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5
1. Shortest paths and trees

1.1. Shortest paths with nonnegative lengthsLet D = (V;A) be a direted graph, and let s; t 2 V . A walk is a sequene P =(v0; a1; v1; : : : ; am; vm) where ai is an ar from vi�1 to vi for i = 1; : : : ;m. If v0; : : : ; vmall are di�erent, P is alled a path.If s = v0 and t = vm, the verties s and t are the starting and end vertex of P ,respetively, and P is alled an s � t walk, and, if P is a path, an s � t path. Thelength of P is m. The distane from s to t is the minimum length of any s� t path.(If no s� t path exists, we set the distane from s to t equal to 1.)It is not diÆult to determine the distane from s to t: Let Vi denote the set ofverties of D at distane i from s. Note that for eah i:(1) Vi+1 is equal to the set of verties v 2 V n (V0 [ V1 [ � � � [ Vi) for whih(u; v) 2 A for some u 2 Vi.This gives us diretly an algorithm for determining the sets Vi: we set V0 := fsg andnext we determine with rule (1) the sets V1; V2; : : : suessively, until Vi+1 = ;.In fat, it gives a linear-time algorithm:Theorem 1.1. The algorithm has running time O(jAj).Proof. Diretly from the desription.
In fat the algorithm �nds the distane from s to all verties reahable from s.Moreover, it gives the shortest paths. These an be desribed by a rooted (direted)tree T = (V 0; A0), with root s, suh that V 0 is the set of verties reahable in D froms and suh that for eah u; v 2 V 0, eah direted u� v path in T is a shortest u� vpath in D.1Indeed, when we reah a vertex t in the algorithm, we store the ar by whih t isreahed. Then at the end of the algorithm, all stored ars form a rooted tree withthis property.There is also a trivial min-max relation haraterizing the minimum length of ans � t path. To this end, all a subset A0 of A an s � t ut if A0 = Æout(U) for somesubset U of V satisfying s 2 U and t 62 U .2 Then the following was observed byRobaker [1956℄:1A rooted tree, with root s, is a direted graph suh that the underlying undireted graph is atree and suh that eah vertex t 6= s has indegree 1. Thus eah vertex t is reahable from s by aunique direted s� t path.2Æout(U) and Æin(U) denote the sets of ars leaving and entering U , respetively.
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Theorem 1.2. The minimum length of an s�t path is equal to the maximum numberof pairwise disjoint s� t uts.Proof. Trivially, the minimum is at least the maximum, sine eah s�t path intersetseah s� t ut in an ar. The fat that the minimum is equal to the maximum followsby onsidering the s� t uts Æout(Ui) for i = 0; : : : ; d�1, where d is the distane froms to t and where Ui is the set of verties of distane at most i from s.

This an be generalized to the ase where ars have a ertain `length'. For any`length' funtion l : A ! Q + and any walk P = (v0; a1; v1; : : : ; am; vm), let l(P ) bethe length of P . That is:
(2) l(P ) := mXi=1 l(a):Now the distane from s to t (with respet to l) is equal to the minimum length ofany s� t path. If no s� t path exists, the distane is +1.Again there is an easy algorithm, due to Dijkstra [1959℄, to �nd a minimum-lengths� t path for all t. Start with U := V and set f(s) := 0 and f(v) =1 if v 6= s. Nextapply the following iteratively:(3) Find u 2 U minimizing f(u) over u 2 U . For eah a = (u; v) 2 A for whihf(v) > f(u) + l(a), reset f(v) := f(u) + l(a). Reset U := U n fug.We stop if U = ;. Then:Theorem 1.3. The �nal funtion f gives the distanes from s.Proof. Let dist(v) denote the distane from s to v, for any vertex v. Trivially,f(v) � dist(v) for all v, throughout the iterations. We prove that throughout theiterations, f(v) = dist(v) for eah v 2 V n U . At the start of the algorithm this istrivial (as U = V ).Consider any iteration (3). It suÆes to show that f(u) = dist(u) for the hosenu 2 U . Suppose f(u) > dist(u). Let s = v0; v1; : : : ; vk = u be a shortest s � u path.Let i be the smallest index with vi 2 U .Then f(vi) = dist(vi). Indeed, if i = 0, then f(vi) = f(s) = 0 = dist(s) = dist(vi).If i > 0, then (as vi�1 2 V n U):(4) f(vi) � f(vi�1) + l(vi�1; vi) = dist(vi�1) + l(vi�1; vi) = dist(vi):This implies f(vi) � dist(vi) � dist(u) < f(u), ontraditing the hoie of u.
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Clearly, the number of iterations is jV j, while eah iteration takes O(jV j) time.So the algorithm has a running time O(jV j2). In fat, by storing for eah vertex v thelast ar a for whih (3) applied we �nd a rooted tree T = (V 0; A0) with root s suhthat V 0 is the set of verties reahable from s and suh that if u; v 2 V 0 are suh thatT ontains a direted u� v path, then this path is a shortest u� v path in D.Thus we have:Theorem 1.4. Given a direted graph D = (V;A), s; t 2 V , and a length funtionl : A! Q +, a shortest s� t path an be found in time O(jV j2).Proof. See above.
For an improvement, see Setion 1.2.A weighted version of Theorem 1.2 is as follows:Theorem 1.5. Let D = (V;A) be a direted graph, s; t 2 V , and let l : A ! Z+.Then the minimum length of an s� t path is equal to the maximum number k of s� tuts C1; : : : ; Ck (repetition allowed) suh that eah ar a is in at most l(a) of the utsCi.Proof. Again, the minimum is not smaller than the maximum, sine if P is any s� tpath and C1; : : : ; Ck is any olletion as desribed in the theorem:3

(5) l(P ) = Xa2AP l(a) � Xa2AP( number of i with a 2 Ci)
= kXi=1 jCi \ AP j � kXi=1 1 = k:

To see equality, let d be the distane from s to t, and let Ui be the set of vertiesat distane less than i from s, for i = 1; : : : ; d. Taking Ci := Æout(Ui), we obtain aolletion C1; : : : ; Cd as required.
Appliation 1.1: Shortest path. Obviously, �nding a shortest route between ities is anexample of a shortest path problem. The length of a onnetion need not be the geographialdistane. It might represent the time or energy needed to make the onnetion. It mightost more time or energy to go from A to B than from B to A. This might be the ase, forinstane, when we take di�erenes of height into aount (when routing truks), or air andoean urrents (when routing airplanes or ships).Moreover, a route for an airplane ight between two airports so that a minimum amountof fuel is used, taking weather, altitude, veloities, and air urrents into aount, an be3AP denotes the set of ars traversed by P
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found by a shortest path algorithm (if the problem is appropriately disretized | otherwiseit is a problem of `alulus of variations'). A similar problem ours when �nding theoptimum route for boring say an underground railway tunnel.Appliation 1.2: Dynami programming. A ompany has to perform a job that willtake 5 months. For this job a varying number of extra employees is needed:
(6) month number of extra employees needed1 b1=102 b2=73 b3=94 b4=85 b5=11Reruiting and instrution osts EUR 800 per employee, while stopping engagement ostsEUR 1200 per employee. Moreover, the ompany has osts of EUR 1600 per month foreah employee that is engaged above the number of employees needed that month. Theompany now wants to deide what is the number of employees to be engaged so that thetotal osts will be as low as possible.Clearly, in the example in any month i, the ompany should have at least bi and at most11 extra employees for this job. To solve the problem, make a direted graph D = (V;A)with
(7) V := f(i; x) j i = 1; : : : ; 5; bi � x � 11g [ f(0; 0); (6; 0)g,A := f((i; x); (i+ 1; y)) 2 V � V j i = 0; : : : ; 5g.
(Figure 1.1).At the ar from (i; x) to (i+ 1; y) we take as length the sum of
(8) (i) the ost of starting or stopping engagement when passing from x to y employees(this is equal to 8(y � x) if y � x and to 12(x� y) if y < x);(ii) the ost of keeping the surplus of employees in month i+1 (that is, 16(y� bi+1))(taking EUR 100 as unit).Now the shortest path from (0; 0) to (6; 0) gives the number of employees for eah monthso that the total ost will be minimized. Finding a shortest path is thus a speial ase ofdynami programming.
Exerises
1.1. Solve the dynami programming problem in Appliation 1.2 with Dijkstra's method.
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Figure 1.1
1.2. Speeding up Dijkstra's algorithm with heapsFor dense graphs, a running time bound of O(jV j2) for a shortest path algorithm isbest possible, sine one must inspet eah ar. But if jAj is asymptotially smallerthan jV j2, one may expet faster methods.In Dijkstra's algorithm, we spend O(jAj) time on updating the values f(u) andO(jV j2) time on �nding a u 2 U minimizing f(u). As jAj � jV j2, a derease in therunning time bound requires a speed-up in �nding a u minimizing f(u).A way of doing this is based on storing the u in some order so that a u minimizingf(u) an be found quikly and so that it does not take too muh time to restore theorder if we delete a minimizing u or if we derease some f(u).This an be done by using a `heap', whih is a rooted forest (U; F ) on U , with theproperty that if (u; v) 2 F then f(u) � f(v).4 So at least one of the roots minimizesf(u).Let us �rst onsider the 2-heap. This an be desribed by an ordering u1; : : : ; un4A rooted forest is an ayli direted graph D = (V;A) suh that eah vertex has indegree atmost 1. The verties of indegree 0 are alled the roots of D. If (u; v) 2 A, then u is alled the parentof v and v is alled a hild of u.If the rooted forest has only one root, it is a rooted tree.



10 Chapter 1. Shortest paths and trees
of the elements of U suh that if i = b j2 then f(ui) � f(uj). The underlying rootedforest is in fat a rooted tree: its ars are the pairs (ui; uj) with i = b j2.In a 2-heap, one easily �nds a u minimizing f(u): it is the root u1. The followingtheorem is basi for estimating the time needed for updating the 2-heap:Theorem 1.6. If u1 is deleted or if some f(ui) is dereased, the 2-heap an be restoredin time O(log p), where p is the number of verties.Proof. To remove u1, perform the following `sift-down' operation. Reset u1 := unand n := n � 1. Let i = 1. While there is a j � n with 2i + 1 � j � 2i + 2 andf(uj) < f(ui), hoose one with smallest f(uj), swap ui and uj, and reset i := j.If f(ui) has dereased perform the following `sift-up' operation. While i > 0 andf(uj) > f(ui) for j := b i�12 , swap ui and uj, and reset i := j. The �nal 2-heap is asrequired.Clearly, these operations give 2-heaps as required, and an be performed in timeO(log jU j).

This gives the result of Johnson [1977℄:Corollary 1.6a. Given a direted graph D = (V;A), s; t 2 V and a length funtionl : A! Q +, a shortest s� t path an be found in time O(jAj log jV j).Proof. Sine the number of times a minimizing vertex u is deleted and the numberof times a value f(u) is dereased is at most jAj, the theorem follows from Theorem1.6.
Dijkstra's algorithm has running time O(jV j2), while Johnson's heap implemen-tation gives a running time of O(jAj log jV j). So one is not uniformly better than theother.If one inserts a `Fibonai heap' in Dijkstra's algorithm, one gets a shortest pathalgorithm with running time O(jAj + jV j log jV j), as was shown by Fredman andTarjan [1984℄.A Fibonai forest is a rooted forest (V;A), so that for eah v 2 V the hildren ofv an be ordered in suh a way that the ith hild has at least i� 2 hildren. Then:5Theorem 1.7. In a Fibonai forest (V;A), eah vertex has at most 1 + 2 log jV jhildren.Proof. For any v 2 V , let �(v) be the number of verties reahable from v. We showthat �(v) � 2(dout(v)�1)=2, whih implies the theorem.65dout(v) and din(v) denote the outdegree and indegree of v.6In fat, �(v) � F (dout(v)), where F (k) is the kth Fibonai number, thus explaining the nameFibonai forest.
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Let k := dout(v) and let vi be the ith hild of v (for i = 1; : : : ; k). By indution,�(vi) � 2(dout(vi)�1)=2 � 2(i�3)=2, as dout(vi) � i � 2. Hene �(v) = 1 +Pki=1 �(vi) �1 +Pki=1 2(i�3)=2 = 2(k�1)=2 + 2(k�2)=2 + 12 � 12p2 � 2(k�1)=2.
Now a Fibonai heap onsists of a Fibonai forest (U; F ), where for eah v 2 Uthe hildren of v are ordered so that the ith hild has at least i � 2 hildren, and asubset T of U with the following properties:(9) (i) if (u; v) 2 F then f(u) � f(v);(ii) if v is the ith hild of u and v 62 T then v has at least i� 1 hildren;(iii) if u and v are two distint roots, then dout(u) 6= dout(v).So by Theorem 1.7, (9)(iii) implies that there exist at most 2 + 2 log jU j roots.The Fibonai heap will be desribed by the following data struture:(10) (i) for eah u 2 U , a doubly linked list Cu of hildren of u (in order);(ii) a funtion p : U ! U , where p(u) is the parent of u if it has one, andp(u) = u otherwise;(iii) the funtion dout : U ! Z+ ;(iv) a funtion b : f0; : : : ; tg ! U (with t := 1+b2 log jV j) suh that b(dout(u)) =u for eah root u;(v) a funtion l : U ! f0; 1g suh that l(u) = 1 if and only if u 2 T .

Theorem 1.8. When �nding and deleting n times a u minimizing f(u) and dereas-ing m times the value f(u), the struture an be updated in time O(m+ p+ n log p),where p is the number of verties in the initial forest.Proof. Indeed, a u minimizing f(u) an be identi�ed in time O(log p), sine we ansan f(b(i)) for i = 0; : : : ; t. It an be deleted as follows. Let v1; : : : ; vk be the hildrenof u. First delete u and all ars leaving u from the forest. In this way, v1; : : : ; vk havebeome roots, of a Fibonai forest, and onditions (9)(i) and (ii) are maintained. Torepair ondition (9)(iii), do for eah r = v1; : : : ; vk the following:(11) repair(r):if dout(s) = dout(r) for some root s 6= r, then:fif f(s) � f(r), add s as last hild of r and repair(r);otherwise, add r as last hild of s and repair(s)g.Note that onditions (9)(i) and (ii) are maintained, and that the existene of a roots 6= r with dout(s) = dout(r) an be heked with the funtions b, dout, and p. (Duringthe proess we update the data struture.)
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If we derease the value f(u) for some u 2 U we apply the following to u:(12) make root(u):if u has a parent, v say, then:fdelete ar (v; u) and repair(u);if v 62 T , add v to T ; otherwise, remove v from T and make root(v)g.Now denote by inr(::) and der(::) the number of times we inrease and derease.. , respetively. Then:(13) number of alls of make root = der(f(u)) + der(T )� der(f(u)) + inr(T ) + p � 2der(f(u)) + p = 2m+ p,sine we inrease T at most one after we have dereased some f(u).This also gives, where R denotes the set of roots:(14) number of alls of repair= der(F ) + der(R)� der(F ) + inr(R) + p = 2der(F ) + p� 2(n log p+number of alls of make root)+p � 2(n log p+ 2m+ p) + p.Sine deiding alling make root or repair takes time O(1) (by the data struture),we have that the algorithm takes time O(m+ p+ n log p).
As a onsequene one has:Corollary 1.8a. Given a direted graph D = (V;A), s; t 2 V and a length funtionl : A! Q +, a shortest s� t path an be found in time O(jAj+ jV j log jV j).Proof. Diretly from the desription of the algorithm.

1.3. Shortest paths with arbitrary lengthsIf lengths of ars may take negative values, it is not always the ase that a shortestwalk exists. If the graph has a direted iruit of negative length, then we an obtains� t walks of arbitrary small negative length (for appropriate s and t).However, it an be shown that if there are no direted iruits of negative length,then for eah hoie of s and t there exists a shortest s � t walk (if there exists atleast one s� t path).Theorem 1.9. Let eah direted iruit have nonnegative length. Then for eah pairs; t of verties for whih there exists at least one s � t walk, there exists a shortest
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s� t walk, whih is a path.Proof. Clearly, if there exists an s� t walk, there exists an s� t path. Hene thereexists also a shortest path P , that is, an s� t path that has minimum length amongall s� t paths. This follows from the fat that there exist only �nitely many paths.We show that P is shortest among all s� t walks. Let P have length L. Supposethat there exists an s � t walk Q of length less than L. Choose suh a Q with aminimum number of ars. Sine Q is not a path (as it has length less than L), Qontains a direted iruit C. Let Q0 be the walk obtained from Q by removing C.As l(C) � 0, l(Q0) = l(Q) � l(C) � l(Q) < L. So Q0 is another s � t walk of lengthless than L, however with a smaller number of ars than Q. This ontradits theassumption that Q has a minimum number of ars.

Also in this ase there is an easy algorithm, the Bellman-Ford method (Bellman[1958℄, Ford [1956℄), determining a shortest s� t path.Let n := jV j. The algorithm alulates funtions f0; f1; f2; : : : ; fn : V ! R [ f1gsuessively by the following rule:(15) (i) Put f0(s) := 0 and f0(v) :=1 for all v 2 V n fsg.(ii) For k < n, if fk has been found, put
fk+1(v) := minffk(v); min(u;v)2A(fk(u) + l(u; v))g

for all v 2 V .Then, assuming that there is no direted iruit of negative length, fn(v) is equal tothe length of a shortest s� v walk, for eah v 2 V . (If there is no s� v path at all,fn(v) =1.)This follows diretly from the following theorem:Theorem 1.10. For eah k = 0; : : : ; n and for eah v 2 V ,(16) fk(v) = minfl(P ) jP is an s� v walk traversing at most k arsg:
Proof. By indution on k from (15).

So the above method gives us the length of a shortest s� t path. It is not diÆultto derive a method �nding an expliit shortest s � t path. To this end, determineparallel to the funtions f0; : : : ; fn, a funtion g : V ! V by setting g(v) = u whenwe set fk+1(v) := fk(u) + l(u; v) in (15)(ii). At termination, for any v, the sequenev, g(v), g(g(v)); : : : ; s gives the reverse of a shortest s� v path. Therefore:
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Corollary 1.10a. Given a direted graph D = (V;A), s; t 2 V and a length funtionl : A ! Q , suh that D has no negative-length direted iruit, a shortest s � t pathan be found in time O(jV jjAj).
Proof. Diretly from the desription of the algorithm.
Appliation 1.3: Knapsak problem. Suppose we have a knapsak with a volume of8 liter and a number of artiles 1; 2; 3; 4; 5. Eah of the artiles has a ertain volume and aertain value:
(17) artile volume value1 5 42 3 73 2 34 2 55 1 4
So we annot take all artiles in the knapsak and we have to make a seletion. We wantto do this so that the total value of artiles taken into the knapsak is as large as possible.We an desribe this problem as one of �nding x1; x2; x3; x4; x5 suh that:
(18) x1; x2; x3; x4; x5 2 f0; 1g,5x1 + 3x2 + 2x3 + 2x4 + x5 � 8,4x1 + 7x2 + 3x3 + 5x4 + 4x5 is as large as possible.
We an solve this problem with the shortest path method as follows. Make a direted graphin the following way (f. Figure 1.2):There are verties (i; x) for 0 � i � 6 and 0 � x � 8 and there is an ar from (i� 1; x)to (i; y) if y = x or y = x + ai (where ai is the volume of artile i) if i � 5 and there arears from eah (5; x) to (6; 8). We have deleted in the piture all verties and ars that donot belong to any direted path from (0; 0).The length of ar ((i� 1; x); (i; y)) is equal to 0 if y = x and to �i if y = x+ ai (wherei denotes the value of i). Moreover, all ars ending at (6; 8) have length 0.Now a shortest path from (0; 0) to (6; 8) gives us the optimal seletion.
Appliation 1.4: PERT-CPM. For building a house ertain ativities have to be ex-euted. Certain ativities have to be done before other and every ativity takes a ertainnumber of days:
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(19) ativity days needed to be done beforeativity #1. groundwork 2 22. foundation 4 33. building walls 10 4,6,74. exterior plumbing 4 5,95. interior plumbing 5 106. eletriity 7 107. roof 6 88. �nishing o� outer walls 7 99. exterior painting 9 1410. panelling 8 11,1211. oors 4 1312. interior painting 5 1313. �nishing o� interior 614. �nishing o� exterior 2



16 Chapter 1. Shortest paths and trees
We introdue two dummy ativities 0 (start) and 15 (ompletion), eah taking 0 days, whereativity 0 has to be performed before all other ativities and 15 after all other ativities.The projet an be represented by a direted graph D with verties 0; 1; : : : ; 14; 15,where there is an ar from i to j if i has to be performed before j. The length of ar (i; j)will be the number ti of days needed to perform ativity i. This graph with length funtionis alled the projet network.
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Figure 1.3
Now a longest path from 0 to 15 gives the minimum number of days needed to build thehouse. Indeed, if li denotes the length of a longest path from 0 to i, we an start ativity ion day li. If ativity j has been done after ativity i, then lj � li+ ti by de�nition of longestpath. So there is suÆient time for ompleting ativity i and the shedule is pratiallyfeasible. That is, there is the following min-max relation:(20) the minimum number of days needed to �nish the projet is equal to the maxi-mum length of a path in the projet network.A longest path an be found with the Bellman-Ford method, as it is equivalent to ashortest path when we replae eah length by its opposite. Note that D should not haveany direted iruits sine otherwise the whole projet would be infeasible.So the projet network helps in planning the projet and is the basis of the so-alled`Program Evaluation and Review Tehnique' (PERT). (Atually, one often represents a-tivities by ars instead of verties, giving a more ompliated way of de�ning the graph.)Any longest path from 0 to 15 gives the minimum number of days needed to ompletethe projet. Suh a path is alled a ritial path and gives us the bottleneks in the projet.It tells us whih ativities should be ontrolled arefully in order to meet a deadline. Atleast one of these ativities should be sped up if we wish to omplete the projet faster.This is the basis of the `Critial Path Method' (CPM).Appliation 1.5: Prie equilibrium. A small example of an eonomial appliation isas follows. Consider a number of remote villages, say B;C;D;E and F . Certain pairs ofvillages are onneted by routes (like in Figure 1.4).If villages X and Y are onneted by a route, let kX;Y be the ost of transporting oneliter of oil from X to Y .
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At a ertain day, one detets an oil well in village B, and it makes oil freely availablein village B. Now one an follow how the oil prie will develop, assuming that no other oilthan that from the well in B is available and that only one a week there is ontat betweenadjaent villages.It will turn out that the oil pries in the di�erent villages will follow the iterations inthe Bellman-Ford algorithm. Indeed in week 0 (the week in whih the well was deteted)the prie in B equals 0, while in all other villages the prie is 1, sine there is simply nooil available yet.In week 1, the prie in B equals 0, the prie in any village Y adjaent to B is equal tokB;Y per liter and in all other villages it is still 1.In week i + 1 the liter prie pi+1;Y in any village Y is equal to the minimum value ofpi;Y and all pi;X + kX;Y for whih there is a onnetion from X to Y .There will be prie equilibrium if for eah village Y one has:(21) it is not heaper for the inhabitants of Y to go to an adjaent village X and totransport the oil from X to Y .Moreover, one has the min-max relation for eah village Y :(22) the maximum liter prie in village Y is equal to the the minimum length of apath in the graph from B to Ytaking kX;Y as length funtion.A omparable, but less spatial example is: the verties of the graph represent oil prod-uts (instead of villages) and kX;Y denotes the ost per unit of transforming oil produt Xto oil produt Y . If oil produt B is free, one an determine the osts of the other produtsin the same way as above.

Exerises1.2. Find with the Bellman-Ford method shortest paths from s to eah of the other vertiesin the following graphs (where the numbers at the ars give the length):
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1.3. Let be given the distane table:to: A B C D E F Gfrom: A 0 1 1 1 1 2 12B 1 0 1 1 1 1 1C 1 �15 0 4 8 1 1D 1 1 4 0 1 1 �2E 1 1 1 4 0 1 1F 1 1 1 9 3 0 12G 1 �12 2 3 �1 �4 0A distane 1 from X to Y should be interpreted as no diret route existing from Xto Y .Determine with the Bellman-Ford method the distane from A to eah of the otherities.1.4. Solve the knapsak problem of Appliation 1.3 with the Bellman-Ford method.1.5. Desribe an algorithm that tests if a given direted graph with length funtion on-tains a direted iruit of negative length.
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1.6. Let D = (V;A) be a direted graph and let s and t be verties of D, suh that t isreahable from s. Show that the minimum number of ars in an s � t path is equalto the maximum value of �(t) � �(s), where � ranges over all funtions � : V ! Zsuh that �(w)� �(v) � 1 for eah ar (v; w).
1.4. Minimum spanning treesLet G = (V;E) be a onneted undireted graph and let l : E ! R be a funtion,alled the length funtion. For any subset F of E, the length l(F ) of F is, by de�nition:
(23) l(F ) :=Xe2F l(e):In this setion we onsider the problem of �nding a spanning tree in G of minimumlength. There is an easy algorithm for �nding a minimum-length spanning tree,essentially due to Bor�uvka [1926℄. There are a few variants. The �rst one we disussis sometimes alled the Dijkstra-Prim method (after Prim [1957℄ and Dijkstra [1959℄).Choose a vertex v1 2 V arbitrarily. Determine edges e1; e2 : : : suessively asfollows. Let U1 := fv1g. Suppose that, for some k � 0, edges e1; : : : ; ek have beenhosen, forming a spanning tree on the set Uk. Choose an edge ek+1 2 Æ(Uk) that hasminimum length among all edges in Æ(Uk).7 Let Uk+1 := Uk [ ek+1.By the onnetedness of G we know that we an ontinue hoosing suh an edgeuntil Uk = V . In that ase the seleted edges form a spanning tree T in G. This treehas minimum length, whih an be seen as follows.Call a forest F greedy if there exists a minimum-length spanning tree T of G thatontains F .Theorem 1.11. Let F be a greedy forest, let U be one of its omponents, and lete 2 Æ(U). If e has minimum length among all edges in Æ(U), then F [ feg is again agreedy forest.Proof. Let T be a minimum-length spanning tree ontaining F . Let P be the uniquepath in T between the end verties of e. Then P ontains at least one edge fthat belongs to Æ(U). So T 0 := (T n ffg) [ feg is a tree again. By assumption,l(e) � l(f) and hene l(T 0) � l(T ). Therefore, T 0 is a minimum-length spanning tree.As F [ feg � T 0, it follows that F [ feg is greedy.Corollary 1.11a. The Dijkstra-Prim method yields a spanning tree of minimumlength.7Æ(U) is the set of edges e satisfying je \ U j = 1.



20 Chapter 1. Shortest paths and trees
Proof. It follows indutively with Theorem 1.11 that at eah stage of the algorithmwe have a greedy forest. Hene the �nal tree is greedy | equivalently, it has minimumlength.

In fat one may show:Theorem 1.12. Implementing the Dijkstra-Prim method using Fibonai heaps givesa running time of O(jEj+ jV j log jV j).Proof. The Dijkstra-Prim method is similar to Dijkstra's method for �nding a short-est path. Throughout the algorithm, we store at eah vertex v 2 V n Uk, the lengthf(v) of a shortest edge fu; vg with u 2 Uk, organized as a Fibonai heap. A vertexuk+1 to be added to Uk to form Uk+1 should be identi�ed and removed from the Fi-bonai heap. Moreover, for eah edge e onneting uk+1 and some v 2 V n Uk+1, weshould update f(v) if the length of uk+1v is smaller than f(v).Thus we �nd and delete � jV j times a u minimizing f(u) and we derease � jEjtimes a value f(v). Hene by Theorem 1.8 the algorithm an be performed in timeO(jEj+ jV j log jV j).
The Dijkstra-Prim method is an example of a so-alled greedy algorithm. Weonstrut a spanning tree by throughout hoosing an edge that seems the best at themoment. Finally we get a minimum-length spanning tree. One an edge has beenhosen, we never have to replae it by another edge (no `bak-traking').There is a slightly di�erent method of �nding a minimum-length spanning tree,Kruskal's method (Kruskal [1956℄). It is again a greedy algorithm, and again itera-tively edges e1; e2; : : : are hosen, but by some di�erent rule.Suppose that, for some k � 0, edges e1; : : : ; ek have been hosen. Choose an edgeek+1 suh that fe1; : : : ; ek; ek+1g forms a forest, with l(ek+1) as small as possible. Bythe onnetedness of G we an (starting with k = 0) iterate this until the seletededges form a spanning tree of G.Corollary 1.12a. Kruskal's method yields a spanning tree of minimum length.Proof. Again diretly from Theorem 1.11.
In a similar way one �nds a maximum-length spanning tree.Appliation 1.6: Minimum onnetions. There are several obvious pratial situationswhere �nding a minimum-length spanning tree is important, for instane, when designing aroad system, eletrial power lines, telephone lines, pipe lines, wire onnetions on a hip.Also when lustering data say in taxonomy, arheology, or zoology, �nding a minimumspanning tree an be helpful.
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Appliation 1.7: The maximum reliability problem. Often in designing a networkone is not primarily interested in minimizing length, but rather in maximizing `reliability'(for instane when designing energy or ommuniation networks). Certain ases of thisproblem an be seen as �nding a maximum length spanning tree, as was observed by Hu[1961℄. We give a mathematial desription.Let G = (V;E) be a graph and let s : E ! R+ be a funtion. Let us all s(e) thestrength of edge e. For any path P in G, the reliability of P is, by de�nition, the minimumstrength of the edges ourring in P . The reliability rG(u; v) of two verties u and v is equalto the maximum reliability of P , where P ranges over all paths from u to v.Let T be a spanning tree of maximum strength, i.e., withPe2ET s(e) as large as possible.(Here ET is the set of edges of T .) So T an be found with any maximum spanning treealgorithm.Now T has the same reliability as G, for eah pair of verties u; v. That is:
(24) rT (u; v) = rG(u; v) for eah u; v 2 V .We leave the proof as an exerise (Exerise 1.11).
Exerises
1.7. Find, both with the Dijkstra-Prim algorithm and with Kruskal's algorithm, a span-ning tree of minimum length in the graph in Figure 1.5.
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Figure 1.5

1.8. Find a spanning tree of minimum length between the ities given in the followingdistane table:



22 Chapter 1. Shortest paths and treesAme Ams Ape Arn Ass BoZ Bre Ein Ens s-G Gro Haa DH s-H Hil Lee Maa Mid Nij Roe Rot Utr Win Zut ZwoAmersfoort 0 47 47 46 139 123 86 111 114 81 164 67 126 73 18 147 190 176 63 141 78 20 109 65 70Amsterdam 47 0 89 92 162 134 100 125 156 57 184 20 79 87 30 132 207 175 109 168 77 40 151 107 103Apeldoorn 47 89 0 25 108 167 130 103 71 128 133 109 154 88 65 129 176 222 42 127 125 67 66 22 41Arnhem 46 92 25 0 132 145 108 78 85 116 157 112 171 63 64 154 151 200 17 102 113 59 64 31 66Assen 139 162 108 132 0 262 225 210 110 214 25 182 149 195 156 68 283 315 149 234 217 159 143 108 69Bergen op Zoom 123 134 167 145 262 0 37 94 230 83 287 124 197 82 119 265 183 59 128 144 57 103 209 176 193Breda 86 100 130 108 225 37 0 57 193 75 250 111 179 45 82 228 147 96 91 107 49 66 172 139 156Eindhoven 111 125 103 78 210 94 57 0 163 127 235 141 204 38 107 232 100 153 61 50 101 91 142 109 144Enshede 114 156 71 85 110 230 193 163 0 195 135 176 215 148 132 155 236 285 102 187 192 134 40 54 71's-Gravenhage 81 57 128 116 214 83 75 127 195 0 236 41 114 104 72 182 162 124 133 177 26 61 180 146 151Groningen 164 184 133 157 25 287 250 235 135 236 0 199 147 220 178 58 308 340 174 259 242 184 168 133 94Haarlem 67 20 109 112 182 124 111 141 176 41 199 0 73 103 49 141 203 165 129 184 67 56 171 127 123Den Helder 126 79 154 171 149 197 179 204 215 114 147 73 0 166 109 89 276 238 188 247 140 119 220 176 144's-Hertogenbosh 73 87 88 63 195 82 45 38 148 104 220 103 166 0 69 215 123 141 46 81 79 53 127 94 129Hilversum 18 30 65 64 156 119 82 107 132 72 178 49 109 69 0 146 192 172 81 150 74 16 127 83 88Leeuwarden 147 132 129 154 68 265 228 232 155 182 58 141 89 215 146 0 306 306 171 256 208 162 183 139 91Maastriht 190 207 176 151 283 183 147 100 236 162 308 203 276 123 192 305 0 242 135 50 188 176 213 182 217Middelburg 176 175 222 200 315 59 96 153 285 124 340 165 238 141 172 306 242 0 187 203 98 156 264 231 246Nijmegen 63 109 42 17 149 128 91 61 102 133 174 129 188 46 81 171 135 187 0 85 111 76 81 48 83Roermond 141 168 127 102 234 144 107 50 187 177 259 184 247 81 150 256 50 203 85 0 151 134 166 133 168Rotterdam 78 77 125 113 217 57 49 101 192 26 242 67 140 79 74 208 188 98 111 151 0 58 177 143 148Utreht 20 40 67 59 159 103 66 91 134 61 184 56 119 53 16 162 176 156 76 134 58 0 123 85 90Winterswijk 109 151 66 64 143 209 172 142 40 180 168 171 220 127 127 183 213 264 81 166 177 123 0 44 92Zutphen 65 107 22 31 108 176 139 109 54 146 133 127 176 94 83 139 182 231 48 133 143 85 44 0 48Zwolle 70 103 41 66 69 193 156 144 71 151 94 123 144 129 88 91 217 246 83 168 148 90 92 48 01.9. Let G = (V;E) be a graph and let l : E ! R be a `length' funtion. Call a forest Fgood if l(F 0) � l(F ) for eah forest F 0 satisfying jF 0j = jF j.Let F be a good forest and e be an edge not in F suh that F [ feg is a forest andsuh that (among all suh e) l(e) is as small as possible. Show that F [ feg is goodagain.1.10. Let G = (V;E) be a omplete graph and let l : E ! R+ be a length funtion satisfyingl(uw) � minfl(uv); l(vw)g for all distint u; v; w 2 V . Let T be a longest spanningtree in G.Show that for all u;w 2 V , l(uw) is equal to the minimum length of the edges in theunique u� w path in T .1.11. Prove (24).
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2.1. Convex sets
A subset C of R n is alled onvex if for all x; y in C and any 0 � � � 1 also �x+(1��)ybelongs to C. So C is onvex if with any two points in C, the whole line segmentonneting x and y belongs to C.Clearly, the intersetion of any number of onvex sets is again a onvex set. So,for any subset X of R n , the smallest onvex set ontaining X exists. This set is alledthe onvex hull of X and is denoted by onv.hull(X). One easily proves:(1) onv.hull(X) = fx j 9t 2 N ;9x1 ; : : : ; xt 2 X;9�1; : : : ; �t � 0 :x = �1x1 + � � � + �txt; �1 + � � � + �t = 1g.A basi property of losed onvex sets is that any point not in C an be separatedfrom C by a `hyperplane'. Here a subset H of R n is alled a hyperplane (or an aÆnehyperplane) if there exist a vetor  2 R n with  6= 0 and a Æ 2 R suh that:(2) H = fx 2 R n j Tx = Æg:We say that H separates z and C if z and C are in di�erent omponents of R n nH.Theorem 2.1. Let C be a losed onvex set in R n and let z 62 C. Then there existsa hyperplane separating z and C.Proof. Sine the theorem is trivial if C = ;, we assume C 6= ;. Then there exists avetor y in C that is nearest to z, i.e., that minimizes kz � yk.(The fat that suh a y exists, an be seen as follows. Sine C 6= ;, there existsan r > 0 suh that B(z; r) \ C 6= ;. Here B(z; r) denotes the losed ball with enterz and radius r. Then y minimizes the ontinuous funtion kz � yk over the ompatset B(z; r) \ C.)Now de�ne:
(3)  := z � y; Æ := 12(kzk2 � kyk2):We show(4) (i) T z > Æ,(ii) Tx < Æ for eah x 2 C.
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Indeed, T z = (z � y)T z > (z � y)T z � 12kz � yk2 = Æ. This shows (4)(i).If (4)(ii) would not hold, there exists an x in C suh that Tx � Æ. Sine Ty <Ty+ 12kk2 = Æ, we know T (x� y) > 0. Hene there exists a � with 0 < � � 1 and
(5) � < 2T (x� y)kx� yk2 :
De�ne(6) w := �x+ (1� �)y:So w belongs to C. Moreover,(7) kw � zk2 = k�(x� y) + (y � z)k2 = k�(x� y)� k2= �2kx� yk2 � 2�T (x� y) + kk2 < kk2 = ky � zk2:Here < follows from (5).However, (7) ontradits the fat that y is a point in C nearest to z.

Theorem 2.1 implies a haraterization of losed onvex sets { see Exerise 2.1.Call a subset H of R n a halfspae (or an aÆne halfspae) if there exist a vetor  2 R nwith  6= 0 and a Æ 2 R suh that(8) H = fx 2 R n j Tx � Æg:Clearly, eah aÆne halfspae is a losed onvex set.Theorem 2.1 implies that if C is a losed onvex set and z 62 C, then there existsan aÆne halfspae H so that C � H and z 62 H.
Exerises2.1. Let C � R n . Then C is a losed onvex set if and only if C = TF for some olletionF of aÆne halfspaes.2.2. Let C � R n be a onvex set and let A be an m � n matrix. Show that the setfAx j x 2 Cg is again onvex.2.3. Let X be a �nite set of vetors in R n . Show that onv.hull(X) is ompat.(Hint: Show that onv.hull(X) is the image under a ontinuous funtion of a ompatset.)2.4. Show that if z 2 onv.hull(X), then there exist aÆnely independent vetors x1; : : : ; xmin X suh that z 2 onv.hullfx1; : : : ; xmg. (This is the aÆne form of `Carath�eodory'stheorem' (Carath�eodory [1911℄).)
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(Vetors x1; : : : ; xm are alled aÆnely independent if there are no reals �1; : : : ; �m,suh that �1x1+ � � �+ �mxm = 0 and �1+ � � �+ �m = 0 and suh that �1; : : : ; �m arenot all equal to 0.)2.5. (i) Let C and D be two nonempty, bounded, losed, onvex subsets of R n suh thatC \D = ;. Derive from Theorem 2.1 that there exists an aÆne hyperplane Hseparating C and D. (This means that C and D are in di�erent omponents ofR n nH.)(Hint: Consider the set C �D := fx� y j x 2 C; y 2 Dg.)(ii) Show that in (i) we annot delete the boundedness ondition.

2.2. Polytopes and polyhedraSpeial lasses of losed onvex sets are formed by the polytopes and the polyhedra.In the previous setion we saw that eah losed onvex set is the intersetion of aÆnehalfspaes, possibly in�nitely many. If it is the intersetion of a �nite number of aÆnehalfspaes, the onvex set is alled a polyhedron.So a subset P of R n is a polyhedron if and only if there exists an m� n matrix Aand a vetor b 2 Rm suh that(9) P = fx 2 R n j Ax � bg:Here Ax � b means:(10) a1x � b1; : : : ; amx � bm;where a1; : : : ; am are the rows of A.The matrix A may have zero rows, i.e. m = 0. In that ase, P = R n .Related is the notion of `polytope'. A subset P of R n is alled a polytope if P isthe onvex hull of a �nite number of vetors. That is, there exist vetors x1; : : : ; xtin R n suh that(11) P = onv.hullfx1; : : : ; xtg:We will show that a subset P of R n is a polytope if and only if it is a boundedpolyhedron. This might be intuitively lear, but a stritly mathematial proof requiressome work.We �rst give a de�nition. Let P be a onvex set. A point z 2 P is alled avertex of P if z is not a onvex ombination of two other points in P . That is, theredo not exist points x; y in P and a � with 0 < � < 1 suh that x 6= z; y 6= z andz = �x+ (1� �)y.
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To haraterize verties we introdue the following notation. Let P = fx j Ax �bg be a polyhedron and let z 2 P . Then Az is the submatrix of A onsisting of thoserows ai of A for whih aiz = bi.Then we an show:Theorem 2.2. Let P = fx j Ax � bg be a polyhedron in R n and let z 2 P . Then zis a vertex of P if and only if rank(Az) = n.Proof. Neessity. Let z be a vertex of P and suppose rank(Az) < n. Then thereexists a vetor  6= 0 suh that Az = 0. Sine aiz < bi for every ai that does notour in Az, there exists a Æ > 0 suh that:(12) ai(z + Æ) � bi and ai(z � Æ) � bifor every row ai of A not ourring in Az. Sine Az = 0 and Az � b it follows that(13) A(z + Æ) � b and A(z � Æ) � b:So z+Æ and z�Æ belong to P . Sine z is a onvex ombination of these two vetors,this ontradits the fat that z is a vertex of P .SuÆieny. Suppose rank(Az) = n while z is not a vertex of P . Then there existpoints x and y in P suh that x 6= z 6= y and z = 12(x+ y). Then for every row ai ofAz:(14) aix � bi = aiz =) ai(x� z) � 0, andaiy � bi = aiz =) ai(y � z) � 0.Sine y � z = �(x� z), this implies that ai(x� z) = 0. Hene Az(x� z) = 0. Sinex� z 6= 0, this ontradits the fat that rank(Az) = n.
Theorem 2.2 implies that a polyhedron has only a �nite number of verties: Foreah two di�erent verties z and z0 one has Az 6= Az0 , sine Azx = bz has only onesolution, namely x = z (where bz denotes the part of b orresponding to Az). Sinethere exist at most 2m olletions of subrows of A, P has at most 2m verties.From Theorem 2.2 we derive:Theorem 2.3. Let P be a bounded polyhedron, with verties x1; : : : ; xt. Then P =onv.hullfx1; : : : ; xtg.Proof. Clearly(15) onv.hullfx1; : : : ; xtg � P;
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sine x1; : : : ; xt belong to P and sine P is onvex.The reverse inlusion amounts to:(16) if z 2 P then z 2 onv.hullfx1; : : : ; xtg:We show (16) by indution on n� rank(Az).If n� rank(Az) = 0, then rank(Az) = n, and hene, by Theorem 2.2, z itself is avertex of P . So z 2 onv.hullfx1; : : : ; xtg.If n� rank(Az) > 0, then there exists a vetor  6= 0 suh that Az = 0. De�ne(17) �0 := maxf� j z + � 2 Pg,�0 := maxf� j z � � 2 Pg.These numbers exist sine P is ompat. Let x := z + �0 and y := z � �0.Now
(18) �0 = minfbi � aizai j ai is a row of A; ai > 0g:
This follows from the fat that �0 is the largest � suh that ai(z + �) � bi for eahi = 1; : : : ;m. That is, it is the largest � suh that
(19) � � bi � aizaifor every i with ai > 0.Let the minimum (18) be attained by i0. So for i0 we have equality in (18).Therefore(20) (i) Azx = Azz + �0Az = Azz;(ii) ai0x = ai0(z + �0) = bi0 :So Ax ontains all rows in Az, and moreover it ontains row ai0 . Now Az = 0while ai0 6= 0. This implies rank(Ax) > rank(Az). So by our indution hypothesis, xbelongs to onv.hullfx1; : : : ; xtg. Similarly, y belongs to onv.hullfx1; : : : ; xtg. There-fore, as z is a onvex ombination of x and y, z belongs to onv.hullfx1; : : : ; xtg.

As a diret onsequene we have:Corollary 2.3a. Eah bounded polyhedron is a polytope.Proof. Diretly from Theorem 2.3.
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Conversely:Theorem 2.4. Eah polytope is a bounded polyhedron.Proof. Let P be a polytope in R n , say(21) P = onv.hullfx1; : : : ; xtg:We may assume that t � 1. We prove the theorem by indution on n. Clearly, P isbounded.If P is ontained in some aÆne hyperplane, the theorem follows from the indutionhypothesis.So we may assume that P is not ontained in any aÆne hyperplane. It impliesthat the vetors x2 � x1; : : : ; xt � x1 span R n . It follows that there exist a vetor x0in P and a real r > 0 suh that the ball B(x0; r) is ontained in P .Without loss of generality, x0 = 0. De�ne P � by(22) P � := fy 2 R n j xTy � 1 for eah x 2 Pg:Then P � is a polyhedron, as(23) P � = fy 2 R n j xTj y � 1 for j = 1; : : : ; tg:This follows from the fat that if y belongs to the right hand set in (23) and x 2 Pthen x = �1x1 + � � �+ �txt for ertain �1; : : : ; �t � 0 with �1 + � � �+ �t = 1, implying

(24) xTy = tXj=1 �jxTj y � tXj=1 �j = 1:
So y belongs to P �.Moreover, P � is bounded, sine for eah y 6= 0 in P � one has that x := r � kyk�1 � ybelongs to B(0; r) and hene to P . Therefore, xTy � 1, and hene(25) kyk = (xTy)=r � 1=r:So P � � B(0; 1=r).This proves that P � is a bounded polyhedron. By Corollary 2.3a, P � is a polytope.So there exist vetors y1; : : : ; ys in R n suh that(26) P � = onv.hullfy1; : : : ; ysg:We show:
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(27) P = fx 2 R n j yTj x � 1 for all j = 1; : : : ; sg:This implies that P is a polyhedron.To see the inlusion � in (27), it suÆes to show that eah of the vetors xibelongs to the right hand side in (27). This follows diretly from the fat that foreah j = 1; : : : ; s, yTj xi = xTi yj � 1, sine yj belongs to P �.To see the inlusion � in (25), let x 2 R n be suh that yTj x � 1 for all j = 1; : : : ; s.Suppose x 62 P . Then there exists a hyperplane separating x and P . That is, thereexist a vetor  6= 0 in R n and a Æ 2 R suh that Tx0 < Æ for eah x0 2 P , whileTx > Æ. As 0 2 P , Æ > 0. So we may assume Æ = 1. Hene  2 P �. So there exist�1; : : : ; �s � 0 suh that  = �1y1 + � � ��sys and �1 + � � � + �s = 1. This gives theontradition:
(28) 1 < Tx = sXj=1 �jyTj x � sXj=1 �j = 1:
Convex onesConvex ones are speial ases of onvex sets. A subset C of R n is alled a onvexone if for any x; y 2 C and any �; � � 0 one has �x+ �y 2 C.For any X � R n , one(X) is the smallest one ontaining X. One easily heks:(29) one(X) = f�1x1 + � � � �txt j x1; : : : ; xt 2 X;�1; : : : ; �t � 0g:A one C is alled �nitely generated if C = one(X) for some �nite set X.
Exerises2.6. Determine the verties of the following polyhedra:(i) P = f(x; y) j x � 0; y � 0; y � x � 2; x+ y � 8; x+ 2y � 10; x � 4g.(ii) P = f(x; y; z) j x + y � 2; y + z � 4; x + z � 3;�2x � y � 3;�y � 2z �3;�2x� z � 2g.(iii) P = f(x; y) j x+ y � 1; x� y � 2g.(iv) P = f(x; y) j x+ y = 1; x � 3g.(v) P = f(x; y; z) j x � 0; y � 0; x+ y � 1g.(vi) P = f(x; y; z) j x+ y � 1; x+ z � 1; y � z � 0g.(vii) P = f(x; y) j 3x+ 2y � 18; x� y � �6; 5x+ 2y � 20; x � 0; y � 0g.2.7. Let C � R n . Then C is a losed onvex one if and only if C = TF for someolletion F of linear halfspaes.
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(A subset H of R n is alled a linear halfspae if H = fx 2 R n j Tx � 0g for somenonzero vetor .)2.8. Show that if z 2 one(X), then there exist linearly independent vetors x1; : : : ; xmin X suh that z 2 onefx1; : : : ; xmg. (This is the linear form of `Carath�eodory'stheorem'.)2.9. Let A be an m� n matrix of rank m and let b 2 Rm . Derive from Exerise 2.8 thatthe system Ax = b has a nonnegative solution x if and only if it has a nonnegativebasi solution.(A submatrix B of A is alled a basis of A if B is a nonsingular m�m submatrix ofA. A solution x of Ax = b is a basi solution if A has a basis B so that x is 0 in thoseoordinates not orresponding to olumns in B.)2.10. Prove that every �nitely generated onvex one is a losed set. (This an be derivedfrom Exerise 2.3 and Corollary 2.3a.)2.11. Prove that a onvex one is �nitely generated if and only if it is the intersetion of�nitely many linear halfspaes.(Hint: Use Corollary 2.3a and Theorem 2.4.)2.12. Let P be a subset of R n . Show that P is a polyhedron if and only if P = Q+ C forsome polytope Q and some �nitely generated onvex one C.(Hint: Apply Exerise 2.11 to one(X) in R n+1 , where X is the set of vetors � 1x �in R n+1 with x 2 P .)2.13. For any subset X of R n , de�ne
(30) X� := fy 2 R n j xT y � 1 for eah x 2 Xg:(i) Show that for eah onvex one C, C� is a losed onvex one.(ii) Show that for eah losed onvex one C, (C�)� = C.

2.14. Let P be a polyhedron.(i) Show that P � is again a polyhedron.(Hint: Use previous exerises.)(ii) Show that P ontains the origin if and only if (P �)� = P .(iii) Show that the origin is an internal point of P if and only if P � is bounded.



Setion 2.3. Farkas' lemma 31
2.3. Farkas' lemmaLet A be an m � n matrix and let b 2 Rm . With the Gaussian elimination methodone an prove that(31) Ax = bhas a solution x if and only if there is no solution y for the following system of linearequations:(32) yTA = 0; yT b = �1:Farkas' lemma (Farkas [1894,1896,1898℄) gives an analogous haraterization forthe existene of a nonnegative solution x for (31).Theorem 2.5 (Farkas' lemma). The system Ax = b has a nonnegative solution ifand only if there is no vetor y satisfying yTA � 0 and yT b < 0.Proof. Neessity. Suppose Ax = b has a solution x0 � 0 and suppose there exists avetor y0 satisfying yT0 A � 0 and yT0 b < 0. Then we obtain the ontradition(33) 0 > yT0 b = yT0 (Ax0) = (yT0 A)x0 � 0:

SuÆieny. Suppose Ax = b has no solution x � 0. Let a1; : : : ; an be the olumnsof A. So(34) b 62 C := onefa1; : : : ; ang:So by Exerise 2.7 there exists a linear halfspae H ontaining C and not ontainingb. That is, there exists a vetor  suh that T b < 0 while Tx � 0 for eah x in C.In partiular, Taj � 0 for j = 1; : : : ; n. So y :=  satis�es yTA � 0 and yT b < 0.
So Farkas' lemma states that exatly one of the following two assertions is true:(35) (i) 9x � 0 : Ax = b,(ii) 9y : yTA � 0 and yT b < 0.There exist several variants of Farkas' lemma, that an be easily derived fromTheorem 2.5.Corollary 2.5a. The system Ax � b has a solution x if and only if there is no vetory satisfying y � 0; yTA = 0 and yT b < 0.
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Proof. Let A0 be the matrix(36) A0 := [A � A I℄;where I denotes the m�m identity matrix.Then Ax � b has a solution x if and only if the system A0x0 = b has a nonnegativesolution x0. Applying Theorem 2.5 to A0x0 = b gives the orollary.

Another onsequene is:Corollary 2.5b. Suppose that the system Ax � b has at least one solution. Then forevery solution x of Ax � b one has Tx � Æ if and only if there exists a vetor y � 0suh that yTA = T and yT b � Æ.Proof. SuÆieny. If suh a vetor y exists, then for every vetor x one has(37) Ax � b =) yTAx � yT b =) Tx � yT b =) Tx � Æ:
Neessity. Suppose that suh a vetor y does not exist. It means that the followingsystem of linear inequalities in the variables y and � has no solution (yT �) � (0 0):

(38) (yT �)� A b0 1 � = (T Æ):
Aording to Farkas' lemma this implies that there exists a vetor � z� � so that
(39) � A b0 1 �� z� � � � 00 � and (T Æ)� z� � < 0:
We distinguish two ases.Case 1: � = 0. Then Az � 0 and T z < 0. However, by assumption, Ax � b hasa solution x0. Then, for � large enough:(40) A(x0 � �z) � b and T (x0 � �z) > Æ:This ontradits the fat that Ax � b implies Tx � Æ.Case 2: � > 0. As (39) is homogeneous, we may assume that � = 1. Then forx := �z one has:(41) Ax � b and Tx > Æ:
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Again this ontradits the fat that Ax � b implies Tx � Æ.
Exerises2.15. Prove that there exists a vetor x � 0 suh that Ax � b if and only if for eah y � 0satisfying yTA � 0 one has yT b � 0.2.16. Prove that there exists a vetor x > 0 suh that Ax = 0 if and only if for eah ysatisfying yTA � 0 one has yTA = 0. (Stiemke's theorem (Stiemke [1915℄).)2.17. Prove that there exists a vetor x 6= 0 satisfying x � 0 and Ax = 0 if and only ifthere is no vetor y satisfying yTA > 0. (Gordan's theorem (Gordan [1873℄).)2.18. Prove that there exists a vetor x satisfying Ax < b if and only if y = 0 is the onlysolution for y � 0; yTA = 0; yT b � 0.2.19. Prove that there exists a vetor x satisfying Ax < b and A0x � b0 if and only if for allvetors y; y0 � 0 one has:(i) if yTA+ y0TA0 = 0 then yT b+ y0T b0 � 0, and(ii) if yTA+ y0TA0 = 0 and y 6= 0 then yT b+ y0T b0 > 0.(Motzkin's theorem (Motzkin [1936℄).)2.20. Let A be an m � n matrix and let b 2 Rm , with m � n + 1. Suppose that Ax � bhas no solution x. Prove that there exist indies i0; : : : ; in so that the system ai0x �bi0 ; : : : ; ainx � bin has no solution x. Here ai is the ith row of A and bi is the ithomponent of b.(Hint: Combine Farkas' lemma with Carath�eodory's theorem.)
2.4. Linear programmingOne of the standard forms of a linear programming (LP) problem is:(42) maximize Tx,subjet to Ax � b.So linear programming an be onsidered as maximizing a `linear funtion' Tx overa polyhedron P = fx j Ax � bg. Geometrially, this an be seen as shifting ahyperplane to its `highest' level, under the ondition that it intersets P .Problem (42) orresponds to determining the following maximum:(43) maxfTx j Ax � bg:
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This is the form in whih we will denote an LP-problem.If P = fx j Ax � bg is a nonempty polytope, then it is lear that maxfTx j Ax �bg is attained by a vertex of P (f. Exerise 2.21).Clearly, also any minimization problem an be transformed to form (43), sine
(44) minfTx j Ax � bg = �maxf�Tx j Ax � bg:One says that x is a feasible solution of (43) if x satis�es Ax � b. If x moreoverattains the maximum, x is alled an optimum solution.The famous method to solve linear programming problems is the simplex method,designed by Dantzig [1951b℄. The �rst polynomial-time method for LP-problems isdue to Khahiyan [1979,1980℄, based on the ellipsoid method. In 1984, Karmarkar[1984℄ published another polynomial-time method for linear programming, the inte-rior point method, whih turns out to be ompetitive in pratie with the simplexmethod.The Duality theorem of linear programming, due to von Neumann [1947℄, statesthat if the maximum (43) is �nite, then the maximum value is equal to the minimumvalue of another, so-alled dual LP-problem:(45) minfyT b j y � 0; yTA = Tg:In order to show this, we �rst prove:Lemma 2.1. Let P be a polyhedron in R n and let  2 R n. If supfTx j x 2 Pg is�nite, then maxfTx j x 2 Pg is attained.Proof. Let Æ := supfTx j x 2 Pg. Choose matrix A and vetor b so that P = fx jAx � bg. We must show that there exists an x 2 R n suh that Ax � b and Tx � Æ.Suppose that suh an x does not exist. Then by Farkas' lemma, in the form ofCorollary 2.5a, there exists a vetor y � 0 and a real number � � 0 suh that:(46) yTA� �T = 0, yT b� �Æ < 0:This gives(47) �Æ = � supfTx j Ax � bg = supf�Tx j Ax � bg = supfyTAx j Ax � bg �yT b < �Æ;
a ontradition.

From this we derive:
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Theorem 2.6 (Duality theorem of linear programming). Let A be an m� n matrix,b 2 Rm,  2 R n. Then(48) maxfTx j Ax � bg = minfyT b j y � 0; yTA = Tg;provided that both sets are nonempty.Proof. First note that(49) supfTx j Ax � bg � inffyT b j y � 0; yTA = Tg;beause if Ax � b; y � 0; yTA = T , then(50) Tx = (yTA)x = yT (Ax) � yT b:As both sets are nonempty,the supremum and the in�mum are �nite. By Lemma 2.1it suÆes to show that we have equality in (49).Let Æ := supfTx j Ax � bg. Hene:(51) if Ax � b then Tx � Æ:So by Corollary 2.5b there exists a vetor y suh that(52) y � 0; yTA = T ; yT b � Æ:This implies that the in�mum in (49) is at most Æ.

The Duality theorem an be interpreted geometrially as follows. Let(53) maxfTx j Ax � bg =: Æbe attained at a point x�. Without loss of generality we may assume that the �rst krows of A belong to the matrix Ax� . So a1x � b1; : : : ; akx � bk are those inequalitiesin Ax � b for whih aix� = bi holds. Elementary geometri insight (f. Figure2.1) gives that Tx = Æ must be a nonnegative linear ombination of the equationsa1x = b1; : : : ; akx = bk.That is, there exist �1; : : : ; �k � 0 suh that:(54) �1a1 + � � � + �kak = T ;�1b1 + � � �+ �kbk = Æ:De�ne
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(55) y� := (�1; : : : ; �k; 0; : : : ; 0)T :Then y� is a feasible solution for the dual problem minfyT b j y � 0; yTA = Tg.Therefore,(56) maxfTx j Ax � bg = Æ = �1b1 + � � �+ �kbk � minfyT b j y � 0; yTA = Tg:Sine trivially the onverse inequality holds:(57) maxfTx j Ax � bg � minfyT b j y � 0; yTA = Tg(f. (50)), y� is an optimum solution of the dual problem.There exist several variants of the Duality theorem.Corollary 2.6a. Let A be an m� n matrix, b 2 Rm ;  2 R n. Then(58) maxfTx j x � 0;Ax = bg = minfyT b j yTA � Tg;provided that both sets are nonempty.Proof. De�ne
(59) ~A := 0� A�A�I

1A ;~b := 0� b�b0
1A :

Then
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(60) maxfTx j x � 0;Ax = bg = maxfTx j ~Ax � ~bg =minfzT~b j z � 0; zT ~A = Tg =minfuT b� vT b+ wT0 j u; v; w � 0;uTA� vTA� wT = Tg =minfyT b j yTA � Tg:The last equality follows by taking y := u� v.
Exerises2.21. Let P = fx j Ax � bg be a nonempty polytope. Prove that maxfTx j Ax � bg isattained by a vertex of P .2.22. Let P = fx j Ax � bg be a (not neessarily bounded) polyhedron, suh that P has atleast one vertex. Prove that if maxfTx j Ax � bg is �nite, it is attained by a vertexof P .2.23. Prove the following variant of the Duality theorem:

(61) maxfTx j x � 0;Ax � bg = minfyT b j y � 0; yTA � Tg
(assuming both sets are nonempty).2.24. Prove the following variant of the Duality theorem:
(62) maxfTx j Ax � bg = minfyT b j y � 0; yTA = Tg
(assuming both sets are nonempty).2.25. Let a matrix, a olumn vetor, and a row vetor be given:
(63) 0� A B CD E FG H K

1A ;0� ab
1A ; (d e f);

where A;B;C;D;E; F;G;H;K are matries, a; b;  are olumn vetors, and d; e; f arerow vetors (of appropriate dimensions). Then
(64) maxfdx+ ey + fz j x � 0; z � 0;Ax+By + Cz � a;Dx+Ey + Fz = b;Gx+Hy +Kz � g= minfua+ vb+ w j u � 0;w � 0;uA+ vD + wG � d;uB + vE + wH = e;uC + vF + wK � fg;
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assuming that both sets are nonempty.2.26. Give an example of a matrix A and vetors b and  for whih both fx j Ax � bg andfy j y � 0; yTA = T g are empty.2.27. Let ~x be a feasible solution of maxfTx j Ax � bg and let ~y be a feasible solutionof minfyT b j y � 0; yTA = T g. Prove that ~x and ~y are optimum solutions of themaximum and minimum, respetively if and only if for eah i = 1; : : : ;m one has:~yi = 0 or ai~x = bi.(Here A has m rows and ai denotes the ith row of A.)2.28. Let A be an m � n matrix and let b 2 Rm . Let fx j Ax � bg be nonempty and letC be the onvex one fx j Ax � 0g. Prove that the set of all vetors  for whihmaxfTx j Ax � bg is �nite, is equal to C�.
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3. Mathings and overs inbipartite graphs

3.1. Mathings, overs, and Gallai's theoremLet G = (V;E) be a graph. A stable set is a subset C of V suh that e 6� C for eahedge e of G. A vertex over is a subset W of V suh that e \W 6= ; for eah edge eof G. It is not diÆult to show that for eah U � V :(1) U is a stable set () V n U is a vertex over.A mathing is a subset M of E suh that e \ e0 = ; for all e; e0 2 M with e 6= e0.A mathing is alled perfet if it overs all verties (that is, has size 12 jV j). An edgeover is a subset F of E suh that for eah vertex v there exists e 2 F satisfyingv 2 e. Note that an edge over an exist only if G has no isolated verties.De�ne:(2) �(G) := maxfjCj j C is a stable setg,�(G) := minfjW j j W is a vertex overg,�(G) := maxfjM j jM is a mathingg,�(G) := minfjF j j F is an edge overg.These numbers are alled the stable set number, the vertex over number, themathingnumber, and the edge over number of G, respetively.It is not diÆult to show that:(3) �(G) � �(G) and �(G) � �(G).The triangle K3 shows that strit inequalities are possible. In fat, equality in one ofthe relations (3) implies equality in the other, as Gallai [1958,1959℄ proved:Theorem 3.1 (Gallai's theorem). For any graph G = (V;E) without isolated vertiesone has(4) �(G) + �(G) = jV j = �(G) + �(G):
Proof. The �rst equality follows diretly from (1).To see the seond equality, �rst let M be a mathing of size �(G). For eah of thejV j � 2jM j verties v missed by M , add to M an edge overing v. We obtain an edgeover of size jM j+ (jV j � 2jM j) = jV j � jM j. Hene �(G) � jV j � �(G).
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Seond, let F be an edge over of size �(G). For eah v 2 V delete from F , dF (v)�1edges inident with v. We obtain a mathing of size at least jF j�Pv2V (dF (v)�1) =jF j � (2jF j � jV j) = jV j � jF j. Hene �(G) � jV j � �(G).
This proof also shows that if we have a mathing of maximum ardinality in anygraph G, then we an derive from it a minimum ardinality edge over, and onversely.

Exerises3.1. Let G = (V;E) be a graph without isolated verties. De�ne:
(5) �2(G) := the maximum number of verties suh that no edgeontains more than two of these verties;�2(G) := the minimum number of edges suh that eah vertexis ontained in at least two of these edges;�2(G) := the minimum number of verties suh that eah edgeontains at least two of these verties�2(G) := the maximum number of edges suh that no vertex isontained in more than two of these edges;
possibly taking verties (edges, respetively) more than one.(i) Show that �2(G) � �2(G) and that �2(G) � �2(G).(ii) Show that �2(G) + �2(G) = 2jV j.(iii) Show that �2(G) + �2(G) = 2jV j.

3.2. M-augmenting pathsBasi in mathing theory are M -augmenting paths, whih are de�ned as follows. LetM be a mathing in a graph G = (V;E). A path P = (v0; v1; : : : ; vt) in G is alledM-augmenting if(6) (i) t is odd,(ii) v1v2; v3v4; : : : ; vt�2vt�1 2M ,(iii) v0; vt 62 SM .Note that this implies that v0v1; v2v3; : : : ; vt�1vt do not belong to M .Clearly, if P = (v0; v1; : : : ; vt) is an M -augmenting path, then(7) M 0 :=M4EP
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edge in M
edge not in M vertex covered bynot M

vertex covered by M

Figure 3.1
is a mathing satisfying jM 0j = jM j+ 1.8In fat, it is not diÆult to show that:Theorem 3.2. Let G = (V;E) be a graph and let M be a mathing in G. Theneither M is a mathing of maximum ardinality, or there exists an M-augmentingpath.Proof. IfM is a maximum-ardinality mathing, there annot exist anM -augmentingpath P , sine otherwise M4EP would be a larger mathing.If M 0 is a mathing larger than M , onsider the omponents of the graph G0 :=(V;M [ M 0). As G0 has maximum valeny two, eah omponent of G0 is either apath (possibly of length 0) or a iruit. Sine jM 0j > jM j, at least one of theseomponents should ontain more edges of M 0 than of M . Suh a omponent formsan M -augmenting path.
3.3. K}onig's theoremsA lassial min-max relation due to K}onig [1931℄ (extending a result of Frobenius[1917℄) haraterizes the maximum size of a mathing in a bipartite graph (we followde proof of De Caen [1988℄):Theorem 3.3 (K}onig's mathing theorem). For any bipartite graph G = (V;E) onehas(8) �(G) = �(G).That is, the maximum ardinality of a mathing in a bipartite graph is equal to theminimum ardinality of a vertex over.Proof. By (3) it suÆes to show that �(G) � �(G). We may assume that G has atleast one edge. Then:(9) G has a vertex u overed by eah maximum-size mathing.8EP denotes the set of edges in P . 4 denotes symmetri di�erene.
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To see this, let e = uv be any edge of G, and suppose that there are maximum-sizemathingsM and N missing u and v respetively9. Let P be the omponent ofM[Nontaining u. So P is a path with end vertex u. Sine P is not M -augmenting (as Mhas maximum size), P has even length, and hene does not traverse v (otherwise, Pends at v, ontraditing the bipartiteness ofG). So P[e would form anN -augmentingpath, a ontradition (as N has maximum size). This proves (9).Now (9) implies that for the graph G0 := G � u one has �(G0) = �(G) � 1.Moreover, by indution, G0 has a vertex over C of size �(G0). Then C [ fug is avertex over of G of size �(G0) + 1 = �(G).

Combination of Theorems 3.1 and 3.3 yields the following result of K}onig [1932℄.Corollary 3.3a (K}onig's edge over theorem). For any bipartite graph G = (V;E),without isolated verties, one has(10) �(G) = �(G).That is, the maximum ardinality of a stable set in a bipartite graph is equal to theminimum ardinality of an edge over.Proof. Diretly from Theorems 3.1 and 3.3, as �(G) = jV j � �(G) = jV j � �(G) =�(G).
Exerises3.2. (i) Prove that a k-regular bipartite graph has a perfet mathing (if k � 1).(ii) Derive that a k-regular bipartite graph has k disjoint perfet mathings.(iii) Give for eah k > 1 an example of a k-regular graph not having a perfetmathing.3.3. Prove that in a matrix, the maximum number of nonzero entries with no two in thesame line (=row or olumn), is equal to the minimum number of lines that inludeall nonzero entries.3.4. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. A subset Y of X isalled a transversal or a system of distint representatives (SDR) of A if there existsa bijetion � : f1; : : : ; ng ! Y suh that �(i) 2 Ai for eah i = 1; : : : ; n.Deide if the following olletions have an SDR:(i) f3; 4; 5g; f2; 5; 6g; f1; 2; 5g; f1; 2; 3g; f1; 3; 6g,(ii) f1; 2; 3; 4; 5; 6g; f1; 3; 4g; f1; 4; 7g; f2; 3; 5; 6g; f3; 4; 7g; f1; 3; 4; 7g; f1; 3; 7g.9M misses a vertex u if u 62 SM . Here SM denotes the union of the edges in M ; that is, theset of verties overed by the edges in M .
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3.5. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. Prove that A hasan SDR if and only if(11) ��[i2I Ai�� � jIj

for eah subset I of f1; : : : ; ng.[Hall's `marriage' theorem (Hall [1935℄).℄3.6. Let A = (A1; : : : ; An) be subsets of the �nite set X. A subset Y of X is alled apartial transversal or a partial system of distint representatives (partial SDR) if it isa transversal of some subolletion (Ai1 ; : : : ; Aik) of (A1; : : : ; An).Show that the maximum ardinality of a partial SDR of A is equal to the minimumvalue of(12) jX n Zj+ jfi j Ai \ Z 6= ;gj;where Z ranges over all subsets of X.3.7. Let A = (A1; : : : ; An) be a family of �nite sets and let k be a natural number. Showthat A has k pairwise disjoint SDR's of A if and only if
(13) ��[i2I Ai�� � kjIj
for eah subset I of f1; : : : ; ng.3.8. Let A = (A1; : : : ; An) be a family of subsets of a �nite set X and let k be a naturalnumber. Show that X an be partitioned into k partial SDR's if and only if
(14) k � jfi j Ai \ Y 6= ;gj � jY j
for eah subset Y of X.(Hint: Replae eah Ai by k opies of Ai and use Exerise 3.6 above.)3.9. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X.(i) Show that (A1; : : : ; An) and (B1; : : : ; Bn) have a ommon SDR if and only if foreah subset I of f1; : : : ; ng, the set Si2I Ai intersets at least jIj sets amongB1; : : : ; Bn.(ii) Suppose that jA1j = � � � = jAnj = jB1j = � � � = jBnj. Show that the twopartitions have a ommon SDR.3.10. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X. Show that theminimum ardinality of a subset of X interseting eah set among A1; : : : ; An; B1; : : : ;Bn is equal to the maximum number of pairwise disjoint sets in A1; : : : ; An; B1; : : : ; Bn.
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3.11. A matrix is alled doubly stohasti if it is nonnegative and eah row sum and eaholumn sum is equal to 1. A matrix is alled a permutation matrix if eah entry is 0or 1 and eah row and eah olumn ontains exatly one 1.(i) Show that for eah doubly stohasti matrix A = (ai;j)ni;j=1 there exists a per-mutation � 2 Sn suh that ai;�(i) 6= 0 for all i = 1; : : : ; n.(ii) Derive that eah doubly stohasti matrix is a onvex linear ombination ofpermutation matries.[Birkho�-von Neumann theorem (Birkho� [1946℄, von Neumann [1953℄).℄3.12. Let G = (V;E) be a bipartite graph with olour lasses U and W . Let b : V ! Z+be so that Pv2U b(v) =Pv2W b(v) =: t.A b-mathing is a funtion  : E ! Z+ so that for eah vertex v of G:(15) Xe2E;v2e (e) = b(v)

Show that there exists a b-mathing if and only if(16) Xv2X b(v) � t
for eah vertex over X.3.13. Let G = (V;E) be a bipartite graph and let b : V ! Z+ . Show that G has a subgraphG0 = (V;E0) suh that degG0(v) = b(v) for eah v 2 V if and only if eah X � Vontains at least(17) 12(Xv2X b(v)� Xv2V nX b(v))edges.3.14. Let G = (V;E) be a bipartite graph and let b : V ! Z+ . Show that the maximumnumber of edges in a subset F of E so that eah vertex v of G is inident with atmost b(v) of the edges in F , is equal to(18) minX�V Xv2X b(v) + jE(V nX)j:

3.15. Let G = (V;E) be a bipartite graph and let k 2 N . Prove that G has k disjointperfet mathings if and only if eah X � V ontains at least k(jXj � 12 jV j) edges.3.16. Show that eah 2k-regular graph ontains a set F of edges so that eah vertex isinident with exatly two edges in F .
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3.4. Cardinality bipartite mathing algorithmWe now fous on the problem of �nding a maximum-sized mathing in a bipartitegraph algorithmially.In any graph, if we have an algorithm �nding an M -augmenting path for anymathing M (if it exists), then we an �nd a maximum ardinality mathing: weiteratively �nd mathings M0;M1; : : :, with jMij = i, until we have a mathing Mksuh that there does not exist any Mk-augmenting path.We now desribe how to �nd an M -augmenting path in a bipartite graph.Mathing augmenting algorithm for bipartite graphsinput: a bipartite graph G = (V;E) and a mathing M ,output: a mathing M 0 satisfying jM 0j > jM j (if there is one).desription of the algorithm: Let G have olour lasses U and W . Orient eahedge e = fu;wg of G (with u 2 U;w 2 W ) as follows:(19) if e 2M then orient e from w to u,if e 62M then orient e from u to w.Let D be the direted graph thus arising. Consider the sets(20) U 0 := U nSM and W 0 := W nSM .Now an M -augmenting path (if it exists) an be found by �nding a direted pathin D from any vertex in U 0 to any vertex in W 0. Hene in this way we an �nd amathing larger than M .

This implies:Theorem 3.4. A maximum-size mathing in a bipartite graph an be found in timeO(jV jjEj).Proof. The orretness of the algorithm is immediate. Sine a direted path anbe found in time O(jEj), we an �nd an augmenting path in time O(jEj). Hene amaximum ardinality mathing in a bipartite graph an be found in time O(jV jjEj)(as we do at most jV j iterations).
Hoproft and Karp [1973℄ gave an O(jV j1=2jEj) algorithm.Appliation 3.1: Assignment problem. Suppose we have k mahines at our disposal:m1; : : : ;mk. On a ertain day we have to arry out n jobs: j1; : : : ; jn. Eah mahinesis apable of performing some jobs, but an do only one job a day. E.g., we ould have
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�ve mahines m1; : : : ;m5 and �ve jobs j1; : : : ; j5 and the apabilities of the mahines areindiated by rosses in the following table:j1 j2 j3 j4 j5m1 X X Xm2 X X X Xm3 X Xm4 Xm5 XWe want to assign the mahines to the jobs in suh a way that every mahine performsat most one job and that a largest number of jobs is arried out.In order to solve this problem we represent the mahines and jobs by vertiesm1; : : : ;mkand j1; : : : ; jn of a bipartite graph G = (V;E), and we make an edge from mi to jj if job jan be performed by mahine i. Thus the example gives Figure 3.2. Then a maximum-sizemathing in G orresponds to a maximum assignment of jobs.
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Exerises3.17. Find a maximum-size mathing and a minimum vertex over in the bipartite graphin Figure 3.3.3.18. Solve the assignment problem given in Appliation 3.1.3.19. Derive K}onig's mathing theorem from the ardinality mathing algorithm for bipar-tite graphs.3.20. Show that a minimum-size vertex over in a bipartite graph an be found in polyno-mial time.3.21. Show that, given a family of sets, a system of distint representatives an be foundin polynomial time (if it exists).
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3.5. Weighted bipartite mathingWe now onsider the problem of �nding a mathing of maximum weight for whihwe desribe the so-alled Hungarian method developed by Kuhn [1955℄, using work ofEgerv�ary [1931℄ (see Corollary 3.7b below).Let G = (V;E) be a graph and let w : E ! R be a `weight' funtion. For anysubset M of E de�ne the weight w(M) of M by
(21) w(M) :=Xe2M w(e):
The maximum-weight mathing problem onsists of �nding a mathing of maximumweight.Again, augmenting paths are of help at this problem. Call a mathing M extremeif it has maximum weight among all mathings of ardinality jM j.Let M be an extreme mathing. De�ne a `length' funtion l : E ! R as follows:
(22) l(e) := (w(e) if e 2M ,�w(e) if e 62M .Then the following holds:Proposition 1. Let P be an M-augmenting path of minimum length. If M isextreme, then M 0 :=M4EP is extreme again.Proof. Let N be any extreme mathing of size jM j + 1. As jN j > jM j, M [N hasa omponent Q that is an M -augmenting path. As P is a shortest M -augmentingpath, we know l(Q) � l(P ). Moreover, as N4EQ is a mathing of size jM j, and asM is extreme, we know w(N4EQ) � w(M). Hene(23) w(N) = w(N4EQ)� l(Q) � w(M)� l(P ) = w(M 0):Hene M 0 is extreme.
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This implies that if we are able to �nd a minimum-length M -augmenting path inpolynomial time, we an �nd a maximum-weight mathing in polynomial time: �nditeratively extreme mathings M0;M1; : : : suh that jMkj = k for eah k. Then themathing among M0;M1; : : : of maximum weight is a maximum-weight mathing.IfG is bipartite, we an �nd a minimum-lengthM -augmenting path as follows. LetG have olour lasses U andW . Orient the edges of G as in (19), making the diretedgraph D, and let U 0 and W 0 as in (20). Then a minimum-lengthM -augmenting pathan be found by �nding a minimum-length path in D from any vertex in U 0 to anyvertex in W 0. This an be done in polynomial time, sine:Theorem 3.5. Let M be an extreme mathing. Then D has no direted iruit ofnegative length.Proof. Suppose C is a direted iruit in D with length l(C) < 0. We may assumeC = (u0; w1; u1; : : : ; wt; ut) with u0 = ut and u1; : : : ; ut 2 U and w1; : : : ; wt 2 W .Then the edges w1u1; : : : ; wtut belong to M and the edges u0w1; u1w2; : : : ; ut�1wt donot belong to M . Then M 00 := M4EC is a mathing of ardinality k of weightw(M 00) = w(M)� l(C) > w(M), ontraditing the fat that M is extreme.
This gives a polynomial-time algorithm to �nd a maximum-weight mathing in abipartite graph. The desription above yields:Theorem 3.6. A maximum-weight mathing in a bipartite graph G = (V;E) an befound in O(jV j2jEj) time.Proof.We do O(jV j) iterations, eah onsisting of �nding a shortest path (in a graphwithout negative-length direted iruits), whih an be done in O(jV jjEj) time (withthe Bellman-Ford algorithm | see Corollary 1.10a).
In fat, a sharpening of this method (by transmitting a `potential' p : V ! Qthroughout the mathing augmenting iterations, making the length funtion l non-negative, so that Dijkstra's method an be used) gives an O(jV j(jEj + jV j log jV j))algorithm.Appliation 3.2: Optimal assignment. Suppose that we have n jobs and m mahinesand that eah job an be done on eah mahine. Moreover, let a ost funtion (or ostmatrix) ki;j be given, speifying the ost of performing job j by mahine i. We want toperform the jobs with a minimum of total osts.This an be solved with the maximum-weight bipartite mathing algorithm. To thisend, we make a omplete bipartite graph G with olour lasses of ardinality m and n. LetK be the maximum of ki;j over all i; j. De�ne the weight of the edge onneting mahine iand job j to be equal to K � ki;j . Then a maximum-weight mathing in G orresponds to



Setion 3.5. Weighted bipartite mathing 49
an optimum assignment of mahines to jobs.So the algorithm for solving the assignment problem ounters the remarks made byThorndike [1950℄ in an Address delivered on September 9, 1949 at a meeting of the AmerianPsyhologial Assoiation at Denver, Colorado:There are, as has been indiated, a �nite number of permutations in the assign-ment of men to jobs. When the lassi�ation problem as formulated above waspresented to a mathematiian, he pointed to this fat and said that from thepoint of view of the mathematiian there was no problem. Sine the number ofpermutations was �nite, one had only to try them all and hoose the best. Hedismissed the problem at that point. This is rather old omfort to the psy-hologist, however, when one onsiders that only ten men and ten jobs meanover three and a half million permutations. Trying out all the permutationsmay be a mathematial solution to the problem, it is not a pratial solution.
Appliation 3.3: Transporting earth. Monge [1784℄ was one of the �rst to onsiderthe assignment problem, in the role of the problem of transporting earth from one area toanother, whih he onsidered as the disontinuous, ombinatorial problem of transportingmoleules:Lorsqu'on doit transporter des terres d'un lieu dans un autre, on a outime dedonner le nom de D�eblai au volume des terres que l'on doit transporter, & lenom de Remblai �a l'espae qu'elles doivent ouper apr�es le transport.Le prix du transport d'une mol�eule �etant, toutes hoses d'ailleurs �egales, pro-portionnel �a son poids & �a l'espae qu'on lui fait parourir, & par ons�equent leprix du transport total devant être proportionnel �a la somme des produits desmol�eules multipli�ees haune par l'espae parouru, il s'ensuit que le d�eblai &le remblai �etant donn�e de �gure & de position, il n'est pas indi��erent que tellemol�eule du d�eblai soit transport�ee dans tel ou tel autre endroit du remblai,mais qu'il y a une ertaine distribution �a faire des mol�eules du premier dansle seond, dapr�es laquelle la somme de es produits sera la moindre possible, &le prix du transport total sera minimum.10Monge desribes an interesting geometri method to solve the assignment problem in thisase: let l be a line touhing the two areas from one side; then transport the earth moleule10When one must transport earth from one plae to another, one usually gives the name of D�eblaito the volume of earth that one must transport, & the name of Remblai to the spae that theyshould oupy after the transport.The prie of the transport of one moleule being, if all the rest is equal, proportional to its weight& to the distane that one makes it overing, & hene the prie of the total transport having to beproportional to the sum of the produts of the moleules eah multiplied by the distane overed,it follows that, the d�eblai & the remblai being given by �gure and position, it makes di�erene if aertain moleule of the d�eblai is transported to one or to another plae of the remblai, but that thereis a ertain distribution to make of the molules from the �rst to the seond, after whih the sum ofthese produts will be as little as possible, & the prie of the total transport will be a minimum.
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touhed in one area to the position touhed in the other area. Then repeat, until allmoleules are transported.
Exerises3.22. Five mehanis, stationed in the ities A;B;C;D;E, have to perform jobs in the itiesF;G;H; I; J . The jobs must be assigned in suh a way to the mehanis that everyonegets one job and that the total distane traveled by them is as small as possible. Thedistanes are given in the tables below. Solve these assignment problems with theweighted mathing algorithm.

(i)
F G H I JA 6 17 10 1 3B 9 23 21 4 5C 2 8 5 0 1D 19 31 19 20 9E 21 25 22 3 9

(ii)
F G H I JA 11 5 21 7 18B 17 4 20 9 25C 4 1 3 2 4D 6 2 19 3 9E 19 7 23 18 26

3.23. Derive from the weighted mathing algorithm for bipartite graphs an algorithm for�nding a minimum-weight perfet mathing in a bipartite graph G = (V;E). (Amathing M is perfet if SM = V .)3.24. Let A1; : : : ; An be subsets of the �nite set X and let w : X ! R+ be a `weight'funtion. Derive from the weighted mathing algorithm a polynomial-time algorithmto �nd a minimum-weight SDR.
3.6. The mathing polytopeThe weighted mathing problem is related to the `mathing polytope'. Let G = (V;E)be a graph. For eah mathing M let the inidene vetor �M : E ! R of M bede�ned by:(24) �M (e) := 1 if e 2M ,�M (e) := 0 if e 62M ,
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for e 2 E.It is important to realize that the set of funtions f : E ! R an be onsideredas a vetor spae and eah suh funtion as a vetor. Thus we an denote f(e) by fe.The funtion �M an be onsidered alternatively as a vetor in the vetor spae R E .Similarly for funtions g : V ! R .The mathing polytope of G is de�ned as:(25) Pmathing(G) :=onv.hullf�M jM is a mathing in Gg.So Pmathing(G) is a polytope in R E .The mathing polytope is a polyhedron, and hene an be desribed by linearinequalities. For bipartite graphs, these inequalities are quite simple. To this endit is onvenient �rst to onsider perfet mathings. (A mathing M is perfet ifSM = V .) Now the perfet mathing polytope of G is de�ned by:(26) Pperfet mathing(G) :=onv.hullf�M jM is a perfet mathing in Gg.Again, Pperfet mathing(G) is a polytope in R E . Now the following an be derived quitediretly from Exerise 3.11:Theorem 3.7. Let G = (V;E) be a bipartite graph. Then the perfet mathingpolytope Pperfet mathing(G) is equal to the set of vetors x 2 R E satisfying:(27) xe � 0 for eah e 2 E;Xe3v xe = 1 for eah v 2 V .
Proof. Left to the reader (Exerise 3.25).

Clearly, eah vetor x in Pperfet mathing(G) should satisfy (27), sine eah vetor�M satis�es (27). The essene of the theorem is that the inequalities (27) are enoughto de�ne the polytope Pperfet mathing(G).(An alternative way of proving Theorem 3.7 is using the `total unimodularity' ofthe inidene matrix of a bipartite graph, together with the Ho�man-Kruskal theoremon integer solutions to linear programming problems with integer data and totallyunimodular onstraint matrix | see Setion 8.3.)From Theorem 3.7 one an derive the linear inequalities desribing the mathingpolytope of a bipartite graph:Corollary 3.7a. Let G = (V;E) be a bipartite graph. Then the mathing polytopePmathing(G) is equal to the set of vetors x 2 R E satisfying:
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(28) xe � 0 for eah e 2 E;Xe3v xe � 1 for eah v 2 V .
Proof. Left to the reader (Exerise 3.26).

Clearly, one annot delete the bipartiteness ondition: if G is the triangle K3 thenthe funtion x de�ned by xe := 1=2 for eah edge e satis�es (28), but does not belongto the mathing polytope.Corollary 3.7a asserts that the weighted mathing problem an be formulated asa linear programming problem:(29) maximize wTx,subjet to xe � 0 for eah e 2 E;Xe3v xe � 1 for eah v 2 V .
With linear programming duality one an derive from this a `weighted' extensionof K}onig's mathing theorem, due to Egerv�ary [1931℄:Corollary 3.7b. Let G = (V;E) be a bipartite graph and let w : E ! R be a `weight'funtion. Then the maximum weight of a mathing is equal to the minimum value ofPv2V y(v), where y ranges over all funtions y : V ! R+ satisfying y(u)+y(v) � w(e)for eah edge e = uv of G.Proof. The maximum weight of a mathing in G is equal to(30) maxfwT�M jM is a mathing in Gg.Sine Pmathing(G) is the onvex hull of the �M , (30) is equal to(31) maxfwTx j x 2 Pmathing(G)g.By Corollary 3.7a this is equal to(32) maxfwTx j xe � 0 for eah e 2 E;Pe3v xe � 1 for eah v 2 V g.By linear programming duality this is equal to(33) minfPv2V yv j yv � 0 for eah v 2 V ;yu + yv � we for eah edge e = uvg.
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This is exatly the minimum desribed in the Corollary.

An extension of this orollary gives a further extension of K}onig's mathing the-orem (Theorem 3.3):Theorem 3.8. In Corollary 3.7b, if w is integer-valued, then we an take also yinteger-valued.Proof. Let y 2 R V+ attain the minimum, and assume that we have hosen y so thatthe number of verties v with yv 62 Z is as small as possible. Let U and W be the twoolour lasses of G and let X be the set of verties v of G with yv 62 Z. If X = ; weare done, so assume that X 6= ;. Without loss of generality, jX \U j � jX \W j. Letu be a vertex in X \U with yu�byu as small as possible. Let " := yu�byu. Reset
(34) ~yv := 8><>:yv � " if v 2 X \ U ,yv + " if v 2 X \W ,yv if v 62 X.One easily heks that again ~yv+~yv0 � w(e) for eah edge e = vv0 of G (using the fatthat w is integer-valued). Moreover, Pv2V ~yv = Pv2V yv � "jX \ U j + "jX \W j �Pv2V yv. So ~y also attains the minimum. However, ~y has fewer noninteger-valuedomponents than y (as ~yu 2 Z), ontraditing our assumption.
Exerises3.25. Derive Theorem 3.7 from Exerise 3.11.3.26. Derive Corollary 3.7a from Theorem 3.7.
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4. Menger's theorem, ows, andirulations

4.1. Menger's theoremIn this setion we study the maximum number k of pairwise disjoint paths in a graphonneting two verties, or two sets of verties. Here `disjoint' an mean: internallyvertex-disjoint (= having no vertex in ommon exept for their end verties) or ar-disjoint (= having no ar in ommon).Let D = (V;A) be a direted graph and let S and T be subsets of V . A path isalled an S � T path if it runs from a vertex in S to a vertex in T .Menger [1927℄ gave a min-max theorem for the maximum number of disjoint S�Tpaths. We follow the proof given by G�oring [2000℄.A set C of verties is alled S � T disonneting if C intersets eah S � T path(C may interset S [ T ).Theorem 4.1 (Menger's theorem (direted vertex-disjoint version)). Let D = (V;A)be a digraph and let S; T � V . Then the maximum number of vertex-disjoint S � Tpaths is equal to the minimum size of an S � T disonneting vertex set.Proof. Obviously, the maximum does not exeed the minimum. Equality is shownby indution on jAj, the ase A = ; being trivial.Let k be the minimum size of an S � T disonneting vertex set. Choose a =(u; v) 2 A. If eah S � T disonneting vertex set in D � a has size at least k, thenindutively there exist k vertex-disjoint S � T paths in D � a, hene in D.So we an assume that D � a has an S � T disonneting vertex set C of size� k � 1. Then C [ fug and C [ fvg are S � T disonneting vertex sets of D of sizek. Now eah S� (C [fug) disonneting vertex set B of D�a has size at least k, asit is S � T disonneting in D. Indeed, eah S � T path P in D intersets C [ fug,and hene P ontains an S � (C [ fug) path in D � a. So P intersets B.So by indution, D � a ontains k disjoint S � (C [ fug) paths. Similarly, D � aontains k disjoint (C [ fvg) � T paths. Any path in the �rst olletion intersetsany path in the seond olletion only in C, sine otherwise D� a ontains an S � Tpath avoiding C.Hene, as jCj = k� 1, we an pairwise onatenate these paths to obtain disjointS � T paths, inserting ar a between the path ending at u and the path starting atv.
A onsequene of this theorem is a variant on internally vertex-disjoint s�t paths,
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that is, s� t paths having no vertex in ommon exept for s and t. Reall that a setU of verties is alled an s� t vertex-ut if s; t 62 U and eah s� t path intersets U .
Corollary 4.1a (Menger's theorem (direted internally vertex-disjoint version)). LetD = (V;A) be a digraph and let s and t be two nonadjaent verties of D. Then themaximum number of internally vertex-disjoint s � t paths is equal to the minimumsize of an s� t vertex-ut.Proof. Let D0 := D � s � t and let S and T be the sets of outneighbours of s andof inneighbours of t, respetively. Then Theorem 4.1 applied to D0; S; T gives theorollary.

In turn, Theorem 4.1 follows from Corollary 4.1a by adding two new verties sand t and ars (s; v) for all v 2 S and (v; t) for all v 2 T .Also an ar-disjoint version an be derived (where paths are ar-disjoint if theyhave no ar in ommon).Reall that a set C of ars is an s� t ut if C = Æout(U) for some subset U of Vwith s 2 U and t 62 U .Corollary 4.1b (Menger's theorem (direted ar-disjoint version)). Let D = (V;A)be a digraph and s; t 2 V . Then the maximum number of ar-disjoint s � t paths isequal to the minimum size of an s� t ut.Proof. Let L(D) be the line digraph of D and let S := ÆoutA (s) and T := ÆinA (t). ThenTheorem 4.1 for L(D); S; T implies the orollary. Note that a minimum-size set ofars interseting eah s� t path neessarily is an s� t ut.
The internally vertex-disjoint version of Menger's theorem an be derived in turnfrom the ar-disjoint version: make a digraph D0 as follows from D: replae anyvertex v by two verties v0; v00 and make an ar (v0; v00); moreover, replae eah ar(u; v) by (u00; v0). Then Corollary 4.1b for D0; s00; t0 gives Corollary 4.1a for D; s; t.Similar theorems hold for undireted graphs. They an be derived from the di-reted ase by replaing eah undireted edge uw by two opposite ars (u;w) and(w; u).Appliation 4.1: Routing airplanes. An airline ompany arries out a ertain numberof ights aording to some �xed timetable, in a weekly yle. The timetable is basiallygiven by a ight number i (for instane 562), a departure ity di (for instane Vanouver),a departure time dti (for instane Monday 23.15h), an arrival ity ai (for instane Tokyo),and an arrival time ati (for instane Tuesday 7.20h). All times inlude boarding and disem-barking and preparing the plane for a next ight. Thus a plane with arrival time Tuesday7.20h at ity , an be used for any ight from  with departure time from Tuesday 7.20h
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on. The ights are arried out by n airplanes of one type, denoted by a1; : : : ; an. At eahweekday there should be an airplane for maintenane at the home basis, from 6.00h till18.00h. Legal rules presribe whih of the airplanes a1; : : : ; an should be at the home basisduring one day the oming week, but it is not presribed whih airplane should be at thehome basis at whih day (see Appliation 9.4 for an extension where this is presribed).The timetable is made in suh a way that at eah ity the number of inoming ights isequal to the number of outgoing ights. Here `maintenane' is also onsidered as a ight.However, there is exibility in assigning the airplanes to the ights: if at a ertain momentat a ertain ity two or more airplanes are available for a ight, in priniple any of theman be used for that ight. Whih of the available airplanes will be used, is deided by themain oÆe of the ompany. This deision is made at 18.00h on the Saturday before. Atthat time the ompany makes the exat routing of the planes for the oming week.
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Figure 4.1
At that moment, ertain planes are performing ertain ights, while other planes aregrounded at ertain ities. Routing the airplanes is easy as the timetable is set up in suha way that at eah moment and eah ity enough airplanes are available.Indeed, one an make a direted graph D (Figure 4.1) with vertex set all pairs (di; dti)and (ai; ati) for all ight numbers i. For eah ight i that is not in the air at Saturday18.00h, one makes an ar from (di; dti) to (ai; ati). We also do this for the \ights"representing maintenane.Moreover, for eah ity  and eah two onseutive times t; t0 at whih any ight departsor arrives at , one makes m parallel ars from (; t) to (; t0), where m is the number ofairplanes that will be in ity  during the period t{t0.In this way we obtain a direted graph suh that at eah vertex the indegree is equal
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to the outdegree, exept at any (; t) where t is the earliest time after Saturday 18.00hat whih any ight arrives at or leaves ity . Hene we an �nd in D ar-disjoint pathsP1; : : : ; Pn (where n is the number of airplanes) in D suh that eah ar is in exatly one ofthe Pi. This would give a routing for the airplanes.However, the restrition that some presribed airplanes must undergo maintenane theoming week gives some ompliations. It means for instane that if a ertain airplane ai(say) is now on the ground at ity  and should be home for maintenane the oming week,then the path Pi should start at (; t) and should traverse one of the ars representingmaintenane. If ai is now in the air, then path Pi should start at (; t) where t is the�rst-oming arrival time of ai and should traverse a maintenane ar. So the ompany �rst�nds ar-disjoint paths Pi1 ; : : : ; Pik , where ai1 ; : : : ; aik are the airplanes that should undergomaintenane the oming week. These paths an be extended to paths P1; : : : ; Pn suh thateah ar is traversed exatly one.So the problem an be solved by �nding ar-disjoint paths starting in a given set ofverties and ending in a given set of verties (by slightly extending the graph D).
Exerises4.1. Let D = (V;A) be a direted graph and let s; t1; : : : ; tk be verties of D. Provethat there exist pairwise ar-disjoint paths P1; : : : ; Pk suh that Pi is an s � ti path(i = 1; : : : ; k) if and only if for eah U � V with s 2 U one has(1) jÆout(U)j � jfi j ti 62 Ugj:4.2. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set.Show that A and B have a ommon SDR if and only if for all I; J � f1; : : : ; ng onehas

(2) ��[i2I Ai \ [j2J Bj�� � jIj+ jJ j � n:
4.3. Let G = (V;E) be a bipartite graph, with olour lasses V1 and V2, suh that jV1j =jV2j. Show that G has k pairwise disjoint perfet mathings if and only if for eahsubset U of V1:(3) Xv2V2minfk; jE(v) \ U jg � kjU j;

where E(v) denotes the set of verties adjaent to v.4.4. Let D = (V;A) be a simple direted graph and let s; t 2 V . Let � be the minimumlength of an s� t path. Show that the maximum number of pairwise ar-disjont s� tpaths is at most (jV j=�)2.(Hint : Let Uk denote the set of verties at distane at most k from s. Show thatjÆout(Uk)j � (jV j=�)2 for some k < �.)
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4.2. Flows in networksOther onsequenes of Menger's theorem onern `ows in networks'. Let D = (V;A)be a direted graph and let s; t 2 V . A funtion f : A ! R is alled an s � t owif:11(4) (i) f(a) � 0 for eah a 2 A;(ii) Xa2Æin(v) f(a) = Xa2Æout(v) f(a) for eah v 2 V n fs; tg:
Condition (4)(ii) is alled the ow onservation law : the amount of ow entering avertex v 6= s; t should be equal to the amount of ow leaving v.The value of an s� t ow f is, by de�nition:
(5) value(f) := Xa2Æout(s) f(a)� Xa2Æin(s) f(a):So the value is the net amount of ow leaving s. It an be shown that it is equal tothe net amount of ow entering t.Let  : A ! R+ , alled a apaity funtion. We say that a ow f is under  (orsubjet to ) if(6) f(a) � (a) for eah a 2 A:The maximum ow problem now is to �nd an s� t ow under , of maximum value.To formulate a min-max relation, de�ne the apaity of a ut Æout(U) by:
(7) (Æout(U)) := Xa2Æout(U) (a):Then:Proposition 2. For every s� t ow f under  and every s� t ut Æout(U) one has:(8) value(f) � (Æout(U)):
Proof.(9) value(f) = Xa2Æout(s) f(a)� Xa2Æin(s) f(a)11Æout(v) and Æin(v) denote the sets of ars leaving v and entering v, respetively.
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= Xa2Æout(s) f(a)� Xa2Æin(s) f(a) + Xv2Unfsg( Xa2Æout(v) f(a)� Xa2Æin(v) f(a))=Xv2U( Xa2Æout(v) f(a)� Xa2Æin(v) f(a)) = Xa2Æout(U) f(a)� Xa2Æin(U) f(a)?� Xa2Æout(U) f(a) ??� Xa2Æout(U) (a) = (Æout(U)).

It is onvenient to note the following:(10) equality holds in (8) () 8a 2 Æin(U) : f(a) = 0 and8a 2 Æout(U) : f(a) = (a):This follows diretly from the inequalities ? and ?? in (9).Now from Menger's theorem one an derive that equality an be attained in (8),whih is a theorem of Ford and Fulkerson [1956℄:Theorem 4.2 (max-ow min-ut theorem). For any direted graph D = (V;A),s; t 2 V , and  : A! R+, the maximum value of an s� t ow under  is equal to theminimum apaity of an s� t ut. In formula:
(11) maxf s-t ow value(f) = minÆout(U) s-t ut (Æout(U)):
Proof. If  is integer-valued, the orollary follows from Menger's theorem by replaingeah ar a by (a) parallel ars. If  is rational-valued, there exists a natural numberN suh that N(a) is integer for eah a 2 A. This resetting multiplies both themaximum and the minimum by N . So the equality follows from the ase where  isinteger-valued.If  is real-valued, we an derive the orollary from the ase where  is rational-valued, by ontinuity and ompatness arguments.

Moreover, one has (Dantzig [1951a℄):Corollary 4.2a (Integrity theorem). If  is integer-valued, there exists an integer-valued maximum ow.Proof. Diretly from Menger's theorem.
Exerises
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4.5. Let D = (V;A) be a direted graph and let s; t 2 V . Let f : A! R+ be an s� t owof value �. Show that there exists an s � t ow f 0 : A ! Z+ of value d�e suh thatbf(a) � f 0(a) � df(a)e for eah ar a. (Integer ow theorem (Dantzig [1951a℄).)4.6. Let G = (V;E) be a graph and let  : E ! R+ be a `apaity' funtion. Let K bethe omplete graph on V . For eah edge st of K, let w(st) be the minimum apaityof any s� t ut in G. [An s� t ut is any subset Æ(W ) with s 2W; t 62W .℄Let T be a spanning tree in K of maximum total weight with respet to the funtionw. Prove that for all s; t 2 V , w(st) is equal to the minimum weight of the edges ofT in the unique s� t path in T .(Hint: Use Exerise 1.10.)
4.3. Finding a maximum owLet D = (V;A) be a direted graph, let s; t 2 V , and let  : A ! Q + be a `apaity'funtion. We now desribe the algorithm of Ford and Fulkerson [1956℄ to �nd an s� tow of maximum value under .In this setion, by ow we will mean an s � t ow under , and by ut an s � tut. A maximum ow is a ow of maximum value.We now desribe the algorithm of Ford and Fulkerson [1957℄ to determine a max-imum ow. We assume that (a) > 0 for eah ar a. First we give an importantsubroutine:Flow augmenting algorithminput: a ow f .output: either (i) a ow f 0 with value(f 0) > value(f),or (ii) a ut Æout(W ) with (Æout(W )) = value(f).desription of the algorithm: For any pair a = (v; w) de�ne a�1 := (w; v). Makean auxiliary graph Df = (V;Af ) by the following rule: for any ar a 2 A,(12) if f(a) < (a) then a 2 Af ,if f(a) > 0 then a�1 2 Af .So if 0 < f(a) < (a) then both a and a�1 are ars of Af .Now there are two possibilities:(13) Case 1: There exists an s� t path in Df ,Case 2: There is no s� t path in Df .
Case 1: There exists an s� t path P = (v0; a1; v1; : : : ; ak; vk) in Df = (V;Af ).So v0 = s and vk = t. We may assume that P is a simple path. As a1; : : : ; ak belong
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to Af , we know by (12) that for eah i = 1; : : : ; k:(14) either (i) ai 2 A and �i := (ai)� f(ai) > 0or (ii) a�1i 2 A and �i := f(a�1i ) > 0:De�ne � := minf�1; : : : ; �kg. So � > 0. Let f 0 : A! R+ be de�ned by, for a 2 A:(15) f 0(a) := f(a) + �; if a = ai for some i = 1; : : : ; k;:= f(a)� �; if a = a�1i for some i = 1; : : : ; k;:= f(a); for all other a.Then f 0 again is an s � t ow under . The inequalities 0 � f 0(a) � (a) holdbeause of our hoie of �. It is easy to hek that also the ow onservation law(4)(ii) is maintained.Moreover,(16) value(f 0) = value(f) + �;sine either (v0; v1) 2 A, in whih ase the outgoing ow in s is inreased by �, or(v1; v0) 2 A, in whih ase the ingoing ow in s is dereased by �.Path P is alled a ow augmenting path.Case 2: There is no path in Df = (V;Af ) from s to t.Now de�ne:(17) U := fu 2 V j there exists a path in Df from s to ug:Then s 2 U while t 62 U , and so Æout(U) is an s� t ut.By de�nition of U , if u 2 U and v 62 U , then (u; v) 62 Af (as otherwise also vwould belong to U). Therefore:(18) if (u; v) 2 Æout(U), then (u; v) 62 Af , and so (by (12)): f(u; v) = (u; v),if (u; v) 2 Æin(U), then (v; u) 62 Af , and so (by (12)): f(u; v) = 0.Then (10) gives:(19) (Æout(U)) = value(f):This �nishes the desription of the ow augmenting algorithm. The desriptionof the (Ford-Fulkerson) maximum ow algorithm is now simple:Maximum ow algorithm
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input: direted graph D = (V;A); s; t 2 V;  : A! R+ .output: a maximum ow f and a ut Æout(U) of minimum apaity, with value(f) =(Æout(U)).desription of the algorithm: Let f0 be the `null ow' (that is, f0(a) = 0 for eahar a). Determine with the ow augmenting algorithm ows f1; f2; : : : ; fN suh thatfi+1 = f 0i , until, in the Nth iteration, say, we obtain output (ii) of the ow augmentingalgorithm. Then we have ow fN and a ut Æout(U) with the given properties.

We show that the algorithm terminates, provided that all apaities are rational.Theorem 4.3. If all apaities (a) are rational, the algorithm terminates.Proof. If all apaities are rational, there exists a natural number K so that K(a)is an integer for eah a 2 A. (We an take for K the l..m. of the denominators ofthe (a).)Then in the ow augmenting iterations, every ow fi(a) and every � is a multipleof 1=K. So at eah iteration, the ow value inreases by at least 1=K. Sine the owvalue annot exeed (Æout(s)), we an have only �nitely many iterations.
We should note here that this theorem is not true if we allow general real-valuedapaities.In Setion 4.4 we shall see that if we hoose always a shortest path as ow aug-menting path, then the algorithm has polynomially bounded running time.Note that the algorithm also implies the max-ow min-ut theorem (Theorem4.2). Note moreover that in the maximum ow algorithm, if all apaities are integer,then the maximum ow will also be integer-valued. So it also implies the integritytheorem (Corollary 4.2a).Appliation 4.2: Transportation problem. Suppose that there are m fatories, thatall produe the same produt, and n ustomers that use the produt. Eah month, fatoryi an produe si tons of the produt. Customer j needs every month dj tons of the produt.From fatory i to ustomer j we an transport every month at most i;j tons of the produt.The problem is: an the needs of the ustomers be ful�lled?In order to solve the problem with the maximum-ow algorithm, we make the graph asin Figure 4.2 (for m = 3, n = 5). We de�ne a apaity funtion  on the ars as follows:(20) (s; fi) := si for i = 1; : : : ;m,(fi; bj) := i;j for i = 1; : : : ;m; j = 1; : : : ; n,(bj; t) := dj for j = 1; : : : ; n.Now we have:(21) the needs of the ustomers an be ful�lled() there is an s� t ow under  with
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value d1 + � � �+ dn.Sine there annot exist an s � t ow under  of value larger than d1 + � � � + dn (sine(Æin(t)) = d1 + � � �+ dn), the problem an be solved with the maximum-ow algorithm.If there exists a ow of value d1+ � � �+dn, then the ow on ar (fi; bj) gives the amountthat should be transported eah month from fatory i to ustomer j. The ow on ar (s; fi)gives the amount to be produed eah month by fatory fi.

Exerises
4.7. Determine with the maximum ow algorithm an s � t ow of maximum value andan s� t ut of minimum apaity in the following graphs (where the numbers at thears give the apaities):
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4.8. Solve the transportation problem with the maximum-ow algorithm for the followingdata: m = n = 3; s1 = 13; s2 = 9; s3 = 4; d1 = 3; d2 = 7; d3 = 12,
i;j j = 1 j = 2 j = 3i = 1 2 0 8i = 2 3 8 3i = 3 0 1 3

4.9. Desribe the problem of �nding a maximum-size mathing in a bipartite graph as amaximum ow problem.
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4.10. Determine with the maximum-ow algorithm if there exists a 3 � 3 matrix A = (ai;j)satisfying:12ai;j � 0 for all i; j = 1; 2; 3;

A1 � 0� 1394
1A;

1TA = (3; 7; 12);
A � 0� 2 0 83 8 30 1 3

1A.
4.11. Give an example of a direted graph with irrational apaities, in whih, at a badhoie of ow augmenting paths, the maximum ow algorithm does not terminate.4.12. Let D = (V;A) be a direted graph, let s; t 2 V and let f : A! Q + be an s� t owof value b. Show that for eah U � V with s 2 U; t 62 U one has:

(22) Xa2Æout(U) f(a) � Xa2Æin(U) f(a) = b:
4.4. Speeding up the maximum ow algorithmWe saw that the number of iterations in the maximum ow algorithm is �nite, if allapaities are rational. If we hoose as our ow augmenting path P in the auxiliarygraph Df an arbitrary s � t path, the number of iterations yet an get quite large.For instane, in the graph in Figure 4.3 the number of iterations, at a bad hoie ofpaths, an beome 2 � 10k.
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Figure 4.3
However, if we hoose always a shortest s� t path in Df as our ow augmentingpath P (that is, with a minimum number of ars), then the number of iterations isat most jV j � jAj. This was shown by Dinits [1970℄ and Edmonds and Karp [1972℄.121 denotes the vetor (1; 1; 1)T .
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Again, for any direted graph D = (V;A) and s; t 2 V , let �(D) denote theminimum length of an s� t path. Moreover, let �(D) denote the set of ars ontainedin at least one shortest s� t path. Then one has:Proposition 3. Let D = (V;A) and s; t 2 V . Let D0 := (V;A [ �(D)�1). Then�(D0) = �(D) and �(D0) = �(D).Proof. It suÆes to show that �(D) and �(D) are invariant if we add a�1 to D forone ar a 2 �(D). Suppose not. Then there is an s � t path P traversing a�1, oflength at most �(D). As a 2 �(D), there is an s � t path Q traversing a, of length�(D). Hene AP [ AQ n fa; a�1g ontains an s� t path of length less than �(D), aontradition.
This implies the result of Dinits [1970℄ and Edmonds and Karp [1972℄:Theorem 4.4. If we hoose in eah iteration a shortest s�t path as ow augmentingpath, the number of iterations is at most jV jjAj.Proof. If we augment ow f along a shortest path P , obtaining ow f 0, then Df 0is a subgraph of D0 := (V;Af [ �(Df )�1). Hene �(Df 0) � �(D0) = �(Df ) (byProposition 3). Moreover, if �(Df 0) = �(Df ), then �(Df 0) � �(D0) = �(Df ) (againby Proposition 3). As at least one ar in P belongs to Df but not to Df 0 , we have astrit inlusion.
Sine a shortest path an be found in time O(jAj), this gives:Corollary 4.4a. The maximum ow problem an be solved in time O(jV jjAj2).Proof. Diretly from Theorem 4.4.
This algorithm an be improved, as was shown by Karzanov [1974℄. In eahiteration we �nd a shortest path in O(jAj) time. But as long as the distane from sto t does not inrease, we ould use the data-struture of the previous shortest pathsearh so as to �nd the next shortest path.This an be desribed as follows. Call an s � t ow f bloking if for eah s � tow g � f one has g = f . Now Karzanov [1974℄ showed the following (we give theshort proof of Malhotra, Kumar, and Maheshwari [1978℄; see also Tarjan [1984℄):Theorem 4.5. Given an ayli direted graph D = (V;A), s; t 2 V , and a apaityfuntion  : A! Q +, a bloking ow an be found in time O(jV j2).Proof. First order the verties reahable from s as s = v1; v2; : : : ; vn�1; vn topologi-
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ally ; that is, if (vi; vj) 2 A then i < j. This an be done in time O(jAj).13We desribe the proedure reursively. Consider the minimum of the values(Æin(v)) for all v 2 V n fsg and (Æout(v)) for all v 2 V n ftg. Let the minimumbe attained by vi and (Æout(vi)) (without loss of generality). De�ne f(a) := (a) foreah a 2 Æout(vi) and f(a) := 0 for all other a.Next for j = i+1; : : : ; n�1, rede�ne f(a) for eah a 2 Æout(vj) so that f(a) � (a)and so that f(Æout(vj)) = f(Æin(vj)). By the minimality of vi and (Æin(v)), we analways do this, as initially f(Æin(vj)) � (Æout(vi)) � (Æin(vj)). We do this in suh away that �nally f(a) 2 f0; (a)g for all but at most one a in Æout(vj).After that, for j = i; i � 1; : : : ; 2, rede�ne similarly f(a) for a 2 Æin(vj) so thatf(a) � (a) and so that f(Æin(vj)) = f(Æout(vj)).If vi 2 fs; tg we stop, and f is a bloking ow.If vi 62 fs; tg, set 0(a) := (a) � f(a) for eah a 2 A, and delete all ars a with0(a) = 0 and delete vi and all ars inident with vi, thus obtaining the direted graphD0 = (V 0; A0). Obtain (reursively) a bloking ow f 0 in D0 subjet to the apaityfuntion 0. De�ne f 00(a) := f(a) + f 0(a) for a 2 A0 and f 00(a) = f(a) for a 2 A n A0.Then f 00 is a bloking ow in D.This desribes the algorithm. The orretness an be seen as follows. If vi 2 fs; tgthe orretness is immediate. If vi 62 fs; tg, suppose f 00 is not a bloking ow in D,and let P be an s � t path in D suh that f 00(a) < (a) for eah ar a in P . Theneah ar of P belongs to A0, sine f 00(a) = f(a) = (a) for eah a 2 A n (A0 [ Æin(vi)).So for eah ar a of P one has 0(a) = (a) � f(a) > f 00(a) � f(a) = f 0(a). Thisontradits the fat that f 0 is a bloking ow in D0.The running time of the algorithm is O(jV j2), sine the running time of the iter-ation is O(jV j + jA n A0j), and sine there are at most jV j iterations. (Note that wedetermine the topologial ordering only one, at the preproessing.)

Theorem 4.5 has the following onsequene:Corollary 4.5a. Given a direted graph D = (V;A), s; t 2 V , and a apaity funtion : A! Q , a ow f satisfying �(Df ) > �(D) an be found in time O(jV j2).Proof. Let ~D be the subgraph of D onsisting of all ars that are ontained in ashortest s � t path in D. Find a bloking ow in ~D. Then �(Df ) > �(D) (byProposition 3).
Hene we have:13This an be done reursively as follows (f. Knuth [1968℄, Tarjan [1974℄). If Æout(s) = ;, thenthe ordering is trivial. If Æout(s) 6= ;, hoose (s; v) 2 Æout(s), and order the verties reahable from vtopologially, as w1; : : : ; wm, delete them from D, and order the remaining verties reahable froms topologially as v1; : : : ; vk; then v1; : : : ; vk; w1; : : : ; wm gives a required topologial ordering.
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Corollary 4.5b. Given a direted graph D = (V;A), s; t 2 V , and a apaity funtion : A! Q , a maximum s� t ow an be found in time O(jV j3).Proof. Diretly from the foregoing.

Goldberg and Tarjan [1990℄ gave an O(jAj log(jV j2=jAj)) algorithm for �ndinga bloking ow in an ayli direted graph, implying an O(jV jjAj log(jV j2=jAj))algorithm for �nding a maximum ow in any direted graph. An alternative approah�nding a maximum ow in time O(jV jjAj log(jV j2=jAj)) was desribed in Goldbergand Tarjan [1988℄.For surveys on maximum ow algorithms, see Goldberg, Tardos, and Tarjan [1990℄and Ahuja, Magnanti, and Orlin [1993℄.
4.5. CirulationsA theorem related to the max-ow min-ut theorem is due to Ho�man [1960℄ andonerns irulations. Let D = (V;A) be a direted graph. A funtion f : A ! R isalled a irulation if for eah vertex v 2 V one has:(23) Xa2Æin(v) f(a) = Xa2Æout(v) f(a):So now the ow onservation law holds at eah vertex v.Ho�man [1960℄ proved the following theorem (whih an also be derived from themax-ow min-ut theorem, but a diret proof seems shorter). For any direted graphD = (V;A), and any d; ; f : A ! R with d(a) � f(a) � (a) for eah a 2 A, wede�ne(24) Af := fa j f(a) < (a)g [ fa�1 j d(a) < f(a)g;and Df := (V;Af ).Theorem 4.6 (Ho�man's irulation theorem). Let D = (V;A) be a direted graphand let d;  : A ! R be suh that d(a) � (a) for eah ar a. Then there exists airulation f suh that(25) d(a) � f(a) � (a)for eah ar a if and only if
(26) Xa2Æin(U) d(a) � Xa2Æout(U) (a)
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for eah subset U of V .Proof. To see neessity of (26), suppose that a irulation f satisfying (25) exists.Then(27) d(Æin(U)) � f(Æin(U)) = f(Æout(U)) � (Æout(U)):To see suÆieny, de�ne for any f : A! R and any v 2 V ,(28) lossf (v) := f(Æout(v))� f(Æin(v)):So lossf an be seen as a vetor in R V .Choose a funtion f satisfying d � f �  and minimizing klossfk1. Let(29) S := fv 2 V j lossf (v) < 0g and T := fv 2 V j lossf (v) > 0g.If S = ;, then f is a irulation, and we are done. So assume S 6= ;. If Df ontainsan S � T path, we an modify f so as to redue klossfk1. So Df does not ontainany S � T path. Let U be the set of verties reahable in Df from S. Then for eaha 2 Æout(U) we have a 62 Af and hene f(a) = (a). Similarly, for eah a 2 Æin(U) wehave a�1 62 Af and hene f(a) = d(a). Therefore(30) (Æout(U))� d(Æin(U)) = f(Æout(U))� f(Æin(U)) = lossf (U) = lossf (S) < 0;ontraditing (26).

One has moreover:Theorem 4.7. In Theorem 4.6, if  and d are integer and there exists a irulationf satisfying d � f � , then there exists an integer-valued irulation f 0 satisfyingd � f 0 � .Proof. Diretly from the proof above.
Exerises4.13. Let D = (V;A) be a direted graph and let f : A ! R be a irulation. Show thatthere exists a irulation f 0 suh that f 0 is integer-valued and suh that bf(a) �f 0(a) � df(a)e for eah ar a.4.14. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be partitions of a �nite set X and let kbe a natural number. Prove that X an be overed by k ommon SDR's of A and Bif and only if
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(31) ��([i2IAi [ [j2J Bj)�� � jXj+ k(jIj+ jJ j � n)
for all I; J � f1; : : : ; ng with Si2I Ai \Sj2J Bj = ;.4.15. Let D = (V;A) be a direted graph, and let f : A ! R+ . Let C be the olletionof direted iruits in D. For eah direted iruit C in D let �C be the inidenevetor of C. That is, �C : A! f0; 1g, with �C(a) = 1 if C traverses a and �C(a) = 0otherwise.Show that f is a nonnegative irulation if and only if there exists a funtion � : C !R+ suh that
(32) f =XC2C �(C)�C :
That is, the nonnegative irulations form the one generated by f�C j C 2 Cg.

4.6. Minimum-ost owsIn the previous setions we were searhing for ows of maximum value. In this setionwe onsider the problem of �nding a ow of maximum value with the additionalproperty that it has `minimum ost'.Let be given again a direted graph D = (V;A), verties s and t of D, and aapaity funtion  : A ! R+ . Let moreover be given a funtion k : A ! R+ , alledthe ost funtion.De�ne for any funtion f : A! R+ the ost of f as:
(33) ost(f) :=Xa2A k(a)f(a):The following is the minimum-ost ow problem (or min-ost ow problem):(34) given: a direted graph D = (V;A), s; t 2 V , a apaity funtion  : A ! R+and a ost funtion k : A! R+ ;�nd: an s � t ow subjet to  of maximum value, suh that f has minimumost among all s� t ows subjet to  of maximum value.This problem an be solved with an adaptation of the algorithm desribed inSetion 4.3. Let us de�ne an s� t ow f �  to be an extreme ow if f has minimumost among all s� t ows g �  with value(g) = value(f).So an extreme ow does not need to have maximum value. An extreme ow is aow f that has minimum ost among all ows with the same value as f .
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Let f be a ow and let Df = (V;Af ) be the auxiliary graph orresponding to f(in the sense of the ow augmenting algorithm). De�ne a length funtion l : Af ! Ron Af by:

(35) l(a) := (k(a) if a 2 A,�k(a�1) if a�1 2 A
for eah a 2 Af .Given this, the following an be shown:Proposition 4. f is an extreme ow if and only if Df has no direted iruits ofnegative length (with respet to l).Proof. Neessity. Suppose that C = (a1; : : : ; ak) is a direted iruit inDf of negativelength; that is,
(36) length(C) = l(a1) + l(a2) + � � �+ l(ak) < 0:
So a1; : : : ; ak are ars in Df . De�ne for i = 1; : : : ; k:
(37) �i := ((ai)� f(ai) if ai 2 A,f(a�1i ) if a�1i 2 A.
Note that by de�nition of Df , �i > 0 for eah i = 1; : : : ; k. Let � := minf�1; : : : ; �kgand de�ne for eah a 2 A:
(38) g(a) := 8><>:f(a) + � if a 2 C,f(a)� � if a�1 2 C,f(a) otherwise.
Then g is again an s � t ow subjet to , with value(g) = value(f). Moreover onehas
(39) ost(g) = ost(f) + � � length(C) < ost(f):
So f is not an extreme ow.SuÆieny. Let g be any ow with value(g) =value(f). De�ne h : Af ! R+ by:
(40) h(a) := g(a)� f(a) if g(a) > f(a), andh(a�1) := f(a)� g(a) if g(a) < f(a),
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for a 2 A, while h(a) = 0 for all other ars a of Af . Then h is a irulation in Df .Hene, by Exerise 4.15, there exists a funtion � : C ! R+ suh that h =PC2C �(C)�C . Hene ost(g) � ost(f) = PC2C �(C)length(C). Assuming Df hasno direted iruits of negative length, it follows that ost(g) � ost(f). So f is anextreme ow.

With this we an show:Proposition 5. Let f be an extreme ow. Let f 0 arise by hoosing in the owaugmenting algorithm a path in Df of minimum length with respet to l. Then f 0 isan extreme ow again.Proof. Suppose Df 0 has a direted iruit C of negative length with respet to thelength funtion l0 orresponding to f 0. As C does not our in Df , part of C oursin the ow augmenting path hosen. But then we ould have hosen a shorter owaugmenting path.
This implies that the min-ost ow problem an be solved by hoosing in the owaugmenting algorithm a shortest path in the auxiliary graph throughout. The �rstow, the all-zero ow f0, is trivially an extreme ow. Hene also all further owsf1; f2; f3; : : : will be extreme ows by Proposition 5. Therefore, also the last ow,whih is of maximum value, is an extreme ow. So we have a solution to the min-ostow problem. (Here we assume that all apaities are rational.)In this proess, we should be able to �nd a shortest s � t path in the auxiliarygraphs Df . This is indeed possible with the Bellman-Ford method, sine Df does nothave direted iruits of negative length as we saw in Proposition 4.The algorithm an be modi�ed so that all lengths are nonnegative throughout theiterations, and this yields a running time of O(M �(m+n logn)), whereM is the valueof a maximum ow (assuming all apaities to be integer). This is not polynomial-time. Ho�man [℄ gave the �rst polynomial-time algorithm to �nd a minimum-ostow of maximum value. At the moment of writing, the asymptotially fastest methodwas given by Orlin [1988,1993℄ and runs in O(m log n(m+ n log n)) time.In a similar way one an desribe a minimum-ost irulation algorithm. For moreabout network ows we refer to the books of Ford and Fulkerson [1962℄ and Ahuja,Magnanti, and Orlin [1993℄.Appliation 4.3: Minimum-ost transportation problem. Beside the data in Appli-ation 4.2 one may also have a ost funtion ki;j , giving the ost of transporting 1 ton fromfatory i to ostumer j. Moreover, there is given a ost ki of produing 1 ton by fatoryi (for eah i). We want to make a prodution and transportation plan that minimizes thetotal ost.This problem an be solved by assigning also osts to the ars in Appliation 4.2. Wean take the osts on the ars from bj to t equal to 0.
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Appliation 4.4: Routing empty freighters. Historially, in his paper \Optimumutilization of the transportation system", Koopmans [1948℄ was one of the �rst studyingthe minimum-ost transportation problem, in partiular with appliation to the problem ofrouting empty freighters. Koopmans onsidered the surplus and need of register ton of shipapaity at harbours all over the world, as given by the following table (data are aggregatedto main harbours):

Net reeipt of dry argo in overseas trade, 1925Unit: Millions of metri tons per annumHarbour Reeived Dispathed Net reeiptsNew York 23.5 32.7 �9.2San Franiso 7.2 9.7 �2.5St. Thomas 10.3 11.5 �1.2Buenos Aires 7.0 9.6 �2.6Antofagasta 1.4 4.6 �3.2Rotterdam 126.4 130.5 � 4.1Lisbon 37.5 17.0 20.5Athens 28.3 14.4 13.9Odessa 0.5 4.7 �4.2Lagos 2.0 2.4 �0.4Durban 2.1 4.3 �2.2Bombay 5.0 8.9 �3.9Singapore 3.6 6.8 �3.2Yokohama 9.2 3.0 6.2Sydney 2.8 6.7 �3.9Total 266.8 266.8 0.0
Given is moreover a distane table between these harbours. Koopmans wondered howships should be routed between harbours so as to minimize the total amount of ton kilome-ters made by empty ships.This problem is a speial ase of the min-ost ow problem. Make a graph with vertexset all harbours, together with two dummy harbours s and t. From any harbour u witha surplus (positive net reeipt) to any harbour w with a need (negative net reeipt) makean ar with ost equal to the distane between u and w, and with apaity 1. Moreover,from s to any harbour u with a surplus �, make an ar with ost 0 and apaity equal to�. Similarly, from any harbour w with a need �, make an ar to t, with ost 0 and apaityequal to �.Now a maximum ow of minimum ost orresponds to an optimum routing of shipsbetween harbours.A similar model applies to the problem of routing empty box ars in a railway network(Feeney [1957℄, f. Norman and Dowling [1968℄, White and Bomberault [1969℄).Appliation 4.5: Routing of railway stok. NS (Nederlandse Spoorwegen = DuthRailways) performs a daily shedule on its line Amsterdam{Vlissingen, with the following(weekday) timetable:
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ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191Amsterdam d 6.48 7.55 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.56 20.56 21.56 22.56Rotterdam a 7.55 8.58 9.58 10.58 11.58 12.58 13.58 14.58 15.58 16.58 17.58 18.58 19.58 20.58 21.58 22.58 23.58Rotterdam d 7.00 8.01 9.02 10.03 11.02 12.03 13.02 14.02 15.02 16.00 17.01 18.01 19.02 20.02 21.02 22.02 23.02Roosendaal a 7.40 8.41 9.41 10.43 11.41 12.41 13.41 14.41 15.41 16.43 17.43 18.42 19.41 20.41 21.41 22.41 23.54Roosendaal d 7.43 8.43 9.43 10.45 11.43 12.43 13.43 14.43 15.43 16.45 17.45 18.44 19.43 20.43 21.43Vlissingen a 8.38 9.38 10.38 11.38 12.38 13.38 14.38 15.38 16.38 17.40 18.40 19.39 20.38 21.38 22.38ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176Vlissingen d 5.30 6.54 7.56 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.55Roosendaal a 6.35 7.48 8.50 9.50 10.50 11.50 12.50 13.50 14.50 15.50 16.50 17.50 18.50 19.50 20.49Roosendaal d 5.29 6.43 7.52 8.53 9.53 10.53 11.53 12.53 13.53 14.53 15.53 16.53 17.53 18.53 19.53 20.52 21.53Rotterdam a 6.28 7.26 8.32 9.32 10.32 11.32 12.32 13.32 14.32 15.32 16.32 17.33 18.32 19.32 20.32 21.30 22.32Rotterdam d 5.31 6.29 7.32 8.35 9.34 10.34 11.34 12.34 13.35 14.35 15.34 16.34 17.35 18.34 19.34 20.35 21.32 22.34Amsterdam a 6.39 7.38 8.38 9.40 10.38 11.38 12.38 13.38 14.38 15.38 16.40 17.38 18.38 19.38 20.38 21.38 22.38 23.38The rides are arried out by one type of stok, that onsists of two-way units that anbe oupled with eah other. The length of the trains an be hanged at the end stationsand at two intermediate stations: Rotterdam and Roosendaal. So in this example, eahtrain ride onsists of three ride `segments'.Based on the expeted number of passengers, NS determines for eah ride segment aminimum number of units that should be deployed for that segment:ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191Amsterdam-Rotterdam 3 5 4 3 3 3 3 3 3 4 5 5 3 2 2 2 1Rotterdam-Roosendaal 2 3 4 4 2 3 3 3 3 4 5 5 4 2 2 2 1Roosendaal-Vlissingen 3 2 2 2 2 3 2 3 3 3 4 4 3 2 1ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176Vlissingen-Roosendaal 2 4 4 4 2 2 3 2 2 2 3 3 2 2 2Roosendaal-Rotterdam 2 4 5 4 5 3 3 3 2 3 3 4 3 2 2 2 2Rotterdam-Amsterdam 1 3 5 4 4 5 3 3 3 3 3 4 5 3 2 2 2 2A unit unoupled from a train at a station an be oupled at any other later train, inthe same diretion or the other. Moreover, for eah segment there is a maximum numberof units given that an be used for that segment (depending for instane on the length ofstation platforms).The ompany now wishes to �nd the minimum number of units that should be used torun the shedule (exluding maintenane).As was observed by Bartlett [1957℄ (f. van Rees [1965℄) this problem an be onsideredas a minimum-ost irulation problem (f. Figure 4.4). Make a direted graph D withvertex set all pairs (s; t) where s is any station where the train omposition an be hanged(in our example: the end stations and the two intermediate stations) and t is any time atwhih there is a train arriving at or leaving s. For eah ride segment make an ar from (s; t)to (s0; t0) if the segment leaves s at time t and arrives at s0 at time t0.Moreover, for eah station s and eah two onseutive times t; t0 at whih segmentsarrive or leave, one makes an ar from (s; t) to (s; t0). One also does this overnight.Now for eah ar a oming from a segment assign a lower bound d(a) equal to thenumber given in the table above for the segment. Moreover, de�ne an upper bound (a)equal to the maximum number of units that an be used for that segment. For eah ar afrom (s; t) to (s; t0) let d(a) := 0 and (a) :=1.For eah ar a de�ne a ost k(a) := 0, exept if a orresponds to an overnight stay atone of ities, when k(a) := 1. Then a minimum-ost irulation orresponds to a routing ofthe stok using a minimum number of units.There are several variations possible. Instead of an upper bound (a) =1 for the ars afrom (; t) to (s; t0) one an take (a) equal to the apaity of the storage area at s. Instead
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of a ost k(a) = 0 at eah segment one an take k(a) equal to the ost of riding one unit ofstok over that segment. This an be weighed against the ost of buying extra units.A similar model for routing airplanes was onsidered by Ferguson and Dantzig [1955℄.

Exerises
4.16. Determine in the following networks a maximum s� t ow of minimum-ost (ost initalis, apaity in bold):
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4.17. Solve the minimum-ost transportation problem for the following data sets:(i) m = n = 3; s1 = 9; s2 = 15; s3 = 7; d1 = 5; d2 = 13; d3 = 7; k1 = 2; k2 = 3; k3 =2, i;j j = 1 j = 2 j = 3i = 1 6 4 0i = 2 3 9 4i = 3 0 2 6
ki;j j = 1 j = 2 j = 3i = 1 8 3 5i = 2 2 7 1i = 3 2 5 9(ii) m = n = 3; s1 = 11; s2 = 7; s3 = 6; d1 = 9; d2 = 7; d3 = 5; k1 = 4; k2 = 3; k3 = 3,
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i;j j = 1 j = 2 j = 3i = 1 7 4 0i = 2 3 3 2i = 3 0 2 4

ki;j j = 1 j = 2 j = 3i = 1 3 2 4i = 2 2 8 4i = 3 1 3 24.18. Desribe the problem of �nding a maximum-weight mathing in a bipartite graph asa minimum-ost ow problem.4.19. Redue the problem of �nding an extreme ow of given value, to the min-ost owproblem as desribed above.
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5. Nonbipartite mathing

5.1. Tutte's 1-fator theorem and the Tutte-BergeformulaA basi result on mathings in arbitrary (not neessarily bipartite) graphs was foundby Tutte [1947℄. It haraterizes graphs that have a perfet mathing. A perfetmathing (or a 1�fator) is a mathing M that overs all verties of the graph. (SoM partitions the vertex set of G.)Berge [1958℄ observed that Tutte's theorem implies a min-max formula for themaximum size of a mathing in a graph, the Tutte-Berge formula, whih we prove�rst.Call a omponent of a graph odd if it has an odd number of verties. For anygraph G, de�ne(1) o(G) := number of odd omponents of G.Let �(G) denotes the maximum size of a mathing. For any graph G = (V;E) andU � V , the graph obtained by deleting all verties in U and all edges inident withU , is denoted by G� U .Then:Theorem 5.1 (Tutte-Berge formula). For eah graph G = (V;E),
(2) �(G) = minU�V 12(jV j+ jU j � o(G� U)):
Proof. To see �, we have for eah U � V :(3) �(G) � jU j+�(G�U) � jU j+ 12(jV nU j�o(G�U)) = 12(jV j+jU j�o(G�U)):We prove the reverse inequality by indution on jV j, the ase V = ; being trivial.We an assume that G is onneted, sine otherwise we an apply indution to theomponents of G.First assume that there exists a vertex v overed by all maximum-size mathings.Then �(G� v) = �(G)� 1, and by indution there exists a subset U 0 of V n fvg with(4) �(G� v) = 12(jV n fvgj+ jU 0j � o(G� v � U 0)).Then U := U 0 [ fvg gives equality in (2), sine
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(5) �(G) = �(G� v) + 1 = 12(jV n fvgj+ jU 0j � o(G� v � U 0)) + 1= 12(jV j+ jU j � o(G� U)).So we an assume that there is no suh v. In partiular, �(G) < 12 jV j. We showthat there exists a mathing of size 12(jV j � 1), whih implies the theorem (takingU := ;).Indeed, suppose to the ontrary that eah maximum-size mathing M misses atleast two distint verties u and v. Among all suh M;u; v, hoose them suh thatthe distane dist(u; v) of u and v in G is as small as possible.If dist(u; v) = 1, then u and v are adjaent, and hene we an augment M by theedge uv, ontraditing the maximality of jM j. So dist(u; v) � 2, and hene we anhoose an intermediate vertex t on a shortest u�v path. By assumption, there existsa maximum-size mathing N missing t. Choose suh an N with jM \N j maximal.By the minimality of dist(u; v), N overs both u and v. Hene, as M and N overthe same number of verties, there exists a vertex x 6= t overed by M but not by N .Let x 2 e = xy 2M . Then y is overed by some edge f 2 N , sine otherwise N [fegwould be a mathing larger than N . Replaing N by (N n ffg)[ feg would inreaseits intersetion with M , ontraditing the hoie of N .
(This proof is based on the proof of Lov�asz [1979℄ of Edmonds' mathing polytopetheorem.)The Tutte-Berge formula immediately implies Tutte's 1-fator theorem.Corollary 5.1a (Tutte's 1-fator theorem). A graph G = (V;E) has a perfet math-ing if and only if G� U has at most jU j odd omponents, for eah U � V .Proof. Diretly from the Tutte-Berge formula (Theorem 5.1), sine G has a perfetmathing if and only if �(G) � 12 jV j.

In the following setions we will show how to �nd a maximum-size mathingalgorithmially.With Gallai's theorem, the Tutte-Berge formula implies a formula for the edgeover number �(G), where o(U) denotes the number of odd omponents of the sub-graph G[U ℄ of G indued by U (meaning that G[U ℄ = (U; fe 2 E j e � Ug)):Corollary 5.1b. Let G = (V;E) be a graph without isolated verties. Then
(6) �(G) = maxU�V jU j+ o(U)2 :
Proof. By Gallai's theorem (Theorem 3.1) and the Tutte-Berge formula (Theorem5.1),
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(7) �(G) = jV j � �(G) = jV j � minW�V jV j+ jW j � o(V nW )2 = maxU�V jU j+ o(U)2 :
Exerises5.1. (i) Show that a tree has at most one perfet mathing.(ii) Show (not using Tutte's 1-fator theorem) that a tree G = (V;E) has a perfetmathing if and only if the subgraph G� v has exatly one odd omponent, foreah v 2 V .5.2. Let G be a 3-regular graph without any bridge. Show that G has a perfet mathing.(A bridge is an edge e not ontained in any iruit; equivalently, deleting e inreasesthe number of omponents; equivalently, feg is a ut.)5.3. Let A1; : : : ; An be a olletion of nonempty subsets of the �nite set X so that eahelement in X is in exatly two sets among A1; : : : ; An. Show that there exists a setY interseting all sets A1; : : : ; An, and satisfying jY j � t if and only if for eah subsetI of f1; : : : ; ng the number of omponents of (Ai j i 2 I) ontaining an odd numberof sets in (Ai j i 2 I) is at most 2t� jIj.(Here a subset Y of X is alled a omponent of (Ai j i 2 I) if it is a minimal nonemptysubset of X with the property that for eah i 2 I: Ai \ Y = ; or Ai � Y .)5.4. Let G = (V;E) be a graph and let T be a subset of V . Then G has a mathingovering T if and only if the number of odd omponents of G�W ontained in T isat most jW j, for eah W � V .5.5. Let G = (V;E) be a graph and let b : V ! Z+ . Show that there exists a funtionf : E ! Z+ so that for eah v 2 V :

(8) Xe2E;v2e f(e) = b(v)
if and only if for eah subset W of V the number �(W ) is at most b(V nW ).(Here for any subset W of V , b(W ) := Pv2W b(v). Moreover, �(W ) denotes thefollowing. Let U be the set of isolated verties in the graph GjW indued by W andlet t denote the number of omponents C of the graph GjW nU with b(C) odd. Then�(W ) := b(U) + t.)5.6. Let G = (V;E) be a graph and let b : V ! Z+ . Show that G has a subgraphG0 = (V;E0) suh that degG0(v) = b(v) for eah v 2 V if and only if for eah twodisjoint subsets U and W of V one has(9) Xv2U b(v) � q(U;W ) + Xv2W(b(v)� dG�U (v)):
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Here q(U;W ) denotes the number of omponents K of G� (U [W ) for whih b(K)plus the number of edges onneting K and W , is odd. Moreover, dG�U (v) is thedegree of v in the subgraph indued by V n U .

5.2. Cardinality mathing algorithmWe now investigate the problem of �nding a maximum-ardinality mathing algorith-mially. Like in the bipartite ase, the key is to �nd an augmenting path. However,the idea for bipartite graphs to orient the edges using the two olour lasses, does notapply to nonbipartite graphs.Yet one ould try to �nd an M -augmenting path by �nding a so-alled M -alternating walk, but suh a path an run into a loop that annot immediately bedeleted. It was J. Edmonds who found the trik to resolve this problem, namelyby `shrinking' the loop (whih he alled a `blossom'). Then applying reursion to asmaller graph solves the problem.We �rst desribe the operation of shrinking. Let X and Y be sets. Then we de�neX=Y as follows:(10) X=Y := X if X \ Y = ;,X=Y := (X n Y ) [ fY g if X \ Y 6= ;.So if G = (V;E) is a graph and C � V , then V=C arises from V by deleting allverties in C, and adding one new vertex alled C. For any edge e of G, e=C = e ife is disjoint from C, while e=C = uC if e = uv with u 62 C, v 2 C. (If e = uv withu; v 2 C, then e=C is a loop CC; they an be negleted in the ontext of mathings.)Then for any F � E:(11) F=C := ff=C j f 2 Fg:So G=C := (V=C;E=C) is again a graph. We say that G=C arises from G by shrinkingC. Let G = (V;E) be a graph and let M be a mathing in G, and let W be the set ofverties missed by M . A walk P = (v0; v1; : : : ; vt) is alled M-alternating if for eahi = 1; : : : ; t� 1 exatly one of vi�1vi and vivi+1 belongs to M . Note that one an �nda shortest M -alternatingW �W walk of positive length, by onsidering the auxiliarydireted graph D = (V;A) with(12) A := f(w;w0) j 9x 2 V : fw; xg 2 E; fx;w0g 2Mg:Then M -alternating W �W walks orrespond to direted walks in D from a vertexin W to a vertex that is adjaent to at least one vertex in W .
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So an M -augmenting path is an M -alternating W �W walk of positive length,in whih all verties are distint. By Theorem 3.2, a mathing M has maximum sizeif and only if there is no M -augmenting path. We all an M -alternating walk P anM-blossom if v0; : : : ; vt�1 are distint, v0 is missed by M , and vt = v0.The ore of the algorithm is the following observation.Theorem 5.2. Let C be an M -blossom in G. Then M has maximum size in G ifand only if M=C has maximum size in G=C.Proof. Let C = (v0; v1; : : : ; vt), G0 := G=C and M 0 := M=C.First let P be anM -augmenting path in G. We may assume that P does not startat v0 (otherwise we an reverse P ). If P does not traverse any vertex in C, then Pis also M 0-augmenting in G0. If P does traverse a vertex in C, we an deompose Pas P = QR, where Q ends at a vertex in C, and no other vertex on Q belongs to C.Then by replaing the last vertex of Q by C makes Q to an M 0-augmenting path inG0. Conversely, let P 0 be an M 0-augmenting path in G0. If P 0 does not traverse vertexC of G0, then P 0 is also an M -augmenting path in G. If P 0 traverses vertex C of G0,we may assume it ends at C (as C is missed by M 0). So we an replae C in P 0 bysome vertex vi 2 C to obtain a path Q in G ending at vi. If i is odd, extending Qby vi+1; : : : ; vt�1; vt gives an M -augmenting path in G. If i is even, extending Q byvi�1; : : : ; v1; v0 gives an M -augmenting path in G.
Another useful observation is (where a W � v walk is a walk starting at a vertexin W and ending at v):Theorem 5.3. Let P = (v0; v1; : : : ; vt) be a shortest even-lengthM-alternatingW�vwalk. Then either P is simple or there exist i < j suh that vi = vj, i is even, j isodd, and v0; : : : ; vj�1 are all distint.Proof. Assume P is not simple. Choose i < j suh that vj = vi and suh that j is assmall as possible. If j � i is even, we an delete vi+1; : : : ; vj from P so as to obtaina shorter M -alternating W � v walk. So j � i is odd. If j is even and i is odd, thenvi+1 = vj�1 (as it is the vertex mathed to vi = vj), ontraditing the minimality ofj.
We now desribe an algorithm for the following problem:(13) given: a mathing M ;�nd: a mathing N with jN j = jM j+ 1 or onlude that M is a maximum-sizemathing.Let W be the set of verties missed by M .
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(14) Case 1. There is no M -alternating W �W walk. Then M has maximum size(as there is no M -augmenting path).Case 2. There is an M -alternating W �W walk. Let P = (v0; v1; : : : ; vt) be ashortest suh walk.Case 2a. P is path. Hene P is an M -augmenting path. Then output N :=M4EP .Case 2b. P is not a path. That is, not all verties in P are di�erent. Choosei < j suh that vi = vj with j as small as possible. Reset M :=M4fv0v1; v1v2; : : : ; vi�1vig. Then C := (vi; vi+1; : : : ; vj) is anM -blossom.Apply the algorithm (reursively) to G0 = G=C and M 0 :=M=C.� If it gives an M 0-augmenting path P 0 in G0, transform P 0 to anM -augmenting path in G (as in the proof of Theorem 5.2).� If it onludes that M 0 has maximum size in G0, then M has max-imum size in G (by Theorem 5.2).

This gives a polynomial-time algorithm to �nd a maximum-size mathing, whihis a basi result of Edmonds [1965℄.Theorem 5.4. Given an undireted graph, a maximum-size mathing an be foundin time O(jV j2jEj).Proof. The algorithm diretly follows from algorithm (14), sine one an iterativelyapply it, starting with M = ;, until a maximum-size mathing is attained.By using (12), a shortestM -alternatingW �W walk an be found in time O(jEj).Moreover, the graph G=C an be onstruted in time O(jEj). Sine the reursion hasdepth at most jV j, eah appliation of algorithm (14) takes O(jV jjEj) time. Sine thenumber of appliations is at most jV j, we have the time bound given in the theorem.
In fat, the method an be sharpened to O(jV j3) (Balinski [1969℄), O(jV j5=2) (Evenand Kariv [1975℄) and even to O(jV j1=2jEj) (Miali and Vazirani [1980℄). For surveys,see Shrijver [2003℄.Appliation 5.1: Pairing. If a ertain group of people has to be split into pairs, whereertain pairs �t and other pairs do not �t (for instane, when assigning hotel rooms or busseats to a touring group), we have an example of a (perfet) mathing problem.Appliation 5.2: Two-proessor sheduling. Suppose we have to arry out ertainjobs, where some of the jobs have to be done before other. We an represent this by apartially ordered set (X;�) where X is the set of jobs and x < y indiates that job x hasto be done before job y. Eah job takes one time-unit, say one hour.Suppose now that there are two workers, eah of whih an do one job at a time.Alternatively, suppose that you have one mahine, that an do at eah moment two jobs
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simultaneously (suh a mahine is alled a two-proessor).We wish to do all jobs within a minimum total time span. This problem an be solvedwith the mathing algorithm as follows. Make a graph G = (X;E), with vertex set X (theset of jobs) and with edge set(15) E := ffu; vg j u 6� v and v 6� ug.(So (X;E) is the omplementary graph of the `omparability graph' assoiated with (X;�).)Consider now a possible shedule of the jobs. That is, we have a sequene p1; : : : ; pt,where eah pi is either a singleton vertex or an edge of G so that p1; : : : ; pt partition X andso that if x 2 pi and y 2 pj and x < y then i < j.14Now the pairs in this list should form a mathing M in G. Hene t = jXj � jM j. Inpartiular, t annot be smaller than jXj � �(G), where �(G) is the mathing number of G.Now it an be shown that in fat one an always make a shedule with t = jXj � �(G).To this end, let Q be a minimum partition of V into verties and edges of G, and let Y bethe set of minimal elements of X. If q � Y for some q 2 Q, we an replae X by X n q andQ by Q n fqg, and apply indution.So we may assume that eah y 2 Y is ontained in an edge yz 2 Q with z 62 Y . Choosean edge yz 2 Q suh that y 2 Y and suh that the height of z is as small as possible. (Theheight of an element z is the maximum size of a hain in (X;�) with maximum element z.)As z 62 Y there exists an y0z0 2 Q with y0 2 Y and y0 < z.Now learly yy0 is an edge of G, as y and y0 are minimal elements. Moreover, zz0 is anedge of G. For if z < z0 then y0 < z < z0, ontraditing the fat that y0z0 2 EG; and ifz0 < z than z0 would have smaller height than z.So replaing yz and y0z0 in Q by yy0 and zz0, we have yy0 � Y , and we an applyindution as before.
Exerises5.7. Apply the mathing augmenting algorithm to the mathings in the following graphs:

(i)

(ii)
14Here we identify a vertex v with the set fvg.
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(iii)

5.3. Weighted mathing algorithmEdmonds [1965a℄ proved that also the maximum-weight mathing problem an besolved in polynomial time. Equivalently, the minimum-weight perfet mathing prob-lem an be solved in polynomial time. It is the problem:(16) given: a graph G = (V;E) and a `weight' funtion w : E ! Q ;�nd: a perfet mathing M minimizingPe2M w(e).We desribe the algorithm, assuming without loss of generality that G has at leastone perfet mathing and that w(e) � 0 for eah edge e (we an add a onstant toall edge weights without hanging the problem).Like the ardinality mathing algorithm, the weighted mathing algorithm is basedon shrinking sets of verties. Unlike the ardinality mathing algorithm however, forweighted mathings one has to `deshrink' sets of verties (the reverse operation ofshrinking). Thus we have to keep trak of the shrinking history throughout theiterations.The algorithm is `primal-dual'. The `vehile' arrying us to a minimum-weightperfet mathing is a pair of a nested15 olletion 
 of odd-size subsets of V , and afuntion � : 
! Q satisfying:(17) (i) �(U) � 0 if U 2 
 with jU j � 3,(ii) XU2
e2Æ(U) �(U) � w(e) for eah e 2 E.
This implies that for eah perfet mathing N in G one has w(N) �XU2
 �(U), sine(18) w(N) =Xe2N w(e) �Xe2N XU2
e2Æ(U) �(U) =

XU2
�(U)jN \ Æ(U)j �XU2
 �(U):
Notation and assumptions. Let be given 
 and � : 
! Q . De�ne15A olletion 
 of subsets of a set V is alled nested if U \W = ; or U � W or W � U for anyU;W 2 
.
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(19) w�(e) := w(e)� XU2
e2Æ(U) �(U)for any edge e 2 E. (So (17)(ii) implies w�(e) � 0.)G=
 denotes the graph obtained from G by shrinking all sets in 
max, the set ofinlusionwise maximal sets in 
. We will assume throughout that fvg 2 
 for eahv 2 V . Hene, as 
 is nested and overs V , 
max is a partition of V .When shrinking a set U 2 
, we denote the new vertex representing the shrunkset U just by U . So G=
 has verties the sets in 
max, with two distint elementsU;U 0 2 
max adjaent if and only if G has an edge onneting U and U 0. We denoteany edge of G=
 by the original edge in G.Throughout we restrit ourselves to 
 and � satisfying:(20) for eah U 2 
 with jU j � 3, the graph obtained from GjU by shrinking allinlusionwise maximal proper subsets of U that are in 
, has a Hamiltonianiruit CU of edges e with w�(e) = 0.

X

PSfrag replaements

edge in Medge not in M vertex overed by Mvertex not overed by MFigure 5.1. An M -alternating forest
M-alternating forests. An important role in the algorithm is played by a so-alled`M -alternating forest' relative to a mathing M (f. Figure 5.1).Let M be a mathing in a graph G = (V;E) and let W be the set of vertiesmissed by M . Then a subset F of E is an M-alternating forest in G if F is a forestontaining M suh that eah omponent of (V; F ) onsists either of an edge in M
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or ontains exatly one vertex in W and suh that eah path in F starting in W isM -alternating.The set of verties v 2 V for whih there exists an even-length (odd-length,respetively) W � v path in F is denoted by even(F ) (odd(F ), respetively).The algorithm. We iterate with 
 and � : 
 ! Q satisfying (17) and (20), amathing M in G=
 and an M -alternating forest F in G=
 with w�(F ) = 0.Initially, we set M := ;, F := ;, 
 := ffvg j v 2 V g, and �(fvg) := 0 foreah v 2 V . Then, as long as M is not a perfet mathing in G=
, we perform thefollowing iteratively:(21) Reset �(U) := �(U) � � for U 2 odd(F ) and �(U) := �(U) + � for U 2even(F ), where � is the largest value suh that (17) is maintained. Afterthat (i) there exists an edge e of G=
 with w�(e) = 0 suh that eintersets even(F ) but not odd(F ),or (ii) there exists a U 2 odd(F ) with jU j � 3 and �(U) = 0.First assume (i) holds. If only one end of e belongs to even(F ), extend Fby e. If both ends of e belong to even(F ) and F [ feg ontains a iruitC,let U := V C and CU := C, add U to 
 (de�ning �(U) := 0), and replae Fby F=U and M by M=U . If both ends of e belong to even(F ) and F [ fegontains an M -augmenting path, augment M and reset F := M .Next assume (ii) holds. Delete U from 
, replae F by F [ P [ N andM by M [ N , where P is the even-length path in CU onneting the twoedges of F inident with U and where N is the mathing in CU overing allverties in U that are not overed by M .(Note that in this iteration � is bounded, sine PU2
 �(U) is bounded (by (18), asthere is at least one perfet mathing), and sine jeven(F )j > jodd(F )j (as M is notperfet).)If M is a perfet mathing in G=
, we are done: by (20) we an expand M to aperfet mathing N in G with w�(N) = 0 and jN \ Æ(U)j = 1 for eah U 2 
; then Nhas equality throughout in (18), and hene it is a minimum-weight perfet mathing.Theorem 5.5. There are at most jV j2 iterations.Proof. In any iteration where we augmentM , the value of jV (G=
)j�2jM j dereasesby 2. If there is no mathing augmentation, this value remains invariant. So thereare at most 12 jV j mathing augmentations.Let Veven be the set of verties v 2 V that are shrunk to a vertex in even(F ).Let 
0 be the set of verties of G=
 that do not belong to even(F ). Then in anyiteration with no mathing augmentation, 2jVevenj + j
0j inreases. Sine this valueannot exeed 2jV j, between any two mathing augmentations there are at most 2jV j
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iterations.

This gives the theorem of Edmonds [1965a℄:Corollary 5.5a. A minimum-weight perfet mathing an be found in polynomialtime.Proof. The nestedness of 
 implies that j
j � 2jV j (whih is an easy exerise | seeExerise 5.10). Hene eah iteration an be performed in polynomial time. With anyU 2 
 with jU j � 3 we should keep the Hamiltonian iruit CU of (20) | whih wehad obtained earlier when shrinking U .
As a onsequene one an derive:Corollary 5.5b. In any graph with weight funtion on the edges, a maximum-weightmathing an be found in polynomial time.Proof. Left to the reader. (Exerise 5.9.)
The above algorithm an be implemented in time O(jV j3), whih is a result ofGabow [1973℄ and Lawler [1976℄. Faster algorithms were given by Galil, Miali, andGabow [1986℄ (O(jEjjV j log jV j)) and Gabow [1990℄ (O(jV jjEj + jV j2 log jV j)).For more about mathings we refer to the book of Lov�asz and Plummer [1986℄.Appliation 5.3: Optimal pairing. In several pratial situations one has to �nd an`optimal pairing', for example, when sheduling rews for airplanes. Also if one has toassign bus seats optimally to the partiipants of an organized tour, or to aommodate thepartiipants most satisfatorily in two-bed hotel rooms, one has to solve a maximum-weightperfet mathing problem.Appliation 5.4: Airline timetabling. A European airline ompany has for its Europeanights a number of airplanes available. Eah plane an make on any day two return ights toEuropean destinations (not neessarily the same destinations). The pro�t one makes on anyight depends on the departure and arrival times of the ight (also due to interontinentalonnetions). The ompany wants to make a timetable so that it an be performed bythe available eet and so that the total pro�t is maximized. Assume that the number ofdestinations to be reahed is equal to twie the number of airplanes available.To solve this problem, onsider the omplete graph with vertex set all possible destina-tions. For eah edge of this graph, onneting destinations B and C say, one alulates thepro�t that will be made if one and the same air plane will make its ights to B and C (inone order or the other). So one determines the optimum shedule for the ights to B and Cso that the two return ights an be done by the same airplane and so that the total pro�ton the two ights is maximized.
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Now a timetable yielding maximum pro�t is found by determining a maximum-weightperfet mathing in this graph.Appliation 5.5: Chinese postman problem. The Chinese postman problem, �rststudied by Guan [1960℄, onsists of the following. Given a onneted graph G = (V;E) anda length funtion l : E ! Q + , �nd a minimum-length tour T that traverses eah edge atleast one.It is not diÆult to see that if eah vertex of G has an even degree, then the optimaltour traverses eah edge exatly one. But if the graph has verties of odd degree, ertainedges have to be traversed more than one. To �nd suh edges we an proeed as follows.First determine the set U of verties of odd degree. Note that jU j is even. For eah pairu; u0 of verties in U determine the distane d(u; u0) between u and u0 in the graph G (takingl as length). Consider the omplete graph H = (U;E0) on U . Determine a minimum-weightperfet mathing M in H, taking d as weight funtion. For eah edge uu0 in M we andetermine a path Pu;u0 in G of length d(u; u0). It an be shown that any two di�erent suhpaths do not have any edge in ommon (assuming that eah edge has positive length) |see Exerise 5.13. Let ~E be the set of edges ourring in the Pu;u0 (uu0 2 M). Then thereexists a tour T so that eah edge e 2 E n ~E is traversed exatly one and eah edge e 2 ~E istraversed exatly twie. This tour T is a shortest `Chinese postman tour' (Exerise 5.14).Appliation 5.6: Christo�des' approximative algorithm for the traveling sales-man problem. Christo�des [1976℄ designed the following algorithm to �nd a short travel-ing salesman tour in a graph (generally not the shortest however). The traveling salesmanproblem is the problem, given a �nite set V and a `length' funtion l : V �V ! Q + , to �nda shortest traveling salesman tour. A traveling salesman tour (or Hamiltonian iruit) is airuit in the omplete graph on V traversing eah vertex exatly one.Suppose that the length funtion is symmetri (that is, l(u; v) = l(v; u) for all u; v 2 V )and satis�es the triangle inequality:(22) l(u;w) � l(u; v) + l(v; w)for all u; v; w 2 V . Then a reasonably short traveling salesman tour an be found as follows.First determine a shortest spanning tree S (with the greedy algorithm). Next, let U bethe set of verties that have odd degree in S. Find a shortest perfet mathing M on U ,taking l as weight funtion. Now ES [M forms a set of edges suh that eah vertex haseven degree. (If an edge ours both in ES and in M , we take it as two parallel edges.) Sowe an make a yle T suh that eah edge in ES [M is traversed exatly one. Then Ttraverses eah vertex at least one. By inserting shortuts we obtain a traveling salesmantour T 0 with length(T 0) �length(T ).How far away is the length of T 0 from the length of a shortest traveling salesman tour?Let � be the length of a shortest traveling salesman tour. It is not diÆult to show that:(23) (i) length(S) � �;(ii) length(M) � 12�.
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(Exerise 5.18.) Hene(24) length(T 0) �length(T ) =length(S)+length(M) � 32�.So the tour obtained with Christo�des' algorithm is not longer than 32 times the optimaltour.The fator 32 seems quite large, but it is the smallest fator for whih a polynomial-timemethod is known. Don't forget moreover that it is a worst-ase bound, and that in pratie(or on average) the algorithm might have a muh better performane.
Exerises5.8. Find with the weighted mathing algorithm a minimum-weight perfet mathing inthe following weighted graphs:
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5.9. Derive Corollary 5.5b from Corollary 5.5a.5.10. A olletion 
 of subsets of a �nite set V is alled ross-free if:
(25) if X;Y 2 
, then X � Y , or Y � X, or X \ Y = ;, or X [ Y = V .
Show that if 
 is ross-free, then j
j � 4jV j.5.11. Find a shortest Chinese postman route in the graph in Figure 5.2.5.12. Find a shortest Chinese postman route in the map of Figure 5.3.
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Figure 5.2
5.13. Show that the paths found in the algorithm for the Chinese postman problem pairwisedo not have any edge in ommon (if eah edge has positive length).5.14. Show that the tour found in Appliation 5.5 is indeed a shortest Chinese postmantour.5.15. Apply Christo�des' algorithm to the table in Exerise 1.8.5.16. Let G = (V;E) be a graph and let T � V with jT j even. Call a subset F of E aT -join if T is equal to the set of verties of odd degree in the graph (V; F ).Derive from Corollary 5.5a that a minimum-weight T -join an be found in polynomialtime.5.17. Let G = (V;E) be a graph and let l : E ! Q be a length funtion suh that eahiruit has nonnegative length. Let s; t 2 V .Derive from the minimum-weight perfet mathing algorithm an algorithm to �nd aminimum-length s� t path in G.5.18. Show (23).
5.4. The mathing polytopeThe weighted mathing algorithm of Edmonds [1965a℄ gives as a side result a hara-terization of the perfet mathing polytope Pperfet mathing(G) of any graph G. Thisis Edmonds' mathing polytope theorem.
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Figure 5.3. Part of the Xuhui distrit of Shanghai
The perfet mathing polytope of a graphG = (V;E), denoted by Pperfet mathing(G),is the onvex hull of the inidene vetors of the perfet mathings in G.16 That is,(26) Pperfet mathing(G) =onv.hullf�M jM perfet mathing in Gg.So Pperfet mathing(G) is a polytope in R E .In Setion 3.6 we saw that for a bipartite graph G = (V;E), the perfet mathingpolytope is fully determined by the following set of inequalities:(27) (i) xe � 0 for eah e 2 E;(ii) Pe3v xe = 1 for eah v 2 V .These inequalities are not enough for, say, K3: taking x(e) := 12 for eah edge e of K3gives a vetor x satisfying (27) but not belonging to the perfet mathing polytopeof K3.Edmonds [1965a℄ showed that it is enough to add the following set of inequalities:

(28) Xe2Æ(U) xe � 1 for eah odd subset U of V .
It is lear that for any perfet mathing M in G the inidene vetor �M satis�es(28). So learly, Pperfet mathing(G) is ontained in the polyhedron Q de�ned by (27)and (28). The essene of Edmonds' theorem is that one does not need more.In order to show Edmonds' theorem, we derive from Edmonds' algorithm the16For any �nite set X and any subset Y of X, the inidene vetor or inidene funtion of asubset Y of X is the vetor �Y 2 RX de�ned by: �Yx := 1 if x 2 Y and �Yx := 0 otherwise.
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following theorem, where Podd(V ) denotes the olletion of odd subsets of V :Theorem 5.6. Let G = (V;E) be a graph and let w : E ! Q be a `weight' funtion.Then the minimum weight of a perfet mathing is equal to the maximum value ofPX2Podd(V ) �(X) where � ranges over all funtions � : Podd(V )! Q satisfying (17).Proof.We may assume that w is nonnegative: if � is the minimum value of w(e) overall edges e, dereasing eah w(e) by � dereases both the maximum and the minimumby 12 jV j�.The fat that the minimum is not smaller than the maximum follows from (18).Equality follows from the fat that in the algorithm the �nal perfet mathing andthe �nal funtion � have equality throughout in (18).

This implies:Corollary 5.6a (Edmonds' perfet mathing polytope theorem). The perfet math-ing polytope of any graph G = (V;E) is determined by (27) and (28).Proof. By Theorem 5.6 and LP-duality, for any weight funtion w 2 Q E , the min-imum weight of a perfet mathing is equal to the minimum of wTx taken over thepolytope determined by (27) and (28). Hene the two polytopes oinide, by Theorem2.1.
From this one an derive Edmonds' mathing polytope theorem, haraterizingthe mathing polytope of a graph G = (V;E), denoted by Pmathing(G), whih is theonvex hull of the inidene vetors of the mathings in G. That is,(29) Pmathing(G) =onv.hullf�M jM mathing in Gg.

Again, Pmathing(G) is a polytope in R E .Corollary 5.6b (Edmonds' mathing polytope theorem). For any graph G = (V;E)the mathing polytope is determined by:
(30) (i) xe � 0 for eah e 2 E;(ii) Pe3v xe � 1 for eah v 2 V ;(iii) Pe�U xe � b12 jU j for eah U � V with jU j odd.
Proof. Left to the reader (Exerise 5.21).

This in turn has the following onsequene:
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Corollary 5.6. Let G = (V;E) be a graph and let w : E ! Q +. Then the maximumweight of a mathing is equal to the minimum value of
(31) Xv2V yv +XU�V zUb12 jU j;
where y 2 Q V+ and z 2 Q P odd(V )+ satisfy Pv2e yv +PU2Podd(V );e�U zU � w(e) for eahedge e.Proof. Diretly with LP-duality from Corollary 5.6b.

In fat, Cunningham and Marsh' theorem shows that if w is integer-valued, wean restrit y and z to integer vetors | see Setion 5.5.
Exerises5.19. Show that for any graph G = (V;E), if the inequalities (30)(i)(ii) fully determine themathing polytope, then G is bipartite.5.20. Show that the perfet mathing polytope of a graph G = (V;E) is also determinedby the following inequalities:

(32) xe � 0 for eah e 2 E;Xe2Æ(U)xe � 1 for eah odd subset U of V ;Xe2E xe = 12 jV j.
5.21. Derive Edmonds' mathing polytope theorem from Edmonds' perfet mathing poly-tope theorem.5.22. Derive from Edmonds mathing polytope theorem the linear inequalities determiningthe onvex hull of all symmetri permutation matries.5.23. Let G = (V;E) be a graph. Show that the onvex hull of the inidene vetors ofmathings of size k is equal to the intersetion of the mathing polytope of G withthe hyperplane fx j 1Tx = kg.5.24. Let G = (V;E) be a graph. Show that the onvex hull of the inidene vetors ofmathings of size at least k and at most l is equal to the intersetion of the mathingpolytope of G with the set fx j k � 1Tx � lg.
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5.5. The Cunningham-Marsh formulaCunningham and Marsh [1978℄ showed a more general result, whih generalizes bothEdmonds' mathing polytope theorem and the Tutte-Berge formula. We give a diretproof.Theorem 5.7 (Cunningham-Marsh formula). In Corollary 5.6, if w is integer, wean take y and z integer.Proof. We must give a mathing M and integer values yv; zU as required with w(M)equal to (31).Let T be equal to the maximum weight of a mathing and let M be the set ofmathingsM of weight T . We prove the theorem by indution on T . We may assumethat G is the omplete graph on V . Let G;w be a ounterexample to the theoremwith (�xing V and T ) Pe2E w(e) as large as possible.First assume that there exists a vertex u of G overed by every mathingM 2M.Let w0 be obtained from w by dereasing w(e) by 1 for eah edge e inident with uwith w(e) � 1. Then the maximum of w0(M) over all mathings M is equal to T � 1,sine eah M 2 M ontains an edge e inident with u with w(e) � 1. Hene, byindution, there exist y0v; z0U as required for w0. Now inreasing y0u by 1 and leavingall other values of y0v; z0U invariant, gives yv; zU as required for w.So we may assume that for eah vertex v there exists a mathing M 2 M notovering v. We show that for eah three distint verties a; b;  2 V one has(33) w(a) � minfw(ab); w(b)g:Indeed, by the maximality of Pe2E w(e) there exists a mathing M 2M ontaininga. (Otherwise we ould inrease the weight of a without inreasing T , ontraditingthe maximality of Pe2E w(e).) Moreover, there exists a mathing M 0 2 M notovering b. Let P be the omponent ofM[M 0 ontaining a. At least one omponent,Q say, of P n fag does not ontain b. By symmetry of a and  we may assume thatQ ontains a. Then M4(Q [ fag) and M 04(Q [ fabg) are mathings again. Noww(M4(Q[fag)) � T = w(M), and so w(Q\M 0) � w(Q\M)+w(a). Moreover,w(M 04(Q [ fabg)) � T = w(M 0), and so w(Q \M) + w(ab) � w(Q \M 0). Henew(ab) � w(a), proving (33).For eah natural number n � 1 let Gn be the graph on V with as edges all e 2 Ewith w(e) � n, and let Kn be the set of omponents of Gn. Consider some n andsome U 2 Kn.By (33), GjU is a omplete graph. We show that eah M 2 M ontains exatlyb12 jU j edges that are in EU (= set of edges ontained in U).Suppose to the ontrary that U ontains two verties a and b suh that a and b arenot overed by any edge inM\EU . If a or b is not overed byM we ould replae theedge in M inident with a or b (if any) by the edge ab, thereby inreasing the weight
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| a ontradition. So we may assume that a; bd 2 M for some ; d 62 U . By (33),w(d) � minfw(a); w(ad)g � minfw(a); w(ab); w(bd)g = minfw(a); w(bd)g. Sinew(ab) > maxfw(a); w(bd)g this implies w(ab) + w(d) > w(a) + w(bd). Therefore,replaing a and bd in M by ab and d would inrease the weight | a ontradition.So jM \ EU j = b12 jU j.For eah U � V with jU j > 1, de�ne zU as the number of natural numbers n � 1for whih U 2 Kn. Then PU�e zU � w(e) for eah edge e (sine e is in w(e) graphsGn). Moreover, hoose M 2M arbitrarily. Then
(34) XU�V zUb12 jU j = 1Xn=1 XU2Knb12 jU j = 1Xn=1 XU2Kn jM \ EU j

=Xe2M (number of n; U with e � U 2 Kn) =Xe2M w(e):
Exerises5.25. Derive the Tutte-Berge formula from the Cunningham-Marsh formula (Theorem 5.7).5.26. Derive Edmonds' mathing polytope theorem from the Cunningham-Marsh formula(Theorem 5.7).
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6. Problems, algorithms, andrunning time

6.1. Introdution
Probably most of the readers will have some intuitive idea about what is a problemand what is an algorithm, and what is meant by the running time of an algorithm. Al-though for the greater part of this ourse this intuition will be suÆient to understandthe substane of the matter, in some ases it is important to formalize this intuition.This is partiularly the ase when we deal with onepts like NP and NP-omplete.The lass of problems solvable in polynomial time is usually denoted by P. Thelass NP, that will be desribed more preisely below, is a lass of problems thatmight be larger (and many people believe it is larger). It inludes most ombinatorialoptimization problems, inluding all problems that are in P. That is: P�NP. Inpartiular, NP does not mean: \non-polynomial time". The letters NP stand for\nondeterministi polynomial-time". The lass NP onsists, roughly speaking, of allthose questions with the property that for any input that has a positive answer, thereis a `erti�ate' from whih the orretness of this answer an be derived in polynomialtime.For instane, the question:(1) `Given a graph G, is G Hamiltonian?'belongs to NP. If the answer is `yes', we an onvine anyone that this answer isorret by just giving a Hamiltonian iruit in G as a erti�ate. With this erti�ate,the answer `yes' an be heked in polynomial time | in fat: trivially. Here it isnot required that we are able to �nd the erti�ate in polynomial time. The onlyrequirement is that there exists a erti�ate whih an be heked in polynomialtime.Cheking the erti�ate in polynomial time means: heking it in time boundedby a polynomial in the original input. In partiular, it implies that the erti�ateitself has size bounded by a polynomial in the original input.To eluidate the meaning of NP, it is not known if for any graph G for whihquestion (1) has a negative answer, there is a erti�ate from whih the orretness ofthis answer an be derived in polynomial time. So there is an easy way of onvining`your boss' that a ertain graph is Hamiltonian (just by exhibiting a Hamiltonianiruit), but no easy way is known for onvining this person that a ertain graph isnon-Hamiltonian.Within the lass NP there are the \NP-omplete" problems. These are by de�-nition the hardest problems in the lass NP: a problem � in NP is NP-omplete if
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every problem in NP an be redued to �, in polynomial time. It implies that if oneNP-omplete problem an be proved to be solvable in polynomial time, then eahproblem in NP an be solved in polynomial time. In other words: then P=NP wouldfollow.Surprisingly, there are several prominent ombinatorial optimization problemsthat are NP-omplete, like the traveling salesman problem and the problem of �ndinga maximum lique in a graph. This pioneering eye-opener was given by Cook [1971℄and Karp [1972℄.Sine that time one generally sets the polynomially solvable problems against theNP-omplete problems, although there is no proof that these two onepts really aredistint. For almost every ombinatorial optimization problem one has been ableeither to prove that it is solvable in polynomial time, or that it is NP-omplete. Buttheoretially it is still a possibility that these two onepts are just the same! Thusit is unknown whih of the two diagrams in Figure 6.1 applies.

NP

NP-c

P

NP-c P=NP

PSfrag replaementsedge in Medge not in Mvertex overed by Mvertex not overed by M

Figure 6.1
Below we make some of the notions more preise. We will not elaborate all teh-nial details fully, but hope that the reader will be able to see the details with nottoo muh e�ort. For preise disussions we refer to the books by Aho, Hoproft, andUllman [1974℄, Garey and Johnson [1979℄, and Papadimitriou [1994℄.

6.2. WordsIf we use the omputer to solve a ertain graph problem, we usually do not put apiture of the graph in the omputer. (We are not working with analog omputers,but with digital omputers.) Rather we put some appropriate enoding of the problemin the omputer, by desribing it by a sequene of symbols taken from some �xed�nite `alphabet' �. We an take for � for instane the ASCII set of symbols or theset f0; 1g. It is onvenient to have symbols like ( , ) , f , g and the omma in �, andmoreover some symbol like meaning: `blank'. Let us �x one alphabet �.
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We all any ordered �nite sequene of elements from � a word. The set of allwords is denoted by ��.

e

d

b

c

a

PSfrag replaementsedge in Medge not in Mvertex overed by Mvertex not overed by M
Figure 6.2

It is not diÆult to enode objets like rational numbers, vetors, matries, graphs,and so on, as words. For instane, the graph given in Figure 6.2 an be enoded, asusual, by the word:
(2) (fa; b; ; d; eg; ffa; bg; fa; g; fb; g; f; dg; fd; eg; fe; agg):
A funtion f de�ned on a �nite set X an be enoded by giving the set of pairs(x; f(x)) with x 2 X. For instane, the following desribes a funtion de�ned on theedges of the graph above:
(3) f(fa; bg; 32); (fa; g;�17); (fb; g; 5=7); (f; dg; 6); (fd; eg;�1); (fe; ag;�9)g:
A pair of a graph and a funtion an be desribed by the word (w; v), where w is theenoding of the graph and v is the enoding of the funtion.The size of a word w is the number of symbols used in w, ounting multipliities.(So the word abaa32b has size 8.) The size is important when we make estimates onthe running time of algorithms.Note that in enoding numbers (integers or rational numbers), the size dependson the number of symbols neessary to enode these numbers. Thus if we enountera problem on a graph with numbers de�ned on the edges, then the size of the inputis the total number of bits neessary to represent this struture. It might be muhlarger than just the number of nodes and edges of the graph, and muh smaller thanthe sum of all numbers ourring in the input.Although there are several ways of hoosing an alphabet and enoding objets bywords over this alphabet, any way hosen is quite arbitrary. We will be dealing withsolvability in polynomial time in this hapter, and for that purpose most enodingsare equivalent. Below we will sometimes exploit this exibility.
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6.3. ProblemsWhat is a problem? Informally, it is a question or a task, for instane, \Does this givengraph have a perfet mathing?" or \Find a shortest traveling salesman tour in thisgraph!". In fat there are two types of problems: problems that an be answered by`yes' or `no' and those that ask you to �nd an objet with ertain presribed properties.We here restrit ourselves to the �rst type of problems. From a omplexity point ofview this is not that muh of a restrition. For instane, the problem of �nding ashortest traveling salesman tour in a graph an be studied by the related problem:Given a graph, a length funtion on the edges, and a rational number r, does thereexist a traveling salesman tour of length at most r? If we an answer this questionin polynomial time, we an �nd the length of a shortest tour in polynomial time, forinstane, by binary searh.So we study problems of the form: Given a ertain objet (or sequene of objets),does it have a ertain property? For instane, given a graph G, does it have a perfetmathing?As we enode objets by words, a problem is nothing but: given a word w, doesit have a ertain property? Thus the problem is fully desribed by desribing the\ertain property". This, in turn, is fully desribed by just the set of all wordsthat have the property. Therefore we have the following mathematial de�nition: aproblem is any subset � of ��.If we onsider any problem � � ��, the orresponding `informal' problem is:(4) Given word w, does w belong to �?In this ontext, the word w is alled an instane or the input.
6.4. Algorithms and running timeAn algorithm is a list of instrutions to solve a problem. The lassial mathematialformalization of an algorithm is the Turing mahine. In this setion we will desribea slightly di�erent onept of an algorithm (the `Thue system') that is useful for ourpurposes (explaining NP-ompleteness). In Setion 6.10 below we will show that it isequivalent to the notion of a Turing mahine.A basi step in an algorithm is: replae subword u by u0. It means that if wordw is equal to tuv, where t and v are words, we replae w by the word tu0v. Nowby de�nition, an algorithm is a �nite list of instrutions of this type. It thus is fullydesribed by a sequene(5) ((u1; u01); : : : ; (un; u0n));where u1; u01; : : : ; un; u0n are words. We say that word w0 follows from word w if there
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exists a j 2 f1; : : : ; ng suh that w = tujv and w0 = tu0jv for ertain words t and v, insuh a way that j is the smallest index for whih this is possible and the size of t is assmall as possible. The algorithm stops at word w if w has no subword equal to one ofu1; : : : ; un. So for any word w, either there is a unique word w0 that follows from w,or the algorithm stops at w. A (�nite or in�nite) sequene of words w0; w1; w2; : : : isalled allowed if eah wi+1 follows from wi and, if the sequene is �nite, the algorithmstops at the last word of the sequene. So for eah word w there is a unique allowedsequene starting with w. We say that A aepts w if this sequene is �nite.For reasons of onsisteny it is important to have the `empty spae' at both sidesof a word as part of the word. Thus instead of starting with a word w, we start withw , where is a symbol indiating spae.Let A be an algorithm and let � � �� be a problem. We say that A solves � if� equals the set of words aepted by A. Moreover, A solves � in polynomial-time ifthere exists a polynomial p(x) suh that for any word w 2 ��: if A aepts w, thenthe allowed sequene starting with w ontains at most p(size(w)) words.This de�nition enables us indeed to deide in polynomial time if a given word wbelongs to �. We just take w0 := w, and next, for i = 0; 1; 2; : : :, we hoose `the �rst'subword uj in wi and replae it by u0j (for some j 2 f1; : : : ; ng) thus obtaining wi+1.If within p(size(w)) iterations we stop, we know that w belongs to �, and otherwisewe know that w does not belong to �.Then P denotes the set of all problems that an be solved by a polynomial-timealgorithm.
6.5. The lass NP
We mentioned above that NP denotes the lass of problems for whih a positiveanswer has a `erti�ate' from whih the orretness of the positive answer an bederived in polynomial time. We will now make this more preise.The lass NP onsists of those problems � � �� for whih there exist a problem�0 2P and a polynomial p(x) suh that for any w 2 ��:(6) w 2 � if and only if there exists a word v suh that (w; v) 2 �0 and suhthat size(v) � p(size(w)).So the word v ats as a erti�ate showing that w belongs to �. With the polynomial-time algorithm solving �0, the erti�ate proves in polynomial time that w belongsto �.As examples, the problems(7) �1 := fG j G is a graph having a perfet mathingg and�2 := fG j G is a Hamiltonian graphg
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(enoding G as above) belong to NP, sine the problems(8) �01 := f(G;M) j G is a graph and M is a perfet mathing in Ggand�02 := f(G;H) j G is a graph and H is a Hamiltonian iruit inGgbelong to P.Similarly, the problem(9) TSP := f(G; l; r) j G is a graph, l is a `length' funtion on theedges of G and r is a rational number suh that G has aHamiltonian tour of length at most rg(`the traveling salesman problem') belongs to NP, sine the problem(10) TSP0 := f(G; l; r;H) j G is a graph, l is a `length' funtion on theedges of G, r is a rational number, and H is a Hamiltoniantour in G of length at most rgbelongs to P.Clearly, P�NP, sine if � belongs to P, then we an just take the empty stringas erti�ate for any word w to show that it belongs to �. That is, we an take�0 := f(w; ) j w 2 �g. As � 2P, also �0 2P.The lass NP is apparently muh larger than the lass P, and there might be notmuh reason to believe that the two lasses are the same. But, as yet, nobody hasbeen able to show that they really are di�erent! This is an intriguing mathematialquestion, but besides, answering the question might also have pratial signi�ane.If P=NP an be shown, the proof might ontain a revolutionary new algorithm,or alternatively, it might imply that the onept of `polynomial-time' is ompletelyuseless. If P 6=NP an be shown, the proof might give us more insight in the reasonswhy ertain problems are more diÆult than other, and might guide us to detet andattak the kernel of the diÆulties.
6.6. The lass o-NPBy de�nition, a problem � � �� belongs to the lass o-NP if the `omplementary'problem � := �� n � belongs to NP.For instane, the problem �1 de�ned in (7) belongs to o-NP, sine the problem(11) �001 := f(G;W ) j G is a graph and W is a subset of the vertex setof G suh that the graph G �W has more than jW j oddomponentsg



Setion 6.7. NP-ompleteness 103
belongs to P. This follows from Tutte's `1-fator theorem' (Corollary 5.1a): a graph Ghas no perfet mathing if and only if there is a subset W of the vertex set of G withthe properties desribed in (11). (Here, stritly speaking, the omplementary problem�1 of �1 onsists of all words w that either do not represent a graph, or representa graph having no perfet mathing. We assume however that there is an easy wayof deiding if a given word represents a graph. Therefore, we might assume that theomplementary problem is just fG j G is a graph having no perfet mathingg.)It is not known if the problems �2 and TSP belong to o-NP.Sine for any problem � in P also the omplementary problem � belongs to P,we know that P�o-NP. So P�NP\o-NP. The problems in NP\o-NP are those forwhih there exist erti�ates both in ase the answer is positive and in ase the answeris negative. As we saw above, the perfet mathing problem �1 is suh a problem.Tutte's theorem gives us the erti�ates. Therefore, Tutte's theorem is alled a goodharaterization.In fat, there are very few problems known that are proved to belong to NP\o-NP,but that are not known to belong to P. Most problems having a good haraterization,have been proved to be solvable in polynomial time. The notable exeption for whihthis is not yet proved is primality testing (testing if a given natural number is a primenumber).
6.7. NP-ompletenessThe NP-omplete problems are by de�nition the hardest problems in NP. To be morepreise, we �rst de�ne the onept of a polynomial-time redution. Let � and �0be two problems and let A be an algorithm. We say that A is a polynomial-timeredution of �0 to � if A is a polynomial-time algorithm (`solving' ��), so that forany allowed sequene starting with w and ending with v one has: w 2 �0 if and onlyif v 2 �. A problem � is alled NP-omplete, if � 2NP and for eah problem �0 inNP there exists a polynomial-time redution of �0 to �.It is not diÆult to see that if � belongs to P and there exists a polynomial-timeredution of �0 to �, then also �0 belongs to P. It implies that if one NP-ompleteproblem an be solved in polynomial time, then eah problem in NP an be solved inpolynomial time. Moreover, if � belongs to NP, �0 is NP-omplete and there existsa polynomial-time redution of �0 to �, then also � is NP-omplete.
6.8. NP-ompleteness of the satis�ability problemWe now �rst show that in fat there exist NP-omplete problems. In fat we showthat the so-alled satis�ability problem, denoted by SAT, is NP-omplete.To de�ne SAT, we need the notion of a boolean expression. Examples are:
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(12) ((x2 ^ x3) _ :(x3 _ x5) ^ x2), ((:x47 ^ x2) ^ x47), :(x7 ^ :x7).Boolean expressions an be de�ned indutively. First, for eah natural number n,the `word' xn is a boolean expression (using some appropriate enoding of naturalnumbers and of subsripts). Next, if v and w are boolean expressions, then also(v ^ w), (v _ w) and :v are boolean expressions. These rules give us all booleanexpressions. (If neessary, we may use other subsripts than the natural numbers.)Now SAT is a subolletion of all boolean expressions, namely it onsists of thoseboolean expressions that are satis�able. A boolean expression f(x1; x2; x3; : : :) isalled satis�able if there exist �1; �2; �3; : : : 2 f0; 1g suh that f(�1; �2; �3; : : :) = 1,using the well-known identities(13) 0 ^ 0 = 0 ^ 1 = 1 ^ 0 = 0; 1 ^ 1 = 1;0 _ 0 = 0; 0 _ 1 = 1 _ 0 = 1 _ 1 = 1;:0 = 1;:1 = 0; (0) = 0; (1) = 1:
Exerise. Let n � 1 be a natural number and let W be a olletion of words inf0; 1g� all of length n. Prove that there exists a boolean expression f(x1; : : : ; xn) inthe variables x1; : : : ; xn suh that for eah word w = �1 : : : �n in the symbols 0 and 1one has: w 2W if and only if f(�1; : : : ; �n) = 1.

The satis�ability problem SAT trivially belongs to NP: we an take as erti�atefor a ertain f(x1; x2; x3; : : :) to belong to SAT, the equations xi = �i that give f thevalue 1. (We only give those equations for whih xi ours in f .)To show that SAT is NP-omplete, it is onvenient to assume that � = f0; 1g.This is not that muh a restrition: we an �x some order of the symbols in �, andenode the �rst symbol by 10, the seond one by 100, the third one by 1000, and soon. There is an easy (ertainly polynomial-time) way of obtaining one enoding fromthe other.The following result is basi for the further proofs:Theorem 6.1. Let � � f0; 1g� be in P. Then there exist a polynomial p(x) andan algorithm that �nds for eah natural number n in time p(n) a boolean expressionf(x1; x2; x3; : : :) with the property:(14) any word �1�2 : : : �n in f0; 1g� belongs to � if and only if the boolean ex-pression f(�1; : : : ; �n; xn+1; xn+2; : : :) is satis�able.
Proof. Sine � belongs to P, there exists a polynomial-time algorithm A solving �.So there exists a polynomial p(x) suh that a word w belongs to � if and only if theallowed sequene for w ontains at most p(size(w)) words. It implies that there exists
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a polynomial q(x) suh that any word in the allowed sequene for w has size less thanq(size(w)).We desribe the algorithm meant in the theorem. Choose a natural number n.Introdue variables xi;j and yi;j for i = 0; 1; : : : ; p(n), j = 1; : : : ; q(n). Now there exists(f. the Exerise above) a boolean expression f in these variables with the followingproperties. Any assignment xi;j := �i;j 2 f0; 1g and yi;j := �i;j 2 f0; 1g makes f equalto 1 if and only if the allowed sequene starting with the word w0 := �0;1�0;2 : : : �0;nis a �nite sequene w0; : : : ; wk, so that:
(15) (i) �i;j is equal to the jth symbol in the word wi, for eah i � k and eahj � size(wi);(ii) �i;j = 1 if and only if i > k or j � size(wi).

The important point is that f an be found in time bounded by a polynomial inn. To see this, we an enode the fat that word wi+1 should follow from word wiby a boolean expression in the `variables' xi;j and xi+1;j, representing the di�erentpositions in wi and wi+1. (The extra variables yi;j and yi+1;j are introdued to indiatethe sizes of wi and wi+1.) Moreover, the fat that the algorithm stops at a word walso an be enoded by a boolean expression. Taking the `onjuntion' of all theseboolean expressions, will give us the boolean expression f .
As a diret onsequene we have:

Corollary 6.1a. Theorem 6.1 also holds if we replae P by NP in the �rst sentene.Proof. Let � � f0; 1g� belong to NP. Then, by de�nition of NP, there exists aproblem �0 in P and a polynomial r(x) suh that any word w belongs to � if andonly if (w; v) belongs to �0 for some word v with size(v) � r(size(w)). By properlyre-enoding, we may assume that for eah n 2 N , any word w 2 f0; 1g� belongs to �if and only if wv belongs to �0 for some word v of size r(size(w)). Applying Theorem6.1 to �0 gives the orollary.
Now the main result of Cook [1971℄ follows:

Corollary 6.1b (Cook's theorem). The satis�ability problem SAT is NP-omplete.Proof. Let � belong to NP. We desribe a polynomial-time redution of � to SAT.Let w = �1 : : : �n 2 f0; 1g�. By Corollary 6.1a we an �nd in time bounded bya polynomial in n a boolean expression f suh that w belongs to � if and only iff(�1; : : : ; �n; xn+1; : : :) is satis�able. This is the required redution to SAT.
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6.9. NP-ompleteness of some other problemsWe next derive from Cook's theorem some of the results of Karp [1972℄. First weshow that the 3-satis�ability problem 3-SAT is NP-omplete. Let B1 be the set ofall words x1;:x1; x2;:x2; : : :. Let B2 be the set of all words (w1 _ � � � _ wk), wherew1; � � � ; wk are words in B1 and 1 � k � 3. Let B3 be the set of all words w1^: : :^wk,where w1; : : : ; wk are words in B2. Again, we say that a word f(x1; x2; : : :) 2 B3 issatis�able if there exists an assignment xi := �i 2 f0; 1g (i = 1; 2; : : :) suh thatf(�1; �2; : : :) = 1 (using the identities (13)).Now the 3-satis�ability problem 3-SAT is: Given a word f 2 B3, deide if it issatis�able.Corollary 6.1. The 3-satis�ability problem 3-SAT is NP-omplete.Proof. We give a polynomial-time redution of SAT to 3-SAT. Let f(x1; x2; : : :) be aboolean expression. Introdue a variable yg for eah subword g of f that is a booleanexpression.Now f is satis�able if and only if the following system is satis�able:(16) yg = yg0 _ yg00 (if g = g0 _ g00),yg = yg0 ^ yg00 (if g = g0 ^ g00),yg = :yg0 (if g = :g0),yf = 1.Now yg = yg0 _ yg00 an be equivalently expressed by: yg _ :yg0 = 1; yg _ :yg00 =1;:yg _ yg0 _ yg00 = 1. Similarly, yg = yg0 ^ yg00 an be equivalently expressed by::yg _ yg0 = 1;:yg _ yg00 = 1; yg _ :yg0 _ :yg00 = 1. The expression yg = :yg0 isequivalent to: yg _ yg0 = 1;:yg _ :yg0 = 1.By renaming variables, we thus obtain words w1; : : : ; wk in B2, so that f is satis-�able if and only if the word w1 ^ : : : ^ wk is satis�able.

We next derive that the partition problem PARTITION is NP-omplete. This isthe problem: Given a olletion C of subsets of a �nite set X, is there a subolletionof C that forms a partition of X?Corollary 6.1d. The partition problem PARTITION is NP-omplete.Proof. We give a polynomial-time redution of 3-SAT to PARTITION. Let f =w1^ : : :^wk be a word in B3, where w1; : : : ; wk are words in B2. Let x1; : : : ; xm be thevariables ourring in f . Make a bipartite graph G with olour lasses fw1; : : : ; wkgand fx1; : : : ; xmg, by joining wi and xj by an edge if and only if xj or :xj ours inwi. Let X be the set of all verties and edges of G.Let C 0 be the olletion of all sets fwig[E 0, where E 0 is a nonempty subset of the
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edge set inident with wi. Let C 00 be the olletion of all sets fxjg[E 0j and fxjg[E 00j ,where E 0j is the set of all edges fwi; xjg so that xj ours in wi and where E 00j is theset of all edges fwi; xjg so that :xj ours in wi.Now f is satis�able if and only if the olletion C 0 [ C 00 ontains a subolletionthat partitions X. Thus we have a redution of 3-SAT to PARTITION.

We derive the NP-ompleteness of the direted Hamiltonian yle problem DI-RECTED HAMILTONIAN CYCLE: Given a direted graph, does it have a diretedHamiltonian yle?Corollary 6.1e. DIRECTED HAMILTONIAN CYCLE is NP-omplete.Proof.We give a polynomial-time redution of PARTITION to DIRECTED HAMIL-TONIAN CYCLE. Let C = fC1; : : : ; Cmg be a olletion of subsets of the set X =fx1; : : : ; xkg. Introdue `verties' r0; r1; : : : ; rm; s0; s1; : : : ; sk.For eah i = 1; : : : ;m we do the following. Let Ci = fxj1; : : : ; xjtg. We onstrut adireted graph on the verties ri�1; ri, sjh�1; sjh (for h = 1; : : : ; t) and 3t new verties,as in Figure 6.3. Moreover, we make ars from rm to s0 and from sk to r0.
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Let D be the direted graph arising. Then it is not diÆult to hek that thereexists a subolletion C 0 of C that partitions X if and only if D has a direted Hamil-tonian yle C. (Take: (ri�1; ri) 2 C () Ci 2 C 0.)
From this we derive the NP-ompleteness of the undireted Hamiltonian yleproblem UNDIRECTED HAMILTONIAN CYCLE: Given a graph, does it have aHamiltonian yle?Corollary 6.1f. UNDIRECTED HAMILTONIAN CYCLE is NP-omplete.Proof. We give a polynomial-time redution of DIRECTED HAMILTONIAN CY-CLE to UNDIRECTED HAMILTONIAN CYCLE. Let D be a direted graph. Re-plae eah vertex v by three verties v0; v00; v000, and make edges fv0; v00g and fv00; v000g.Moreover, for eah ar (v1; v2) of D, make an edge fv01; v0002 g. This makes the undi-reted graph G. One easily heks that D has a direted Hamiltonian yle if and
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only if G has an (undireted) Hamiltonian yle.

This trivially implies the NP-ompleteness of the traveling salesman problem TSP:Given a omplete graph G = (V;E), a `length' funtion l on E, and a rational r, doesthere exist a Hamiltonian yle of length at most r?Corollary 6.1g. The traveling salesman problem TSP is NP-omplete.Proof. We give a polynomial-time redution of UNDIRECTED HAMILTONIANCYCLE to TSP. Let G be a graph. Let G0 be the omplete graph on V . Let l(e) := 0for eah edge e of G and let l(e) := 1 for eah edge of G0 that is not an edge of G.Then G has a Hamiltonian yle if and only if G0 has a Hamiltonian yle of lengthat most 0.
6.10. Turing mahinesIn Setion 6.4 we gave a de�nition of `algorithm'. How adequate is this de�nition?Can any omputer program be modelled after that de�nition?To study this question, we need to know what we understand by a `omputer'.Turing [1937℄ gave the following omputer model, now alled a Turing mahine or aone-tape Turing mahine.A Turing mahine onsists of a `proessor' that an be in a �nite number of `states'and of a `tape', of in�nite length (in two ways). Moreover, there is a `read-write head',that an read symbols on the tape (one at a time). Depending on the state of theproessor and the symbol read, the proessor passes to another (or the same) state,the symbol on the tape is hanged (or not) and the tape is moved one position `tothe right' or `to the left'.The whole system an be desribed by just giving the dependene mentioned inthe previous sentene. So, mathematially, a Turing mahine is just a funtion(17) T : M � �!M � �� f+1;�1g.Here M and � are �nite sets: M is interpreted as the set of states of the proessor,while � is the set of symbols that an be written on the tape. The funtion Tdesribes an `iteration': T (m;�) = (m0; �0;+1) should mean that if the proessor isin state m and the symbol read on the tape is �, then the next state will be m0, thesymbol � is hanged to the symbol �0 and the tape is moved one position to the right.T (m;�) = (m0; �0;�1) has a similar meaning | now the tape is moved one positionto the left.Thus if the proessor is in state m and has the word w0�0��00w00 on the tape,where the symbol indiated by � is read, and if T (m;�) = (m0; �0;+1), then next the
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proessor will be in state m0 and has the word w0�0�0�00w00 on the tape, where thesymbol indiated by �00 is read. Similarly if T (m;�) = (m0; �0;�1).We assume that M ontains a ertain `start state' 0 and a ertain `halting state'1. Moreover, � is assumed to ontain a symbol meaning `blank'. (This is neessaryto identify the beginning and the end of a word on the tape.)We say that the Turing mahine T aepts a word w 2 (�nf g)� if, when startingin state 0 and with word w on the tape (all other symbols being blank), so thatthe read-write head is reading the �rst symbol of w, then after a �nite number ofiterations, the proessor is in the halting state 1. (If w is the empty word, thesymbol read initially is the blank symbol .)Let � be the set of words aepted by T . So � is a problem. We say that T solves�. Moreover, we say that T solves � in polynomial time if there exists a polynomialp(x) suh that if T aepts a word w, it aepts w in at most p(size(w)) iterations.It is not diÆult to see that the onept of algorithm de�ned in Setion 6.4 aboveis at least as powerful as that of a Turing mahine. We an enode any state of theomputer model (proessor+tape+read-write head) by a word (w0;m;w00). Here m isthe state of the proessor and w0w00 is the word on the tape, while the �rst symbol ofw00 is read. We de�ne an algorithm A by:(18) replae subword ;m; � by �0;m0, whenever T (m;�) = (m0; �0;+1) and m 6=1;replae subword �;m; � by m0; ��0, whenever T (m;�) = (m0; �0;�1) andm 6=1.To be preise, we should assume here that the symbols indiating the states in Mdo not belong to �. Moreover, we assume that the symbols ( and ) are not in �.Furthermore, to give the algorithm a start, it ontains the tasks of replaing subword� by the word (; 0; � , and subword � by �) (for any � in � n f g). Then, whenstarting with a word w, the �rst two iterations transform it to the word (; 0; w). Afterthat, the rules (18) simulate the Turing mahine iterations. The iterations stop assoon as we arrive at state 1.So T aepts a word w if and only if A aepts w | in (about) the same numberof iterations. That is, T solves a problem � (in polynomial time) if and only if Asolves � (in polynomial time).This shows that the onept of `algorithm' de�ned in Setion 6.4 is at least aspowerful as that of a Turing mahine. Conversely, it is not hard (although tehniallysomewhat ompliated) to simulate an algorithm by a Turing mahine. But howpowerful is a Turing mahine?One ould think of several objetions against a Turing mahine. It uses only onetape, that should serve both as an input tape, and as a memory, and as an outputtape. We have only limited aess to the information on the tape (we an shift onlyone position at a time). Moreover, the omputer program seems to be implemented in
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the `hardware' of the omputer model; the Turing mahine solves only one problem.To ounter these objetions, several other omputer models have been proposedthat model a omputer more realistially: multi-tape Turing mahines, random aessmahines (RAM's), the universal Turing mahine. However, from a polynomial-timealgorithmi point of view, these models all turn out to be equivalent. Any problemthat an be solved in polynomial time by any of these omputer models, an alsobe solved in polynomial time by some one-tape Turing mahine, and hene by analgorithm in the sense of Setion 6.4. We refer to Aho, Hoproft, and Ullman [1974℄and Papadimitriou [1994℄ for an extensive disussion.
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7. Cliques, stable sets, andolourings

7.1. IntrodutionWe have seen in Chapter 5 that in any graph G = (V;E), a mathing of maximumardinality an be found in polynomial time. Similarly, an edge-over of minimumardinality an be found in polynomial time.On the other hand, it is NP-omplete to �nd a maximum-ardinality stable set ina graph. That is, determining �(G) is NP-omplete. To be more preise, the problemCOCLIQUE is:(1) given: a graph G and a natural number k,deide: if �(G) � k.Then:Theorem 7.1. The problem COCLIQUE is NP-omplete.Proof. We redue SAT to COCLIQUE. Let C1 ^ � � � ^ Ck be a boolean expres-sion in the variables x1; : : : ; xn, where eah expression is a disjuntion of the literalsx1;:x1; : : : ; xn;:xn. Consider the graph G = (V;E) with V := f(�; i) j � is a literalin Cig and E := ff(�; i); (�; j)g j i = j or � = :�g. Then the expression is satis�ableif and only if G has a stable set of size k.
Sine by Gallai's theorem Theorem 3.1, �(G) = jV j � �(G), also determining thevertex-over number �(G) is NP-omplete.A lique in a graph G = (V;E) is a subset C of V suh that u and w are adjaentfor any two distint u;w in C. The lique number of G, denoted by !(G), is themaximum ardinality of any lique in G.Observe that a subset C of V is a lique in G if and only if C is a stable set in theomplementary graph G. So �nding a maximum-ardinality lique in G is equivalentto �nding a maximum-ardinality stable set in G, and !(G) = �(G). As determining�(G) is NP-omplete, also determining !(G) is NP-omplete.A (vertex-)olouring of a graph G = (V;E) is a partition of V into stable setsC1; : : : ; Ck. The sets C1; : : : ; Ck are alled the olours of the olouring. The (vertex-) olouring number, or (vertex-)hromati number, of G, denoted by (G), is theminimum number of olours in any vertex-olouring of G. A graph G is alled k-olourable if (G) � k.Well-known is the four-olour onjeture (4CC ), stating that (G) � 4 for eah
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planar graph G. This onjeture was proved by Appel and Haken [1977℄ and Appel,Haken, and Koh [1977℄, and is now alled the four-olour theorem (4CT ).Again, it is NP-omplete to deide if a graph is k-olourable. In fat, it is NP-omplete to deide if a planar graph is 3-olourable. [Note that one an deide inpolynomial time if a graph G is 2-olourable, as bipartiteness an be heked inpolynomial time.℄These NP-ompleteness results imply that if NP6=o-NP, then one may not ex-pet a min-max relation haraterizing the stable set number �(G), the vertex-overnumber �(G), the lique number !(G), or the olouring number (G) of a graph G.There is a trivial upper bound on the olouring number:(2) (G) � �(G) + 1;where �(G) denotes the maximum valeny of G. Brooks [1941℄ sharpened this in-equality as follows:Theorem 7.2 (Brooks' theorem). For any onneted graph G one has (G) � �(G),exept if G = Kn or G = C2n+1 for some n � 1.17

Another inequality relates the lique number and the olouring number:(3) !(G) � (G):This is easy, sine in any lique all verties should have di�erent olours.But there are several graphs whih have strit inequality in (3). We mentionthe odd iruits C2k+1, with 2k + 1 � 5: then !(C2k+1) = 2 and (C2k+1) = 3.Moreover, for the omplement C2k+1 of any suh graph we have: !(C2k+1) = k and(C2k+1) = k + 1.It was a onjeture of Berge [1963℄ that these graphs are ruial, whih was provedin 2002 by Chudnovsky, Robertson, Seymour, and Thomas: 18Strong perfet graph theorem: Let G be a graph. If !(G) < (G) then Gontains Cn or Cn, for some odd n � 5, as an indued subgraph.Another onjeture is due to Hadwiger [1943℄. Sine there exist graphs with!(G) < (G), it is not true that if (G) � n then G ontains the omplete graphKn on n verties as a subgraph. However, Hadwiger onjetured the following, wherea graph H is alled a minor of a graph G if H arises from some subgraph of G byontrating some (possible none) edges.17Here Ck denotes the iruit with k verties.18Let G = (V;E) be a graph and let V 0 � V . Then the subgraph of G indued by V 0, denoted byGjV 0 is the graph (V 0; E0), where E0 equals the set of all edges in E ontained in V 0. The graphGjV 0 is alled an indued subgraph of G.
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Hadwiger's onjeture: If (G) � n then G ontains Kn as a minor.In other words, for eah n, the graph Kn is the only graph G with the property thatG is not (n� 1)-olourable and eah proper minor of G is (n� 1)-olourable.Hadwiger's onjeture is trivial for n = 1; 2; 3, and was shown by Hadwiger forn = 4 (see Exerise 7.8). As planar graphs do not ontain K5 as a minor, Hadwiger'sonjeture for n = 5 implies the four-olour theorem. In fat, Wagner [1937℄ showedthat Hadwiger's onjeture for n = 5 is equivalent to the four-olour onjeture.Reently, Robertson, Seymour, and Thomas [1993℄ showed that Hadwiger's onjetureis true also for n = 6, by showing that in that ase it is equivalent to the four-olourtheorem. For n � 7 Hadwiger's onjeture is unsettled.Appliation 7.1: Map olouring. A well-known appliation of olouring the verties ofa graph is that of olouring the ountries in a map in suh a way that adjaent ountriesobtain di�erent olours. So the four-olour theorem implies that if eah ountry is onneted,then the map an be oloured using not more than four olours. (One should not onsiderountries as `adjaent' if they have a ommon boundary of measure 0 only.)There are several other ases where olouring a map amounts to �nding a minimumvertex-olouring in a graph. For instane, onsider a map of the Paris M�etro network(Figure 7.1).Suppose now that you want to print a oloured map of the network, indiating eah ofthe 13 lines by a olour, in suh a way that lines that ross eah other or meet eah otherin a station, are indiated by di�erent olours and in suh a way that a minimum numberof olours is used. This easily redues to a graph olouring problem.Appliation 7.2: Storage of goods, et. Suppose you are the diretor of a irus andwish to transport your animals in a number of arriages, in suh a way that no two of theanimals put into one arriage eat eah other, and in suh a way that you use a minimumnumber of arriages.This trivially redues to a graph olouring problem. A similar problem is obtained ifyou have to store a number of hemials in a minimum number of rooms of a storehouse,in suh a way that no two of the hemials stored in one room reat upon eah other in anunwanted way.This problem may also our when assigning multiple-bed rooms to shool boys on ashool trip.Appliation 7.3: Assigning frequenies to radio stations, ar phones, et. Supposeone has to assign frequenies to radio stations in a ertain area. Certain pairs of radiostations that are too lose to eah other annot be assigned the same frequeny as it wouldause mutual interferene. Suh pairs of radio stations form the edge set of a graph G, withvertex set the set of radio stations. The hromati number of G is equal to the minimumnumber of di�erent frequenies that one needs in order to assign a frequeny to eah of thestations.The problem ours also when assigning frequenies to ar phones, where often in a veryshort time new frequenies should be determined.
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Figure 7.1
Exerises7.1. Determine !(G) and (G) for the graph G obtained from the Paris M�etro map givenin Appliation 7.1.7.2. Colour the map of Figure 7.2 (from the April 1975 issue of Sienti� Amerian).7.3. Show that if G is a bipartite graph, then !(G) = (G).7.4. Derive from K}onig's edge over theorem (Corollary 3.3a) that if G is the omplementof a bipartite graph, then !(G) = (G).7.5. Derive K}onig's edge over theorem (Corollary 3.3a) from the strong perfet graphtheorem.7.6. Let H be a bipartite graph and let G be the omplement of the line-graph of H.Derive from K}onig's mathing theorem (Theorem 3.3) that !(G) = (G).7.7. Derive K}onig's mathing theorem (Theorem 3.3) from the strong perfet graph the-orem.7.8. Let G = (V;E) be a simple graph suh that no minor of G is isomorphi to K4. Showthat (G) � 3.
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Figure 7.2
[Hint: One may assume that G is not a forest or a iruit. Then G has a iruit notovering all verties of G. As G has no K4-minor, G is not 3-onneted, that is, Ghas a vertex ut set of size less than 3; then (G) � 3 follows by indution.℄

7.2. Edge-olourings of bipartite graphsFor any graph G = (V;E), an edge-olouring is a partition � = fM1; : : : ;Mpg of theedge set E, where eah Mi is a mathing. Eah of these mathings is alled a olour.De�ne the edge-olouring number or edge-hromati number �(G) by(4) �(G) := minfj�j j � is an edge-olouring of Gg.So �(G) = (L(G)), where L(G) is the line graph of G.Let �(G) denote the maximum degree of (the verties of) G. Clearly,(5) �(G) � �(G);sine at eah vertex v, the edges inident with v should have di�erent olours. Againthe triangle K3 has strit inequality. K}onig [1916℄ showed that for bipartite graphsthe two numbers are equal.Theorem 7.3 (K}onig's edge-olouring theorem). For any bipartite graph G = (V;E)one has(6) �(G) = �(G).
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That is, the edge-olouring number of a bipartite graph is equal to its maximum de-gree.Proof. First notie that the theorem is easy if �(G) � 2. In that ase, G onsists ofa number of vertex-disjoint paths and even iruits.In the general ase, olour as many edges of G as possible with �(G) olours,without giving the same olour to two interseting edges. If all edges are oloured weare done, so suppose some edge e = fu;wg is not oloured. At least one olour, sayred, does not our among the olours given to the edges inident with u. Similarly,there is a olour, say blue, not ourring at w. (Clearly, red6=blue, sine otherwise weould give edge e the olour red.)Let H be the subgraph of G having as edges all red and blue edges of G, togetherwith the edge e. Now �(H) = 2, and hene �(H) = �(H) = 2. So all edges ourringin H an be (re)oloured with red and blue. In this way we olour more edges of Gthan before. This ontradits the maximality assumption.

This proof also gives a polynomial-time algorithm to �nd an edge-olouring with�(G) olours.We remark here that Vizing [1964℄ proved that for general simple graphs G onehas(7) �(G) � �(G) � �(G) + 1:Here `simple' annot be deleted, as is shown by the graph G with three verties, whereany two verties are onneted by two parallel edges: then �(G) = 4 while �(G) = 6.A theorem `dual' to K}onig's edge-olouring theorem was also shown by K}onig.Note that the edge-olouring number �(G) of a graph G is the minimum number ofmathings needed to over the edges of a bipartite graph. Dually, one an de�ne:(8) �(G) := the maximum number of pairwise disjoint edge overs in G.So, in terms of olours, �(G) is the maximum number of olours that an be used inolouring the edges of G in suh a way that at eah vertex all olours our. Hene,if Æ(G) denotes the minimum degree of G, then(9) �(G) � Æ(G):The triangle K3 again is an example having strit inequality. For bipartite graphshowever:Corollary 7.3a. For any bipartite graph G = (V;E) one has
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(10) �(G) = Æ(G).That is, the maximum number of pairwise disjoint edge overs is equal to the minimumdegree.Proof. One may derive from G a bipartite graph H, eah vertex of whih has degreeÆ(G) or 1, by repeated appliation of the following proedure:(11) for any vertex v of degree larger than Æ(G), add a new vertex u, and replaeone of the edges inident with v, fv; wg say, by fu;wg.So there is a one-to-one orrespondene between the edges of the �nal graphH andthe edges of G. Sine H has maximum degree Æ(G), by Theorem 7.3 the edges of Han be oloured with Æ(G) olours suh that no two edges of the same olour interset.So at any vertex of H of degree Æ(G) all olours our. This gives a olouring of theedges of G with Æ(G) olours suh that at any vertex of G all olours our.Appliation 7.4: Sheduling lasses. Suppose we have n lasses and m teahers. In thefollowing sheme it is indiated by an X whih lasses should be taught by whih teahers(one lesson of one hour a day): lass: 1 2 3 4 5 6teaher: a X X Xb X X X X X X Xd X Xe X X X Xf X X X Xg X X X XThe question is: What is the minimum timespan in whih all lessons an be sheduled?Theorem 7.3 tells us that all lessons an be sheduled within a timespan of 4 hours.Indeed, make a bipartite graph G with olour lasses T := set of teahers and C := set oflasses, where t 2 T and  2 C are onneted if and only if teaher t should teah lass ;that is, if there is an X in position (t; ) in the sheme.In the above example G will have maximum degree �(G) equal to 4. Hene aording toTheorem 7.3, the edge-olouring number �(G) of G is also equal to 4. So we an olour theedges of G by 4 olours so that no two edges of the same olour have a vertex in ommon.That is, we an olour the X's in the sheme by 4 olours so that there are no two rossesof the same olour in any row or olumn. If every olour represent one hour, we obtain ashedule spanning 4 hours.This appliation an be extended to the ase where teahers an give more than onelesson a day to a lass. In that ase we obtain a bipartite graph with multiple edges.For any k-edge-olouring of a graph G = (V;E), we an assume that any two oloursdi�er by at most 1 in size (if they di�er more, one an exhange the two olours on one of the
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path omponents of the union of the two olours, to bring their ardinalities loser together).That is, eah olour has size bjEj=k or djEj=ke. It implies that there is a shedule in whihno more than djEj=ke lessons are sheduled simultaneously. So the number of lassroomsneeded is djEj=ke, whih is learly best possible if we want to shedule jEj lessons within khours.

Exerises

7.9. Determine a shedule for the following sheduling problems:

(i) X X X XX X X XX X X XX X X XX X X X

(ii)
X X X XX X X XX X X XX X X XX X X XX X X XX X X X
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(iii)

1 2 3 5 9 12 15 164 6 7 8 10 11 13 14 17 18

J

L

R

S

T

W

X

Z

V

U

Q

P

O

M

N

K

I

G

H

F

E

C

D

B

A

Y

(Here the slots to be sheduled are indiated by open ells.)7.10. Let G be the line-graph of some bipartite graph H. Derive from K}onig's edge-olouring theorem (Theorem 7.3) that !(G) = (G).7.11. Derive K}onig's edge-olouring theorem (Theorem 7.3) from the strong perfet graphtheorem.7.12. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be partitions of a �nite set X suh thatjA1j = � � � = jAnj = jB1j = � � � = jBnj = k. Show that A and B have k pairwise
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disjoint ommon transversals.7.13. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set X.(i) Let k 2 N . Suppose that X an be partitioned into k partial SDR's of A, andthat X also an be partitioned into k partial SDR's of B. Derive that X an bepartitioned into k ommon partial SDR's for A and B.(ii) Show that the minimum number of ommon partial SDR's of A and B neededto over X is equal to(12) dmaxY�Xmaxf jY jjfijAi \ Y 6= ;gj ; jY jjfijBi \ Y 6= ;gjge:(Hint: Use Exerise 3.8.)7.14. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set Xand let k 2 N . Suppose that X has a partition (Y1; : : : ; Yk) suh that eah Yi is anSDR of A. Suppose moreover that X has a partition (Z1; : : : ; Zk) suh that eah Ziis an SDR of B. Derive that X has a partition (X1; : : : ;Xk) suh that eah Xi is anSDR both of A and of B.7.15. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set Xand let k 2 N . Suppose that X has a partition (Y1; : : : ; Yn) suh that jYij = k andYi � Ai for i = 1; : : : ; n. Suppose moreover that X has a partition (Z1; : : : ; Zn) suhthat jZij = k and Zi � Bi for i = 1; : : : ; n. Derive that X has a partition (X1; : : : ;Xk)suh that eah Xi is an SDR both of A and of B.7.16. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bm) be families of subsets of a �nite set andlet k be a natural number. Prove that A and B have k pairwise disjoint ommonSDR's if and only if for all I; J � f1; : : : ; ng:
(13) ��[i2I Ai \ [j2J Bj�� � k(jIj+ jJ j � n):
(Hint: Use Exerise 7.15.)7.17. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set X.(i) Let k 2 N . Suppose that A has k pairwise disjoint SDR's and that also Bhas k pairwise disjoint SDR's. Derive that X an be partitioned into k subsetsX1; : : : ;Xk suh that eah Xi ontains an SDR of A and ontains an SDR of B.(ii) Show that the maximum number k for whih there exists a partition as in (i) isequal to(14) b min;6=I�f1;:::;ngminf ��Si2I Ai��jIj ; ��Si2I Bi��jIj g:(Hint: Use Exerise 3.7.)
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7.3. Partially ordered sets
A partially ordered set is a pair (X;�) where X is a set and where � is a relation onX satisfying (for all x; y; z 2 X):
(15) (i) x � x;(ii) if x � y and y � x then x = y;(iii) if x � y and y � z then x � z.
A subset C of X is alled a hain if for all x; y 2 C one has x � y or y � x. A subsetA of X is alled an antihain if for all x; y 2 A with x 6= y one has x 6� y and y 6� x.Note that if C is a hain and A is an antihain then
(16) jC \ Aj � 1:

First we observe the following easy min-max relation:Theorem 7.4. Let (X;�) be a partially ordered set, with X �nite. Then the mini-mum number of antihains needed to over X is equal to the maximum ardinality ofany hain.Proof. The fat that the maximum annot be larger than the minimum follows easilyfrom (16). To see that the two numbers are equal, de�ne for any element x 2 X theheight of x as the maximum ardinality of any hain in X with maximum x. For anyi 2 N , let Ai denote the set of all elements of height i.Let k be the maximum height of the elements ofX. Then A1; : : : ; Ak are antihainsovering X, and moreover there exists a hain of size k.
Dilworth [1950℄ proved that the same theorem also holds when we interhange thewords `hain' and `antihain':Theorem 7.5 (Dilworth's deomposition theorem). Let (X;�) be a partially orderedset, with X �nite. Then the minimum number of hains needed to over X is equalto the maximum ardinality of any antihain.Proof.We apply indution on jXj. The fat that the maximum annot be larger thanthe minimum follows easily from (16). To see that the two numbers are equal, let �be the maximum ardinality of any antihain and let A be an antihain of ardinality�. De�ne

(17) A# := fx 2 X j 9y 2 A : x � yg;A" := fx 2 X j 9y 2 A : x � yg:
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Then A# [ A" = X (sine A is a maximum antihain) and A# \ A" = A.First assume A# 6= X and A" 6= X. Then by indution A# an be overed with �hains. Sine A � A#, eah of these hains ontains exatly one element in A. Foreah x 2 A, let Cx denote the hain ontaining x. Similarly, there exist � hains C 0x(for x 2 A) overing A", where C 0x ontains x. Then for eah x 2 A, Cx [C 0x forms ahain in X, and moreover these hains over X.So we may assume that for eah antihain A of ardinality � one has A# = X orA" = X. It means that eah antihain A of ardinality � is either the set of minimalelements of X or the set of maximal elements of X. Now hoose a minimal elementx and a maximal element y of X suh that x � y. Then the maximum ardinality ofan antihain in X nfx; yg is equal to ��1 (sine eah antihain in X of ardinality �ontains x or y). By indution, X n fx; yg an be overed with �� 1 hains. Addingthe hain fx; yg yields a overing of X with � hains.Appliation 7.5: Projet sheduling. Suppose you have to perform a projet onsistingof several jobs. Eah job takes one time-unit, say one hour. Certain jobs have to be donebefore other jobs; this relation is given by a partial order on the jobs. Assuming that youhave suÆient workers, the time required to �nish the projet is equal to the size  of thelongest hain. Indeed, by Theorem 7.4, the jobs an be split into  antihains A1; : : : ; A ;in fat, these antihains an be hosen suh that if x 2 Ai and y 2 Aj and x < y then i < j.As in eah of these antihains, the jobs an be done simultaneously, we obtain a feasibleshedule.This is an appliation quite similar to PERT-CPM (Appliation 1.4).Appliation 7.6: Bungalow assignment. Suppose you are the manager of a bungalowpark, with bungalows that an be rented out during the holiday season. There have beenmade a number of reservations, eah for a onneted period of some weeks, like in Figure7.3. If the number of reservations during any of the weeks in the holiday season is not largerPSfrag replaementsedge in Medge not in Mvertex overed by Mvertex not overed by M

Figure 7.3
than the total number of bungalows available, then there exists an alloation of ustomers tobungalows, in suh a way that no renter has to swith bungalows during his/her stay. This
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rule well-known to bungalow park managers, is a speial ase of Dilworth's deompositiontheorem.Indeed, one an make a partial order as follows. Let X be the set of reservations made,and for any x; y 2 X let x < y if the last day for reservation x is earlier than or equal tothe �rst day of reservation y.Then the maximum size of any antihain of (X;�) is equal to the maximum number nof reservations made for any week in the season. By Dilworth's deomposition theorem, Xan be split into n hains. Eah hain now gives a series of reservations that an be assignedto one and the same bungalow.A similar problem ours when assigning hotel rooms to hotel guests.Appliation 7.7: Terminal and platform assignment. A similar problem as in Appli-ation 7.6 ours when one has to assign airplanes to terminals at an airport, or trains orbuses to platforms in a train or bus station. The model has to be adapted however, if onerequires a periodi assignment; this ours for instane if the trains or buses run a perioditimetable, say with period one hour.
Exerises7.18. Let (X;�) be a partially ordered set. Call a hain maximal if it is not ontainedin any other hain. Prove that the maximum number of pairwise disjoint maximalhains is equal to the minimum ardinality of a set interseting all maximal hains.7.19. Derive K}onig's edge over theorem from Dilworth's deomposition theorem.7.20. Let G = (V;E) be a bipartite graph, with olour lasses V1 and V2, with jV1j = jV2j =n. Let k be a natural number. Derive from Dilworth's deomposition theorem thatthe edges of G an be overed by k perfet mathings if and only if for eah vertexover W � V the number of edges ontained in W is at most k(jW j � n).7.21. Let I = (I1; : : : ; In) be a family of intervals on R , in suh a way that eah x 2 Ris ontained in at most k of these intervals. Show that I an be partitioned into klasses I1; : : : ; Ik so that eah Ij onsists of pairwise disjoint intervals.7.22. Let D = (V;A) be an ayli direted graph and let s and t be verties of D suh thateah ar of D ours in at least one s� t path. Derive from Dilworth's deompositiontheorem that the minimum number of s� t paths needed to over all ars is equal tothe maximum ardinality of Æout(U), where U ranges over all subsets of V satisfyings 2 U; t 62 U and Æin(U) = ;.7.23. A graph G = (V;E) is alled a omparability graph if there exists a partial order �on V suh that for all u;w in V with u 6= w one has:(18) fu;wg 2 E , u � w or w � u:(i) Show that if G is a omparability graph, then !(G) = (G).
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(ii) Show that if G is the omplement of a omparability graph, then !(G) = (G).(Hint: Use Dilworth's deomposition theorem (Theorem 7.5).)7.24. Let (X;�) be a partially ordered set, withX �nite. Let C andA denote the olletionsof hains and antihains in (X;�), respetively. Let w : X ! Z+ be a `weight'funtion.(i) Show that the maximumweight w(C) of any hain is equal to the minimum valueof PA2A �(A), where the �(A) range over all nonnegative integers satisfying(19) XA2A;x2A�(A) = w(x)

for eah x 2 X.(ii) Show that the maximum weight w(A) of any antihain is equal to the mini-mum value of PC2C �(C), where the �(C) range over all nonnegative integerssatisfying
(20) XC2C;x2C �(C) = w(x)
for eah x 2 X.(iii) Derive that the onvex hull of the inidene vetors of antihains (as vetors inRX ) is equal to the set of all vetors f 2 RX+ satisfying f(C) � 1 for eah hainC.[For any �nite setX and any subset Y ofX, de�ne the inidene vetor �Y 2 RXof Y as:(21) �Yx := 1 if x 2 Y ;:= 0 if x 62 Y .℄(iv) Derive also that the onvex hull of the inidene vetors of hains (as vetorsin RX ) is equal to the set of all vetors f 2 RX+ satisfying f(A) � 1 for eahantihain A.7.25. Derive Dilworth's deomposition theorem (Theorem 7.5) from the strong perfetgraph theorem.

7.4. Perfet graphsWe now onsider a general lass of graphs, the `perfet' graphs, that turn out to unifyseveral results in ombinatorial optimization, in partiular, min-max relations and
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polyhedral haraterizations.As we saw before, the lique number !(G) and the olouring number (G) of agraph G = (V;E) are related by the inequality:(22) !(G) � (G):There are graphs that have strit inequality; for instane, the iruit C5 on �veverties.Having equality in (22) does not say that muh about the internal struture of agraph: any graph G = (V;E) an be extended to a graph G0 = (V 0; E 0) satisfying!(G0) = (G0), simply by adding to G a lique of size (G), disjoint from V .However, if we require that equality in (22) holds for eah indued subgraph ofG, we obtain a muh more powerful ondition. The idea for this was formulated byBerge [1963℄. He de�ned a graph G = (V;E) te be perfet if !(G0) = (G0) holds foreah indued subgraph G0 of G.Several lasses of graphs ould be shown to be perfet, and Berge [1961,1963℄observed the important phenomenon that for several lasses of graphs that were shownto be perfet, also the lass of omplementary graphs is perfet. (The omplementor the omplementary graph G of a graph G = (V;E) is the graph with vertex setV , where any two distint verties in V are adjaent in G if and only if they arenonadjaent in G.)Berge therefore onjetured that the omplement of any perfet graph is perfetagain. This onjeture was proved by Lov�asz [1972b℄, and his perfet graph theoremforms the kernel of perfet graph theory. It has several other theorems in graph theoryas onsequene. Lov�asz [1972a℄ gave the following stronger form of the onjeture,whih we show with the elegant linear-algebrai proof found by Gasparian [1996℄.Theorem 7.6. A graph G is perfet if and only if !(G0)�(G0) � jV (G0)j for eahindued subgraph G0 of G.Proof. Neessity is easy, sine if G is perfet, then !(G0) = (G0) for eah induedsubgraph G0 of G, and sine (G0)�(G0) � jV (G0)j for any graph G0.To see suÆieny, suppose to the ontrary that there exists an imperfet graph Gsatisfying the ondition, and hoose suh a graph with jV (G)j minimal. So (G) >!(G), while (G0) = !(G0) for eah indued subgraph G0 6= G of G.Let ! := !(G) and � := �(G). We an assume that V (G) = f1; : : : ; ng.We �rst onstrut(23) stable sets C0; : : : ; C�! suh that eah vertex is overed by exatly � of theCi.Let C0 be any stable set in G of size �. By the minimality of G, we know that foreah v 2 C0, the subgraph of G indued by V (G) n fvg is perfet, and that hene its
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olouring number is at most ! (as its lique number is at most !); therefore V (G)nfvgan be partitioned into ! stable sets. Doing this for eah v 2 C0, we obtain stablesets as in (23).Now for eah i = 0; : : : ; �!, there exists a lique Ki of size ! with Ki \ Ci = ;.Otherwise, the subgraph G0 of G indued by V (G) n Ci would have !(G0) < !, andhene it has olouring number at most ! � 1. Adding Ci as a olour would give an!-vertex olouring of G, ontraditing the assumption that (G) > !(G).Then, if i 6= j with 0 � i; j � �!, we have jKj \ Cij = 1. This follows from thefat that Kj has size ! and intersets eah Ci in at most one vertex, and hene, by(23), it intersets �! of the Ci. As Kj \ Cj = ;, we have that jKj \ Cij = 1 if i 6= j.Now onsider the (�! + 1) � n inidene matries M = (mi;j) and N = (ni;j)of C0; : : : ; C�! and K0; : : : ;K�! respetively. So M and N are 0; 1 matries, withmi;j = 1 , j 2 Ci, and ni;j = 1 , j 2 Ki, for i = 0; : : : ; �! and j = 1; : : : ; n. Bythe above, MNT = J � I, where J is the �! � �! all-1 matrix, and I the �! � �!identity matrix. As J � I has rank �!+1, we have n � �!+1. This ontradits theondition given in the theorem.

This implies:Corollary 7.6a ((Lov�asz's) perfet graph theorem). The omplement of a perfetgraph is perfet again.Proof. Diretly from Theorem 7.6, as the ondition given in it is maintained undertaking the omplementary graph.
In fat, Berge [1963℄ also made an even stronger onjeture, whih was provedin 2002 by Chudnovsky, Robertson, Seymour, and Thomas (we mentioned this inSetion 7.1 in a di�erent but equivalent form):Strong perfet graph theorem. A graph G is perfet if and only if G does notontain any odd iruit C2k+1 with k � 2 or its omplement as an indued subgraph.We now show how several theorems we have seen before follow as onsequenesfrom the perfet graph theorem. First observe that trivially, any bipartite graph G isperfet. This implies K}onig's edge over theorem (Theorem 3.3a):Corollary 7.6b (K}onig's edge over theorem). The omplement of a bipartite graphis perfet. Equivalently, the edge over number of any bipartite graph (without isolatedverties) is equal to its stable set number.Proof. Diretly from the perfet graph theorem. Note that if G is a bipartite graph,then its liques have size at most 2; hene (G) is equal to the edge over number ofG if G has no isolated verties.Note moreover that the lass of omplements of bipartite graphs is losed under
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taking indued subgraphs. Hene the seond statement in the Corollary indeed isequivalent to the �rst.

We saw in Setion 3.3 that by Gallai's theorem (Theorem 3.1), K}onig's edge overtheorem diretly implies K}onig's mathing theorem (Theorem 3.3), saying that themathing number of a bipartite graph G is equal to its vertex over number. That is,the stable set number of the line graph L(G) of G is equal to the minimum numberof liques of L(G) that over all verties of L(G). As this is true for any induedsubgraph of L(G) we know that the omplement L(G) of the line graph L(G) of anybipartite graph G is perfet.Hene with the perfet graph theorem we obtain K}onig's edge-olouring theorem(Theorem 7.3):Corollary 7.6 (K}onig's edge-olouring theorem). The line graph of a bipartite graphis perfet. Equivalently, the edge-olouring number of any bipartite graph is equal toits maximum degree.Proof. Again diretly from K}onig's mathing theorem and the perfet graph theorem.
We an also derive Dilworth's deomposition theorem (Theorem 7.5) easily fromthe perfet graph theorem. Let (V;�) be a partially ordered set. Let G = (V;E) bethe graph with:

(24) uv 2 E if and only if u < v or v < u.
Any graph G obtained in this way is alled a omparability graph.As Theorem 7.4 we saw the following easy `dual' form of Dilworth's deompositiontheorem:Theorem 7.7. In any partially ordered set (V;�), the maximum size of any hainis equal to the minimum number of antihains needed to over V .Proof. For any v 2 V de�ne the height of v as the maximum size of any hain in Vwith maximum element v. Let k be the maximum height of any element v 2 V . Fori = 1; : : : ; k let Ai be the set of elements of height i. Then A1; : : : ; Ak are antihainsovering V , and moreover, there is a hain of size k, sine there is an element of heightk.

Equivalently, we have !(G) = (G) for any omparability graph. As the lass ofomparability graphs is losed under taking indued subgraphs we have:
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Corollary 7.7a. Any omparability graph is perfet.Proof. Diretly from Theorem 7.7.

So by the perfet graph theorem:Corollary 7.7b. The omplement of any omparability graph is perfet.Proof. Diretly from Corollary 7.7a and the perfet graph theorem (Corollary 7.6a).
That is:Corollary 7.7 (Dilworth's deomposition theorem). In any partially ordered set(V;�), the maximum size of any antihain is equal to the minimum number of hainsneeded to over V .Proof. Diretly from Corollary 7.7b.
A further appliation of the perfet graph theorem is to `hordal graphs', whihwe desribe in the next setion.We note here that it was shown with the help of the `ellipsoid method' thatthere exists a polynomial-time algorithm for �nding a maximum-size lique and aminimum vertex-olouring in any perfet graph (Gr�otshel, Lov�asz, and Shrijver[1981℄). However no ombinatorial polynomial-time algorithm is known for theseproblems.

Exerises7.26. Show that the graph obtained from the Paris M�etro network (see Appliation 7.1) isperfet.7.27. Show that Theorem 7.6 is implied by the strong perfet graph theorem.
7.5. Chordal graphsWe �nally onsider a further lass of perfet graphs, the `hordal graphs' (or `rigidiruit graphs' or `triangulated graphs'). A graph G is alled hordal if eah iruitin G of length at least 4 has a hord. (A hord is an edge onneting two verties ofthe iruit that do not form two neighbours in the iruit.)For any set A of verties let N(A) denote the set of verties not in A that areadjaent to at least one vertex in A. Call a vertex v simpliial if N(fvg) is a liquein G.
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Dira [1961℄ showed the following basi property of hordal graphs:Theorem 7.8. Eah hordal graph G ontains a simpliial vertex.Proof. We may assume that G has at least two nonadjaent verties a; b. Let Abe a maximal nonempty subset of V suh that GjA is onneted and suh thatA[N(A) 6= V . Suh a subset A exists as Gjfag is onneted and fag[N(fag) 6= V .Let B := V n(A[N(A)). Then eah vertex v in N(A) is adjaent to eah vertex inB, sine otherwise we ould inrease A by v. Moreover, N(A) is a lique, for supposethat u;w 2 N(A) are nonadjaent. Choose v 2 B. Let P be a shortest path inA [N(A) onneting u and w. Then P [ fu; v; wg would form a iruit of length atleast 4 without hords, a ontradition.Now indutively we know that GjB ontains a vertex v that is simpliial in GjB.Sine N(A) is a lique and sine eah vertex in B is onneted to eah vertex in N(A),v is also simpliial in G.
This implies a result of Hajnal and Sur�anyi [1958℄:Theorem 7.9. The omplement of any hordal graph is perfet.Proof. Let G = (V;E) be a hordal graph. Sine the lass of hordal graphs is losedunder taking indued subgraphs, it suÆes to show !(G) � (G).By Theorem 7.1, G has a simpliial vertex v. So K := fvg [ N(fvg) is a lique.Let G0 be the subgraph of G indued by V nK. By indution we have !(G0) = (G0).Now !(G) � !(G0) + 1, sine we an add v to any lique of G0. Similarly, (G) �(G0) + 1, sine we an add K to any olouring of G0. Hene !(G) � (G).
With Lov�asz's perfet graph theorem, this implies the result of Berge [1960℄:Corollary 7.9a. Any hordal graph is perfet.Proof. Diretly from Theorem 7.9 and the perfet graph theorem (Corollary 7.6a).
We an haraterize hordal graphs in terms of subtrees of a tree T . Let S be aolletion of nonempty subtrees of a tree T . The intersetion graph of S is the graphwith vertex set S, where two verties S; S 0 are adjaent if and only if they interset(in at least one vertex).The lass of graphs obtained in this way oinides with the lass of hordal graphs.To see this, we �rst show the following elementary lemma:Lemma 7.1. Let S be a olletion of pairwise interseting subtrees of a tree T . Thenthere is a vertex of T ontained in all subtrees in S.
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Proof. By indution on jV T j. If jV T j = 1 the lemma is trivial, so assume jV T j � 2.Let t be an end vertex of T . If there exists a subtree in S onsisting only of t, thelemma is trivial. Hene we may assume that eah subtree in S ontaining t alsoontains the neighbour of t. So deleting t from T and from all subtrees in S gives thelemma by indution.

Then:Theorem 7.10. A graph is hordal if and only if it is isomorphi to the intersetiongraph of a olletion of subtrees of some tree.Proof. Neessity. LetG = (V;E) be hordal. By Theorem 7.8, G ontains a simpliialvertex v. By indution, the subgraphG�v ofG is the intersetion graph of a olletionS of subtrees of some tree T . Let S 0 be the subolletion of S orresponding to theset N of neighbours of v in G. As N is a lique, S 0 onsists of pairwise intersetingsubtrees. Hene, by Lemma 7.1 these subtrees have a vertex t of T in ommon. Nowwe extend T and all subtrees in S 0 with a new vertex t0 and a new edge tt0. Moreover,we introdue a new subtree ft0g representing v. In this way we obtain a subtreerepresentation for G.SuÆieny. Let G be the intersetion graph of some olletion S of subtreesof some tree T . Suppose that G ontains a hordless iruit Ck with k � 4. LetCk be the intersetion graph of S1; : : : ; Sk 2 S, with S1 and S2 interseting. ThenS1; S2; S3[� � �[Sk are three subtrees of T that are pairwise interseting. So by Lemma7.1, T has a vertex v ontained in eah of these three subtrees. So v 2 S1 \ S2 \ Sifor some i 2 f3; : : : ; kg. This yields a hord in Ck.
This theorem enables us to interpret the perfetness of hordal graphs in terms oftrees:Corollary 7.10a. Let S be a olletion of nonempty subtrees of a tree T . Thenthe maximum number of pairwise vertex-disjoint trees in S is equal to the minimumnumber of verties of T interseting eah tree in S.Proof. Diretly from Theorems 7.9 and 7.10, using Lemma 7.1.
Similarly we have:Corollary 7.10b. Let S be a olletion of subtrees of a tree T . Let k be the max-imum number of times that any vertex of T is overed by trees in S. Then S anbe partitioned into subolletions S1; : : : ;Sk suh that eah S i onsists of pairwisevertex-disjoint trees.Proof. Diretly from Corollary 7.9a and Theorem 7.10, again using Lemma 7.1.
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Exerises7.28. Show that a graph G = (V;E) is hordal if and only if eah indued subgraph has asimpliial vertex.7.29. Show that a graph is an interval graph if and only if it is hordal and its omplementis a omparability graph.7.30. Derive from the proof of Theorem 7.8 that eah hordal graph is either a lique orontains two nonadjaent simpliial verties.7.31. Let G be a hordal graph. Derive from the proof of Theorem 7.8 that eah vertexv that is nonadjaent to at least one vertex w 6= v, is nonadjaent to at least onesimpliial vertex w 6= v.7.32. Show that a graph G = (V;E) is hordal if and only if the edges of G an be orientedso as to obtain a direted graph D = (V;A) with the following properties:
(25) (i)D is ayli;(ii)if (u; v) and (u;w) belong to A then (v; w) or (w; v) belongs to A.
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8. Integer linear programming andtotally unimodular matries
8.1. Integer linear programmingMany ombinatorial optimization problems an be desribed as maximizing a linearfuntion Tx over the integer vetors in some polyhedron P = fx j Ax � bg. (Avetor x 2 R n is alled integer if eah omponent is an integer, i.e., if x belongs toZn .)So this type of problems an be desribed as:(1) maxfTx j Ax � b;x 2 Zng:Suh problems are alled integer linear programming problems. They onsist of max-imizing a linear funtion over the intersetion P \ Zn of a polyhedron P with the setZn of integer vetors.Example. Consider a graph G = (V;E). Then the problem of �nding a mathingof maximum ardinality an be desribed as follows. Let A be the V � E inidenematrix of G. So the rows of A are indexed by the verties of G, while the olumns ofA are indexed by the edges of G and for any v 2 V and e 2 E:(2) Av;e := 1 if v 2 e;:= 0 if v 62 e.Now �nding a maximum-ardinality mathing is equivalent to:
(3) maximize Xe2E xesubjet to Xe3v xe � 1 for eah v 2 V ,xe � 0 for eah e 2 E,xe 2 Z for eah e 2 E.This is the same as:(4) maxf1Tx j x � 0;Ax � 1;x integerg;where 1 denotes an all-one vetor, of appropriate size.
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Clearly, always the following holds:(5) maxfTx j Ax � b;x integerg � maxfTx j Ax � bg:The above example, applied to the graph K3 shows that strit inequality an hold.This implies, that generally one will have strit inequality in the following dualityrelation:(6) maxfTx j Ax � b;x integerg � minfyT b j y � 0; yTA = T ; y integerg:A polytope P is alled integer if eah of its verties is an integer vetor. Clearly,if a polytope P = fx j Ax � bg is integer, then the LP-problem(7) maxfTx j Ax � bghas an integer optimum solution. So in that ase,(8) maxfTx j Ax � b;x integerg = maxfTx j Ax � bg:In Exerise 8.5 below we shall see that in a sense also the onverse holds.No polynomial-time algorithm is known to exist for solving an integer linear pro-gramming problem in general. In fat, the general integer linear programming prob-lem is NP-omplete, and it is onjetured that no polynomial-time algorithm exists.However, for speial lasses of integer linear programming problems, polynomial-time algorithms have been found. These lasses often ome from ombinatorial prob-lems, like the mathing problem above.

Exerises8.1. Let P be a polytope. Prove that the set onv.hull(P \ Zn) is again a polytope.8.2. Let P = fx j Ax � bg be a polyhedron, where A is a rational matrix. Show that theset onv.hull(P \ Zn) is again a polyhedron.8.3. LetG = (V;E) be a graph. Desribe the problem of �nding a vertex over of minimumardinality as an integer linear programming problem.8.4. Let G = (V;E) be a graph. Desribe the problem of �nding a lique (= ompletesubgraph) of maximum ardinality as an integer linear programming problem.8.5. Show that a polytope P is integer if and only if for eah vetor , the linear program-ming problem maxfTx j Ax � bg has an integer optimum solution.
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8.2. Totally unimodular matriesTotal unimodularity of matries turns out to form an important tool in studyinginteger vetors in polyhedra.A matrix A is alled totally unimodular if eah square submatrix of A has determi-nant equal to 0, +1, or �1. In partiular, eah entry of a totally unimodular matrixis 0, +1, or �1.A link between total unimodularity and integer linear programming is given bythe following fundamental result.Theorem 8.1. Let A be a totally unimodular m � n matrix and let b 2 Zm. Theneah vertex of the polyhedron(9) P := fx j Ax � bgis an integer vetor.Proof. Let A have order m � n. Let z be a vertex of P . By Theorem 2.2, thesubmatrix Az has rank n. So Az has a nonsingular n� n submatrix A0. Let b0 be thepart of b orresponding to the rows of A that our in A0.Sine, by de�nition, Az is the set of rows ai of A for whih aiz = bi, we knowA0z = b0. Hene z = (A0)�1b0. However, sine j detA0j = 1, all entries of the matrix(A0)�1 are integer. Therefore, z is an integer vetor.

As a diret orollary we have a similar result for polyhedra in general (not nees-sarily having verties). De�ne a polyhedron P to be integer if for eah vetor  forwhih(10) maxfTx j x 2 Pgis �nite, the maximum is attained by some integer vetor. So:(11) if P = fx j Ax � bg where A is an m�n matrix of rank n, then P is integerif and only if eah vertex of P is integer.Then we have:Corollary 8.1a. Let A be a totally unimodular m� n matrix and let b 2 Zm. Thenthe polyhedron(12) P := fx j Ax � bgis an integer polyhedron.
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Proof. Let x� be an optimum solution of (10). Choose integer vetors d0; d00 2 Znsuh that d0 � x� � d00. Consider the polyhedron(13) Q := fx 2 R n j Ax � b; d0 � x � d00g:So Q is bounded.Moreover, Q is the set of all vetors x satisfying
(14) 0� A�II

1Ax � 0� b�d0d00
1A :

Now the matrix here is again totally unimodular (this follows easily from the totalunimodularity of A). Hene by Theorem 8.1, Q is an integer polytope. This impliesthat the linear programming problem maxfTx j x 2 Qg is attained by some integervetor ~x.But then ~x is also an optimum solution for the original LP-problem maxfTx jAx � bg. Indeed, ~x satis�es A~x � b, as ~x belongs to Q. Moreover,(15) T ~x � Tx� = maxfTx j Ax � bg;implying that ~x is an optimum solution.
It follows that eah linear programming problem with integer data and totallyunimodular onstraint matrix has integer optimum primal and dual solutions:Corollary 8.1b. Let A be a totally unimodular m � n matrix, let b 2 Zm and let 2 Zn. Then both problems in the LP-duality equation:(16) maxfTx j Ax � bg = minfyT b j y � 0; yTA = Tghave integer optimum solutions (if the optima are �nite).Proof. Diretly from Corollary 8.1a, using the fat that with A also the matrix

(17) 0� �IAT�AT
1A

is totally unimodular.
Ho�man and Kruskal [1956℄ showed, as we shall see below, that the above property
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more or less haraterizes total unimodularity.To derive this result, de�ne an m� n matrix A to be unimodular if it has rank mand eah m�m submatrix has determinant equal to 0, +1, or �1. It is easy to seethat a matrix A is totally unimodular if and only if the matrix [I A℄ is unimodular.We follow the proof of Ho�man and Kruskal's result given by Veinott and Dantzig[1968℄. As a preparation one �rst shows:Theorem 8.2. Let A be an integer m� n matrix of rank m. Then A is unimodularif and only if for eah integer vetor b the polyhedron(18) P = fx j x � 0;Ax = bgis integer.Proof. Neessity. First suppose that A is unimodular. Let b be an integer vetor.Let D be the matrix
(19) D := 0� �IA�A

1A and f := 0� 0b�b
1A :

Note that the system x � 0; Ax = b is the same as Dx � f .Sine D has rank n, we know that for eah  2 R n , the linear programmingproblem(20) maxfTx j x � 0;Ax = bg = maxfTx j Dx � fgis attained by a vertex z of P (if the optima are �nite).Now onsider the matrix Dz. By de�nition, this is the submatrix of D onsistingof those rows Di of D whih have equality in Dz � f .Clearly, Dz ontains all rows of D that are in A and in �A. Sine A has rank m,this implies that Dz ontains a nonsingular n�n matrix B that fully ontains A andmoreover, part of �I. Sine A is unimodular, detB equals +1 or �1. Let f 0 be thepart of f orresponding to B. So Bz = f 0, and hene z = B�1f 0. As j detBj = 1, itfollows that z is an integer vetor.SuÆieny. Suppose that P = fx j x � 0;Ax = bg is integer, for eah hoie ofan integer vetor b. Let B be an m�m nonsingular submatrix of A. We must showthat detB equals +1 or �1.Without loss of generality, we may assume that B onsists of the �rst m olumnsof A.It suÆes to show that B�1v is an integer vetor for eah hoie of an integervetor v. (This follows from the fat that then B�1 itself is an integer matrix, and
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hene (detB)�1=det(B�1) is an integer. This implies that detB equals +1 or �1.)So let v be an integer vetor. Then there exists an integer vetor u 2 Rm suhthat(21) z := u+B�1v > 0:De�ne(22) b := Bz:So b = Bz = Bu+BB�1v = Bu+ v is an integer vetor.Let z0 arise from z by adding zero-omponents to z so as to obtain a vetor in R n .So
(23) z0 = � z0 � ;where 0 is the all-zero vetor in R n�m .Then z0 is a vertex of the polyhedron P (sine z0 2 P and sine there are n linearlyindependent rows in the matrix D for whih Dz � f holds with equality).So z0 is integer, and hene(24) B�1v = z � uis an integer vetor.

This gives the result of Ho�man and Kruskal [1956℄:Corollary 8.2a (Ho�man-Kruskal theorem). Let A be an integer m � n matrix.Then A is totally unimodular if and only if for eah integer vetor b the polyhedron(25) P = fx j x � 0;Ax � bgis integer.Proof. Neessity. Diretly from Corollary 8.1a.SuÆieny. Let P be an integer polyhedron, for eah hoie of an integer vetorb. We show that, for eah hoie of b 2 Zm , eah vertex z of the polyhedron(26) Q := fz j z � 0; [I A℄z = bg:is integer. Indeed, z an be deomposed as
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(27) z = � z0z00 � ;where z0 2 Rm and z00 2 R n. So z0 = b� Az00.Then z00 is a vertex of P . [This follows from the fat that if z00 would be equal to12(v + w) for two other points v; w in P , then
(28) z0 = b� Az00 = 12(b� Av) + 12(b� Aw):
Hene
(29) z = � z0z00 � = 12 � b� Avv �+ 12 � b� Aww � :
This ontradits the fat that z is a vertex of Q.℄So, by assumption, z00 is integer. Hene also z0 = b� Az00 is integer, and hene zis integer.So for eah hoie of b in Zm , the polyhedron Q is integer. Hene, by Theorem8.2, the matrix [I A℄ is unimodular. This implies that A is totally unimodular.
Exerises8.6. Show that an integer matrix A is totally unimodular if and only if for all integervetors b and , both sides of the linear programming duality equation

(30) maxfTx j x � 0;Ax � bg = minfyT b j y � 0; yTA � T g
are attained by integer optimum solutions x and y (if the optima are �nite).8.7. Give an example of an integer matrix A and an integer vetor b suh that the poly-hedron P := fx j Ax � bg is integer, while A is not totally unimodular.8.8. Let A be a totally unimodular matrix. Show that the olumns of A an be splitinto two lasses suh that the sum of the olumns in one lass, minus the sum of theolumns in the other lass, gives a vetor with entries 0, +1, and �1 only.8.9. Let A be a totally unimodular matrix and let b be an integer vetor. Let x be aninteger vetor satisfying x � 0;Ax � 2b. Show that there exist integer vetors x0 � 0and x00 � 0 suh that Ax0 � b, Ax00 � b and x = x0 + x00.
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8.3. Totally unimodular matries from bipartitegraphsLet A be the V � E inidene matrix of a graph G = (V;E) (f. (2)). The matrixA generally is not totally unimodular. E.g., if G is the omplete graph K3 on threeverties, then the determinant of A is equal to +2 or �2.However, the following an be proved:Theorem 8.3. Graph G is bipartite if and only if its inidene matrix A is totallyunimodular.Proof. SuÆieny. Let A be totally unimodular. Suppose G is not bipartite. ThenG ontains an odd iruit, say with verties v1; : : : ; vk and edges e1; : : : ; ek. The sub-matrix of A on the rows indexed by v1; : : : ; vk and the olumns indexed by e1; : : : ; ek,is of type

(31)
0BBBBBBBBB�

1 1 0 � � � � � � 0 00 1 1 � � � � � � 0 00 0 1 � � � � � � 0 0... ... ... . . . ... ...... ... ... . . . ... ...0 0 0 � � � � � � 1 11 0 0 � � � � � � 0 1

1CCCCCCCCCA ;

up to permutation of rows and olumns.It is not diÆult to see that matrix (31) has determinant 2. This ontradits thetotal unimodularity of A.Neessity. Let G be bipartite. Let B be a square submatrix of A, of order t � t,say. We show that detB equal 0 or �1 by indution on t. If t = 1, the statement istrivial.So let t > 1. We distinguish three ases.Case 1. B has a olumn with only 0's. Then detB=0.Case 2. B has a olumn with exatly one 1. In that ase we an write (possiblyafter permuting rows or olumns):
(32) B = � 1 bT0 B0 � ;
for some matrix B0 and vetor b, where 0 denotes the all-zero vetor in R t�1 . By theindution hypothesis, detB0 2 f0;�1g. Hene, by (32), detB 2 f0;�1g.
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Case 3. Eah olumn of B ontains exatly two 1's. Then, sine G is bipartite,we an write (possibly after permuting rows):

(33) B = � B0B00 � ;
in suh a way that eah olumn of B0 ontains exatly one 1 and eah olumn ofB00 ontains exatly one 1. So adding up all rows in B0 gives the all-one vetor, andalso adding up all rows in B00 gives the all-one vetor. Therefore, the rows of B arelinearly dependent, and hene detB=0.

As diret orollaries of this theorem, together with Corollary 8.1b, we obtain sometheorems of K}onig. First:Corollary 8.3a (K}onig's mathing theorem). Let G be a bipartite graph. Then themaximum ardinality of a mathing in G is equal to the minimum ardinality of avertex over in G.Proof. Clearly, the maximum annot be larger than the minimum. To see thatequality holds, let A be the V � E inidene matrix of G. Then by Corollary 8.1b,both optima in the LP-duality equation(34) maxf1Tx j x � 0;Ax � 1g = minfyT1 j y � 0; yTA � 1gare attained by integer optimum solutions x� and y�.Sine x� is an integer vetor satisfying x � 0;Ax � 1, x� is a f0; 1g vetor. LetM be the set of edges e of G for whih x�e = 1. Then M is a mathing, sine Ax� � 1holds, implying that for eah vertex v there is at most one edge e with x�e = 1.Moreover, the ardinality jM j of M satis�es jM j = 1Tx�. So jM j is equal to themaximum in (34).On the other hand, as vetor y� attains the minimum in (34), it should be a f0; 1gvetor. (If some omponent would be 2 or larger, we ould redue it to 1, withoutviolating yTA � 1 but dereasing yT1. This ontradits the fat that y� attains theminimum.)Let W be the set of verties of G for whih y�v = 1. Then W is a vertex over,sine y�TA � 1 holds, implying that for eah edge e of G there is at least one vertexv with y�v = 1. Moreover, the ardinality jW j of W satis�es jW j = y�T1. So jW j isequal to the minimum in (34).
One similarly derives:Corollary 8.3b (K}onig's edge over theorem). Let G be a bipartite graph. Then the
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maximum ardinality of a stable set in G is equal to the minimum ardinality of anedge over in G.Proof. Similar to the proof of Corollary 8.1a (now with AT instead of A).

One an also derive weighted versions of these two min-max relations. Let X besome �nite set and let w : X ! R be a `weight' funtion on X. The weight w(Y ) ofsome subset Y � X is, by de�nition:
(35) w(Y ) :=Xx2Y w(x):Then:Corollary 8.3. Let G = (V;E) be a bipartite graph and let w : V ! Z+ be a weightfuntion on E. Then:(i) The maximum weight of a mathing in G is equal to the minimum value ofPv2V f(v), where f ranges over all funtions f : V ! Z+ suh that f(u) +f(v) � w(fu; vg) for eah edge fu; vg of G;(ii) The minimum weight of an edge over in G is equal to the maximum value ofPv2V f(v), where f ranges over all funtions f : V ! Z+ suh that f(u) +f(v) � w(fu; vg) for eah edge fu; vg of G.
Proof. The statements are equivalent to both sides in(36) maxfwTx j x � 0;Ax � 1g = minfyT1 j y � 0; yTA � wgand in(37) minfwTx j x � 0;Ax � 1g = maxfyT1 j y � 0; yTA � wghaving integer optimum solutions. These fats follow from Theorem 8.3 and Corollary8.1b.

Similarly one has min-max relations for the maximum weight of a stable set andthe minimum weight of a vertex over in bipartite graphs (f. Exerises 8.10 and 8.11).Another orollary is as follows. For any �nite set X and any subset Y of X, de�nethe inidene vetor �Y 2 RX of Y as:(38) �Yx := 1 if x 2 Y ;:= 0 if x 62 Y .
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Now let G = (V;E) be a graph. The mathing polytope Pmathing(G) of G is, byde�nition, the onvex hull (in R E ) of the inidene vetors of all mathings in G.That is:(39) Pmathing(G) = onv.hullf�M jM mathing in Gg:Now with Theorem 8.3 we an give the linear inequalities desribing Pmathing(G):Corollary 8.3d. If G is bipartite, the mathing polytope Pmathing(G) of G is equalto the set of vetors x in R E satisfying:(40) (i) xe � 0 for eah e 2 E;(ii) Xe3v xe � 1 for eah v 2 V .

Proof. Let Q be the polytope de�ned by (40). Clearly, Pmathing(G) � Q, sine theinidene vetor �M of any mathing M satis�es (40).To see that Q � Pmathing(G), observe that Q satis�es(41) Q = fx j x � 0;Ax � 1g;where A is the inidene matrix of A.Sine A is totally unimodular (Theorem 8.3), we know that Q is integer, i.e., thateah vertex of Q is an integer vetor (Corollary 8.1a). So Q is the onvex hull of theinteger vetors ontained in Q. Now eah integer vetor in Q is equal to the inidenevetor �M of some mathing M in G. So Q must be ontained in Pmathing(G).
Again, one annot delete the bipartiteness ondition here, as for any odd iruitthere exists a vetor satisfying (40) but not belonging to the mathing polytopePmathing(G).Similarly, let the perfet mathing polytope Pperfet mathing(G) of G be de�ned asthe onvex hull of the inidene vetors of the perfet mathings in G. Then we have:Corollary 8.3e. If G is bipartite, the perfet mathing polytope Pperfet mathing(G) ofG is equal to the set of vetors x in R E satisfying:(42) (i) xe � 0 for eah e 2 E;(ii) Xe3v xe = 1 for eah v 2 V .

Proof. Similarly as above.
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Exerises8.10. Give a min-max relation for the maximum weight of a stable set in a bipartite graph.8.11. Give a min-max relation for the minimum weight of a vertex over in a bipartitegraph.8.12. Let G = (V;E) be a nonbipartite graph. Show that the inequalities (40) are notenough to de�ne the mathing polytope of G.8.13. The edge over polytope Pedge over(G) of a graph is the onvex hull of the inidenevetors of the edge overs in G. Give a desription of the linear inequalities de�ningthe edge over polytope of a bipartite graph.8.14. The stable set polytope Pstable set(G) of a graph is the onvex hull of the inidenevetors of the stable sets in G. Give a desription of the linear inequalities de�ningthe stable set polytope of a bipartite graph.8.15. The vertex over polytope Pvertex over(G) of a graph is the onvex hull of the inidenevetors of the vertex overs in G. Give a desription of the linear inequalities de�ningthe vertex over polytope of a bipartite graph.8.16. Derive from Corollary 8.3e that for eah doubly stohasti matrix M there existpermutation matries P1; : : : ; Pm and reals �1; : : : ; �m � 0 suh that �1+ � � �+�m = 1and

(43) M = �1P1 + � � ��mPm:
(A matrixM is alled doubly stohasti if eah row sum and eah olumn sum is equalto 1. A matrix P is alled a permutation matrix if it is a f0; 1g matrix, with in eahrow and in eah olumn exatly one 1.)

8.4. Totally unimodular matries from direted graphsA seond lass of totally unimodular matries an be derived from direted graphs.Let D = (V;A) be a direted graph. The V � A inidene matrix M of D is de�nedby:(44) Mv;a := +1 if a leaves v,:= �1 if a enters v,:= 0 otherwise.So eah olumn of M has exatly one +1 and exatly one �1, while all other entriesare 0.Now we have:
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Theorem 8.4. The inidene matrix M of any direted graph D is totally unimodu-lar.Proof. Let B be a square submatrix of M , of order t say. We prove that detB 2f0;�1g by indution on t, the ase t = 1 being trivial.Let t > 1. We distinguish three ases.Case 1. B has a olumn with only zeros. Then detB = 0.Case 2. B has a olumn with exatly one nonzero. Then we an write (up topermuting rows and olumns):
(45) B = � �1 bT0 B0 � ;
for some vetor b and matrix B0.Now by our indution hypothesis, detB0 2 f0;�1g, and hene detB 2 f0;�1g.Case 3. Eah olumn of B ontains two nonzeros. Then eah olumn of Bontains one +1 and one �1, while all other entries are 0. So the rows of B add upto an all-zero vetor, and hene detB = 0.

The inidene matrix M of a direted graph D = (V;A) relates to ows andirulations in D. Indeed, any vetor x 2 RA an be onsidered as a funtion de�nedon the ars of D. Then the ondition(46) Mx = 0is just the `ow onservation law'. That is, it says:
(47) Xa2Æout(v)x(a) = Xa2Æin(v)x(a) for eah v 2 V .
So we an derive from Theorem 8.4:Corollary 8.4a. Let D = (V;A) be a direted graph and let  : A! Z and d : A! Z.If there exists a irulation x on A with  � x � d, then there exists an integerirulation x on A with  � x � d.Proof. If there exists a irulation x with  � x � d, then the polytope(48) P := fx j  � x � d;Mx = 0gis nonempty. So it has at least one vertex x�. Then, by Corollary 8.1a, x� is aninteger irulation satisfying  � x� � d.
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In fat, one an derive Ho�man's irulation theorem| see Exerise 8.17. Anothertheorem that an be derived is the max-ow min-ut theorem.Corollary 8.4b (max-ow min-ut theorem). Let D = (V;A) be a direted graph,let s and t be two of the verties of D, and let  : A ! R+ be a `apaity' funtionon A. Then the maximum value of an s� t ow subjet to  is equal to the minimumapaity of an s� t ut.Proof. Sine the maximum learly annot exeed the minimum, it suÆes to showthat there exists an s � t ow x �  and an s � t ut, the apaity of whih is notmore than the value of x.LetM be the inidene matrix of D and letM 0 arise fromM by deleting the rowsorresponding to s and t. So the onditionM 0x = 0 means that the ow onservationlaw should hold in any vertex v 6= s; t.Let w be the row of M orresponding to vertex s. So wa = +1 if ar a leaves sand wa = �1 if ar a enters s, while wa = 0 for all other ars a.Now the maximum value of an s� t ow subjet to  is equal to(49) maxfwTx j 0 � x � ;M 0x = 0g:By LP-duality, this is equal to(50) minfyT  j y � 0; yT + zTM 0 � wg:The inequality system in (50) is:

(51) (yT zT )� I I0 M 0 � � (0 w):
The matrix here is totally unimodular, by Theorem 8.4.Sine w is an integer vetor, this implies that the minimum (50) is attained byinteger vetors y and z.Now de�ne(52) W := fv 2 V n fs; tg j zv � �1g [ fsg:So W is a subset of V ontaining s and not ontaining t.It suÆes now to show that(53) (Æout(W )) � yT ;sine yT  is not more than the maximum ow value (49).
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To prove (53) it suÆes to show that(54) if a = (u; v) 2 Æout(W ) then ya � 1.De�ne ~zr := �1, ~zs := 0, and ~zu = zu for all other u. Then yT + ~zTM � 0. Henefor all a = (u; v) 2 Æout(W ) one has ya+ ~zu� ~zv � 0, implying ya � ~zv � ~zu � 1. Thisproves (54).
Similarly as in Corollary 8.4a it follows that if all apaities are integers, thenthere exists a maximum integer ow.Next de�ne a matrix to be an interval matrix if eah entry is 0 or 1 and eah rowis of type(55) (0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0):

Corollary 8.4. Eah interval matrix is totally unimodular.Proof. Let M be an interval matrix and let B be a t � t submatrix of M . Then Bis again an interval matrix. Let N be the t� t matrix given by:

(56) N :=
0BBBBBBBBB�

1 �1 0 � � � � � � 0 00 1 �1 � � � � � � 0 00 0 1 � � � � � � 0 0... ... ... . . . ... ...... ... ... . . . ... ...0 0 0 � � � � � � 1 �10 0 0 � � � � � � 0 1

1CCCCCCCCCA :

Then the matrix N � BT is a f0;�1g matrix, with at most one +1 and at most one�1 in eah olumn.So it is a submatrix of the inidene matrix of some direted graph. Hene byTheorem 8.4, det(N � BT ) 2 f0;�1g. Moreover, detN = 1. So detB = detBT 2f0;�1g.
Exerises8.17. Derive Ho�man's irulation theorem (Theorem 4.6) from Theorem 8.4.8.18. Derive Dilworth's deomposition theorem (Theorem 7.5) from Theorem 8.4.8.19. Let D = (V;A) be a direted graph and let T = (V;A0) be a direted spanning treeon V .
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Let C be the A0 � A matrix de�ned as follows. Take a0 2 A0 and a = (u; v) 2 A,and de�ne Ca0;a := +1 if a0 ours in forward diretion in the u � v path in T andCa0;a := �1 if a0 ours in bakward diretion in the u � v path in T . For all othera0 2 A0 and a 2 A set Ca0;a := 0.(i) Prove that C is totally unimodular.(Hint: Use a matrix similar to matrix N in Corollary 8.4.)(ii) Show that interval matries and inidene matries of direted graphs are speialases of suh a matrix C.
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9. Multiommodity ows anddisjoint paths

9.1. IntrodutionThe problem of �nding a maximum ow from one `soure' s to one `sink' t is highlytratable. There is a very eÆient algorithm, whih outputs an integer maximumow if all apaities are integer. Moreover, the maximum ow value is equal tothe minimum apaity of a ut separating s and t. If all apaities are equal to 1,the problem redues to �nding ar-disjoint paths. Some diret transformations givesimilar results for vertex apaities and for vertex-disjoint paths.Often in pratie however, one is not interested in onneting only one pair ofsoure and sink by a ow or by paths, but several pairs of soures and sinks simulta-neously. One may think of a large ommuniation or transportation network, whereseveral messages or goods must be transmitted all at the same time over the samenetwork, between di�erent pairs of terminals. A reent appliation is the design ofvery large-sale integrated (VLSI) iruits, where several pairs of pins must be inter-onneted by wires on a hip, in suh a way that the wires follow given `hannels' andthat the wires onneting di�erent pairs of pins do not interset eah other.Mathematially, these problems an be formulated as follows. First, there is themultiommodity ow problem (or k-ommodity ow problem):(1) given: a direted graph G = (V;E); pairs (s1; t1); : : : ; (sk; tk) of verties of G, a`apaity' funtion  : E ! Q + , and `demands' d1; : : : ; dk;�nd: for eah i = 1; : : : ; k; an si� ti ow xi 2 Q E+ so that xi has value di and sothat for eah ar e of G:kXi=1 xi(e) � (e):
The pairs (si; ti) are alled the ommodities or the nets. (We assume si 6= ti through-out.)If we require eah xi to be an integer ow, the problem is alled the integermultiommodity ow problem or integer k-ommodity ow problem. (To distinguishfrom the integer version of this problem, one sometimes adds the adjetive frationalto the name of the problem if no integrality is required.)The problem has a natural analogue to the ase where G is undireted. We replaeeah undireted edge e = fv; wg by two opposite ars (v; w) and (w; v) and ask forows x1; : : : ; xk of values d1; : : : ; dk, respetively, so that for eah edge e = fv; wg ofG:
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(2) kXi=1 (xi(v; w) + xi(w; v)) � (e):
Thus we obtain the undireted multiommodity ow problem or undireted k-ommodityow problem. Again, we add integer if we require the xi to be integer ows.If all apaities and demands are 1, the integer multiommodity ow problem isequivalent to the ar- or edge-disjoint paths problem:(3) given: a (direted or undireted) graph G = (V;E), pairs (s1; t1); : : : ; (sk; tk) ofverties of G,�nd: pairwise edge-disjoint paths P1; : : : ; Pk where Pi is an si � ti path (i =1; : : : ; k).Related is the vertex-disjoint paths problem:(4) given: a (direted or undireted) graph G = (V;E), pairs (s1; t1); : : : ; (sk; tk) ofverties of G,�nd: pairwise vertex-disjoint paths P1; : : : ; Pk where Pi is an si � ti path (i =1; : : : ; k).We leave it as an exerise (Exerise 9.1) to hek that the vertex-disjoint pathsproblem an be transformed to the direted edge-disjoint paths problem.The (frational) multiommodity ow problem an be easily desribed as one ofsolving a system of linear inequalities in the variables xi(e) for i = 1; : : : ; k ande 2 E. The onstraints are the ow onservation laws for eah ow xi separately,together with the inequalities given in (1). Therefore, the frational multiommod-ity ow problem an be solved in polynomial time with any polynomial-time linearprogramming algorithm.In fat, the only polynomial-time algorithm known for the frational multiom-modity ow problem is any general linear programming algorithm. Ford and Fulker-son [1958℄ designed an algorithm based on the simplex method, with olumn genera-tion | see Setion 9.6.The following ut ondition trivially is a neessary ondition for the existene ofa solution to the frational multiommodity ow problem (1):(5) for eah W � V the apaity of ÆoutE (W ) is not less than the demand ofÆoutR (W );where R := f(s1; t1); : : : ; (sk; tk)g. However, this ondition is in general not suÆient,even not in the two simple ases given in Figure 9.1 (taking all apaities and demandsequal to 1).One may derive from the max-ow min-ut theorem that the ut ondition is
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suÆient if s1 = s2 = � � � = sk (similarly if t1 = t2 = � � � = tk) | see Exerise 9.3.Similarly, in the undireted ase a neessary ondition is the following ut ondi-tion:(6) for eah W � V; the apaity of ÆE(W ) is not less than the demand ofÆR(W )(taking R := ffs1; t1g; : : : ; fsk; tkgg). In the speial ase of the edge-disjoint pathsproblem (where all apaities and demands are equal to 1), the ut ondition reads:(7) for eah W � V; jÆE(W )j � jÆR(W )j:Figure 9.2 shows that this ondition again is not suÆient.
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However, Hu [1963℄ showed that the ut ondition is suÆient for the existeneof a frational multiommodity ow, in the undireted ase with k = 2 ommodities.He gave an algorithm that yields a half-integer solution if all apaities and demandsare integer. This result was extended by Rothshild and Whinston [1966℄. We disussthese results in Setion 9.2.Similar results were obtained by Okamura and Seymour [1981℄ for arbitrary k,provided that the graph is planar and all terminals si; ti are on the boundary of theunbounded fae | see Setion 9.5.
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The integer multiommodity ow problem is NP-omplete, even in the undiretedase with k = 2 ommodities and all apaities equal to 1, with arbitrary demandsd1; d2 (Even, Itai, and Shamir [1976℄). This implies that the undireted edge-disjointpaths problem is NP-omplete, even if jffs1; t1g; : : : ; fsk; tkggj = 2.In fat, the disjoint paths problem is NP-omplete in all modes (direted/undireted,vertex/edge disjoint), even if we restrit the graph G to be planar (D.E. Knuth (seeKarp [1975℄), Lynh [1975℄, Kramer and van Leeuwen [1984℄). For general diretedgraphs the ar-disjoint paths problem is NP-omplete even for k = 2 `opposite' om-modities (s; t) and (t; s) (Fortune, Hoproft, and Wyllie [1980℄).On the other hand, it is a deep result of Robertson and Seymour [1995℄ thatthe undireted vertex-disjoint paths problem is polynomially solvable for any �xednumber k of ommodities. Hene also the undireted edge-disjoint paths problem ispolynomially solvable for any �xed number k of ommodities.Robertson and Seymour observed that if the graph G is planar and all termi-nals si; ti are on the boundary of the unbounded fae, there is an easy `greedy-type'algorithm for the vertex-disjoint paths problem | see Setion 9.4.It is shown by Shrijver [1994℄ that for eah �xed k, the k disjoint paths problemis solvable in polynomial time for direted planar graphs. For the direted planar ar-disjoint version, the omplexity is unknown. That is, there is the following researhproblem:Researh problem. Is the direted ar-disjoint paths problem polynomially solvablefor planar graphs with k = 2 ommodities? Is it NP-omplete?Appliation 9.1: Multiommodity ows. Certain goods or messages must be trans-ported through the same network, where the goods or messages may have di�erent souresand sinks.This is a diret speial ase of the problems desribed above.Appliation 9.2: VLSI-routing. On a hip ertain modules are plaed, eah ontaininga number of 'pins'. Certain pairs of pins should be onneted by an eletrial onnetion(a `wire') on the hip, in suh a way that eah wire follows a ertain (very �ne) grid on thehip and that wires onneting di�erent pairs of pins are disjoint.Determining the routes of the wires learly is a speial ase of the disjoint paths prob-lem.Appliation 9.3: Routing of railway stok. An extension of Appliation 4.5 is asfollows. The stok of the railway ompany NS for the Amsterdam{Vlissingen line nowonsists of two types (1 and 2 say) of units, with a di�erent number of seats s1 and s2 anddi�erent length l1 and l2. All units (also of di�erent types) an be oupled with eah other.Again there is a shedule given, together with for eah segment a minimum number ofseats and a maximum length of the train. Moreover, the prie pi of buying any unit of typei is given.Now the ompany wishes to determine the minimum osts of buying units of the two
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types so that the shedule an be performed and so that the total ost is minimized.This an be onsidered as a `min-ost integer multiommodity irulation problem'.That is we make the direted graph D as in Appliation 4.5. For eah ar a orrespondingto a segment we de�ne d(a) to be the minimum number of seats that should be o�ered onthat segment, and (a) to be the maximum length possible at that segment. For all otherars a we de�ne d(a) := 0 and (a) :=1.One should �nd two integer-valued irulations f1 and f2 in D suh that(8) s1f1(a) + s2f2(a) � d(a) and l1f1(a) + l2f2(a) � (a)for eah ar a and suh that the sum P(p1f1(a) + p2f2(a)) is minimized, where a rangesover all `overnight' ars. Then fi(a) denotes the number of units of type i that should goon segment a.Again several variations are possible, inorporating for instane the kilometer osts andmaximum apaities of stok areas.
Exerises9.1. Show that eah of the following problems (a), (b), () an be redued to problems(b), (), (d), respetively:(a) the undireted edge-disjoint paths problem,(b) the undireted vertex-disjoint paths problem,() the direted vertex-disjoint paths problem,(d) the direted ar-disjoint paths problem.9.2. Show that the undireted edge-disjoint paths problem for planar graphs an be re-dued to the direted ar-disjoint paths problem for planar graphs.9.3. Derive from the max-ow min-ut theorem that the ut ondition (5) is suÆient forthe existene of a frational multiommodity ow if s1 = � � � = sk.9.4. Show that if the undireted graph G = (V;E) is onneted and the ut ondition (7)is violated, then it is violated by some W � V for whih both W and V nW indueonneted subgraphs of G.9.5. (i) Show with Farkas' lemma: the frational multiommodity ow problem (1) hasa solution if and only if for eah `length' funtion l : E ! Q + one has:

(9) kXi=1 di � distl(si; ti) �Xe2E l(e)(e):(Here distl(s; t) denotes the length of a shortest s� t path with respet to l.)(ii) Interprete the ut ondition (5) as a speial ase of this ondition.
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9.2. Two ommoditiesHu [1963℄ gave a diret ombinatorial method for the undireted two-ommodity owproblem and he showed that in this ase the ut ondition suÆes. In fat, he showedthat if the ut ondition holds and all apaities and demands are integer, there existsa half-integer solution. We �rst give a proof of this result due to Sakarovith [1973℄.Consider a graph G = (V;E), with ommodities fs1; t1g and fs2; t2g, a apaityfuntion  : E ! Z+ and demands d1 and d2.Theorem 9.1 (Hu's two-ommodity ow theorem). The undireted two-ommodityow problem, with integer apaities and demands, has a half-integer solution if andonly if the ut ondition (6) is satis�ed.Proof. Suppose that the ut ondition holds. Orient the edges of G arbitrarily,yielding the direted graph D = (V;A). For any a 2 A we denote by (a) theapaity of the underlying undireted edge.De�ne for any x 2 RA and any v 2 V :
(10) f(x; v) := Xa2Æout(v)x(a)� Xa2Æin(v)x(a):So f(x; v) is the `net loss' of x in vertex v.By the max-ow min-ut theorem there exists a funtion x0 : A! Z satisfying:(11) f(x0; s1) = d1; f(x0; t1) = �d1; f(x0; s2) = d2; f(x0; t2) = �d2;f(x0; v) = 0 for eah other vertex v,jx0(a)j � (a) for eah ar a of D:This an be seen by extending the undireted graph G by adding two new verties s0and t0 and four new edges fs0; s1g; ft1; t0g (both with apaity d1) and fs0; s2g; ft2; t0g(both with apaity d2) as in Figure 9.3.
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Then the ut ondition for the two-ommodity ow problem implies that theminimum apaity of any s0� t0 ut in the extended graph is equal to d1+ d2. Hene,by the max-ow min-ut theorem, there exists an integer-valued s0 � t0 ow in theextended graph of value d1 + d2. This gives x0 satisfying (11).Similarly, the max-ow min-ut theorem implies the existene of a funtion x00 :A! Z satisfying:(12) f(x00; s1) = d1; f(x00; t1) = �d1; f(x00; s2) = �d2; f(x00; t2) = d2;f(x00; v) = 0 for eah other vertex v,jx00(a)j � (a) for eah ar a of D.To see this we extend G with verties s00 and t00 and edges fs00; s1g; ft1; t00g (both withapaity d1) and fs00; t2g; fs2; t00g (both with apaity d2) (f. Figure 9.4).
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After this we proeed as above.Now onsider the vetors(13) x1 := 12(x0 + x00) and x2 := 12(x0 � x00):Sine f(x1; v) = 12(f(x0; v) + f(x00; v)) for eah v, we see from (11) and (12) that x1satis�es:(14) f(x1; s1) = d1; f(x1; t1) = �d1; f(x1; v) = 0 for all other v:So x1 gives a half-integer s1 � t1 ow in G of value d1. Similarly, x2 satis�es:
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(15) f(x2; s2) = d2; f(x2; t2) = �d2; f(x2; v) = 0 for all other v:So x2 gives a half-integer s2 � t2 ow in G of value d2.Moreover, x1 and x2 together satisfy the apaity onstraint, sine for eah edgea of D:(16) jx1(a)j+ jx2(a)j = 12 jx0(a) + x00(a)j+ 12 jx0(a)� x00(a)j= maxfjx0(a)j; jx00(a)jg � (a):(Note that 12 j� + �j+ 12 j�� �j = maxfj�j; j�jg for all reals �; �.)So we have a half-integer solution to the two-ommodity ow problem.

This proof also diretly gives a polynomial-time algorithm for �nding a half-integerow.The ut ondition is not enough to derive an integer solution, as is shown byFigure 9.5 (taking all apaities and demands equal to 1).
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Moreover, as mentioned, the undireted integer two-ommodity ow problem is NP-omplete (Even, Itai, and Shamir [1976℄).However, Rothshild and Whinston [1966℄ showed that an integer solution existsif the ut ondition holds, provided that the following Euler ondition is satis�ed:(17) Pe2Æ(v) (e) � 0 (mod 2) if v 6= s1; t1; s2; t2;� d1 (mod 2) if v = s1; t1;� d2 (mod 2) if v = s2; t2:(Equivalently, the graph obtained from G by replaing eah edge e by (e) paralleledges and by adding di parallel edges onneting si and ti (i = 1; 2), should be anEulerian graph.)Theorem 9.2. If all apaities and demands are integer and the ut ondition andthe Euler ondition are satis�ed, then the undireted two-ommodity ow problem hasan integer solution.
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Proof. If the Euler ondition holds, we an take x0 in the proof of Theorem 9.1 sothat the following further ondition is satis�ed:(18) x0(a) � (a) (mod 2) for eah a 2 A:To see this, let x0 satisfy (11) and let(19) A0 := fa 2 A j x0(a) 6� (a) (mod 2)g:Then eah vertex v is inident with an even number Æ of ars in A0, sine(20) Æ � f(x0; v)� f(; v) � 0 (mod 2);by (11) and (17). So if A0 6= ; then A0 ontains an (undireted) iruit. Inreasingand dereasing x0 by 1 on the ars along this iruit (depending on whether the aris forward or bakward), we obtain a funtion again satisfying (11). Repeating this,we �nally obtain a funtion x0 satisfying (18).Similarly, we an take x00 so that(21) x00(a) � (a) (mod 2) for eah a 2 A:Conditions (18) and (21) imply that x0(a) � x00(a) (mod 2) for eah a 2 A.Hene x1 = 12(x0 + x00) and x2 = 12(x0 � x") are integer vetors.

This proof diretly yields a polynomial-time algorithm for �nding the integersolution.
Exerises9.6. Derive from Theorem 9.1 the following max-biow min-ut theorem of Hu: Let G =(V;E) be a graph, let s1; t1; s2; t2 be distint verties, and let  : E ! Q + be aapaity funtion. Then the maximum value of d1+d2 so that there exist si� ti owsxi of value di (i = 1; 2), together satisfying the apaity onstraint, is equal to theminimum apaity of a ut both separating s1 and t1 and separating s2 and t2.9.7. Derive from Theorem 9.1 that the ut ondition suÆes to have a half-integer solu-tion to the undireted k-ommodity ow problem (with all apaities and demandsinteger), if there exist two verties u and w so that eah ommodity fsi; tig intersetsfu;wg. (Dinits (f. Adel'son-Vel'ski��, Dinits, and Karzanov [1975℄).)9.8. Derive the following from Theorem 9.2. Let G = (V;E) be a Eulerian graph andlet s1; t1; s2; t2 be distint verties. Then the maximum number t of pairwise edge-disjoint paths P1; : : : ; Pt, where eah Pj onnets either s1 and t1 or s2 and t2, is
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equal to the minimum ardinality of a ut both separating s1 and t1 and separatings2 and t2.

9.3. Disjoint paths in ayli direted graphsFortune, Hoproft, and Wyllie [1980℄ showed that the vertex-disjoint paths problemis NP-omplete for direted graphs, even when �xing the number of paths to k = 2.On the other hand they proved that if D is ayli, then for eah �xed k, the kvertex-disjoint paths problem an be solved in polynomial time. (A direted graph isalled ayli if it does not ontain any direted iruit.)The algorithm is ontained in the proof of the following theorem:Theorem 9.3. For eah �xed k there exists a polynomial-time algorithm for the kvertex-disjoint paths problem for ayli direted graphs.Proof. Let D = (V;A) be an ayli digraph and let s1; t1; : : : ; sk; tk be verties ofD, all distint. In order to solve the vertex-disjoint paths problem we may assumethat eah si is a soure and eah ti is a sink. (Here a soure is a vertex with indegree0, and a sink is a vertex with outdegree 0.)Make an auxiliary digraph D0 = (V 0; A0) as follows. The vertex set V 0 onsists ofall k-tuples (v1; : : : ; vk) of distint verties of D. In D0 there is an ar from (v1; : : : ; vk)to (w1; : : : ; wk) if and only if there exists an i 2 f1; : : : ; kg suh that:(22) (i) vj = wj for all j 6= i;(ii) (vi; wi) is an ar of D;(iii) for eah j 6= i there is no direted path in D from vj to vi.Now the following holds:(23) D ontains k vertex-disjoint direted paths P1; : : : ; Pk suh that Pi runsfrom si to ti (i = 1; : : : ; k)() D0 ontains a direted path P from (s1; : : : ; sk) to (t1; : : : ; tk).To see =), let Pi follow the verties vi;0; vi;1; : : : ; vi;pi for i = 1; : : : ; k. So vi;0 = siand vi;pi = ti for eah i. Choose j1; : : : ; jk suh that 0 � ji � pi for eah i and suhthat:(24) (i) D0 ontains a direted path from (s1; : : : ; sk) to (v1;j1; : : : ; vk;jk),(ii) j1 + � � �+ jk is as large as possible.Let I := fi j ji < pig. If I = ; we are done, so assume I 6= ;. Then by thede�nition of D0 and the maximality of j1+ � � �+ jk there exists for eah i 2 I an i0 6= i
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suh that there is a direted path in D from vi0;ji0 to vi;ji . Sine ti0 is a sink we knowthat vi0;ji0 6= si0 and that hene i0 belongs to I. So eah vertex in fvi;ji j i 2 Ig isend vertex of a direted path in D starting at another vertex in fvi;ji j i 2 Ig. Thisontradits the fat that D is ayli.To see (= in (23), let P be a direted path from (s1; : : : ; sk) to (t1; : : : ; tk) in D0.Let P follow the verties (v1;j; : : : ; vk;j) for j = 0; : : : ; t. So vi;0 = si and vi;t = tifor i = 1; : : : ; k. For eah i = 1; : : : ; k let Pi be the path in D following vi;j forj = 0; : : : ; t, taking repeated verties only one. So Pi is a direted path from si to ti.Moreover, P1; : : : ; Pk are pairwise disjoint. For suppose that P1 and P2 (say) havea vertex in ommon. That is v1;j = v2;j0 for some j 6= j0. Without loss of generality,j < j0 and v1;j 6= v1;j+1. By de�nition of D0, there is no direted path in D from v2;jto v1;j. However, this ontradits the fats that v1;j = v2;j0 and that there exists adireted path in D from v2;j to v2;j0 .

One an derive from this that for �xed k also the k ar-disjoint paths problem issolvable in polynomial time for ayli direted graphs (Exerise 9.9).Appliation 9.4: Routing airplanes. This appliation extends Appliation 4.1. Thedata are similar, exept that legal rules now presribe the exat day of the oming week atwhih ertain airplanes should be at the home basis for maintenane.Again at Saturday 18.00h the ompany determines the exat routing for the next week.One an make the same direted graph as in Appliation 4.1. Now however it is presribedthat some of the paths Pi should start at a ertain (; t) (where  is the ity where airplaneai will be �rst after Saturday 18.00h) and that they should traverse the ar orrespondingto maintenane on a presribed day of the oming week (for instane Wednesday).Now if for eah airplane ai whih should be home for maintenane next week we an�nd this path Pi suh that it traverses the for that plane required maintenane ar and insuh a way that paths found for di�erent airplanes are ar disjoint, then it is easy to seethat these paths an be extended to paths P1; : : : ; Pn suh that eah ar is traversed exatlyone.As the direted graph D is ayli, the problem an be solved with the algorithmdesribed in the proof of Theorem 9.3, provided that the number of airplanes that shouldbe home for maintenane the oming week is not too large.
Exerises9.9. Derive from Theorem 9.3 that for eah �xed k the k ar-disjoint paths problem issolvable in polynomial time for ayli direted graphs.9.10. Show that for �xed k, the following problem is solvable in polynomial time:

(25) given:an ayli direted graph D = (V;A), pairs s1; t1; : : : ; sk; tk ofverties, and subsets A1; : : : ; Ak of A;�nd:pairwise ar-disjoint direted paths P1; : : : ; Pk, where Pi runs fromsi to ti and traverses only ars in Ai (i = 1; : : : ; k).
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9.4. Vertex-disjoint paths in planar graphsFinding disjoint paths in planar graphs is of interest not only for planar ommunia-tion or transportation networks, but espeially also for the design of VLSI-iruits.The routing of wires should follow ertain hannels on layers of the hip. On eahlayer, these hannels form a planar graph.Unfortunately, even for planar graphs disjoint paths problems are in general hard.However, for some speial ases, polynomial-time algorithms have been found. Suhalgorithms an be used, for example, as subroutines when solving any hard problemby deomposition. In Setions 9.4 and 9.5 we disuss some of these algorithms.LetG = (V;E) be a planar graph, embedded in the plane R 2 and let fs1; t1g; : : : ; fsk; tkgbe pairwise disjoint pairs of verties. Robertson and Seymour [1986℄ observed thatthere is an easy greedy-type algorithm for the vertex-disjoint paths problem if allverties s1; t1; : : : ; sk; tk belong to the boundary of one fae I of G. That is, thereexists a polynomial-time algorithm for the following problem:19(26) given: a planar graphG = (V;E) embedded in R 2 , a fae I ofG, pairs fs1; t1g; : : : ; fsk; tkgof verties on bd(I),�nd: pairwise vertex-disjoint paths P1; : : : ; Pk in G, where Pi onnets si and ti(i = 1; : : : ; k).In fat, we may assume without loss of generality that I is the unbounded fae.Let us �rst desribe the simple intuitive idea of the method, by explaining thereursive step in the `ideal' ase where G is onneted and where bd(I) is a simpleiruit.We say that fs; tg and fs0; t0g ross (around I) if s; s0; t; t0 are distint and ourin this order ylially around bd(I), lokwise or anti-lokwise (see Figure 9.6).
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Figure 9.6

If any fsi; tig and fsj; tjg ross around I (for some i 6= j), problem (26) learlyhas no solution. So we may assume that no pair of ommodities rosses. This impliesthat there exists an i so that at least one of the si � ti paths along bd(I) does notontain any sj or tj for j 6= i: just hoose i so that the shortest si � ti path alongbd(I) is shortest among all i = 1; : : : ; k.19bd(I) denotes the boundary of I.
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Without loss of generality, i = k. Let Q be the shortest sk � tk path along bd(I).Delete from G all verties in Q, together with all edges inident with them. De-note the new graph by G0. Next solve the vertex-disjoint paths problem for inputG0; fs1; t1g; : : : ; fsk�1; tk�1g. If this gives a solution P1; : : : ; Pk�1, then P1; : : : ; Pk�1; Qforms a solution to the original problem (trivially).If the redued problem turns out to have no solution, then the original problemalso has no solution. This follows from the fat that if P1; : : : ; Pk�1; Pk would bea solution to the original problem, we may assume without loss of generality thatPk = Q, sine we an `push' Pk `against' the border bd(I). Hene P1; : : : ; Pk�1 wouldform a solution to the redued problem.Although this might give a suggestive sketh of the algorithm, it is not ompletelyaurate, sine the ideal situation need not be preserved throughout the iterationproess. Even if we start with a highly onneted graph, after some iterations theredued graph might have ut verties or be disonneted. So one should be morepreise.Let us all a sequene (v1; : : : ; vn) of verties of a onneted planar graphG a bordersequene if it is the sequene of verties traversed when following the boundary of Glokwise. Thus the graph in Figure 9.7 has border sequene (a; b; ; d; e; ; f; ; g; b).
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Figure 9.7

In fat, eah yli permutation of a border sequene is again a border sequene.Note that no border sequene will ontain : : : r : : : s : : : r : : : s : : : for any two dis-tint verties. Hene for any two verties s and t on the boundary of G there is aunique sequene(27) P (s; t) = (s; w1; : : : ; wt; t)with the properties that P (s; t) is part of a border sequene of G and that w1; : : : ; wtall are distint from s and t. Trivially, the verties in P (s; t) ontain an s� t path.We say that two disjoint pairs fs; tg and fs0; t0g ross (aroundG) if : : : s : : : s0 : : : t : : : t0 : : :or : : : s : : : t0 : : : t : : : s0 : : : our in some border sequene of G. So the following ross-freeness ondition is a neessary ondition for (26) to have a solution:
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(28) No two disjoint ommodities fsi; tig; fsj; tjg ross (around the same om-ponent of G).Now the algorithm an be desribed more preisely as follows. First hek the ross-freeness ondition. If it is violated, (26) has no solution. If it is satis�ed, apply thefollowing iterative step:(29) Chek for eah i = 1; : : : ; k if si and ti belong to the same omponent of G.If not, the problem has no solution.If so, hoose i 2 f1; : : : ; kg for whih the shortest among P (si; ti) andP (ti; si) is as short as possible. Without loss of generality, i = k andP (sk; tk) is shortest. Take for Pk any sk � tk path using the verties inP (sk; tk) only.If k = 1, stop. If k > 1, let G0 be the graph obtained from G by deletingall verties ourring in P (sk; tk). Repeat this iterative step for G0 andfs1; t1g; : : : ; fsk�1; tk�1g.If it gives a solution P1; : : : ; Pk�1, then P1; : : : ; Pk�1; Pk is a solution tothe original problem. If it gives no solution, the original problem has nosolution.We leave it as a (tehnial) exerise to show the orretness of this algorithm. (Theorretness an be derived also from the proof of Theorem 9.4 below.) It learly isa polynomial-time method. Reently, Ripphausen-Lipa, Wagner, and Weihe [1997℄found a linear-time algorithm.Moreover, the method implies a haraterization by means of a ut ondition forthe existene of a solution to (26). A simple losed urve C in R 2 is by de�nitiona one-to-one ontinuous funtion from the unit irle to R 2 . We will identify thefuntion C with its image.We say that C separates the pair fs; tg if eah urve onneting s and t intersetsC. Now the following ut ondition learly is neessary for the existene of a solutionto the vertex-disjoint paths problem in planar graphs:(30) eah simple losed urve in R 2 intersets G at least as often as it separatespairs fs1; t1g; : : : ; fsk; tkg.Robertson and Seymour [1986℄ showed with this method:Theorem 9.4. Let G = (V;E) be a planar graph embedded in R 2 and let fs1; t1g; : : : ; fsk; tkgbe pairs of verties on the boundary of G. Then there exist pairwise vertex-disjointpaths P1; : : : ; Pk where Pi onnets si and ti (i = 1; : : : ; k) if and only if the ross-freeness ondition (28) and the ut ondition (30) hold.Proof. Neessity of the onditions is trivial. We show suÆieny by indution on k,
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the ase k = 0 being trivial. Let k > 1 and let (28) and (30) be satis�ed. Supposepaths P1; : : : ; Pk as required do not exist. Trivially, fs1; t1g; : : : ; fsk; tkg are pairwisedisjoint (otherwise there would exist a simple losed urve C with jC \ Gj = 1 andinterseting two ommodities, thus violating the ut ondition).The indution is based on the iterative step (29). To simplify the argument, we�rst show that we may assume that G is 2-onneted.First, we may assume that G is onneted, as we an deompose G into its ompo-nents. (If some si and ti would belong to di�erent omponents, there trivially existsa losed urve C violating the ut ondition.)Knowing that G is onneted, the ase k = 1 is trivial. So we may assume thatk � 2. Suppose G ontains a ut vertex v. We may assume that eah omponentof G � v intersets fs1; t1; : : : ; sk; tkg (otherwise we ould delete it from G withoutviolating the ut ondition). This implies that we an extend G planarly by an edgee onneting some verties u0 and u00 in di�erent omponents of G� v, in suh a waythat u0 2 fsi0; ti0g and u00 2 fsi00 ; ti00g for some i0 6= i00 and that s1; t1; : : : ; sk; tk are stillon the boundary of G[ e. The ut ondition holds for G[ e (a fortiori), but pairwisevertex-disjoint si� ti paths (i = 1; : : : ; k) do not exist in G[ e (sine we annot makeuse of edge e, as i0 6= i00). Repeating this we end up with a 2-onneted graph.If G is 2-onneted, the boundary of G is a simple iruit. Now we apply the itera-tive step (29). That is, we �nd, without loss of generality, that the path P (sk; tk) fromsk to tk lokwise along the boundary of G does not ontain any s1; t1; : : : ; sk�1; tk�1.Let Pk be the orresponding sk � tk path.Again, let G0 be the graph obtained from G by deleting all verties in Pk, togetherwith all edges inident with them. Let I and I 0 denote the unbounded faes of G andG0, respetively (we take I and I 0 as open regions). So I � I 0.Now G0 does not ontain pairwise vertex-disjoint si � ti paths (i = 1; : : : ; k � 1),sine by assumption G does not ontain pairwise vertex-disjoint si � ti paths (i =1; : : : ; k). Hene, by the indution hypothesis, there exists a simple losed urve Cwith jC \G0j smaller than the number of pairs fs1; t1g; : : : ; fsk�1; tk�1g separated byC. We may assume that C traverses eah of the onneted regions I 0; I and I 0 n Iat most one. That is, eah of C \ I 0; C \ I and C \ (I 0 n I) is onneted (possiblyempty).If C\(I 0nI) is empty, then C\G = C\G0 and hene C violates the ut onditionalso for G. If C \ I is empty, then C does not separate any fsi; tig exept for thoseinterseted by C. Then C annot violate the ut ondition for G0.If both C\I and C\(I 0nI) are nonempty, we may assume that jC\Gj = jC\G0j+1and that C separates fsk; tkg (sine eah fae of G ontained in I 0 is inident with atleast one vertex on Pk). It follows that C violates the ut ondition for G.Appliation 9.5: VLSI-routing. The VLSI-routing problem asks for the routes thatwires should make on a hip so as to onnet ertain pairs of pins and so that wires on-neting di�erent pairs of pins are disjoint.Sine the routes that the wires potentially an make form a graph, the problem to be
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Figure 9.8
solved an be modeled as a disjoint paths problem. Consider an example of suh a problemas in Figure 9.8 | relatively simple, sine generally the number of pins to be onnetedis of the order of several thousands. The grey areas are `modules' on whih the pins areloated. Points with the same label should be onneted.
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Figure 9.9
In the example, the graph is a `grid graph', whih is typial in VLSI-design sine itfailitates the manufaturing of the hip and it ensures a ertain minimum distane betweendisjoint wires. But even for suh graphs the disjoint paths problem is NP-omplete.Now the following two-step approah was proposed by Pinter [1983℄. First hoose the`homotopies' of the wires; for instane like in Figure 9.9. That is, for eah i one hooses aurve Ci in the plane onneting the two verties i, in suh a way that they are pairwisedisjoint, and suh that the modules are not traversed (Figure 9.9).
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Seond, try to �nd disjoint paths P1; : : : ; Pk in the graph suh that Pi is homotopi toCi, in the spae obtained from the plane by taking out the retangles forming the modules;that is, the paths Pi should be obtained from the urves Ci by shifting Ci over the surfae,but not over any module, �xing the end points of the urve. In Figure 9.10 suh a solutionis given.
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Figure 9.10
It was shown by Leiserson and Maley [1985℄ that this seond step an be performedin polynomial time. So the hard part of the problem is the �rst step: �nding the righttopology of the layout.Cole and Siegel [1984℄ proved a Menger-type ut theorem haraterizing the existene ofa solution in the seond step. That is, if there is no solution for the disjoint paths problemgiven the homotopies, there is an `oversaturated' ut: a urve D onneting two holes inthe plane and interseting the graph less than the number of times D neessarily rossesthe urves Ci.This an be used in a heuristi pratial algorithm for the VLSI-routing problem: �rstguess the homotopies of the solution; seond try to �nd disjoint paths of the guessed ho-motopies; if you �nd them you an stop; if you don't �nd them, the oversaturated ut willindiate a bottlenek in the hosen homotopies; amend the bottlenek and repeat.Similar results hold if one wants to pak trees instead of paths (whih is generallythe ase at VLSI-design), and the result an be extended to any planar graph (Shrijver[1991℄). As a theoretial onsequene one has that for eah �xed number of modules, theplanar VLSI-routing problem an be solved in polynomial time.

Exerises9.11. Extend the algorithm and Theorem 9.4 to the direted ase.9.12. Extend the algorithm and Theorem 9.4 to the following vertex-disjoint trees problem:
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(31) given:a planar graph G = (V;E), sets R1; : : : ; Rk of verties on theboundary of G,�nd:pairwise vertex-disjoint subtrees T1; : : : ; Tk of G so that Ti oversRi (i = 1; : : : ; k):9.13. Extend the algorithm and Theorem 9.4 to the following problem:
(32) given:a planar graph G = (V;E), pairs fs1; t1g; : : : ; fsk; tkg of vertieson the boundary of G, subgraphs G1; : : : ; Gk of G,�nd:pairwise vertex-disjoint paths P1; : : : ; Pk where Pi onnets si andti and where Pi is in Gi (i = 1; : : : ; k):9.14. (i) Redue the edge-disjoint paths problem where all ommodities are on the bound-ary of a planar graph so that the ross-freeness ondition is satis�ed, to thevertex-disjoint paths problem(26).(ii) Show that the ut ondition (7) is suÆient in this ase of the edge-disjointpaths problem.

9.5. Edge-disjoint paths in planar graphsThe trivially neessary ross-freeness ondition for the ommodities if they are onthe boundary of a planar graph, turned out to be of great help in handling thevertex-disjoint paths problem: it gives an ordering of the ommodities, allowing us tohandling them one by one.As we saw in Exerise 9.14, the edge-disjoint analogue an be handled in the sameway if the ross-freeness ondition holds. In that ase, the ut ondition (7) is againsuÆient. However, Figure 9.5 shows that without ross-freeness, the ut onditionis not suÆient. That simple example shows that we may not hope for many otherinteresting ases where the ut ondition is suÆient.In fat, the omplexity of the edge-disjoint paths problem for planar graphs withall ommodities on the boundary, is open. Therefore, we put:Researh problem. Is the undireted edge-disjoint paths problem polynomiallysolvable for planar graphs with all ommodities on the boundary? Is itNP-omplete?Okamura and Seymour [1981℄ showed that the problem is polynomially solvableif we pose the following Euler ondition:(33) the graph (V;E [ ffs1; t1g; : : : ; fsk; tkgg) is Eulerian.(We have parallel edges if some fsi; tig oinide or form an edge of G.) Moreover,they showed that with the Euler ondition, the ut ondition is a suÆient ondition.(Thus we have an analogue to Rothshild and Whinston's theorem (Theorem 9.2).)
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We here observe that the Euler ondition (33) implies that for eah U � V :(34) jÆE(U)j � number of i with jU \ fsi; tigj = 1 (mod 2).

Theorem 9.5 (Okamura-Seymour theorem). Let G = (V;E) be a planar graph andlet fs1; t1g; : : : ; fsk; tkg be pairs of verties on the boundary of G suh that the Eulerondition (33) holds. Then the edge-disjoint paths problem has a solution if and onlyif the ut ondition holds.Proof. Neessity of the ut ondition being trivial, we show suÆieny. The utondition implies that jRj � jEj (assuming that eah r 2 R onsists of two distintverties), sine
(35) 2jRj =Xv2V degR(v) �Xv2V degE(v) = 2jEj:
So we an onsider a ounterexample with 2jEj � jRj minimal. Then(36) G is 2-onneted.Indeed, if G is disonneted, we an deal with the omponents separately. Supposenext that G is onneted and has a ut vertex v. We may assume that for no r =st 2 R, the verties s and t belong to di�erent omponents of G� v, sine otherwisewe an replae r by sv and vt, without violating the Euler or ut ondition. For anyomponent K of G � v onsider the graph indued by K [ fvg. Again, the Eulerand ut onditions hold (with respet to those nets ontained in K [ fvg). So by theminimality of 2jEj � jRj, we know that paths as required exist in K [ fvg. As this isthe ase for eah omponent of G � v, we have paths as required in G. This proves(36).Let C be the iruit formed by the outer boundary of G. If some r 2 R has thesame ends as some edge e of G, we an delete e from G and r from R, and obtain asmaller ounterexample. So no suh r exists.Call a subset X of V tight if dE(X) = dR(X). Then(37) there exists a tight subsetX of V suh that ÆE(X) intersets EC in preiselytwo edges.Indeed, if there is no tight set X with ; 6= X 6= V , we an hoose an edge e 2 EC,and replae E and R by E nfeg and R[feg. This does not violate the ut ondition,and hene would give a smaller ounterexample.So there exists a tight proper nonempty subset X of V . Choose X with jÆE(X)jminimal. Then G[X℄ and G�X are onneted. For suppose that (say) G[X℄ is not
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onneted. Let K be a omponent of G[X℄. Then(38) jÆE(K)j+ jÆE(X nK)j � jÆR(K)j+ jÆR(X nK)j � jÆR(X)j= jÆE(X)j = jÆE(K)j+ jÆE(X nK)j.So K is tight, while jÆE(K)j < jÆE(X)j, ontraditing the minimality assumption.Hene G[X℄ and G�X are onneted, implying (37).Choose a set X as in (37) with jXj minimal. Let e be one of the two edges in ECthat belong to ÆE(X). Say e = uw with u 62 X and w 2 X.Sine dR(X) = dE(X) � 2, we know ÆR(X) 6= ;. For eah r 2 ÆR(X), let sr bethe vertex in r \X, and tr the vertex in r nX. Choose r 2 ÆR(X) suh that tr is aslose as possible to u in the graph C �X.Sine sr and tr are nonadjaent, we know that fsr; trg 6= fu;wg. So we anhoose v 2 fu;wg n fsr; trg. Let R0 := (R n frg) [ fsrv; vtrg. Trivially the Eulerondition is maintained. We show that also the ut ondition is maintained, yieldinga ontradition as 2jEj � jR0j < 2jEj � jRj and as a solution for R0 yields a solutionfor R.To see that the ut ondition is maintained, suppose to the ontrary that there isa Y � V satisfying(39) dE(Y ) < dR0(Y ):By hoosing Y under the additional ondition that dE(Y ) is as small as possible, wehave that G[Y ℄ and G�Y are onneted. So ÆE(Y ) has two edges on C. By symmetrywe an assume that tr 62 Y . By the Euler ondition, (39) implies dE(Y ) � dR0(Y )�2.So(40) dR0(Y ) � dE(Y ) + 2 � dR(Y ) + 2 � dR0(Y ):Hene we have equality throughout. So ÆR0(Y ) ontains both srv and vtr, that is,sr; tr 62 Y and v 2 Y . Moreover, dE(Y ) = dR(Y ).By the hoie of r, there is no pair r0 in R onneting X n Y and Y n X (sinethen tr0 2 Y nX, and hene tr0 is loser than tr to u in C �X). This implies(41) dR(X \ Y ) + dR(X [ Y ) = dR(X) + dR(Y ):Moreover,(42) dE(X \ Y ) + dE(X [ Y ) � dE(X) + dE(Y ):As the ut ondition holds for X \ Y and X [ Y , we have equality in (42), andtherefore X \ Y is tight. Sine sr 2 X n Y , we know jX \ Y j < jXj. So by the
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minimality of X we have X \Y = ;. So w 62 Y , hene u = v 2 Y . Then edge e = uwonnets X n Y and Y nX, ontraditing equality in (42).

Clearly, this method gives a polynomial-time algorithm for �nding the paths,sine we an determine a minimum-ardinality ut ontaining e0 and e00, for any pairof edges e0; e00 on the boundary of G (f. Exerise 9.16).Beker and Mehlhorn [1986℄ and Matsumoto, Nishizeki, and Saito [1985℄ gaveimplementations with running time of order O(jEj2). Reently, Wagner and Weihe[1995℄ found a linear-time algorithm.
Exerises9.15. Let G = (V;E) be a �nite subgraph of the retangular grid graph in R 2 , suh thateah bounded fae of G is a square of area 1. Let fs1; t1g; : : : ; fsk; tkg be pairs ofverties on the boundary of G suh that eah vertex of (V;E\ffs1; t1g; : : : ; fsk; tkgg)has degree even and at most 4. A ut is alled a 1-bend ut if it is the set of edgesrossed by the union of some horizontal and some vertial half-line with one ommonend vertex.Show that the ut ondition holds whenever it holds for all 1-bend uts.9.16. Let G be a planar graph and let e0 and e00 be edges on the boundary of G. Reduethe problem of �nding a minimum-ardinality ut ontaining e0 and e00 to a shortestpath problem.
9.6. A olumn generation tehnique for multiom-modity owsThe frational multiommodity ow problem (1) asks for ows x1; : : : ; xk of givenvalues d1; : : : ; dk suh that the total amount of ow through any ar e does notexeed the apaity of e. So it amounts to �nding a solution to the following systemof linear inequalities in the kjEj variables xi(e) (i = 1; : : : ; k; e 2 E):
(43) (i) Xe2Æout(v)xi(e)� Xe2Æin(v)xi(e) = 0 (i = 1; : : : ; k; v 2 V; v 6= si; ti);(ii) Xe2Æout(si)xi(e)� Xe2Æin(si) xi(e) = di (i = 1; : : : ; k);

(iii) kXi=1 xi(e) � (e) (e 2 E);(iv) xi(e) � 0 (i = 1; : : : ; k; e 2 E).
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Thus any linear programming method an solve the multiommodity ow problem.In partiular, the problem is solvable in polynomial time.Sine for eah �xed i = 1; : : : ; k, a solution xi to (43) is an si � ti ow, we andeompose xi as a nonnegative ombination of si�ti paths. That is, there exist si�tipaths Pi1; : : : ; Pini and nonnegative reals zi1; : : : ; zini satisfying:
(44) (i) niXj=1 zijX Pij (e) = xj(e) (e 2 E);

(ii) niXj=1 zij = di:
Here X P denotes the inidene vetor of P in Q E , that is, X P (e) = 1 if P traversese, and = 0 otherwise.Hene the multiommodity ow problem amounts to �nding paths Pij and non-negative reals zij, where Pij is an si � ti path, suh that:
(45) (i) niXj=1 zij = di (i = 1; : : : ; k);

(ii) kXi=1 niXj=1 zijX Pij (e) � (e) (e 2 E):
This formulation applies to both the direted and the undireted problems.Solving (45) again amounts to solving a system of linear inequalities, albeit withan enormous number of variables: one variable for eah i = 1; : : : ; k and eah si � tipath.Ford and Fulkerson [1958℄ showed that this large number of variables an beavoided when solving the problem with the simplex method. The variables an behandled impliitly by using a olumn generation tehnique as follows.First onvert the problem to a maximization problem. To this end, add, for eahi = 1; : : : ; k, a vertex s0i and an ar s0isi, with apaity equal to di. Then we andelete the onstraint (45)(i), and maximize Pi;j zij over the remaining onstraints(replaing si by s0i). If the maximum value is equal to Pi di we have a solution to(45). If the maximum value is less, then (45) has no nonnegative solution zij.Having this redution, we see that the problem is equivalent to the following LP-problem. Let P be the olletion of all si � ti paths for all i = 1; : : : ; k. Then:
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(46) maximize: XP2P zPsubjet to: (i) XP2P zPX P (e) � (e) (e 2 E);(ii) zP � 0 (P 2 P):
When solving (46) with the simplex method we �rst should add a slak variable zefor eah e 2 E. Thus if A denotes the E � P matrix with the inidene vetors ofall paths in P as its olumns (in some order) and w is the vetor in R P � R E withwP = 1 (P 2 P) and we = 0 (e 2 E), we solve:
(47) maximize: wT zsubjet to: [A I℄z = ;z � 0:Now eah simplex tableau is ompletely determined by the set of variables in theurrent basis. So knowing subsets P 0 of P and E 0 of E, giving the indies of variablesin the basis, is enough to know impliitly the whole tableau. Note that jP 0j+jE 0j = E.So although the tableau is exponentially large, it an be represented in a onise way.Let B be the matrix onsisting of those olumns of [A I℄ orresponding to P 0and E 0. So the rows of B are indexed by E and the olumns by P 0 [ E 0. The basisolution orresponding to B is easily omputed: the vetor B�1 gives the values forzP if P 2 P 0 and for ze if e 2 E 0, while we set zP := 0 if P 62 P 0 and ze := 0 ife 62 E 0. (Initially, B = I, that is P 0 = ; and E 0 = E, so that zP = 0 for all P 2 Pand ze = (e) for all e 2 E.)Now we should desribe pivoting (that is, �nding variables leaving and enteringthe basis) and heking optimality. Interestingly, it turns out that this an be doneby solving a set of shortest path problems.First onsider the dual variable orresponding to an edge e. It has value (in theurrent tableau):
(48) wBB�1"e � we = wB(B�1)ewhere as usual wB denotes the part of vetor w orresponding to B (that is, orre-sponding to P 0 and E 0) and where "e denotes the e-th unit basis vetor in R E (whihis the olumn orresponding to e in [A I℄). Note that the olumns of B�1 are in-dexed by E; then (B�1)e is the olumn orresponding to e. Note also that we = 0 byde�nition.Similarly, the dual variable orresponding to a path P in P has value:
(49) wBB�1X P � wP = [Xe2P wB(B�1)e℄� 1:
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(Note that X P is the olumn in [A I℄ orresponding to P .)In order to pivot, we should identify a negative dual variable. To this end, we�rst hek if (48) is negative for some edge e. If so, we hoose suh an edge e andtake ze as the variable entering the basis. Seleting the variable leaving the basis nowbelongs to the standard simplex routine. We only have to onsider that part of thetableau orresponding to P 0; E 0 and e. We selet an element f in P 0 [ E 0 for whihthe quotient zf=(B�1)fe has positive denominator and is as small as possible. Thenzf is the variable leaving the basis.Suppose next that (48) is nonnegative for eah edge e. We onsider wB(B�1)e asthe length l(e) of e. Then for any path P ,(50) Xe2P wB(B�1)e
is equal to the lengthPe2P l(e) of P . Hene, �nding a dual variable (49) of negativevalue is the same as �nding a path in P of length less than 1.Suh a path an be found by applying any shortest path algorithm: for eahi = 1; : : : ; k, we �nd a shortest si � ti path (with respet to l). If eah of theseshortest paths has length at least 1, we know that all dual variables have nonnegativevalue, and hene the urrent basi solution is optimum.If we �nd some si � ti path P of length less than 1, we hoose zP as variableentering the basis. Again seleting a variable leaving the basis is standard: we seletan element f in P 0[E 0 for whih the quotient zf=(B�1X P )f has positive denominatorand is as small as possible.This desribes pivoting. In order to avoid \yling", we apply a lexiographi rulefor seleting the variable leaving the basis. We order the edges of G arbitrarily. Nowin ase there is a tie in seleting the f 2 P 0[E 0 for whih the orresponding quotientis as small as possible, we hoose the f 2 P 0 [ E 0 for whih the vetor(B�1)f=(B�1)fe (if e enters the basis);(51) (B�1)f=(B�1X P )f (if P enters the basis);is lexiographially as small as possible. In Exerise 9.17 we will see that this avoidsyling.
Exerises9.17. (i) Apply the lexiographi rule above, and onsider a simplex tableau, orrespond-ing to P 0 and E0 say. Show that for eah f 2 P 0 [ E0: if zf = 0 then the �rstnonzero entry in the vetor (B�1)f is positive. (Use indution on the numberof pivot steps performed.)(ii) Derive from (i) that, when applying the lexiographi rule, at eah pivot iter-ation, if the objetive value of the solution does not inrease, then the vetorwBB�1 inreases lexiographially.
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(iii) Derive that the lexiographi rule leads to termination of the method.9.18. Modify the olumn generation tehnique to solve the following problem: given adireted graph G = (V;E), a apaity funtion  : E ! Q + , ommodities (s1; t1); : : : ;(sk; tk) and `pro�ts' p1; : : : ; pk 2 Q + , �nd vetors x1; : : : ; xk in Q E and rationalsd1; : : : ; dk so that:(52) (i)xi is an si � ti ow of value di (i = 1; : : : ; k),(ii) kXi=1 xi(e) � (e) (e 2 E),

(iii) kXi=1 pidi is as large as possible.9.19. Let Pij and zij > 0 form a solution to the undireted form of (45) and let W � V beso that the apaity of ÆE(W ) is equal to the demand of ÆR(W ). Show that eah Pijintersets ÆE(W ) at most one.9.20. Show that if the multiommodity ow problem has no solution, then Ford and Fulk-erson's olumn generation tehnique yields a length funtion l violating (9).
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10. Matroids

10.1. Matroids and the greedy algorithmLet G = (V;E) be a onneted undireted graph and let w : E ! Z be a `weight'funtion on the edges. In Setion 1.4 we saw that a minimum-weight spanning treean be found quite straightforwardly with Kruskal's so-alled greedy algorithm.The algorithm onsists of seleting suessively edges e1; e2; : : : ; er. If edges e1; : : : ; ekhave been seleted, we selet an edge e 2 E so that:(1) (i) e 62 fe1; : : : ; ekg and fe1; : : : ; ek; eg is a forest,(ii) w(e) is as small as possible among all edges e satisfying (i).We take ek+1 := e. If no e satisfying (1)(i) exists, that is, if fe1; : : : ; ekg formsa spanning tree, we stop, setting r := k. Then fe1; : : : ; erg is a spanning tree ofminimum weight.By replaing `as small as possible' in (1)(ii) by `as large as possible', one obtainsa spanning tree of maximum weight.It is obviously not true that suh a greedy approah would lead to an optimalsolution for any ombinatorial optimization problem. We ould think of suh anapproah to �nd a mathing of maximum weight. Then in (1)(i) we replae `forest'by `mathing' and `small' by `large'. Appliation to the weighted graph in Figure 10.1would give e1 = d; e2 = ab.
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Figure 10.1

However, ab and d do not form a mathing of maximum weight.It turns out that the strutures for whih the greedy algorithm does lead to anoptimal solution, are the matroids. It is worth studying them, not only beause itenables us to reognize when the greedy algorithm applies, but also beause thereexist fast algorithms for `intersetions' of two di�erent matroids.The onept of matroid is de�ned as follows. Let X be a �nite set and let I be aolletion of subsets of X. Then the pair (X; I) is alled a matroid if it satis�es thefollowing onditions:
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(2) (i) ; 2 I,(ii) if Y 2 I and Z � Y then Z 2 I,(iii) if Y; Z 2 I and jY j < jZj then Y [ fxg 2 I for some x 2 Z n Y .For any matroid M = (X; I), a subset Y of X is alled independent if Y belongsto I, and dependent otherwise.Let Y � X. A subset B of Y is alled a basis of Y if B is an inlusionwise maximalindependent subset of Y . That is, for any set Z 2 I with B � Z � Y one has Z = B.It is not diÆult to see that ondition (2)(iii) is equivalent to:(3) for any subset Y of X, any two bases of Y have the same ardinality.(Exerise 10.1.) The ommon ardinality of the bases of a subset Y of X is alled therank of Y , denoted by rM(Y ).We now show that if G = (V;E) is a graph and I is the olletion of forests inG, then (E; I) indeed is a matroid. Conditions (2)(i) and (ii) are trivial. To seethat ondition (3) holds, let E 0 � E. Then, by de�nition, eah basis Y of E 0 is aninlusionwise maximal forest ontained in E 0. Hene Y forms a spanning tree in eahomponent of the graph (V;E 0). So Y has jV j � k elements, where k is the numberof omponents of (V;E 0). So eah basis of E 0 has jV j � k elements, proving (3).A set is alled simply a basis if it is a basis of X. The ommon ardinality of allbases is alled the rank of the matroid. If I is the olletion of forests in a onnetedgraph G = (V;E), then the bases of the matroid (E; I) are exatly the spanning treesin G.We next show that the matroids indeed are those strutures for whih the greedyalgorithm leads to an optimal solution. Let X be some �nite set and let I be aolletion of subsets of X satisfying (2)(i) and (ii).For any weight funtion w : X ! R we want to �nd a set Y in I maximizing
(4) w(Y ) :=Xy2Y w(y):The greedy algorithm onsists of seleting y1; : : : ; yr suessively as follows. If y1; : : : ; ykhave been seleted, hoose y 2 X so that:(5) (i) y 62 fy1; : : : ; ykg and fy1; : : : ; yk; yg 2 I,(ii) w(y) is as large as possible among all y satisfying (i).We stop if no y satisfying (5)(i) exist, that is, if fy1; : : : ; ykg is a basis.Now:Theorem 10.1. The pair (X; I) satisfying (2)(i) and (ii) is a matroid if and only if
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the greedy algorithm leads to a set Y in I of maximum weight w(Y ), for eah weightfuntion w : X ! R+.Proof. SuÆieny. Suppose that the greedy algorithm leads to an independent setof maximum weight for eah weight funtion w. We show that (X; I) is a matroid.Conditions (2)(i) and (ii) are satis�ed by assumption. To see ondition (2)(iii),let Y; Z 2 I with jY j < jZj. Suppose that Y [ fzg 62 I for eah z 2 Z n Y .Consider the following weight funtion w on X. Let k := jY j. De�ne:(6) w(x) := k + 2 if x 2 Y ,w(x) := k + 1 if x 2 Z n Y ,w(x) := 0 if x 2 X n (Y [ Z).Now in the �rst k iterations of the greedy algorithm we �nd the k elements inY . By assumption, at any further iteration, we annot hoose any element in Z n Y .Hene any further element hosen, has weight 0. So the greedy algorithm will yield abasis of weight k(k + 2).However, any basis ontaining Z will have weight at least jZ \ Y j(k + 2) + jZ nY j(k+1) � jZj(k+1) � (k+1)(k+1) > k(k+2). Hene the greedy algorithm doesnot give a maximum-weight independent set.Neessity. Now let (X; I) be a matroid. Let w : X ! R+ be any weight funtion onX. Call an independent set Y greedy if it is ontained in a maximum-weight basis. ItsuÆes to show that if Y is greedy, and x is an element in X nY suh that Y [fxg 2 Iand suh that w(x) is as large as possible, then Y [ fxg is greedy.As Y is greedy, there exists a maximum-weight basis B � Y . If x 2 B thenY [ fxg is greedy again. If x 62 B, then there exists a basis B0 ontaining Y [ fxgand ontained in B [ fxg. So B0 = (B n fx0g) [ fxg for some x0 2 B n Y . As w(x)is hosen maximum, w(x) � w(x0). Hene w(B0) � w(B), and therefore B0 is amaximum-weight basis. So Y [ fxg is greedy.

Note that by replaing \as large as possible" in (5) by \as small as possible", oneobtains an algorithm for �nding a minimum-weight basis in a matroid. Moreover,by ignoring elements of negative weight, the algorithm an be adapted to yield anindependent set of maximum weight, for any weight funtion w : X ! R .
Exerises10.1. Show that ondition (3) is equivalent to ondition (2)(iii) (assuming (2)(i) and (ii)).10.2. Let M = (X; I) be a matroid. Two elements x; y of X are alled parallel if fx; yg isa iruit. Show that if x and y are parallel and Y is an independent set with x 2 Y ,then also (Y n fxg) [ fyg is independent.
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10.3. Let M = (X; I) be a matroid, with X = fx1; : : : ; xmg. De�ne(7) Y := fxi j rM (fx1; : : : ; xig) > rM (fx1; : : : ; xi�1g)g:Prove that Y belongs to I.
10.2. Equivalent axioms for matroidsThe de�nition of the notion of matroid given in the previous setion is given by`axioms' in terms of the independent sets. There are several other axioms that har-aterize matroids. In this setion we give a number of them.Let X be a �nite set, and let I be a nonempty down-monotone olletion ofsubsets of X; that is, if F 2 I and F 0 � F , then F 0 2 I. Let B be the olletion ofinlusionwise maximal sets in I, and let C be the olletion of inlusionwise minimimalsets that are not in I. Finally, for any subset Y of X, de�ne(8) r(Y ) := maxfjZj j Z � Y; Z 2 Ig:Obviously, knowing one of the objets I, B, C, r, we know all the other. Moreover,any nonempty antihain20 B arises in this way from some nonempty down-monotoneolletion I of subsets. Similarly, any antihain C onsisting of nonempty sets arisesin this way. Finally, r arises in this way if and only if(9) (i) r(;) = 0,(ii) if Z � Y � X then r(Z) � r(Y ).We an now haraterize when suh objets arise from a matroid (X; I). That is,we obtain the following equivalent haraterizations of matroids.Theorem 10.2. Let I, B, C, and r be as above. Then the following are equivalent:(i) if F; F 0 2 I and jF 0j > jF j, then F [ fxg 2 I for some x 2 F 0 n F ;(ii) if B;B0 2 B and x 2 B0 nB, then (B0 n fxg) [ fyg 2 B for some y 2 B nB0;(iii) if B;B0 2 B and x 2 B0 nB, then (B n fyg) [ fxg 2 B for some y 2 B nB0;(iv) if C;C 0 2 C with C 6= C 0 and x 2 C \C 0, then (C [C 0) n fxg ontains a set inC;(v) if C;C 0 2 C, x 2 C \ C 0, and y 2 C n C 0, then (C [ C 0) n fxg ontains a set inC ontaining y;(vi) for all Y; Z � X one has20An antihain is a olletion of sets no two of whih are ontained in eah other.
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(10) r(Y \ Z) + r(Y [ Z) � r(Y ) + r(Z):

Proof. (i))(ii): (i) diretly implies that all sets in B have the same size. Now letB;B0 2 B and x 2 B0 n B. Sine B0 n fxg 2 I, by (i) there exists a y 2 B n B0 suhthat B00 := (B0 n fxg) [ fyg 2 I. Sine jB00j = jB0j, we know B00 2 B.(iii))(i): Let F; F 0 form a ounterexample to (i) with jF \F 0j as large as possible.Consider sets B;B0 in B with F � B and F 0 � B0.As F; F 0 is a ounterexample, we know F 6� B0. Choose x 2 F n B0. Then by(iii), (B0 n fyg)[ fxg for some y 2 B0 nB. Hene replaing F 0 by (F 0 n fyg)[ fxg wewould keep a ounterexample but inrease jF \ F 0j, a ontradition.(ii))(iii): By the foregoing we know that (iii) implies (ii). Now axioms (ii) and(iii) interhange if we replae B by the olletion of omplements of sets in B. Henealso the impliation (ii))(iii) holds.(i))(v): If (i) holds, then by the foregoing, also (ii) holds. Let C;C 0 2 C andx 2 C \ C 0, y 2 C n C 0. We an assume that X = C [ C 0. Let B;B0 2 B withB � C n fyg and B0 � C 0 n fxg. Then y 62 B and x 62 B0 (sine C 6� B and C 0 6� B0).We an assume that y 62 B0. Otherwise, y 2 B0 nB, and hene by (ii), there existsa z 2 B nB0 with B00 := (B0 n fyg) [ fzg 2 B. Then z 6= x, sine otherwise C 0 � B00.Hene, replaing B0 by B00 gives y 62 B0.As y 62 B0, we know B0 [ fyg 62 I, and hene there exists a C 00 2 C ontained inB0 [ fyg. As C 00 6� B0, we know y 2 C 00. Moreover, as x 62 B0 we know x 62 C 00.(v))(iv): is trivial.(iv))(i): Let F; F 0 form a ounterexample to (i) with jF \ F 0j maximal. ThenF 6� F 0, and so we an hoose y 2 F n F 0. By the maximality of jF \ F 0j, we knowF 0 [ fxg 62 I. So there is a C 2 C ontained in F 0 [ fxg. As C 6� F 0 we knowx 2 C. Then C is the unique set in C ontained in F 0 [ fxg. For suppose there isanother, C 0 say. Again, x 2 C 0, and hene by (iv) there exists a C 00 2 C ontained in(C [ C 0) n fxg. But then C 00 � F 0, a ontradition.As C 6� F , C intersets F 0nF . Choose y 2 C\(F 0nF ). Then F 00 := (F 0[fxg)nfygdoes not ontain any set in C (as C is the only set in C ontained in F 0 [ fxg).Then replaing F 0 by F 00, we would keep a ounterexample while inreasing jF 0 \F j,ontraditing our assumption.(i))(vi): Choose Y; Z � X. Let F be an inlusionwise maximal set in I withF � Y \ Z, and let F 0 be an inlusionwise maximal set in I with F � F � Y [ Z.By (i) we know that r(Y \ Z) = jF j and r(Y [ Z) = jF 0j. Then(11) jF 0 \ Y j+ jF 0 \ Zj = jF 0 \ (Y \ Z)j+ jF 0 \ (Y [ Z)j � jF j + jF 0j;and hene we have (10).
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(vi))(i): Let F; F 0 2 I with jF j < jF 0j. Let U be the largest subset of F 0 n Fwith r(F [U) = jF j. Then U 6= F 0 n F , sine r(F [ F 0) � jF 0j > jF j. So there existsan x 2 F 0 n F [ U . If F [ fxg 2 I we are done, so we an assume that F [ fxg 62 I;equivalently, r(F [ fxg) = jF j. Let U 0 := U [ fxg. Then by (10),

(12) r(F [ U 0) � r(F [ U) + r(F [ fxg)� r(F ) = jF j;
ontraditing the maximality of U .

Given a matroid M = (X; I), any in B is alled a basis and any set in C a iruitof M . The funtion r is alled rank funtion of M (often denoted by rM), and r(Y )the rank of Y .The symmetry of (ii) and (iii) in Theorem 10.2 immediately implies the following.De�ne
(13) B� := fX nB j B 2 Bg:
ThenCorollary 10.2a. If B is the olletion of bases of some matroid M , then B� also isthe olletion of bases of some matroid on X, denoted by M�.Proof. Diretly from the equivalene of (ii) and (iii) in Theorem 10.2.

The matroid M� is alled the dual matroid of M . Sine (B�)� = B, we know(M�)� =M .Theorem 10.3. The rank funtion rM� of the dual matroid M� satis�es:
(14) rM�(Y ) = jY j+ rM(X n Y )� rM(X):
Proof.
(15) rM�(Y ) = maxfjA \ Y j j A 2 B�g == jY j �minfjB \ Y j j B 2 Bg = jY j � rM(X) + maxfjB n Y j j B 2 Bg =jY j � rM(X) + rM(X n Y ):

Another way of onstruting matroids from matroids is by `deletion' and `ontra-tion'. Let M = (X; I) be a matroid and let Y � X. De�ne
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(16) I 0 := fZ j Z � Y; Z 2 Ig:ThenM 0 = (Y; I 0) is a matroid again, as one easily heks. M 0 is alled the restritionof M to Y . If Y = X n Z with Z � X, we say that M 0 arises by deleting Z, anddenote M 0 by M n Z.Contrating Z means replaing M by (M� n Z)�. This matroid is denoted byM=Z. One may hek that if G is a graph and e is an edge of G, then ontratingedge feg in the yle matroid M(G) of G orresponds to ontrating e in the graph.That is, M(G)=feg = M(G=feg), where G=feg denotes the graph obtained from Gby ontrating e.If matroidM 0 arises fromM by a series of deletions and ontrations,M 0 is alleda minor of M .
Exerises10.4. (i) LetX be a �nite set and let k be a natural number. Let I := fY � X j jY j � kg.Show that (X; I) is a matroid. Suh matroids are alled k-uniform matroids.(ii) Show that k-uniform matroids are transversal matroids. Give an example of ak-uniform matroid that is neither graphi nor ographi.10.5. Let M = (X; I) be a matroid and let k be a natural number. De�ne I 0 := fY 2 I jjY j � kg. Show that (X; I 0) is again a matroid (alled the k-trunation of M).10.6. Let M = (X; I) be a matroid, let U be a set disjoint from X, and let k � 0. De�ne(17) I 0 := fU 0 [ Y j U 0 � U; Y 2 I; jU 0 [ Y j � kg:Show that (U [X; I 0) is again a matroid.10.7. Let M = (X; I) be a matroid and let x 2 X.(i) Show that if x is not a loop, then a subset Y of X n fxg is independent in theontrated matroid M=fxg if and only if Y [ fxg is independent in M .(ii) Show that if x is a loop, then M=fxg =M n fxg.(iii) Show that for eah Y � X : rM=fxg(Y ) = rM (Y [ fxg)� rM (fxg).10.8. Let M = (X; I) be a matroid and let Y � X.(ii) Let B be a basis of Y . Show that a subset U of X n Y is independent in theontrated matroid M=Y if and only if U [B is independent in M .(ii) Show that for eah U � X n Y

(18) rM=Y (U) = rM (U [ Y )� rM (Y ):
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10.9. Let M = (X; I) be a matroid and let Y;Z � X. Show that (M nY )=Z = (M=Z) n Y .(That is, deletion and ontration ommute.)10.10. Let M = (X; I) be a matroid, and suppose that we an test in polynomial time ifany subset Y of X belongs to I. Show that then the same holds for the dual matroidM�.
10.3. Examples of matroidsIn this setion we desribe some lasses of examples of matroids.
I. Graphi matroids. As a �rst example we onsider the matroids desribed inSetion 10.1.Let G = (V;E) be a graph. Let I be the olletion of all forests in G. ThenM = (E; I) is a matroid, as we saw in Setion 10.1.The matroid M is alled the yle matroid of G, denoted by M(G). Any matroidobtained in this way, or isomorphi to suh a matroid, is alled a graphi matroid.Note that the bases of M(G) are exatly those forests F of G for whih the graph(V; F ) has the same number of omponents as G. So if G is onneted, the bases arethe spanning trees.Note also that the iruits of M(G), in the matroid sense, are exatly the iruitsof G, in the graph sense.
II. Cographi matroids. There is an alternative way of obtaining a matroid froma graph G = (V;E). It is in fat the matroid dual of the graphi matroid.Let B be the set of subsets J of E suh that E n J is an inlusionwise maximalforest. By Corollary 10.2a, B forms the olletion of bases of a matroid. Its olletionI of independent sets onsists of those subsets J of E for whih(19) �(V;E n J) = �(V;E):where, for any graph H, let �(H) denote the number of omponents of H.The matroid (E; I) is alled the oyle matroid of G, denoted by M�(G). Anymatroid obtained in this way, or isomorphi to suh a matroid, is alled a ographimatroid.By de�nition, a subset C of E is a iruit ofM�(G) if it is an inlusionwise minimalset with the property that (V;E n C) has more omponents than G. Hene C is airuit of M�(G) if and only if C is an inlusionwise minimal nonempty utset in G.
III. Linear matroids. Let A be an m � n matrix. Let X = f1; : : : ; ng and let Ibe the olletion of all those subsets Y of X so that the olumns with index in Y are
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linearly independent. That is, so that the submatrix of A onsisting of the olumnswith index in Y has rank jY j.Now:Theorem 10.4. (X; I) is a matroid.Proof. Again, onditions (2)(i) and (ii) are easy to hek. To see ondition (2)(iii), letY and Z be subsets ofX so that the olumns with index in Y are linearly independent,and similarly for Z, and so that jY j < jZj.Suppose that Y [fxg 62 I for eah x 2 Z n Y . This means that eah olumn withindex in Z n Y is spanned by the olumns with index in Y . Trivially, eah olumnwith index in Z \ Y is spanned by the olumns with index in Y . Hene eah olumnwith index in Z is spanned by the olumns with index in Y . This ontradits the fatthat the olumns indexed by Y span an jY j-dimensional spae, while the olumnsindexed by Z span an jZj-dimensional spae, with jZj > jY j.

Any matroid obtained in this way, or isomorphi to suh a matroid, is alled alinear matroid.Note that the rank rM(Y ) of any subset Y of X is equal to the rank of the matrixformed by the olumns indexed by Y .
IV. Transversal matroids. Let X1; : : : ; Xm be subsets of the �nite set X. A setY = fy1; : : : ; yng is alled a partial transversal (of X1; : : : ; Xm), if there exist distintindies i1; : : : ; in so that yj 2 Xij for j = 1; : : : ; n. A partial transversal of ardinalitym is alled a transversal (or a system of distint representatives, or an SDR).Another way of representing partial transversals is as follows. Let G be the bipar-tite graph with vertex set V := f1; : : : ;mg [ X and with edges all pairs fi; xg withi 2 f1; : : : ;mg and x 2 Xi. (We assume here that f1; : : : ;mg \X = ;.)For any mathing M in G, let �(M) denote the set of those elements in X thatbelong to some edge in M . Then it is not diÆult to see that:(20) Y � X is a partial transversal if and only if Y = �(M) for some mathingM in G.Now let I be the olletion of all partial transversals for X1; : : : ; Xm. Then:Theorem 10.5. (X; I) is a matroid.Proof. Again, onditions (2)(i) and (ii) are trivial. To see (2)(iii), let Y and Z bepartial transversals with jY j < jZj. Consider the graph G onstruted above. By(20) there exist mathings M and M 0 in G so that Y = �(M) and Z = �(M 0). SojM j = jY j < jZj = jM 0j.Consider the union M [M 0 of M and M 0. Eah omponent of the graph (V;M [
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M 0) is either a path, or a iruit, or a singleton vertex. Sine jM 0j > jM j, at leastone of these omponents is a path P with more edges in M 0 than in M . The pathonsists of edges alternatingly in M 0 and in M , with end edges in M 0.Let N and N 0 denote the edges in P ourring in M and M 0, respetively. SojN 0j = jN j + 1. Sine P has odd length, exatly one of its end verties belongsto X; all this end vertex x. Then x 2 �(M 0) = Z and x 62 �(M) = Y . De�neM 00 := (M nN) [N 0. Clearly, M 00 is a mathing with �(M 00) = Y [ fxg. So Y [ fxgbelongs to I.

Any matroid obtained in this way, or isomorphi to suh a matroid, is alled atransversal matroid. If the sets X1; : : : ; Xm form a partition of X, one speaks of apartition matroid.
These four lasses of examples show that the greedy algorithm has a wider appli-ability than just for �nding minimum-weight spanning trees. There are more lassesof matroids (like `algebrai matroids', `gammoids'), for whih we refer to Welsh [1976℄.

Exerises10.11. Show that a partition matroid is graphi, ographi, and linear.10.12. Let M = (V; I) be the transversal matroid derived from subsets X1; : : : ;Xm of X asin Example IV.(i) Show with K}onig's mathing theorem that:(21) rM (X) = minJ�f1;:::;mg(�� [j2JXj��+m� jJ j):
(ii) Derive a formula for rM (Y ) for any Y � X.10.13. Let G = (V;E) be a graph. Let I be the olletion of those subsets Y of E so that Fhas at most one iruit. Show that (E; I) is a matroid.10.14. Let G = (V;E) be a graph. Call a olletion C of iruits a iruit basis of G if eahiruit of G is a symmetri di�erene of iruits in C. (We onsider iruits as edgesets.)Give a polynomial-time algorithm to �nd a iruit basis C of G that minimizesPC2C jCj.(The running time of the algorithm should be bounded by a polynomial in jV j+ jEj.)10.15. Let G = (V;E) be a onneted graph. For eah subset E0 of E, let �(V;E0) denotethe number of omponents of the graph (V;E0). Show that for eah E0 � E:(i) rM(G)(E0) = jV j � �(V;E0);
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(ii) rM�(G)(E0) = jE0j � �(V;E nE0) + 1.10.16. Let G be a planar graph and let G� be a planar graph dual to G. Show that the ylematroid M(G�) of G� is isomorphi to the oyle matroid M�(G) of G.10.17. Show that the dual matroid of a linear matroid is again a linear matroid.10.18. Let G = (V;E) be a loopless undireted graph. Let A be the matrix obtained fromthe V �E inidene matrix of G by replaing in eah olumn, exatly one of the two1's by �1.(i) Show that a subset Y of E is a forest if and only if the olumns of A with indexin Y are linearly independent.(ii) Derive that any graphi matroid is a linear matroid.(iii) Derive (with the help of Exerise 10.17) that any ographi matroid is a linearmatroid.

10.4. Two tehnial lemmasIn this setion we prove two tehnial lemmas as a preparation to the oming setionson matroid intersetion.Let M = (X; I) be a matroid. For any Y 2 I de�ne a bipartite graph H(M;Y )as follows. The graph H(M;Y ) has vertex set X, with olour lasses Y and X n Y .Elements y 2 Y and x 2 X n Y are adjaent if and only if(22) (Y n fyg) [ fxg 2 I:Then we have:Lemma 10.1. Let M = (X; I) be a matroid and let Y; Z 2 I with jY j = jZj. ThenH(M;Y ) ontains a perfet mathing on Y4Z.21Proof. Suppose not. By K}onig's mathing theorem there exist a subset S of Y n Zand a subset S 0 of Z n Y suh that for eah edge fy; zg of H(M;Y ) satisfying z 2 S 0one has y 2 S and suh that jSj < jS 0j.As j(Y \ Z) [ Sj < j(Y \ Z) [ S 0j, there exists an element z 2 S 0 suh thatT := (Y \ Z) [ S [ fzg belongs to I. This implies that there exists an U 2 I suhthat T � U � T [ Y and jU j = jY j. So U = (Y n fxg) [ fzg for some x 62 S. Asfx; zg is an edge of H(M;Y ) this ontradits the hoie of S and S 0.
The following forms a ounterpart:21A perfet mathing on a vertex set U is a mathing M with SM = U .
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Lemma 10.2. Let M = (X; I) be a matroid and let Y 2 I. Let Z � X be suh thatjY j = jZj and suh that H(M;Y ) ontains a unique perfet mathing N on Y4Z.Then Z belongs to I.Proof. By indution on k := jZ n Y j, the ase k = 0 being trivial. Let k � 1.By the uniity of N there exists an edge fy; zg 2 N , with y 2 Y nZ and z 2 Z nY ,with the property that there is no z0 2 Z n Y suh that z0 6= z and fy; z0g is an edgeof H(M;Y ).Let Z 0 := (Z nfzg)[fyg and N 0 := N nffy; zgg. Then N 0 is the unique mathingin H(M;Y ) with union Y4Z 0. Hene by indution, Z 0 belongs to I.There exists an S 2 I suh that Z 0 n fyg � S � (Y n fyg) [ Z and jSj = jY j(sine (Y n fyg) [ Z = (Y n fyg) [ fzg [ Z 0 and sine (Y n fyg) [ fzg belongs to I).Assuming Z 62 I, we know z 62 S and hene r((Y [ Z 0) n fyg) = jY j. Hene thereexists an z0 2 Z 0 n Y suh that (Y n fyg) [ fz0g belongs to I. This ontradits thehoie of y.
Exerises10.19. Let M = (X; I) be a matroid, let B be a basis of M , and let w : X ! R be a weightfuntion. Show that B is a basis of maximum weight if and only if w(B0) � w(B) forevery basis B0 with jB0 nBj = 1.10.20. Let M = (X; I) be a matroid and let Y and Z be independent sets with jY j = jZj.For any y 2 Y n Z de�ne Æ(y) as the set of those z 2 Z n Y whih are adjaent to yin the graph H(M;Y ).(i) Show that for eah y 2 Y n Z the set (Z n Æ(y)) [ fyg belongs to I.(Hint: Apply inequality (10) to X 0 := (Z n Æ(y)) [ fyg and X 00 := (Z n Æ(y)) [(Y n fyg).)(ii) Derive from (i) that for eah y 2 Y n Z there exists an z 2 Z n Y so that fy; zgis an edge both of H(M;Y ) and of H(M;Z).
10.5. Matroid intersetionEdmonds [1970℄ disovered that the onept of matroid has even more algorithmipower, by showing that there exist fast algorithms also for intersetions of matroids.LetM1 = (X; I1) andM2 = (X; I2) be two matroids, on the same set X. Considerthe olletion I1 \ I2 of ommon independent sets. The pair (X; I1 \ I2) is generallynot a matroid again (f. Exerise 10.21).What Edmonds showed is that, for any weight funtion w on X, a maximum-weight ommon independent set an be found in polynomial time. In partiular, aommon independent set of maximum ardinality an be found in polynomial time.We onsider �rst some appliations.
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Example 10.5a. Let G = (V;E) be a bipartite graph, with olour lasses V1 andV2, say. Let I1 be the olletion of all subsets F of E so that no two edges in F havea vertex in V1 in ommon. Similarly, let I2 be the olletion of all subsets F of E sothat no two edges in F have a vertex in V2 in ommon. So both (X; I1) and (X; I2)are partition matroids.Now I1 \ I2 is the olletion of mathings in G. Finding a maximum-weightommon independent set amounts to �nding a maximum-weight mathing in G.Example 10.5b. Let X1; : : : ; Xm and Y1; : : : ; Ym be subsets of X. Let M1 = (X; I1)and M2 = (X; I2) be the orresponding transversal matroids.Then ommon independent sets orrespond to ommon partial transversals. Theolletions (X1; : : : ; Xm) and (Y1; : : : ; Ym) have a ommon transversal if and only ifthe maximum ardinality of a ommon independent set is equal to m.Example 10.5. Let D = (V;A) be a direted graph. Let M1 = (A; I1) be the ylematroid of the underlying undireted graph. Let I2 be the olletion of subsets Y ofA so that eah vertex of D is entered by at most one ar in Y . So M2 := (A; I2) is apartition matroid.Now the ommon independent sets are those subsets Y of A with the propertythat eah omponent of (V; Y ) is a rooted tree. Moreover, D has a rooted spanningtree if and only if the maximum ardinality of a set in I1 \ I2 is equal to jV j � 1.Example 10.5d. Let G = (V;E) be a onneted undireted graph. Then G hastwo edge-disjoint spanning trees if and only if the maximum ardinality of a ommonindependent set in the yle matroid M(G) of G and the oyle matroid M�(G) ofG is equal to jV j � 1.

In this setion we desribe an algorithm for �nding a maximum-ardinality om-mon independent sets in two given matroids. In the next setion we onsider themore general maximum-weight problem.For any two matroids M1 = (X; I1) and M2 = (X; I2) and any Y 2 I1 \ I2, wede�ne a direted graph H(M1;M2; Y ) as follows. Its vertex set is X, while for anyy 2 Y; x 2 X n Y ,(23) (y; x) is an ar of H(M1;M2; Y ) if and only if (Y n fyg) [ fxg 2 I1,(x; y) is an ar of H(M1;M2; Y ) if and only if (Y n fyg) [ fxg 2 I2.These are all ars of H(M1;M2; Y ). In fat, this graph an be onsidered as the unionof direted versions of the graphs H(M1; Y ) and H(M2; Y ) de�ned in Setion 10.4.The following is the basis for �nding a maximum-ardinality ommon independentset in two matroids.Cardinality ommon independent set augmenting algorithm
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input: matroids M1 = (X; I1) and M2 = (X; I2) and a set Y 2 I1 \ I2;output: a set Y 0 2 I1 \ I2 with jY 0j > jY j, if it exists.desription of the algorithm: We assume thatM1 andM2 are given in suh a waythat for any subset Z of X we an hek in polynomial time if Z 2 I1 and if Z 2 I2.Consider the sets(24) X1 := fy 2 X n Y j Y [ fyg 2 I1g,X2 := fy 2 X n Y j Y [ fyg 2 I2g.Moreover, onsider the direted graph H(M1;M2; Y ) de�ned above. There are twoases.Case 1. There exists a direted path P in H(M1;M2; Y ) from some vertex in X1 tosome vertex in X2. (Possibly of length 0 if X1 \X2 6= ;.)We take a shortest suh path P (that is, with a minimum number of ars). Let Ptraverse the verties y0; z1; y1; : : : ; zm; ym of H(M1;M2; Y ), in this order. By onstru-tion of the graph H(M1;M2; Y ) and the sets X1 and X2, this implies that y0; : : : ; ymbelong to X n Y and z1; : : : ; zm belong to Y .Now output(25) Y 0 := (Y n fz1; : : : ; zmg) [ fy0; : : : ; ymg.
Case 2. There is no direted path in H(M1;M2; Y ) from any vertex in X1 to anyvertex vertex in X2. Then Y is a maximum-ardinality ommon independent set.

This �nishes the desription of the algorithm. The orretness of the algorithm isgiven in the following two theorems.Theorem 10.6. If Case 1 applies, then Y 0 2 I1 \ I2.Proof. Assume that Case 1 applies. By symmetry it suÆes to show that Y 0 belongsto I1.To see that Y 0nfy0g belongs to I1, onsider the graph H(M1; Y ) de�ned in Setion10.4. Observe that the edges fzj; yjg form the only mathing in H(M1; Y ) with unionequal to fz1; : : : ; zm; y1; : : : ; ymg (otherwise P would have a shortut). So by Lemma10.2, Y 0 n fy0g = (Y n fz1; : : : ; zmg) [ fy1; : : : ; ymg belongs to I1.To show that Y 0 belongs to I1, observe that rM1(Y [Y 0) � rM1(Y [fy0g) = jY j+1,and that, as (Y 0 n fy0g) \X1 = ;, rM1((Y [ Y 0) n fy0g) = jY j. As Y 0 n fy0g 2 I1, weknow Y 0 2 I1.Theorem 10.7. If Case 2 applies, then Y is a maximum-ardinality ommon inde-
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pendent set.Proof. As Case 2 applies, there is no direted X1�X2 path in H(M1;M2; Y ). Henethere is a subset U of X ontaining X2 suh that U \X1 = ; and suh that no ar ofH(M1;M2; Y ) enters U . (We an take for U the set of verties that are not reahableby a direted path from X1.)We show(26) rM1(U) + rM2(X n U) = jY j:To this end, we �rst show(27) rM1(U) = jY \ U j:Clearly, as Y \U 2 I1, we know rM1(U) � jY \U j. Suppose rM1(U) > jY \U j. Thenthere exists an x in U nY so that (Y \U)[fxg 2 I1. Sine Y 2 I1, this implies thatthere exists a set Z 2 I1 with jZj � jY j and (Y \ U) [ fxg � Z � Y [ fxg. ThenZ = Y [ fxg or Z = (Y n fyg) [ fxg for some y 2 Y n U .In the �rst alternative, x 2 X1, ontraditing the fat that x belongs to U . In theseond alternative, (y; x) is an ar of H(M1;M2; Y ) entering U . This ontradits thede�nition of U (as y 62 U and x 2 U).This shows (27). Similarly we have that rM2(X n U) = jY n U j. Hene we have(26).Now (26) implies that for any set Z in I1 \ I2 one has(28) jZj = jZ \ U j+ jZ n U j � rM1(U) + rM2(X n U) = jY j:So Y is a ommon independent set of maximum ardinality.

The algorithm learly has polynomially bounded running time, sine we an on-strut the auxiliary direted graph H(M1;M2; Y ) and �nd the path P (if it exists),in polynomial time.It implies the result of Edmonds [1970℄:Theorem 10.8. A maximum-ardinality ommon independent set in two matroidsan be found in polynomial time.Proof. Diretly from the above, as we an �nd a maximum-ardinality ommon inde-pendent set after applying at most jXj times the ommon independent set augmentingalgorithm.
The algorithm also yields a min-max relation for the maximum ardinality of a
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ommon independent set, as was shown again by Edmonds [1970℄.Theorem 10.9 (Edmonds' matroid intersetion theorem). Let M1 = (X; I1) andM2 = (X; I2) be matroids. Then(29) maxY 2I1\I2 jY j = minU�X(rM1(U) + rM2(X n U)):
Proof. The inequality � follows similarly as in (28). The reverse inequality followsfrom the fat that if the algorithm stops with set Y , we obtain a set U for whih (26)holds. Therefore, the maximum in (29) is at least as large as the minimum.
Exerises10.21. Give an example of two matroidsM1 = (X; I1) andM2 = (X; I2) so that (X; I1\I2)is not a matroid.10.22. Derive K}onig's mathing theorem from Edmonds' matroid intersetion theorem.10.23. Let (X1; : : : ;Xm) and (Y1; : : : ; Ym) be subsets of the �nite set X. Derive from Ed-monds' matroid intersetion theorem: (X1; : : : ;Xm) and (Y1; : : : ; Ym) have a ommontransversal if and only if

(30) ��([i2IXi) \ ([j2J Yj)�� � jIj+ jJ j �m
for all subsets I and J of f1; : : : ;mg.10.24. Redue the problem of �nding a Hamiltonian yle in a direted graph to the problemof �nding a maximum-ardinality ommon independent set in three matroids.10.25. Let G = (V;E) be a graph and let the edges of G be oloured with jV j � 1 olours.That is, we have partitioned E into lasses X1; : : : ;XjV j�1, alled olours. Show thatthere exists a spanning tree with all edges oloured di�erently if and only if (V;E0)has at most jV j � t omponents, for any union E0 of t olours, for any t � 0.10.26. LetM = (X; I) be a matroid and letX1; : : : ;Xm be subsets ofX. Then (X1; : : : ;Xm)has an independent transversal if and only if the rank of the union of any t sets amongX1; : : : ;Xm is at least t, for any t � 0. (Rado [1942℄.)10.27. Let M1 = (X; I1) and M2 = (X; I2) be matroids. De�ne
(31) I1 _ I2 := fY1 [ Y2 j Y1 2 I1; Y2 2 I2g:(i) Show that the maximum ardinality of a set in I1 _ I2 is equal to
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(32) minU�X(rM1(U) + rM2(U) + jX n U j):
(Hint: Apply the matroid intersetion theorem to M1 and M�2 .)(ii) Derive that for eah Y � X:maxfjZj j Z � Y;Z 2 I1 _ I2g =(33) minU�Y (rM1(U) + rM2(U) + jY n U j):(iii) Derive that (X; I1 _ I2) is again a matroid.(Hint: Use axiom (vi) in Theorem 10.2.)This matroid is alled the union ofM1 andM2, denoted byM1_M2. (Edmondsand Fulkerson [1965℄, Nash-Williams [1967℄.)(iv) Let M1 = (X; I1); : : : ;Mk = (X; Ik) be matroids and let(34) I1 _ : : : _ Ik := fY1 [ : : : [ Yk j Y1 2 I1; : : : ; Yk 2 Ikg:Derive from (iii) that M1 _ : : :_Mk := (X; I1 _ : : :_Ik) is again a matroid andgive a formula for its rank funtion.10.28. (i) Let M = (X; I) be a matroid and let k � 0. Show that X an be overed by kindependent sets if and only if jU j � k � rM (U) for eah subset U of X.(Hint: Use Exerise 10.27.) (Edmonds [1965b℄.)(ii) Show that the problem of �nding a minimum number of independent sets ov-ering X in a given matroid M = (X; I), is solvable in polynomial time.10.29. Let G = (V;E) be a graph and let k � 0. Show that E an be partitioned into kforests if and only if eah nonempty subset W of V ontains at most k(jW j�1) edgesof G.(Hint: Use Exerise 10.28.) (Nash-Williams [1964℄.)10.30. Let X1; : : : ;Xm be subsets of X and let k � 0.(i) Show that X an be partitioned into k partial transversals of (X1; : : : ;Xm) ifand only if
(35) k(m� jIj) � ��X n[i2IXi��
for eah subset I of f1; : : : ;mg.(ii) Derive from (i) that f1; : : : ;mg an be partitioned into lasses I1; : : : ; Ik so that(Xi j i 2 Ij) has a transversal, for eah j = 1; : : : ; k if and only if Y ontains atmost kjY j of the Xi as a subset, for eah Y � X.(Hint: Interhange the roles of f1; : : : ;mg and X.) (Edmonds and Fulkerson[1965℄.)
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10.31. (i) Let M = (X; I) be a matroid and let k � 0. Show that there exist k pairwisedisjoint bases of M if and only if k(rM(X)� rM (U)) � jX n U j for eah subsetU of X.(Hint: Use Exerise 10.27.) (Edmonds [1965b℄.)(ii) Show that the problem of �nding a maximum number of pairwise disjoint basesin a given matroid, is solvable in polynomial time.10.32. Let G = (V;E) be a onneted graph and let k � 0. Show that there exist k pairwiseedge-disjoint spanning trees if and only if for eah t, for eah partition (V1; : : : ; Vt) ofV into t lasses, there are at least k(t � 1) edges onneting di�erent lasses of thispartition.(Hint: Use Exerise 10.31.) (Nash-Williams [1961℄, Tutte [1961℄.)10.33. Let M1 and M2 be matroids so that, for i = 1; 2, we an test in polynomial time if agiven set is independent in Mi. Show that the same holds for the union M1 _M2.10.34. Let M = (X; I) be a matroid and let B and B0 be two disjoint bases. Let B bepartitioned into sets Y1 and Y2. Show that there exists a partition of B0 into sets Z1and Z2 so that both Y1 [ Z1 [ Z2 and Z1 [ Y2 are bases of M .(Hint: Assume without loss of generality that X = B [ B0. Apply the matroidintersetion theorem to the matroids (M n Y1)=Y2 and (M� n Y1)=Y2.)10.35. The following is a speial ase of a theorem of Nash-Williams [1985℄:Let G = (V;E) be a simple, onneted graph and let b : V ! Z+ . Call a graph~G = (~V ; ~E) a b-detahment of G if there is a funtion � : ~V ! V suh that j��1(v)j =b(v) for eah v 2 V , and suh that there is a one-to-one funtion  : ~E ! E with (e) = f�(v); �(w)g for eah edge e = fv; wg of ~G.Then there exists a onneted b-detahment if and only if for eah U � V the numberof omponents of the graph indued by V n U is at most jEU j � b(U) + 1.Here EU denotes the set of edges interseting U .
10.6. Weighted matroid intersetionWe next onsider the problem of �nding a maximum-weight ommon independentset, in two given matroids, with a given weight funtion. The algorithm, again dueto Edmonds [1970℄, is an extension of the algorithm given in Setion 10.5. In eahiteration, instead of �nding a path P with a minimum number of ars in H, we willnow require P to have minimum length with respet to some length funtion de�nedon H.To desribe the algorithm, if matroidM1 = (S; I1) andM2 = (S; I2) and a weightfuntion w : S ! R are given, all a set Y 2 I1\I2 extreme if w(Z) � w(Y ) for eahZ 2 I1 \ I2 satisfying jZj = jY j.
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Weighted ommon independent set augmenting algorithminput: matroids M1 = (S; I1) and M2 = (S; I2), a weight funtion w : S ! Q , andan extreme ommon independent set Y ;output: an extreme ommon independent set Y 0 with jY 0j = jY j+ 1, if it existsdesription of the algorithm: Consider again the sets X1 and X2 and the diretedgraph H(M1;M2; Y ) on S as in the ardinality ase.For any x 2 S de�ne the `length' l(x) of x by:(36) l(x) := w(x) if x 2 Y ,l(x) := �w(x) if x 62 Y:The length of a path P , denoted by l(P ), is equal to the sum of the lengths of theverties traversed by P , ounting multipliities.We onsider two ases.Case 1. H(M1;M2; Y ) has an X1�X2 path P . We hoose P so that l(P ) is minimaland so that it has a minimum number of ars among all minimum-length X1 � X2paths. Set Y 0 := Y4V P .Case 2. H(M1;M2; Y ) has no X1 � X2 path. Then Y is a maximum-size ommonindependent set.

This �nishes the desription of the algorithm. The orretness of the algorithm ifCase 2 applies follows diretly from Theorem 10.7. In order to show the orretnessif Case 1 applies, we �rst prove the following basi property of the length funtion l.Theorem 10.10. Let C be a direted iruit in H(M1;M2; Y ), and let t 2 V C.De�ne Z := Y4V C. If Z 62 I1 \ I2 then there exists a direted yle C 0 withV C 0 � V C suh that l(C 0) < 0, or l(C 0) � l(C) and t 2 V C 0.Proof. By symmetry we an assume that Z 62 I1. Let N1 and N2 be the sets ofars in C belonging to H(M1; Y ) and H(M2; Y ) respetively. If Z 62 I1, there is, byLemma 10.2 a mathing N 01 in H(M1; Y ) on V C with N 01 6= N1. Consider the diretedgraph D = (V C;A) formed by the ars in N1, N 01 (taking ars in N1 \N 01 multiple),and by the ars in N2 taking eah of them twie (parallel). Now eah vertex in V Cis entered and left by exatly two ars of D. Moreover, sine N 01 6= N1, D ontainsa direted iruit C1 with V C1 � V C. We an extend this to a deomposition of Ainto direted iruits C1; : : : ; Ck. Then(37) �V C1 + � � � + �V Ck = 2 � �V C .Sine V C1 6= V C we know that V Cj = V C for at most one j. If, say V Ck = V C,
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then (37) implies that either l(V Cj) < 0 for some j < k or l(V Cj) � l(V C) for allj < k, implying the proposition.If V Cj 6= V C for all j, then l(V Cj) < 0 for some j � k or l(V Cj) � l(V C) for allj � k, again implying the proposition.

This implies:Theorem 10.11. Let Y 2 I1 \ I2. Then Y is extreme if and only if H(M1;M2; Y )has no direted yle of negative length.Proof. To see neessity, suppose H(M1;M2; Y ) has a yle C of negative length.Choose C with jV Cj minimal. Consider Z := Y4V C. Sine w(Z) = w(Y )� l(C) >w(Y ), while jZj = jY j, we know that Z 62 I1 \ I2. Hene by Proposition 10.10,H(M1;M2; Y ) has a negative-length direted yle overing fewer than jV Cj verties,ontraditing our assumption.To see suÆieny, onsider a Z 2 I1 \ I2 with jZj = jY j. By Lemma 10.1, bothH(M1; Y ) and H(M2; Y ) have a perfet mathing on Y4Z. These two mathingstogether form a disjoint union of a number of direted yles C1; : : : ; Ct. Then
(38) w(Y )� w(Z) = tXj=1 l(Cj) � 0;
implying w(Z) � w(Y ). So Y is extreme.

This theorem implies that we an �nd in the algorithm a shortest path P inpolynomial time (with the Bellman-Ford method).This also gives:Theorem 10.12. If Case 1 applies, Y 0 is an extreme ommon independent set.Proof. We �rst show that Y 0 2 I1 \ I2. To this end, let t be a new element, andextend (for eah i = 1; 2), Mi to a matroidM 0i = (S+ t; I 0i), where for eah T � S+ t:
(39) T 2 I 0i if and only if T � t 2 I i.Note that H(M 01;M 02; Y + t) arises from H(M1;M2; Y ) by extending it with a newvertex t and adding ars from eah vertex in X1 to t, and from t to eah vertex inX2.Let P be the path found in the algorithm. De�ne(40) w(t) := l(t) := �l(P ):
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As P is a shortest X1 �X2 path, this makes that H(M 01;M 02; Y + t) has no negative-length direted yle. Hene, by Theorem 10.11, Y + t is an extreme ommon inde-pendent set in M 01 and M 02.Let P run from z1 2 X1 to z2 2 X2. Extend P by the ars (t; z1) and (z2; t) to adireted yle C. So Z = (Y + t)4V C. As P has a minimum number of ars amongall shortest X1 �X2 paths, and as H(M 01;M 02; Y + t) has no negative-length diretediruits, by Proposition 10.10 we know that Z 2 I1 \ I2.Moreover, Z is extreme, sine Y + t is extreme and w(Z) = w(Y + t).

So the weighted ommon independent set augmenting algorithm is orret. Itobviously has polynomially bounded running time. Therefore:Theorem 10.13. A maximum-weight ommon independent set in two matroids anbe found in polynomial time.Proof. Starting with the extreme ommon independent set Y0 := ; we an �nditeratively extreme ommon independent sets Y0; Y1; : : : ; Yk, where jYij = i for i =0; : : : ; k and where Yk is a maximum-size ommon independent set. Taking one amongY0; : : : ; Yk of maximum weight, we have an extreme ommon independent set.
Exerises10.36. Give an example of two matroids M1 = (X; I1) and M2 = (X; I2) and a weightfuntion w : X ! Z+ so that there is no maximum-weight ommon independent setwhih is also a maximum-ardinality ommon independent set.10.37. Redue the problem of �nding a maximum-weight ommon basis in two matroids tothe problem of �nding a maximum-weight ommon independent set.10.38. Let D = (V;A) be a direted graph, let r 2 V , and let l : A ! Z+ be a lengthfuntion. Redue the problem of �nding a minimum-length rooted tree with rootr, to the problem of �nding a maximum-weight ommon independent set in twomatroids.10.39. Let B be a ommon basis of the matroids M1 = (X; I1) and M2 = (X; I2) and letw : X ! Z be a weight funtion. De�ne length funtion l : X ! Z by l(x) := w(x) ifx 2 B and l(x) := �w(x) if x 62 B.Show that B has maximum-weight among all ommon bases of M1 and M2 if andonly if H(M1;M2; B) has no direted iruit of negative length.
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10.7. Matroids and polyhedraThe algorithmi results obtained in the previous setions have interesting onse-quenes for polyhedra assoiated with matroids.Let M = (X; I) be a matroid. The matroid polytope P (M) of M is, by de�nition,the onvex hull of the inidene vetors of the independent sets of M . So P (M) is apolytope in RX .Eah vetor z in P (M) satis�es the following linear inequalities:
(41) z(x) � 0 for x 2 X,z(Y ) � rM(Y ) for Y � X.This follows from the fat that the inidene vetor �Y of any independent set Y ofM satis�es (41).Note that if z is an integer vetor satisfying (41), then z is the inidene vetor ofsome independent set of M .Edmonds [1970℄ showed that system (41) in fat fully determines the matroidpolytope P (M). It means that for eah weight funtion w : X ! R , the linearprogramming problem(42) maximize wT z;subjet to z(x) � 0 (x 2 X)z(Y ) � rM(Y ) (Y � X)has an integer optimum solution z. This optimum solution neessarily is the inidenevetor of some independent set of M . In order to prove this, we also onsider theLP-problem dual to (42):
(43) minimize XY�X yY rM(Y );subjet to yY � 0 (Y � X)XY�X;x2Y yY � w(x) (x 2 X).
We show:Theorem 10.14. If w is integer, then (42) and (43) have integer optimum solutions.Proof. Order the elements of X as y1; : : : ; ym in suh a way that w(y1) � w(y2) �: : : w(ym). Let n be the largest index for whih w(yn) � 0. De�ne Xi := fy1; : : : ; yigfor i = 0; : : : ;m and(44) Y := fyi j i � n; rM(Xi) > rM(Xi�1)g:
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Then Y belongs to I (f. Exerise 10.3). So z := �Y is an integer feasible solution of(42).Moreover, de�ne a vetor y in R P(X) by:
(45) yY := w(yi)� w(yi+1) if Y = Xi for some i = 1; : : : ; n� 1;yY := w(yn) if Y = Xn;yY := 0 for all other Y � XThen y is an integer feasible solution of (43).We show that z and y have the same objetive value, thus proving the theorem:

wT z = w(Y ) =Xx2Y w(x) = nXi=1 w(yi) � (rM(Xi)� rM(Xi�1))(46)
= w(yn) � rM(Xn) + n�1Xi=1 (w(yi)� w(yi+1)) � rM(Xi) = XY�X yY rM(Y ):

So system (41) is totally dual integral. This diretly implies:Corollary 10.14a. The matroid polytope P (M) is determined by (41).Proof. Immediately from Theorem 10.14.
An even stronger phenomenon ours at intersetions of matroid polytopes. Itturns out that the intersetion of two matroid polytopes gives exatly the onvex hullof the ommon independent sets, as was shown again by Edmonds [1970℄.To see this, we �rst derive a basi property:Theorem 10.15. Let M1 = (X; I1) and M2 = (X; I2) be matroids, let w : X ! Zbe a weight funtion and let B be a ommon basis of maximum weight w(B). Thenthere exist funtions w1; w2 : X ! Z so that w = w1 + w2, and so that B is both amaximum-weight basis of M1 with respet to w1 and a maximum-weight basis of M2with respet to w2.Proof. Consider the direted graph H(M1;M2; B) with length funtion l as de�nedin Exerise 10.39. Sine B is a maximum-weight basis, H(M1;M2; B) has no diretediruits of negative length. Hene there exists a funtion � : X ! Z so that �(y) ��(x) � l(y) for eah ar (x; y) of H(M1;M2; B). Using the de�nition of H(M1;M2; B)and l, this implies that for y 2 B; x 2 X nB:

(47) �(x)� �(y) � �w(x) if (B n fyg) [ fxg 2 I1,�(y)� �(x) � w(x) if (B n fyg) [ fxg 2 I2.
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Now de�ne
(48) w1(y) := �(y); w2(y) := w(y)� �(y) for y 2 Bw1(x) := w(x) + �(x); w2(x) := ��(x) for x 2 X nB.Then w1(x) � w1(y) whenever (B n fyg) [ fxg 2 I1. So by Exerise 10.19, B is amaximum-weight basis of M1 with respet to w1. Similarly, B is a maximum-weightbasis of M2 with respet to w2.

Note that if B is a maximum-weight basis of M1 with respet to some weightfuntion w, then also after adding a onstant funtion to w this remains the ase.This observation will be used in showing that a theorem similar to Theorem 10.15holds for independent sets instead of bases.Theorem 10.16. Let M1 = (X; I1) and M2 = (X; I2) be matroids, let w : X ! Zbe a weight funtion, and let Y be a maximum-weight ommon independent set. Thenthere exist weight funtions w1; w2 : X ! Z so that w = w1+w2 and so that Y is botha maximum-weight independent set of M1 with respet to w1 and a maximum-weightindependent set of M2 with respet to w2.Proof. Let U be a set of ardinality jXj+ 2 disjoint from X. De�ne(49) J1 := fY [W j Y 2 I1;W � U; jY [W j � jXj+ 1g;J2 := fY [W j Y 2 I2;W � U; jY [W j � jXj+ 1g:ThenM 01 := (X[U;J1) andM2 := (X[U;J2) are matroids again. De�ne ~w : X ! Zby
(50) ~w(x) := w(x) if x 2 X,~w(x) := 0 if x 2 U .Let W be a subset of U of ardinality jX nY j+1. Then Y [W is a ommon basisof M 01 and M 02. In fat, Y [W is a maximum-weight ommon basis with respet tothe weight funtion ~w. (Any basis B of larger weight would interset X in a ommonindependent set of M1 and M2 of larger weight than Y .)So by Theorem 10.15, there exist funtions ~w1; ~w2 : X ! Z so that ~w1 + ~w2 = ~wand so that Y [W is both a maximum-weight basis of M 01 with respet to ~w1 and amaximum-weight basis of M 02 with respet to ~w2.Now, ~w1(u00) � ~w1(u0) whenever u0 2W;u00 2 U nW . Otherwise we an replae u0in Y [W by u00 to obtain a basis ofM 01 of larger ~w1-weight. Similarly, ~w2(u00) � ~w2(u0)whenever u0 2W;u00 2 U nW .Sine ~w1(u) + ~w2(u) = ~w(u) = 0 for all u 2 U , this implies that ~w1(u00) = ~w1(u0)whenever u0 2W;u00 2 U nW . As ; 6=W 6= U , it follows that ~w1 and ~w2 are onstant
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on U . Sine we an add a onstant funtion to ~w1 and subtrating the same funtionfrom ~w2 without spoiling the required properties, we may assume that ~w1 and ~w2 are0 on U .Now de�ne w1(x) := ~w1(x) and w2(x) := ~w2(x) for eah x 2 X. Then Y is both amaximum-weight independent set of M1 with respet to w1 and a maximum-weightindependent set of M2 with respet to w2.

Having this theorem, it is quite easy to derive that the intersetion of two matroidpolytopes has integer verties, being inidene vetors of ommon independent sets.By Theorem 10.14 the intersetion P (M1) \ P (M2) of the matroid polytopes as-soiated with the matroids M1 = (X; I1) and M2 = (X; I2) is determined by:(51) z(x) � 0 (x 2 X);z(Y ) � rM1(Y ) (Y � X);z(Y ) � rM2(Y ) (Y � X);The orresponding linear programming problem is, for any w : X ! R :(52) maximize wT z,subjet to z(x) � 0 (x 2 X);z(Y ) � rM1(Y ) (Y � X);z(Y ) � rM2(Y ) (Y � X):Again we onsider the dual linear programming problem:
(53) minimize XY�X(y0Y rM1(Y ) + y00Y rM2(Y ))subjet to y0Y � 0 (Y � X);y00Y � 0 (Y � X);XY�X;x2Y (y0Y + y00Y ) � w(x) (x 2 X):
NowTheorem 10.17. If w is integer, then (52) and (53) have integer optimum solutions.Proof. Let Y be a ommon independent set of maximum weight w(Y ). By Theorem10.15, there exist funtions w1; w2 : X ! Z so that w1 + w2 = w and so that Y is amaximum-weight independent set in Mi with respet to wi (i = 1; 2).Applying Theorem 10.14 to w1 and w2, respetively, we know that there existinteger optimum solutions y0 and y00, respetively, for problem (43) with respet toM1; w1 andM2; w2, respetively. One easily heks that y0; y00 forms a feasible solutionof (53). Optimality follows from:
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(54) w(Z) = w1(Z) + w2(Z) = XY�X y0Y rM1(Y ) + XY�X y00Y rM2(Y )= XY�X(y0Y rM1(Y ) + y00Y rM2(Y )):

So system (51) is totally dual integral. Again, this diretly implies:Corollary 10.17a. The onvex hull of the ommon independent sets of two matroidsM1 and M2 is determined by (51).Proof. Diretly from Theorem 10.17.
Exerises10.40. Give an example of three matroids M1, M2, and M3 on the same set X so that theintersetion P (M1)\P (M2)\P (M3) is not the onvex hull of the ommon independentsets.10.41. Derive Edmonds' matroid intersetion theorem (Theorem 10.9) from Theorem 10.17.



Setion 10.7. Matroids and polyhedra 199
Referenes[1975℄ G.M. Adel'son-Vel'ski��, E.A. Dinits, A.V. Karzanov, Potokovye algoritmy [Russian;Flow Algorithms℄, Izdatel'stvo \Nauka", Mosow, 1975.[1974℄ A.V. Aho, J.E. Hoproft, J.D. Ullman, The Design and Analysis of Computer Algo-rithms, Addison-Wesley, Reading, Massahusetts, 1974.[1993℄ R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows | Theory, Algorithms, andAppliations, Prentie Hall, Englewood Cli�s, New Jersey, 1993.[1977℄ K. Appel, W. Haken, Every planar map is four olorable Part I: disharging, IllinoisJournal of Mathematis 21 (1977) 429{490.[1977℄ K. Appel, W. Haken, J. Koh, Every planar map is four olorable Part II: reduibility,Illinois Journal of Mathematis 21 (1977) 491{567.[1969℄ M.L. Balinski, Labelling to obtain a maximum mathing, in: Combinatorial Math-ematis and Its Appliations (Proeedings Conferene Chapel Hill, North Carolina,1967; R.C. Bose, T.A. Dowling, eds.), The University of North Carolina Press, ChapelHill, North Carolina, 1969, pp. 585{602.[1957℄ T.E. Bartlett, An algorithm for the minimum number of transport units to maintaina �xed shedule, Naval Researh Logistis Quarterly 4 (1957) 139{149.[1986℄ M. Beker, K. Mehlhorn, Algorithms for routing in planar graphs, Ata Informatia23 (1986) 163{176.[1958℄ R. Bellman, On a routing problem, Quarterly of Applied Mathematis 16 (1958) 87{90.[1958℄ C. Berge, Sur le ouplage maximum d'un graphe, Comptes Rendus Hebdomadairesdes S�eanes de l'Aad�emie des Sienes [Paris℄ 247 (1958) 258{259.[1960℄ C. Berge, Les probl�emes de oloration en th�eorie des graphes, Publiations de l'Institutde Statistique de l'Universit�e de Paris 9 (1960) 123{160.[1961℄ C. Berge, F�arbung von Graphen, deren s�amtlihe bzw. deren ungerade Kreise starrsind, Wissenshaftlihe Zeitshrift der Martin-Luther-Universit�at Halle-Wittenberg,Mathematish-Naturwissenshaftlihe Reihe 10 (1961) 114{115.[1963℄ C. Berge, Some lasses of perfet graphs, in: Six Papers on Graph Theory [related toa series of letures at the Researh and Training Shool of the Indian Statistial Insti-tute, Calutta, Marh-April 1963℄, Researh and Training Shool, Indian StatistialInstitute, Calutta, [1963,℄ pp. 1{21.[1946℄ G. Birkho�, Tres observaiones sobre el algebra lineal, Revista Faultad de CieniasExatas, Puras y Apliadas Universidad Naional de Tuuman, Serie A (Matematiasy Fisia Teoria) 5 (1946) 147{151.



200 Chapter 10. Matroids
[1926℄ O. Bor�uvka, O jist�em probl�emu minim�aln��m [Czeh, with German summary; On aminimal problem℄, Pr�ae Moravsk�e P�r��rodov�edek�e Spole�nosti Brno [Ata SoietatisSientiarum Naturalium Moravi[℄ae℄ 3 (1926) 37{58.[1941℄ R.L. Brooks, On olouring the nodes of a network, Proeedings of the CambridgePhilosophial Soiety 37 (1941) 194{197.[1911℄ C. Carath�eodory, �Uber den Variabilit�atsbereih der Fouriershen Konstanten vonpositiven harmonishen Funktionen, Rendionti del Cirolo Matematio di Palermo 32(1911) 193{217 [reprinted in: Constantin Carath�eodory, Gesammelte MathematisheShriften, Band III (H. Tietze, ed.), C.H. Bek'she Verlagsbuhhandlung, M�unhen,1955, pp. 78{110℄.[1976℄ N. Christo�des, Worst-Case Analysis of a New Heuristi for the Travelling SalesmanProblem, Management Sienes Researh Report 388, Graduate Shool of IndustrialAdministration, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1976.[1984℄ R. Cole, A. Siegel, River routing every whih way, but loose, in: 25th Annual Sympo-sium on Foundations of Computer Siene (25th FOCS, Singer Island, Florida, 1984),IEEE, New York, 1984, pp. 65{73.[1971℄ S.A. Cook, The omplexity of theorem-proving proedures, in: Conferene Reord ofThird Annual ACM Symposium on Theory of Computing (3rd STOC, Shaker Heights,Ohio, 1971), The Assoiation for Computing Mahinery, New York, 1971, pp. 151{158.[1978℄ W.H. Cunningham, A.B. Marsh, III, A primal algorithm for optimum mathing,[in: Polyhedral Combinatoris | Dediated to the Memory of D.R. Fulkerson (M.L.Balinski, A.J. Ho�man, eds.)℄ Mathematial Programming Study 8 (1978) 50{72.[1951a℄ G.B. Dantzig, Appliation of the simplex method to a transportation problem, in: A-tivity Analysis of Prodution and Alloation | Proeedings of a Conferene (Proeed-ings Conferene on Linear Programming, Chiago, Illinois, 1949; Tj.C. Koopmans,ed.), Wiley, New York, 1951, pp. 359{373.[1951b℄ G.B. Dantzig, Maximization of a linear funtion of variables subjet to linear in-equalities, in: Ativity Analysis of Prodution and Alloation | Proeedings of aConferene (Proeedings Conferene on Linear Programming, Chiago, Illinois, 1949;Tj.C. Koopmans, ed.), Wiley, New York, 1951, pp. 339{347.[1988℄ D. De Caen, On a theorem of K}onig on bipartite graphs, Journal of Combinatoris,Information & System Sienes 13 (1988) 127.[1959℄ E.W. Dijkstra, A note on two problems in onnexion with graphs, Numerishe Math-ematik 1 (1959) 269{271.[1950℄ R.P. Dilworth, A deomposition theorem for partially ordered sets, Annals of Math-ematis (2) 51 (1950) 161{166 [reprinted in: The Dilworth Theorems | SeletedPapers of Robert P. Dilworth (K.P. Bogart, R. Freese, J.P.S. Kung, eds.), Birkh�auser,Boston, Massahusetts, 1990, pp. 7{12℄.



Setion 10.7. Matroids and polyhedra 201
[1970℄ E.A. Dinits, Algoritm resheniya zadahi o maksimal'nom potoke v seti so stepenno��otsenko�� [Russian℄, Doklady Akademii Nauk SSSR 194 (1970) 754{757 [English trans-lation: Algorithm for solution of a problem of maximum ow in a network with powerestimation Soviet Mathematis Doklady 11 (1970) 1277{1280℄.[1961℄ G.A. Dira, On rigid iruit graphs, Abhandlungen aus dem Mathematishen Seminarder Universit�at Hamburg 25 (1961) 71{76.[1965a℄ J. Edmonds, Maximum mathing and a polyhedron with 0,1-verties, Journal ofResearh National Bureau of Standards Setion B 69 (1965) 125{130.[1965b℄ J. Edmonds, Minimum partition of a matroid into independent subsets, Journal ofResearh National Bureau of Standards Setion B 69 (1965) 67{72.[1965℄ J. Edmonds, Paths, trees, and owers, Canadian Journal of Mathematis 17 (1965)449{467.[1970℄ J. Edmonds, Submodular funtions, matroids, and ertain polyhedra, in: Combinato-rial Strutures and Their Appliations (Proeedings Calgary International Confereneon Combinatorial Strutures and Their Appliations, Calgary, Alberta, 1969; R. Guy,H. Hanani, N. Sauer, J. Sh�onheim, eds.), Gordon and Breah, New York, 1970, pp.69{87.[1965℄ J. Edmonds, D.R. Fulkerson, Transversals and matroid partition, Journal of ResearhNational Bureau of Standards Setion B 69 (1965) 147{153.[1972℄ J. Edmonds, R.M. Karp, Theoretial improvements in algorithmi eÆieny for net-work ow problems, Journal of the Assoiation for Computing Mahinery 19 (1972)248{264.[1931℄ J. Egerv�ary, Matrixok kombinatorius tulajdons�agair�ol [Hungarian, with German sum-mary℄, Matematikai �es Fizikai Lapok 38 (1931) 16{28 [English translation [by H.W.Kuhn℄: On ombinatorial properties of matries, Logistis Papers, George Washing-ton University, issue 11 (1955), paper 4, pp. 1{11℄.[1976℄ S. Even, A. Itai, A. Shamir, On the omplexity of timetable and multiommodityow problems, SIAM Journal on Computing 5 (1976) 691{703.[1975℄ S. Even, O. Kariv, An O(n2:5) algorithm for maximummathing in general graphs, in:16th Annual Symposium on Foundations of Computer Siene (16th FOCS, Berkeley,California, 1975), IEEE, New York, 1975, pp. 100{112.[1894℄ Gy. Farkas, A Fourier-f�ele mehanikai elv alkalmaz�asai [Hungarian℄, Mathematikai�es Term�eszettudom�anyi �Ertesit}o 12 (1894) 457{472 [German translation, with slightalterations: J. Farkas, �Uber die Anwendungen des mehanishen Prinips von Fourier,Mathematishe und naturwissenshaftlihe Berihte aus Ungarn 12 (1895) 263{281℄.[1896℄ Gy. Farkas, A Fourier-f�ele mehanikai elv alkalmaz�as�anak algebrai alapja [Hungarian;On the algebrai foundation of the appliations of the mehanial priniple of Fourier℄,



202 Chapter 10. Matroids
Mathematikai �es Physikai Lapok 5 (1896) 49{54 [German translation, with some ad-ditions: Setion I of: J. Farkas, Die algebraishen Grundlagen der Anwendungen desFourier'shen Prinips in der Mehanik, Mathematishe und naturwissenshaftliheBerihte aus Ungarn 15 (1897-99) 25{40℄.[1898℄ Gy. Farkas, A Fourier-f�ele mehanikai elv algebrai alapja [Hungarian℄, Math�ematikai�es Term�eszettudom�anyi �Ertesit}o 16 (1898) 361{364 [German translation: J. Farkas,Die algebraishe Grundlage der Anwendungen des mehanishen Prinips von Fourier,Mathematishe und naturwissenshaftlihe Berihte aus Ungarn 16 (1898) 154{157℄.[1957℄ G.J. Feeney, The empty boxar distribution problem, Proeedings of the First Interna-tional Conferene on Operational Researh (Oxford 1957) (M. Davies, R.T. Eddison,T. Page, eds.), Operations Researh Soiety of Ameria, Baltimore, Maryland, 1957,pp. 250{265.[1955℄ A.R. Ferguson, G.B. Dantzig, The problem of routing airraft, Aeronautial Engi-neering Review 14 (1955) 51{55.[1956℄ L.R. Ford, Jr, Network Flow Theory, Paper P-923, The RAND Corporation, SantaMonia, California, [August 14,℄ 1956.[1956℄ L.R. Ford, Jr, D.R. Fulkerson, Maximal ow through a network, Canadian Journalof Mathematis 8 (1956) 399{404.[1957℄ L.R. Ford, Jr, D.R. Fulkerson, A simple algorithm for �nding maximal network owsand an appliation to the Hithok problem, Canadian Journal of Mathematis 9(1957) 210{218.[1958℄ L.R. Ford, Jr, D.R. Fulkerson, A suggested omputation for maximal multi-ommoditynetwork ows, Management Siene 5 (1958) 97{101.[1962℄ L.R. Ford, Jr, D.R. Fulkerson, Flows in Networks, Prineton University Press, Prine-ton, New Jersey, 1962.[1980℄ S. Fortune, J. Hoproft, J. Wyllie, The direted subgraph homeomorphism problem,Theoretial Computer Siene 10 (1980) 111{121.[1984℄ M.L. Fredman, R.E. Tarjan, Fibonai heaps and their uses in improved networkoptimization algorithms, in: 25th Annual Symposium on Foundations of ComputerSiene (25th FOCS, Singer Island, Florida, 1984), IEEE, New York, 1984, pp. 338{346.[1917℄ G. Frobenius, �Uber zerlegbare Determinanten, Sitzungsberihte der K�oniglih Preu�-ishen Akademie der Wissenshaften zu Berlin (1917) 274{277 [reprinted in: Fer-dinand Georg Frobenius, Gesammelte Abhandlungen, Band III (J.-P. Serre, ed.),Springer, Berlin, 1968, pp. 701{704℄.[1973℄ H.N. Gabow, Implementation of Algorithms for Maximum Mathing on Nonbipar-tite Graphs, Ph.D. Thesis, Department of Computer Siene, Stanford University,Stanford, California, 1973.



Setion 10.7. Matroids and polyhedra 203
[1990℄ H.N. Gabow, Data strutures for weighted mathing and nearest ommon anestorswith linking, in: Proeedings of the First Annual ACM-SIAM Symposium on Dis-rete Algorithms (San Franiso, California, 1990), Soiety for Industrial and AppliedMathematis, Philadelphia, Pennsylvania, 1990, pp. 434{443.[1986℄ Z. Galil, S. Miali, H. Gabow, An O(EV log V ) algorithm for �nding a maximalweighted mathing in general graphs, SIAM Journal on Computing 15 (1986) 120{130.[1958℄ T. Gallai, Maximum-minimum S�atze �uber Graphen, Ata Mathematia AademiaeSientiarum Hungariae 9 (1958) 395{434.[1959℄ T. Gallai, �Uber extreme Punkt- und Kantenmengen, Annales Universitatis Sien-tiarum Budapestinensis de Rolando E�otv�os Nominatae, Setio Mathematia 2 (1959)133{138.[1979℄ M.R. Garey, D.S. Johnson, Computers and Intratability | A Guide to the Theoryof NP-Completeness, Freeman, San Franiso, California, 1979.[1996℄ G.S. Gasparian, Minimal imperfet graphs: a simple approah, Combinatoria 16(1996) 209{212.[1990℄ A.V. Goldberg, �E. Tardos, R.E. Tarjan, Network ow algorithms, in: Paths, Flows,and VLSI-Layout (B. Korte, L. Lov�asz, H.J. Pr�omel, A. Shrijver, eds.), Springer,Berlin, 1990, pp. 101{164.[1988℄ A.V. Goldberg, R.E. Tarjan, A new approah to the maximum-ow problem, Journalof the Assoiation for Computing Mahinery 35 (1988) 921{940.[1990℄ A.V. Goldberg, R.E. Tarjan, Finding minimum-ost irulations by suessive ap-proximation, Mathematis of Operations Researh 15 (1990) 430{466.[1873℄ P. Gordan, Ueber die Au�osung linearer Gleihungen mit reellen CoeÆienten, Math-ematishe Annalen 6 (1873) 23{28.[2000℄ F. G�oring, Short proof of Menger's theorem, Disrete Mathematis 219 (2000) 295{296.[1981℄ M. Gr�otshel, L. Lov�asz, A. Shrijver, The ellipsoid method and its onsequenes inombinatorial optimization, Combinatoria 1 (1981) 169{197 [orrigendum: Combi-natoria 4 (1984) 291{295℄.[1960℄ M.-g. Guan, Graphi programming using odd or even points [in Chinese℄, Ata Math-ematia Sinia 10 (1960) 263{266 [English translation: Chinese Mathematis 1 (1962)273{277℄.[1943℄ H. Hadwiger, �Uber eine Klassi�kation der Strekenkomplexe, Vierteljahrsshrift dernaturforshenden Gesellshaft in Z�urih 88 (1943) 133{142.



204 Chapter 10. Matroids
[1958℄ A. Hajnal, J. Sur�anyi, �Uber die Au�osung von Graphen in vollst�andige Teilgraphen,Annales Universitatis Sientiarum Budapestinensis de Rolando E�otv�os Nominatae |Setio Mathematia 1 (1958) 113{121.[1935℄ P. Hall, On representatives of subsets, The Journal of the London Mathematial So-iety 10 (1935) 26{30 [reprinted in: The Colleted Works of Philip Hall (K.W. Gru-enberg, J.E. Roseblade, eds.), Clarendon Press, Oxford, 1988, pp. 165{169℄.[1960℄ A.J. Ho�man, Some reent appliations of the theory of linear inequalities to extremalombinatorial analysis, in: Combinatorial Analysis (New York, 1958; R. Bellman, M.Hall, Jr, eds.) [Proeedings of Symposia in Applied Mathematis, Volume X℄, Ameri-an Mathematial Soiety, Providene, Rhode Island, 1960, pp. 113{127 [reprinted in:Seleted Papers of Alan Ho�man | With Commentary (C.A. Mihelli, ed.), WorldSienti�, Singapore, 2003, pp. 244{248℄.[1956℄ A.J. Ho�man, J.B. Kruskal, Integral boundary points of onvex polyhedra, in: Lin-ear Inequalities and Related Systems (H.W. Kuhn, A.W. Tuker, eds.) [Annals ofMathematis Studies 38℄, Prineton University Press, Prineton, New Jersey, 1956,pp. 223{246 [reprinted in: Seleted Papers of Alan Ho�man | With Commentary(C.A. Mihelli, ed.), World Sienti�, Singapore, 2003, pp. 220{243℄.[1973℄ J. Hoproft, R.M. Karp, An n5=2 algorithm for maximum mathings in bipartitegraphs, SIAM Journal on Computing 2 (1973) 225{231.[1961℄ T.C. Hu, The maximum apaity route problem, Operations Researh 9 (1961) 898{900.[1963℄ T.C. Hu, Multi-ommodity network ows, Operations Researh 11 (1963) 344{360.[1977℄ D.B. Johnson, EÆient algorithms for shortest paths in sparse networks, Journal ofthe Assoiation for Computing Mahinery 24 (1977) 1{13.[1984℄ N. Karmarkar, A new polynomial-time algorithm for linear programming, Combina-toria 4 (1984) 373{395.[1972℄ R.M. Karp, Reduibility among ombinatorial problems, in: Complexity of ComputerComputations (Proeedings of a symposium on the Complexity of Computer Com-putations, IBM Thomas J. Watson Researh Center, Yorktown Heights, New York,1972; R.E. Miller, J.W. Thather, eds.), Plenum Press, New York, 1972, pp. 85{103.[1975℄ R.M. Karp, On the omputational omplexity of ombinatorial problems, Networks5 (1975) 45{68.[1974℄ A.V. Karzanov, Nakhozhdenie maksimal'nogo potoka v seti metodom predpotokov[Russian; Determining the maximal ow in a network by the method of preows℄,Doklady Akademii Nauk SSSR 215 (1974) 49{52 [English translation: Soviet Mathe-matis Doklady 15 (1974) 434{437℄.



Setion 10.7. Matroids and polyhedra 205
[1979℄ L.G. Khahiyan, Polinomialny�� algoritm v line��nom programmirovanii [Russian℄, Dok-lady Akademii Nauk SSSR 244 (1979) 1093{1096 [English translation: A polynomialalgorithm in linear programming, Soviet Mathematis Doklady 20 (1979) 191{194℄.[1980℄ L.G. Khahiyan, Polinomial'nye algoritmy v line��nom programmirovanii [Russian℄,Zhurnal Vyhislitel'no�� Matematiki i Matematihesko�� Fiziki 20 (1980) 51{86 [Englishtranslation: Polynomial algorithms in linear programming, U.S.S.R. ComputationalMathematis and Mathematial Physis 20 (1980) 53{72℄.[1968℄ D.E. Knuth, The Art of Computer Programming, Volume I Fundamental Algorithms,Addison-Wesley, Reading, Massahusetts, 1968.[1916℄ D. K}onig, Graphok �es alkalmaz�asuk a determin�ansok �es a halmazok elm�elet�ere [Hun-garian℄, Mathematikai �es Term�eszettudom�anyi �Ertesit}o 34 (1916) 104{119 [Germantranslation: �Uber Graphen und ihre Anwendung auf Determinantentheorie und Men-genlehre, Mathematishe Annalen 77 (1916) 453{465℄.[1931℄ D. K}onig, Graphok �es matrixok [Hungarian; Graphs and matries℄, Matematikai �esFizikai Lapok 38 (1931) 116{119.[1932℄ D. K}onig, �Uber trennende Knotenpunkte in Graphen (nebst Anwendungen auf Deter-minanten und Matrizen), Ata Litterarum a Sientiarum Regiae Universitatis Hun-gariae Franiso-Josephinae, Setio Sientiarum Mathematiarum [Szeged℄ 6 (1932-34) 155{179.[1948℄ Tj.C. Koopmans, Optimum utilization of the transportation system, in: The Eono-metri Soiety Meeting (Washington, D.C., 1947; D.H. Leavens, ed.) [Proeedings ofthe International Statistial Conferenes | Volume V℄, 1948, pp. 136{146 [reprintedin: Eonometria 17 (Supplement) (1949) 136{146℄ [reprinted in: Sienti� Papers ofTjalling C. Koopmans, Springer, Berlin, 1970, pp. 184{193℄.[1984℄ M.R. Kramer, J. van Leeuwen, The omplexity of wire-routing and �nding minimumarea layouts for arbitrary VLSI iruits, in: VLSI-Theory (F.P. Preparata, ed.) [Ad-vanes in Computing Researh, Volume 2℄, JAI Press, Greenwih, Connetiut, 1984,pp. 129{146.[1956℄ J.B. Kruskal, Jr, On the shortest spanning subtree of a graph and the travelingsalesman problem, Proeedings of the Amerian Mathematial Soiety 7 (1956) 48{50.[1955℄ H.W. Kuhn, The Hungarian method for the assignment problem, Naval ResearhLogistis Quarterly 2 (1955) 83{97.[1976℄ E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehartand Winston, New York, 1976.[1985℄ C.E. Leiserson, F.M. Maley, Algorithms for routing and testing routability of planarVLSI layouts, in: Proeedings of the Seventeenth Annual ACM Symposium on Theoryof Computing (17th STOC, Providene, Rhode Island, 1985), The Assoiation forComputing Mahinery, New York, 1985, pp. 69{78.



206 Chapter 10. Matroids
[1972a℄ L. Lov�asz, A haraterization of perfet graphs, Journal of Combinatorial Theory,Series B 13 (1972) 95{98.[1972b℄ L. Lov�asz, Normal hypergraphs and the perfet graph onjeture, Disrete Mathe-matis 2 (1972) 253{267 [reprinted as: Normal hypergraphs and the weak perfetgraph onjeture, in: Topis on Perfet Graphs (C. Berge, V. Chv�atal, eds.) [Annalsof Disrete Mathematis 21℄, North-Holland, Amsterdam, 1984, pp. 29{42℄.[1979℄ L. Lov�asz, Graph theory and integer programming, in: Disrete Optimization I (Pro-eedings Advaned Researh Institute on Disrete Optimization and Systems Appli-ations and Disrete Optimization Symposium, Ban�, Alta, and Vanouver, B.C.,Canada, 1977; P.L. Hammer, E.L. Johnson, B.H. Korte, eds.) [Annals of DisreteMathematis 4℄, North-Holland, Amsterdam, 1979, pp. 141{158.[1986℄ L. Lov�asz, M.D. Plummer, Mathing Theory, Akad�emiai Kiad�o, Budapest [also:North-Holland Mathematis Studies Volume 121, North-Holland, Amsterdam℄, 1986.[1975℄ J.F. Lynh, The equivalene of theorem proving and the interonnetion problem,(ACM) SIGDA Newsletter 5:3 (1975) 31{36.[1978℄ V.M. Malhotra, M.P. Kumar, S.N. Maheshwari, An O(jV j3) algorithm for �ndingmaximum ows in networks, Information Proessing Letters 7 (1978) 277{278.[1985℄ K. Matsumoto, T. Nishizeki, N. Saito, An eÆient algorithm for �nding multiom-modity ows in planar networks, SIAM Journal on Computing 14 (1985) 289{302.[1927℄ K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematiae 10 (1927)96{115.[1980℄ S. Miali, V.V. Vazirani, An O(pjvjjEj) algorithm for �nding maximum mathingin general graphs, in: 21st Annual Symposium on Foundations of Computer Siene(21st FOCS, Syrause, New York, 1980), IEEE, New York, 1980, pp. 17{27.[1784℄ G. Monge, M�emoire sur la th�eorie des d�eblais et des remblais, Histoire de l'Aad�emieRoyale des Sienes [ann�ee 1781. Ave les M�emoires de Math�ematique & de Physique,pour la même Ann�ee℄ (2e partie) (1784) [Histoire: 34{38, M�emoire:℄ 666{704.[1936℄ T.S. Motzkin, Beitr�age zur Theorie der linearen Ungleihungen, Inaugural Disserta-tion Basel, Azriel, Jerusalem, 1936 [English translation: Contributions to the theoryof linear inequalities, RAND Corporation Translation 22, The RAND Corporation,Santa Monia, California, 1952 [reprinted in: Theodore S. Motzkin: Seleted Papers(D. Cantor, B. Gordon, B. Rothshild, eds.), Birkh�auser, Boston, Massahusetts,1983, pp. 1{80℄℄.[1961℄ C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of �nite graphs, The Journalof the London Mathematial Soiety 36 (1961) 445{450.[1964℄ C.St.J.A. Nash-Williams, Deomposition of �nite graphs into forests, The Journal ofthe London Mathematial Soiety 39 (1964) 12.



Setion 10.7. Matroids and polyhedra 207
[1967℄ C.St.J.A. Nash-Williams, An appliation of matroids to graph theory, in: Theoryof Graphs | International Symposium | Th�eorie des graphes | Journ�ees interna-tionales d'�etude (Rome, 1966; P. Rosenstiehl, ed.), Gordon and Breah, New York,and Dunod, Paris, 1967, pp. 263{265.[1985℄ C.St.J.A. Nash-Williams, Conneted detahments of graphs and generalized Eulertrails, The Journal of the London Mathematial Soiety (2) 31 (1985) 17{29.[1947℄ J. von Neumann, Disussion of a maximum problem, typesript dated November 15{16, 1947, Institute for Advaned Study, Prineton, New Jersey, 1947 [reprinted in:John von Neumann, Colleted Works, Volume VI (A.H. Taub, ed.), Pergamon Press,Oxford, 1963, pp. 89{95℄.[1953℄ J. von Neumann, A ertain zero-sum two-person game equivalent to the optimalassignment problem, in: Contributions to the Theory of Games Volume II (H.W.Kuhn, A.W. Tuker, eds.) [Annals of Mathematis Studies 28℄, Prineton UniversityPress, Prineton, New Jersey, 1953, pp. 5{12 [reprinted in: John von Neumann,Colleted Works, Volume VI (A.H. Taub, ed.), Pergamon Press, Oxford, 1963, pp.44{49℄.[1968℄ A.R.D. Norman, M.J. Dowling, Railroad Car Inventory: Empty Woodrak Cars onthe Louisville and Nashville Railroad, Tehnial Report 320-2926, IBM New YorkSienti� Center, New York, 1968.[1981℄ H. Okamura, P.D. Seymour, Multiommodity ows in planar graphs, Journal of Com-binatorial Theory, Series B 31 (1981) 75{81.[1988℄ J.B. Orlin, A faster strongly polynomial minimum ost ow algorithm, in: Proeedingsof the Twentieth Annual ACM Symposium on Theory of Computing (20th STOC,Chiago, Illinois, 1988), The Assoiation for Computing Mahinery, New York, 1988,pp. 377{387.[1993℄ J.B. Orlin, A faster strongly polynomial minimum ost ow algorithm, OperationsResearh 41 (1993) 338{350.[1994℄ C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massahusetts,1994.[1983℄ R.Y. Pinter, River routing: methodology and analysis, in: Third CalTeh Confer-ene on Very Large Sale Integration (Pasadena, California, 1983; R. Bryant, ed.),Springer, Berlin, 1983, pp. 141{163.[1957℄ R.C. Prim, Shortest onnetion networks and some generalizations, The Bell SystemTehnial Journal 36 (1957) 1389{1401.[1942℄ R. Rado, A theorem on independene relations, The Quarterly Journal of Mathemat-is (Oxford) (2) 13 (1942) 83{89.[1965℄ J.W.H.M.T.S.J. van Rees, Een studie omtrent de irulatie van materieel, Spoor- enTramwegen 38 (1965) 363{367.



208 Chapter 10. Matroids
[1997℄ H. Ripphausen-Lipa, D. Wagner, K. Weihe, The vertex-disjoint Menger problem inplanar graphs, SIAM Journal on Computing 26 (1997) 331{349.[1956℄ J.T. Robaker, Min-Max Theorems on Shortest Chains and Disjoint Cuts of a Net-work, Researh Memorandum RM-1660, The RAND Corporation, Santa Monia,California, [12 January℄ 1956.[1986℄ N. Robertson, P.D. Seymour, Graph minors. VI. Disjoint paths aross a dis, Journalof Combinatorial Theory, Series B 41 (1986) 115{138.[1995℄ N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, Jour-nal of Combinatorial Theory, Series B 63 (1995) 65{110.[1993℄ N. Robertson, P. Seymour, R. Thomas, Hadwiger's onjeture for K6-free graphs,Combinatoria 13 (1993) 279{361.[1966℄ B. Rothshild, A. Whinston, Feasibility of two ommodity network ows, OperationsResearh 14 (1966) 1121{1129.[1973℄ M. Sakarovith, Two ommodity network ows and linear programming, Mathemat-ial Programming 4 (1973) 1{20.[1991℄ A. Shrijver, Disjoint homotopi paths and trees in a planar graph, Disrete & Com-putational Geometry 6 (1991) 527{574.[1994℄ A. Shrijver, Finding k disjoint paths in a direted planar graph, SIAM Journal onComputing 23 (1994) 780{788.[2003℄ A. Shrijver, Combinatorial Optimization | Polyhedra and EÆieny, Springer, Berlin,2003.[1915℄ E. Stiemke, �Uber positive L�osungen homogener linearer Gleihungen, MathematisheAnnalen 76 (1915) 340{342.[1974℄ R. Tarjan, Finding dominators in direted graphs, SIAM Journal on Computing 3(1974) 62{89.[1984℄ R.E. Tarjan, A simple version of Karzanov's bloking ow algorithm, OperationsResearh Letters 2 (1984) 265{268.[1950℄ R.L. Thorndike, The problem of the lassi�ation of personnel, Psyhometrika 15(1950) 215{235.[1937℄ A.M. Turing, On omputable numbers, with an appliation to the Entsheidungsprob-lem, Proeedings of the London Mathematial Soiety (2) 42 (1937) 230{265 [orre-tion: 43 (1937) 544{546℄ [reprinted in: The Undeidable | Basi Papers on Undeid-able Propositions, Unsolvable Problems and Computable Funtions (M. Davis, ed.),Raven Press, Hewlett, New York, 1965, pp. 116{154℄.



Setion 10.7. Matroids and polyhedra 209
[1947℄ W.T. Tutte, The fatorization of linear graphs, The Journal of the London Mathemat-ial Soiety 22 (1947) 107{111 [reprinted in: Seleted Papers of W.T. Tutte Volume I(D. MCarthy, R.G. Stanton, eds.), The Charles Babbage Researh Centre, St. Pierre,Manitoba, 1979, pp.89{97℄.[1961℄ W.T. Tutte, On the problem of deomposing a graph into n onneted fators, TheJournal of the London Mathematial Soiety 36 (1961) 221{230 [reprinted in: SeletedPapers of W.T. Tutte Volume I (D. MCarthy, R.G. Stanton, eds.), The CharlesBabbage Researh Centre, St. Pierre, Manitoba, 1979, pp. 214{225℄.[1968℄ A.F. Veinott, Jr, G.B. Dantzig, Integral extreme points, SIAM Review 10 (1968)371{372.[1964℄ V.G. Vizing, Ob otsenke khromatiheskogo klassa p-grafa [Russian; On an estimateof the hromati lass of a p-graph℄, Diskretny�� Analiz 3 (1964) 25{30.[1937℄ K. Wagner, �Uber eine Eigenshaft der ebenen Komplexe,Mathematishe Annalen 114(1937) 570{590.[1995℄ D. Wagner, K. Weihe, A linear-time algorithm for edge-disjoint paths in planargraphs, Combinatoria 15 (1995) 135{150.[1976℄ D.J.A. Welsh, Matroid Theory, Aademi Press, London, 1976.[1969℄ W.W.White, A.M. Bomberault, A network algorithm for empty freight ar alloation,IBM Systems Journal 8 (1969) 147{169.



210 Name index
Name indexAdel'son-Vel'ski��, G.M. 156, 199Aho, A.V. 98, 110, 199Ahuja, R.K. 68, 72, 199Appel, K. 112, 199Balinski, M.L. 83, 199Bartlett, T.E. 74, 199Beker, M. 168, 199Bellman, R.E. 13, 16-18, 48, 72, 192, 199Berge, C. 2, 78-79, 95-96, 112, 125-126,129, 199Birkho�, G. 44, 199Bomberault, A.M. 73, 209Bor�uvka, O. 19, 200Brooks, R.L. 112, 200Carath�eodory, C. 24, 30, 33, 200Christo�des, N. 89-91, 200Chudnovsky, M. 112, 126Cole, R.J. 164, 200Cook, S.A. 98, 105-106, 200Cunningham, W.H. 94-96, 200Dantzig, G.B. 34, 59-60, 75, 136, 200,202, 209De Caen, D. 41, 200Dijkstra, E.W. 6, 8-10, 19-21, 48, 200Dilworth, R.P. 121, 123-124, 127-128,146, 200Dinitz, Y. 65-66, 156, 199, 201Dira, G.A. 129, 201Dowling, M.J. 73, 207Edmonds, J.R. 65-66, 79, 81, 83, 85, 88,91-96, 184, 187-190, 194-195, 198, 201Egerv�ary, J. 47, 52, 201Euler, L. 166-167Even, S. 83, 151, 155, 201Farkas, Gy. 2, 23, 31-34, 152, 201-202Feeney, G.J. 73, 202Ferguson, A.R. 75, 202Ford, Jr, L.R. 13, 16-18, 48, 59-61, 72,149, 169, 172, 192, 202

Fortune, S. 151, 157, 202Fredman, M.L. 10, 202Frobenius, F.G. 41, 202Fulkerson, D.R. 59-61, 72, 149, 169, 172,189, 201-202Gabow, H.N. 88, 202-203Galil, Z. 88, 203Gallai, T. 2, 39, 79, 111, 127, 203Garey, M.R. 98, 203Gasparyan, G.S. 125, 203Goldberg, A.V. 68, 203Gordan, P. 33, 203G�oring, F. 54, 203Gr�otshel, M. 128, 203Guan, M.-g. 89, 203Hadwiger, H. 112-113, 203Hajnal, A. 129, 204Haken, W. 112, 199Hall, P. 43, 204Ho�man, A.J. 51, 68, 135-137, 145-146,204Hoproft, J.E. 45, 98, 110, 151, 157, 199,202, 204Hu, T.C. 21, 150, 153, 156, 204Itai, A. 151, 155, 201Johnson, D.B. 10, 204Johnson, D.S. 98, 203Kariv, O. 83, 201Karmarkar, N. 34, 204Karp, R.M. 45, 65-66, 98, 106, 151, 201,204Karzanov, A.V. 66, 156, 199, 204Khahiyan, L.G. 34, 205Knuth, D.E. 67, 151, 205Koh, J. 112, 199K}onig, D. 2, 41-42, 46, 52-53, 114-116,119, 123, 126-127, 140, 182-183, 188,205Koopmans, Tj.C. 73, 205



Name index 211
Kramer, M.R. 151, 205Kruskal, Jr, J.B. 20-21, 51, 135-137, 173,204-205Kuhn, H.W. 47, 205Kumar, M.P. 66, 206Lawler, E.L. 88, 205Leeuwen, J. van 151, 205Leiserson, C.E. 164, 205Lov�asz, L. 79, 88, 125-126, 128-129, 203,206Lynh, J.F. 151, 206Magnanti, T.L. 68, 72, 199Maheshwari, S.N. 66, 206Maley, F.M. 164, 205Malhotra, V.M. 66, 206Marsh, III, A.B. 94-96, 200Matsumoto, K. 168, 206Mehlhorn, K. 168, 199Menger, K. 2, 54-55, 58-59, 206Miali, S. 83, 88, 203, 206Monge, G. 49, 206Motzkin, T.S. 33, 206Nash-Williams, C.St.J.A. 189-190,206-207Neumann, J. von 34, 44, 207Nishizeki, T. 168, 206Norman, A.R.D. 73, 207Okamura, H. 150, 165-166, 207Orlin, J.B. 68, 72, 199, 207Papadimitriou, C.H. 98, 110, 207Pinter, R.Y. 163, 207Plummer, M.D. 88, 206Prim, R.C. 19-21, 207Rado, R. 188, 207Rees, J.W.H.M.T.S.J. van 74, 207Ripphausen-Lipa, H. 161, 208Robaker, J.T. 5, 208Robertson, G.N. 112-113, 126, 151, 159,161, 208Rothshild, B. 150, 155, 165, 208

Saito, N. 168, 206Sakarovith, M. 153, 208Shrijver, A. 83, 128, 151, 164, 203, 208Seymour, P.D. 112-113, 126, 150-151,159, 161, 165-166, 207-208Shamir, A. 151, 155, 201Siegel, A. 164, 200Stiemke, E. 33, 208Sur�anyi, J. 129, 204Tardos, �E. 68, 203Tarjan, R.E. 10, 66-68, 202-203, 208Thomas, R. 112-113, 126, 208Thorndike, R.L. 49, 208Thue, A. 100Turing, A.M. 3, 100, 108-110, 208Tutte, W.T. 2, 78-80, 95-96, 103, 190,209Ullman, J.D. 98, 110, 199Vazirani, V.V. 83, 206Veinott, Jr, A.F. 136, 209Vizing, V.G. 116, 209Wagner, D. 161, 168, 208-209Wagner, K. 113, 209Weihe, K. 161, 168, 208-209Welsh, D.J.A. 182, 209Whinston, A. 150, 155, 165, 208White, W.W. 73, 209Wyllie, J. 151, 157, 202



212 Subjet index
Subjet indexaepts wordalgorithm 101Turing mahine 109ayli digraph 157aÆne halfspae 24aÆne hyperplane 23airline timetabling 88-89airplane rew pairing 88airplane routing 7-8, 55-57, 75, 158airport terminal assignment 123algorithm 100-101polynomial-time 101allows sequene of wordsalgorithm 101alphabet 98alternating forestM - 86alternating walkM - 81antihain 121-124, 176ar-disjoint 54ar-disjoint paths 55ar-disjoint paths problem 149-152, 158ar-disjoint s� t path!!s 55ar-disjoint s� t path!!s/min-max 55assignmentbungalow 122-123frequeny 113job 45-46, 48-49, 83-84, 122platform 123room 83, 88, 113, 123seat 83, 88terminal 123assignment problem 45-46optimal 48-50augmenting pathow 61M - 40-45, 47-48, 82b-detahment 190b-mathing 44, 80-81

basi solution 30basis 178basis in a matroid 174basis of a matrix 30Bellman-Ford method 13-14bend ut1- 168bipartite mathing 41-53, 185ardinality 41-46weighted 47-53bipartite mathing algorithmardinality 45weighted 47-48bloking ow 66-67blossomM - 82boolean expression 103box arsrouting empty railway 73bridge 80Brooks' theorem 112bungalow assignment 122-123bus station platform assignment 123apaity of a ut 58Carath�eodory's theorem 30ardinality bipartite mathing 41-46ardinality bipartite mathing algorithm45ardinality ommon independent setalgorithm 185-187ardinality ommon independent setaugmenting algorithm 185-187ardinality ommon independent setproblem 184-190ardinality mathing 41-46, 78-85, 132ardinality matroid intersetion 184-190ardinality matroid intersetion algorithm185-187ardinality nonbipartite mathing 78-85,132



Subjet index 213
ardinality nonbipartite mathingalgorithm 81-83erti�ate 97, 101-103hain 121-124maximal 123hild 9Chinese postman problem 89, 91hord 128hordal graph 128-131Christo�des' approximative algorithm forthe traveling salesman problem89-91hromati number 111-115, 124-128edge- 115-116vertex- 111-115, 124-128iruit 178Hamiltonian 89iruit basis 182irulation 68-69, 144-146min-ost 72minimum-ost 72irulation theoremHo�man's 68-69, 145-146lass sheduling 117-118lique 111-112, 124-128lique number 111-112, 124-128o-NP 102-103COCLIQUE 111oyle matroid 180ographi matroid 180, 182-183olour 111, 115olourablek- 1113- 112-115olouring 111-115edge- 115-116map 113vertex- 111-115olouring number 111-115, 124-128edge- 115-116vertex- 111-115, 124-128olouring theoremK}onig's edge- 115-116, 119-127olumn generation tehnique 168-172

ommodity 148ommodity ow problemfrational k- 148-152, 168-172integer k- 148-151, 155-156integer undireted k- 149-151k- 148-152, 168-172undireted k- 149-151ommon independent set 184extreme 190ommon independent set algorithmardinality 185-187weighted 191-193ommon independent set augmentingalgorithmardinality 185-187weighted 191-193ommon independent set problem184-193ardinality 184-190weighted 190-193ommon SDR 43, 57, 69-70, 119-120,185, 188ommon system of distint representatives43, 57, 69-70, 119-120, 185, 188ommon transversal 43, 57, 69-70,119-120, 185, 188omparability graph 123-124, 127-128omplement 125omplementary graph 125ompleteNP- 97-98, 103omponentodd 78omponent of a olletion of sets 80one onvex 29�nitely generated onvex 29-30onservation lawow 58ontration in a matroid 179-180onvex one 29�nitely generated 29-30onvex hull 23onvex set 23-24



214 Subjet index
Cook's theorem 105ost 70over edge 39-40vertex 39-40over numberedge 39-40, 79-80vertex 39-40over polytopeedge 143vertex 143CPM 14-16, 122rew pairingairplane 88Critial Path Method 14-16, 122ross-free 90ross-freeness ondition 160-161Cunningham-Marsh formula 95-96ut 51-bend 168s� t 55s� t vertex- 55ut ondition 149, 152, 161, 168ut/minimum-sizes� t 55s� t vertex- 55ut/minimum-size/min-maxs� t 55s� t vertex- 55yle matroid 180deomposition theoremDilworth's 121-122, 124, 127-128,146deletion in a matroid 179-180dependent set in a matroid 174deshrinking 85detahmentb- 190Dijkstra-Prim method 19-20Dilworth's deomposition theorem121-122, 124, 127-128, 146DIRECTED HAMILTONIAN CYCLE107

direted Hamiltonian yle problem 107disonneting vertex setS � T 54disonneting vertexset/minimum-size/min-maxS � T 54disjointar- 54internally vertex- 54disjoint path!sinternally vertex- 54disjoint pathsar- 55disjoint paths problemar- 149-152, 158edge- 149-152, 156-168vertex- 149-152, 157-162disjoint s� t path!!sar- 55internally 55internally vertex- 55disjoint s� t path!!s/min-maxar- 55internally 55internally vertex- 55disjoint S � T path!!s/min-max 54disjoint spanning trees problemedge- 185, 190disjoint trees problemvertex- 164-165distane 5-6distint representativesommon system of 43, 57, 69-70,119-120, 185, 188partial system of 43system of 42-43, 46, 188doubly stohasti matrix 44, 143down-monotone 176dual LP-problem 34dual matroid 178, 182-183dual of a matroid 180duality theorem of linear programming34-37



Subjet index 215
dynami programming 8edge-hromati number 115-116edge-olouring 115-116edge-olouring number 115-116edge-olouring theoremK}onig's 115-116, 119-127edge over 39-40edge over number 39-40, 79-80edge over polytope 143edge over theoremK}onig's 42, 114, 123, 126-127,140-141edge-disjoint paths problem 149-152,156-168edge-disjoint spanning trees problem 185,190Edmonds' mathing polytope theorem91-93-94, 96Edmonds' matroid intersetion theorem188, 198ellipsoid method 34empty railway box arsrouting 73end vertex 5Euler ondition 155, 165-167extreme ommon independent set 190extreme ow 70extreme mathing 47fator 1- 78-80fator theoremTutte's 1- 79Farkas' lemma 31-33Fibonai forest 10-11Fibonai heap 11-12�nitely generated onvex one 29-30ow 144-146bloking 66-67s� t 58ow algorithmFord-Fulkerson maximum 60-68maximum 60-68minimum-ost 70-72

ow augmenting algorithm 60-61ow augmenting path 61ow onservation law 58ow problemfrational k-ommodity 148-152,168-172frational multiommodity148-152, 168-172integer k-ommodity 148-151,155-156integer multiommodity 148-151,155-156integer two-ommodity 155-156integer undireted k-ommodity149-151integer undireted multiommodity149-151k-ommodity 148-152, 168-172maximum 58-68min-ost 70-72minimum-ost 70-72multiommodity 148-152, 168-172undireted k-ommodity 149-151undireted multiommodity149-151ow theoreminteger 60, 146follows from wordword 100Ford-Fulkerson maximum ow algorithm60-68forest Fibonai 10-11M -alternating 86rooted 9four-olour onjeture 111-112four-olour theorem 1124CC 111-1124CT 112frational k-ommodity ow problem148-152, 168-172frational multiommodity ow problem148-152, 168-172frequeny assignment 113



216 Subjet index
Gallai's theorem 39-40good haraterization 103good forest 22goods storage of 113Gordan's theorem 33graphi matroid 180, 182-183greedy algorithm 173-176greedy forest 19grid graph 168Hadwiger's onjeture 112-115halfspae 24aÆne 24Hall's marriage theorem 43Hamiltonian iruit 89HAMILTONIAN CYCLEDIRECTED 107UNDIRECTED 107-108Hamiltonian yle problemdireted 107undireted 107-108heap 9Fibonai 11-122- 9-10Ho�man-Kruskal theorem 137-138Ho�man's irulation theorem 68-69,145-146hull onvex 23Hungarian method 47-48Hu's two-ommodity ow theorem153-155hyperplane 23aÆne 23inidene funtion 92inidene matrix of a direted graph 143inidene vetor 50, 92, 124, 141, 169independent set algorithmardinality ommon 185-187weighted ommon 191-193independent set augmenting algorithmardinality ommon 185-187

independent set in a matroid 174independent set problemardinality ommon 184-190ommon 184-193weighted ommon 190-193indued subgraph 112integer ow theorem 60, 146integer k-ommodity ow problem148-151, 155-156integer linear programming 132-147integer multiommodity ow problem148-151, 155-156integer polyhedron 133-134-138integer polytope 133integer two-ommodity ow problem155-156integer undireted k-ommodity owproblem 149-151integer undireted multiommodity owproblem 149-151integer vetor 132integrity theorem 59, 62interior point method 34internally disjoint s� t path!!s 55internally disjoint s� t path!!s/min-max55internally vertex-disjoint 54internally vertex-disjoint path!s 54internally vertex-disjoint s� t path!!s 55internally vertex-disjoint s� tpath!!s/min-max 55intersetion graph 129interval matrix 146job assignment 45-46, 48-49, 83-84, 122join T - 91k-ommodity ow problem 148-152,168-172frational 148-152, 168-172integer 148-151, 155-156integer undireted 149-151undireted 149-151k-trunation of a matroid 179



Subjet index 217
k-uniform matroid 179knapsak problem 14K}onig's edge-olouring theorem 115-116,119-127K}onig's edge over theorem 42, 114, 123,126-127, 140-141K}onig's mathing theorem 41-42, 46,52-53, 114, 127, 140, 188Kruskal's method 20length of a walk 5linear matroid 180-181, 183linear programming 33-37duality theorem of 34-37integer 132-147literal 111Lov�asz's perfet graph theorem 124-126,128LP 33-37M -alternating forest 86M -alternating walk 81M -augmenting path 40-45, 47-48, 82M -blossom 82map olouring 113marriage theoremHall's 43mathing 39-53, 78-91, 132b- 44, 80-81bipartite 41-53, 185ardinality 41-46, 78-85, 132ardinality bipartite 41-46ardinality nonbipartite 78-85, 132nonbipartite 78-91, 132perfet 39, 42, 44, 50-51, 78-80weighted bipartite 47-53weighted nonbipartite 85-91mathing algorithmardinality bipartite 45weighted bipartite 47-48mathing number 39-40, 78-79mathing polytope 50-53, 91-93-94,142-143perfet 51, 92-94, 142mathing polytope theorem

Edmonds' 91-93-94, 96mathing problemweighted 52mathing theoremK}onig's 41-42, 46, 52-53, 114, 127,140, 188matroid 173-198matroid intersetion 184-193ardinality 184-190weighted 190-193matroid intersetion algorithmardinality 185-187weighted 191-193matroid intersetion theoremEdmonds' 188, 198matroid polytope 194-198max-biow min-ut theorem 156max-ow min-ut theorem 59, 62,145-146maximal hain 123maximum ow algorithm 60-68Ford-Fulkerson 60-68maximum ow problem 58-68maximum reliability problem 21maximum-size mathing 78-79Menger's theorem 54-55direted ar-disjoint version of 55direted internally vertex-disjointversion of 55direted vertex-disjoint version of54-55min-ost irulation 72min-ost ow problem 70-72minimum-ost irulation 72minimum-ost ow algorithm 70-72minimum-ost ow problem 70-72minimum-ost transportation problem72-73minimum-size s� t ut 55minimum-size s� t ut/min-max 55minimum-size S � T disonneting vertexset/min-max 54minimum-size s� t vertex-ut 55



218 Subjet index
minimum-size s� t vertex-ut/min-max55minimum spanning tree 19-22minor of a graph 112minor of a matroid 179Motzkin's theorem 33multiommodity ow problem 148-152,168-172frational 148-152, 168-172integer 148-151, 155-156integer undireted 149-151undireted 149-151nested family 85net 148nonbipartite mathing 78-91, 132ardinality 78-85, 132weighted 85-91NP 97-98, 101-103o- 102-103NP-omplete 97-98, 103odd omponent 78Okamura-Seymour theorem 165-1681-bend ut 1681-fator 78-801-fator theoremTutte's 79optimal assignment problem 48-50optimal pairing 88ordered setpartially 121-124P 97-98, 101pairing 83airplane rew 88optimal 88parallel elements in a matroid 175parent 9partial SDR 43partial system of distint representatives43partial transversal 43partially ordered set 121-124PARTITION 106-107

partition matroid 182partition problem 106-107path 5M -augmenting 40-45, 47-48, 82s� t 5shortest 5-19, 91path problemshortest 5-19path!!sar-disjoint s� t 55internally disjoint s� t 55internally vertex-disjoint s� t 55path!!s/min-maxar-disjoint s� t 55disjoint S � T 54internally disjoint s� t 55internally vertex-disjoint s� t 55path!sinternally vertex-disjoint 54perfet graph 125-128perfet graph theorem 124-126, 128Lov�asz's 124-126, 128strong 112, 126perfet mathing 39, 42, 44, 50-51, 78-80perfet mathing polytope 51, 92-94, 142PERT 14-16, 122PERT-CPM 14-16, 122planar graph 159-168platform assignment 123polyhedron 25-29integer 133-134-138polynomial timeTuring mahine solves problem in109polynomial-time algorithm 101polytope 25-29edge over 143integer 133mathing 50-53, 91-93-94, 142-143matroid 194-198perfet mathing 51, 92-94, 142stable set 143vertex over 143polytope theorem



Subjet index 219
Edmonds' mathing 91-93-94, 96postman problemChinese 89, 91primality testing 103prize equilibrium 16-17problem 100proessortwo- 84proessor shedulingtwo- 83-84Program Evaluation and ReviewTehnique 14-16, 122projet sheduling 122railway box arsrouting empty 73railway platform assignment 123railway stok routing 73-75, 151-152rank 178rank funtion 178rank of a matroid 174reliability problemmaximum 21representativesommon system of distint 43, 57,69-70, 119-120, 185, 188partial system of distint 43system of distint 42-43, 46, 188restrition in a matroid 179rigid iruit graph 128-131room assignment 83, 88, 113, 123root 5, 9rooted forest 9rooted tree 5, 9, 185, 193routingairplane 7-8, 55-57, 75, 158railway stok 73-75, 151-152ship 7-8, 73vehile 7-8VLSI- 151, 162-164routing empty freighters 73routing empty railway box ars 73s� t ut/minimum-size 55s� t ut/minimum-size/min-max 55

S � T disonneting vertex set 54S � T disonneting vertexset/minimum-size/min-max 54S � T path 54s� t path!!sar-disjoint 55internally disjoint 55internally vertex-disjoint 55S � T path!!s/min-maxdisjoint 54s� t path!!s/min-maxar-disjoint 55internally disjoint 55internally vertex-disjoint 55s� t vertex-ut 55s� t vertex-ut/minimum-size 55s� t vertex-ut/minimum-size/min-max55salesman problemChristo�des' approximativealgorithm for the traveling89-91traveling 89-90, 108salesman tourtraveling 89SAT 103-1053- 106satis�ability problem 103-1053- 106shedulinglass 117-118projet 122two-proessor 83-84SDR 42-43, 46, 188ommon 43, 57, 69-70, 119-120,185, 188partial 43seat assignment 83, 88separate 23separates pairurve 161ship routing 7-8, 73shortest path 5-19, 91shortest path problem 5-19



220 Subjet index
shrinking 81simplex method 34simpliial vertex 128sink 157size of a word 99solves problemalgorithm 101Turing mahine 109solves problem in polynomial timeTuring mahine 109soure 157spanning treeminimum 19-22spanning trees problemedge-disjoint 185, 190stable set 39-40, 124-128stable set number 39-40, 111-112, 124-128stable set polytope 143starting vertex 5Stiemke's theorem 33stops at wordalgorithm 101storage of goods 113strong perfet graph theorem 112, 126subgraphindued 112subjet to apaityow 58subtrees of a tree 129-131system of distint representatives 42-43,46, 188ommon 43, 57, 69-70, 119-120,185, 188partial 43T -join 91terminal assignment 1233-SAT 1063-satis�ability problem 106Thue system 100-101tight subset 166timetablingairline 88-89totally unimodular matrix 134-147

tour traveling salesman 89transportation problem 49-50, 62-64minimum-ost 72-73transversal 42-43, 46, 188ommon 43, 57, 69-70, 119-120,185, 188partial 43transversal matroid 181-182traveling salesman problem 89-90, 108Christo�des' approximativealgorithm for the 89-91traveling salesman tour 89tree minimum spanning 19-22rooted 5, 9, 185, 193trees problemedge-disjoint spanning 185, 190vertex-disjoint 164-165triangulated graph 128-131trunation of a matroid 179k- 179TSP 108Turing mahine 100, 108-110Tutte-Berge formula 78-79, 96Tutte's 1-fator theorem 79two-ommodity ow probleminteger 155-156two-ommodity ow theoremHu's 153-1552-heap 9-10two-proessor 84two-proessor sheduling 83-84under apaityow 58UNDIRECTED HAMILTONIAN CYCLE107-108undireted Hamiltonian yle problem107-108undireted k-ommodity ow problem149-151integer 149-151



Subjet index 221
undireted multiommodity ow problem149-151integer 149-151uniform matroid 179k- 179unimodular matrix 136-137union of matroids 189value of a ow 58vehile routing 7-8vertex-hromati number 111-115,124-128vertex-olouring 111-115vertex-olouring number 111-115,124-128vertex over 39-40vertex-over number 111vertex over number 39-40vertex over polytope 143vertex-uts� t 55vertex-ut/minimum-sizes� t 55vertex-ut/minimum-size/min-maxs� t 55vertex-disjointinternally 54vertex-disjoint path!sinternally 54vertex-disjoint paths problem 149-152,157-162vertex-disjoint s� t path!!sinternally 55vertex-disjoint s� t path!!s/min-maxinternally 55vertex-disjoint trees problem 164-165vertex of a onvex set 25Vizing's theorem 116VLSI-routing 151, 162-164W � v walk 82walk 5M -alternating 81s� t 5

W � v 82weighted bipartite mathing 47-53weighted bipartite mathing algorithm47-48weighted bipartite mathing problem 77weighted ommon independent setalgorithm 191-193weighted ommon independent setaugmenting algorithm 191-193weighted ommon independent setproblem 190-193weighted mathing 47-53, 85-91weighted mathing problem 52weighted matroid intersetion 190-193weighted matroid intersetion algorithm191-193weighted nonbipartite mathing 85-91word 99


	Table of Contents
	Chapter 1: Shortest paths and trees
	1.1 Shortest paths with nonnegative lengths
	1.2 Speeding up Dijkstra's algorithm with heaps
	1.3 Shortest paths with arbitrary lengths
	1.4 Minimum spanning trees

	Chapter 2: Polytopes, polyhedra, Farkas' lemma, and linear programming
	2.1 Convex sets
	2.2 Polytopes and polyhedra
	2.3 Farkas' lemma
	2.4 Linear programming

	Chapter 3: Matchings and covers in bipartite graphs
	3.1 Matchings, covers, and Gallai's theorem
	3.2 M-augmenting paths
	3.3 Koenig's theorems
	3.4 Cardinality bipartite matching algorithm
	3.5 Weighted bipartite matching
	3.6 The matching polytope

	Chapter 4: Menger's theorem, flows, and circulations
	4.1 Menger's theorem
	4.2 Flows in networks
	4.3 Finding a maximum flow
	4.4 Speeding up the maximum flow algorithm
	4.5 Circulations
	4.6 Minimum-cost flows

	Chapter 5: Nonbipartite matching
	5.1 Tutte's 1-factor theorem and the Tutte-Berge formula
	5.2 Cardinality matching algorithm
	5.3 Weighted matching algorithm
	5.4 The matching polytope
	5.5 The Cunningham-Marsh formula

	Chapter 6: Problems, algorithms, and running time
	6.1 Introduction
	6.2 Words
	6.3 Problems
	6.4 Algorithms and running time
	6.5 The class NP
	6.6 The class co-NP
	6.7 NP-completeness
	6.8 NP-completeness of the satisfiability problem
	6.9 NP-completeness of some other problems
	6.10 Turing machines

	Chapter 7: Cliques, stable sets, and colourings
	7.1 Introduction
	7.2 Edge-colourings of bipartite graphs
	7.3 Partially ordered sets
	7.4 Perfect graphs
	7.5 Chordal graphs

	Chapter 8: Integer linear programming and totally unimodular matrices
	8.1 Integer linear programming
	8.2 Totally unimodular matrices
	8.3 Totally unimodular matrices from bipartite graphs
	8.4 Totally unimodular matrices from directed graphs

	Chapter 9: Multicommodity flows and disjoint paths
	9.1 Introduction
	9.2 Two commodities
	9.3 Disjoint paths in acyclic directed graphs
	9.4 Vertex-disjoint paths in planar graphs
	9.5 Edge-disjoint paths in planar graphs
	9.6 A column generation technique for multicommodity flows

	Chapter 10: Matroids
	10.1 Matroids and the greedy algorithm
	10.2 Equivalent axioms for matroids
	10.3 Examples of matroids
	10.4 Two technical lemmas
	10.5 Matroid intersection
	10.6 Weighted matroid intersection
	10.7 Matroids and polyhedra

	References
	Name Index
	Subject Index

