b
0

)

is an integral solution of Ax = b. This solution

again has size bounded by a polynomial in the sizes of A and b. �

Corollary 13.7. [Sch86, Corollary 5.2b] The problem of deciding whether a rational
system Ax = b has an integer solution lies in NP ∩ co −NP.
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Proof. Since we can test for linear independence of a collection of rows of A in poly-
nomial time in the size of A, we can assume that A has full row rank. If Ax = b has an
integral solution, then by Corollary 13.6, it has one of size polynomially bounded by the
sizes of A and b and hence the above decision problem is in NP. If Ax = b does not have
an integral solution, then by Corollary 13.3 there is a rational y such that yA is integral
and yb not an integer. We just need to find such a y whose size is polynomially bounded
in the sizes of A and b.

Let [B 0] be the Hermite normal form of A. Then AU = [B 0] which implies that

B−1A = B−1[B 0]U−1 = [I 0]U−1 = [U−1 0]

is integral. Now using the same string of equalities notice that

B−1b = [I 0]U−1x = B−1Ax.

Therefore, if Ax = b has an integral solution then B−1b would be integral. Conversely, if
B−1b is integral then U−1x = B−1b would imply that x is an integral solution of Ax = b.
Therefore, we conclude that B−1b is not integral. Now let y be an appropriate row of B−1.
Then y has size polynomially bounded by the size of A as needed. �

It turns out that just like Gaussian elimination, a matrix can be put into Hermite
normal form in polynomial time. Therefore, the problem of finding an integral solution to
Ax = b or deciding there is none can be done in polynomial time in the sizes of A and b.
See Chapter 5 in [Sch86] for details.



CHAPTER 14

Complexity of Integer Hulls

The integer hull P I can be much more complicated than the polyhedron P . If P =
{x ∈ Rn : Ax ≤ b} where A has m rows, P has at most m facets and at most

(

m
n

)

vertices.
Thus for a rational polyhedron, the number of vertices and facets it can have is bounded
above by functions in just m and n. The size of the entries in A and b do not matter. We
first show that there is no function in just m and n that will bound the number of vertices
and facets of integer hulls.

Example 14.1. [Rub70] Let φk be the k-th Fibonacci number and consider the polytope
Pk ⊂ R2 defined by the inequalities:

φ2kx + φ2k+1y ≤ φ2
2k+1 − 1, x, y ≥ 0.

The integer hull P I
k is a polygon with k + 3 vertices and facets (edges). See [Jer71] for

another family of examples in R2 with only two defining constraints.

The number of facets of P I can be exponentially large relative to the size of the inequality
system defining P .

Theorem 14.2. [Sch86, Theorem 18.2] There is no polynomial φ such that for each
rational polyhedron P = {x : Ax ≤ b}, the integer hull P I has at most φ(size(A,b)) facets.

Proof. Let n ≥ 4 and let An be the vertex-edge incidence matrix of the complete
graph Kn. Therefore, An is a n ×

(

n
2

)

matrix whose columns are all possible 0, 1-vectors of
length n with exactly two ones. Let

Pn := {x ≥ 0 : Anx ≤ 1}.

We saw in Example 8.14 that P I
n is the is the matching polytope of Kn. This integer hull

has at least
(

n
2

)

+ 2n−1 facets as each of the following inequalities determines a facet of P I
n .

(1) x(e) ≥ 0 ∀ e ∈ E
(2)

∑

v∈e x(e) ≤ 1 ∀ v ∈ V

(3)
∑

e⊆U x(e) ≤ ⌊1
2 |U |⌋ ∀ U ⊆ V, |U | odd, |U | ≥ 3

In this situation, size(A,b) = n
(

n
2

)

+
(

n
2

)

3 =
(

n
2

)

(n + 3) = O(n3) and the number of facets,
(

n
2

)

+ 2n−1, cannot be bounded by a polynomial in n3. In fact, Edmonds proved that the

above list of inequalities are all the facet inequalities of P I
n . �

Let us look again at the polyhedron Pn in Theorem 14.2. Each inequality in Anx ≤ 1
has size 1 + size(a row of An) + size(1) = 1 + (

(

n
2

)

+ (n − 1)) + 1 = O(n2). Thus the

facet complexity of Pn is O(n2). Now check that the facet complexity of P I
n , using the

fact that the list of inequalities in Theorem 14.2 define all the facets of P I
n , is also O(n2).

This is not a coincidence. We will prove that the facet complexity of P I is bounded above
by a polynomial in the facet complexity of P . At first glance, this seems to contradict
Theorem 14.2. But what saves the day is that facet complexity does not care about how
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many inequalities are needed to describe a polyhedron, but only about the maximum size
of any one inequality.

Theorem 14.3. [Sch86, Theorem 17.1] Let P = {x : Ax ≤ b} where A ∈ Zm×n and
b ∈ Zm. Then

P I = conv(x1, . . . ,xt) + cone(y1, . . . ,ys)

where x1, . . . ,xt,y1, . . . ,ys are integral vectors with all components at most (n + 1)∆ in
absolute value, where ∆ is the maximum absolute value of a subdeterminant of [A b].

Proof. Assume P I 6= ∅. By Theorem 8.2, rec.cone(P I) = rec.cone(P ) = cone(y1, . . . ,ys).
We already saw in the proof of Lemma 9.9 that we can take y1, . . . ,ys to be integer vectors
of infinity norm at most ∆.

Also, we saw in Lecture 5 that if P = conv(z1, . . . , zk) + cone(y1, . . . ,ys), then each zi

comes from a minimal face of P and hence a component of zi is a quotient of a subdetermi-
nant of [A b]. Since the absolute value of the numerator of this quotient is bounded above
by ∆ and the denominator is at least one in absolute value, the quotient and therefore, each
component of a zi, is at most ∆ in absolute value.

Now consider the set

Z := {
∑

µiyi : 0 ≤ µi ≤ 1, i = 1, . . . , s and at most n of the µi are non-zero}.

Every integer point in conv(z1, . . . , zk)+Z has all components of absolute value at most (n+
1)∆ by the above discussion. Let x1, . . . ,xt be all the integer points in conv(z1, . . . , zk)+Z.
This will finish the proof if we can argue that every minimal face of P I contains at least
one integer point from conv(z1, . . . , zk)+Z. Let F be a minimal face of P I . Then since P I

is an integral polyhedron, F contains an integer vector x∗. Since x∗ ∈ P , we can write

x∗ = λ1z1 + · · · + λkzk + µ1y1 + · · · + µsys

for some λ1, . . . , λk, µ1, . . . , µs ≥ 0 and
∑

λi = 1. Now every vector in a d-dimensional
polyhedral cone lies in the subcone spanned by a collection of d generators of the cone. So
we may assume that in the above expression for x∗, at most n of the µi’s are non-zero. Now
consider

x̃ := x∗ − (⌊µ1⌋y1 + · · · + ⌊µs⌋ys)

Then x̃ is an integral vector in conv(z1, . . . , zk) + Z and hence in P . Let c be an integer
vector such that cx is maximized over P I at F . Then cyi ≤ 0 since c lies in the polar of
the recession cone of P I . This implies that

∑s
i=1⌊µi⌋cyi ≤ 0 and hence

cx̃ = cx∗ −
s

∑

i=1

⌊µi⌋cyi ≥ cx∗.

However, since x̃ ∈ P I and cx is maximized over P I at F , x̃ ∈ F . �

Corollary 14.4. [Sch86, Corollary 17.1a] Let P ⊆ Rn be a rational polyhedron of
facet complexity φ. Then P I has facet complexity at most 24n5φ ≤ 24φ6.

Proof. Since the facet complexity of P is φ, there exists some rational inequality
system Ax ≤ b such that P = {x : Ax ≤ b} and each inequality ax ≤ β has size at most
φ. We break the proof into several steps.
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(1) Suppose a = (a1, . . . , an) and ai = pi

qi
and β = pi+1

qi+1
where qi > 0. Then

φ ≥ 1 + size(a) + size(β)
= 1 + n +

∑n
i=1 size(ai) + size(β)

= 1 + n + n + 1 +
∑n+1

i=1 ⌈log2|pi| + 1⌉ +
∑n+1

i=1 ⌈log2|qi| + 1⌉

>
∑n+1

i=1 ⌈log2|qi| + 1⌉

>
∑n+1

i=1 log2qi

and hence,
∏n+1

i=1 qi < 2φ which implies that the size of the product of the
denominators is at most φ.

(2) Clearing denominators in ax ≤ β would therefore result in an integral inequality

of size at most (n + 2)φ. Let Ãx ≤ b̃ be the resulting integral inequality system
describing P .

(3) Since each inequality in Ãx ≤ b̃ has size at most (n + 2)φ, the size of a square

submatrix of [Ã b̃] is at most (n + 1)(n + 2)φ ≤ (n + 2)2φ. Therefore, if ∆ is

the largest absolute value of a subdeterminant of [Ã b̃], then ∆ has size at most

2(n + 2)2φ and so ∆ ≤ 22(n+2)2φ.
(4) By Theorem 14.3, there are integral vectors x1, . . . ,xt,y1, . . . ,ys such that

P I = conv(x1, . . . ,xt) + cone(y1, . . . ,ys)

with each component at most (n + 1)∆ in absolute value.

size((n + 1)∆) = 1 + ⌈log2((n + 1)∆ + 1)⌉
≤ 2 + log2((n + 1)∆ + 1)
≤ 3 + log2(n + 1) + log2∆
≤ 3 + log2(n + 1) + 2(n + 2)2φ

Therefore, the size of any xi or yj is at most

n + n(3 + log2(n + 1) + 2(n + 2)2φ) ≤ 6n3φ.

This implies that the vertex complexity of P I is at most 6n3φ and so by Theorem 6.6,
the facet complexity of P I is at most 4n2(6n3φ) = 24n5φ. �

Corollary 14.5. [Sch86, Corollary 17.1b,d]

(1) Let P be a rational polyhedron of facet complexity φ. If P contains an integer
vector, it contains one of size at most 6n3φ.

(2) The problem of deciding whether a rational inequality system Ax ≤ b has an integer
solution is in NP.

Proof. The first statement follows from the proof of Corollary 14.4. If P is a cone, it
contains the origin. Else, the xi’s in the proof of Corollary 14.4 are integral points in P . For
the second statement, note that the size of such an xi is bounded above by a polynomial in
the size of (A, b). �

The feasibility of a rational inequality system over the integers is in general NP-hard.
The proof of this is quite involved. We merely show that the problem is in NP.





CHAPTER 15

How Many Vertices Can an Integer Hull Have?*

This lecture was given in Berlin, based on the paper by Cook, Hartmann, Kannan and
McDiarmid but needs to be typed up.
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CHAPTER 16

0, 1-Polytopes
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CHAPTER 17

0, 1-polytopes: Chvátal Rank and Small Chvátal Rank*

Eisenbrand-Schulz-Queyranne-Hartmann results Bogart-T. results
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CHAPTER 18

Semidefinite Programming

Definition 18.1. Let A ∈ Rn×n. A scalar λ ∈ C such that there is a non-zero vector x
with Ax = λx is called an eigenvalue of A and x an eigenvector associated to λ.

The scalar λ is an eigenvalue of A if and only if det(A − λI) = 0. Taking λ to be a
variable, det(A − λI) = 0 is a polynomial in λ of degree n and hence has n complex roots
counting multiplicities. Thus A always has n eigenvalues counting multiplicities. Given an
eigenvalue λ, its eigenspace is the nullspace of the matrix A − λI. This vectorspace can
have any dimension between one and n−1. An eigenvector of λ is any non-zero vector from
its eigenspace. The identity matrix has the lone eigenvalue 1 with multiplicity n (since
det((1−λ)I) = (1−λ)n) and its eigenspace is all of Rn. Geometrically, an eigenvector x of
A is a vector that simply scales positively or negatively when multiplied with A. If A itself is
singular then λ = 0 is an eigenvalue and the nullspace of A is its eigenspace. It is sometimes
convenient to take a vector of unit length in the eigenspace of λ as an eigenvector of λ. Since
univariate polynomials of degree higher than four do not have closed form expressions for
their roots, eigenvalues have no formula in terms of A.

Lemma 18.2. (1) The trace of A ∈ Rn×n, tr(A) :=
∑n

i=1 Aii, is the sum of the
eigenvalues of A taken with their correct multiplicities.

(2) The product of the eigenvalues of A (taken with multiplicities) is the determinant
of A.

(3) If A is triangular (in particular, diagonal), then its eigenvalues are precisely its
diagonal elements.

(4) If the eigenvalues of A are λ1, . . . , λn then those of Ak are λk
1, . . . , λ

k
n and an

eigenvector of λ (for A) is also an eigenvector of λk (for Ak).
(5) A and At have the same eigenvalues.
(6) While is not true that the eigenvalues of AB are the products of eigenvalues of A

and B nor that the eigenvalues of A + B are the sums of eigenvalues of A and B,
it is true that the product of all eigenvalues of AB is the product of all eigenvalues
of A and B and similarly for the sum.

Row operations on A do not preserve eigenvalues. But if we can convert a matrix A to
a triangular matrix U without changing its eigenvalues then the eigenvalues of A are just
the diagonal entries of U .

Lemma 18.3. Suppose A ∈ Rn×n has n linearly independent eigenvectors arranged as
the columns of a matrix S. Then S−1AS = diag(λ1, . . . , λn) where the λi are the eigenvalues
of A.

Proof. Let Λ := diag(λ1, . . . , λn) and let xi be the eigenvector of λi in the ith column
of S. Then AS = [Ax1 · · · Axn] = [λ1x1 · · · λnxn] = SΛ. �
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Note that the diagonalizing matrix S is not unique since eigenvectors are not unique
but a diagonalizing matrix has as its columns n linearly independent eigenvectors of the
original matrix. Not every A ∈ Rn×n has n linearly independent eigenvectors — take
a11 = a21 = a22 = 0 and a12 = 1 — hence not every matrix can be diagonalized. Any
set of eigenvectors x1, . . . ,xk corresponding to distinct eigenvalues is always independent.
If A has repeated eigenvalues then it needs to be checked if A has a full set of n linearly
independent eigenvectors. Matrices A and B with the diagonalizing matrix S commute since
AB = (SΛ1S

−1)(SΛ2S
−1) = SΛ1Λ2S

−1 = SΛ2Λ1S
−1 = BA. Conversely, if AB = BA and

both A and B can be diagonalized then they can be diagonalized by the same matrix S.
We let A∗ be the conjugate transpose of A ∈ Cn×n.

Definition 18.4. A matrix A ∈ Cn×n is Hermitian if A = A∗.

Note that a real matrix is Hermitian if and only if it is symmetric.

Definition 18.5. A matrix whose columns are orthonormal complex vectors is said to
be unitary.

If U is unitary, then U∗U = I which implies that U−1 = U∗. This is the complex analog
of an orthogonal matrix (real matrix with orthonormal columns) where QtQ = I and hence
Q−1 = Qt.

Lemma 18.6. (1) If A = A∗ then x∗Ax is real for every x ∈ Cn.
(2) Every eigenvalue of a Hermitian matrix is real.
(3) The eigenvectors of a Hermitian matrix corresponding to different eigenvalues are

pair-wise orthogonal.
(4) Every Hermitian matrix has a full set of eigenvectors and hence a unitary diago-

nalizing matrix U . Hence U−1AU = U∗AU = Λ which implies that A = UΛU∗ =
λ1x1x

∗
1 + · · · + λnxnx

∗
n. Hence A is a real linear combination of matrices of the

form xx∗.

Proof. (1) (x∗Ax)∗ = x∗A∗x = x∗Ax which implies that x∗Ax is real.
(2) Suppose λ is an eigenvalue of A and x is one of its eigenvectors. Then Ax = λx

which implies that x∗Ax = λx∗x. By (1), the left-hand-side is real and x∗x = ||x||2

is real and positive. Therefore, λ ∈ R.
(3) Suppose Ax = λx and Ay = µy with λ 6= µ. Then x∗A = x∗A∗ = (Ax)∗ =

(λx)∗ = x∗λ = λx∗ using that λ ∈ R. Therefore, x∗Ay = λx∗y and multiplying
Ay = µy by x∗, we get x∗Ay = µx∗y. Thus, λx∗y = µx∗y and since λ 6= µ,
x∗y = 0 which means that x is orthogonal to y.

(4) We will not prove the existence of the full set of eigenvectors. To see the last
statement, A = UλU∗ = [λ1x1 · · ·λnxn]U∗ = λ1x1x

∗
1 + · · · + λnxnx

∗
n.

�

The decomposition A = λ1x1x
∗
1 + · · ·+ λnxnx

∗
n is called the spectral theorem. Semidefi-

nite programming relies on positive semidefinite matrices which are special examples of real
symmetric matrices.

Definition 18.7. A real symmetric matrix A ∈ Rn×n is said to be positive semidef-
inite if any of the following equivalent conditions are satisfied.

(1) xtAx ≥ 0 for all x ∈ Rn.
(2) All eigenvalues of A are non-negative.
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(3) All principal minors are non-negative.
(4) There exists a matrix W , possibly singular, such that A = W tW .





CHAPTER 19

0, 1-polytopes: Other convexification processes*

Lovasz-Schrijver, Sherali-Adams, Lasserre methods (perhaps based on Monique Lau-
rent’s article that compares them)
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CHAPTER 20

Stable sets in graphs

Lovasz theta number and the semi-definite relaxation that comes with it. Perfect graphs.
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CHAPTER 21

Polyhedral Combinatorics

Method of generating facets for the convex hull of integer solutions to combinatorial
optimization problems using combinatorics. Ex: Chapter 8 in Grotschel-Lovasz-Schrijver
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totally dual integral, 39
totally unimodular, 29

unimodular, 29, 49
unimodular operations, 53

vector
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vertex, 16
vertex complexity, 24

Weyl’s Theorem, 8

zonotope, 27


