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1 Introduction

Linear programming has been one of the most fundamental and successful tools in opti-
mization and discrete mathematics. Its applications include exact and approximation algo-
rithms, as well as structural results and estimates. The key point is that linear programs
are very efficiently solvable, and have a powerful duality theory.

A fundamental method in combinatorial optimization is to write a combinatorial op-
timization problem as a linear program with integer variables. There are usually many
ways to do so; ideally, one tries to get the “tightest” description (in which the feasible set
of the linear program is the convex hull of integer solutions); but this is often too com-
plicated to determine, and we have to work with a “relaxed” description. We then forget
the integrality constraints, thereby obtaining a linear relaxation, a linear program which
can be solved efficiently; and then trying to restore the integrality of the variables by some
kind of rounding (which is usually heuristic, and hence only gives approximately optimal
integral solutions). In those particularly well-structured cases when we have the tightest
description, the basic optimal solutions to the linear program are automatically integral, so
it also solves the combinatorial optimization problem right away.

Linear programs are special cases of convex programs; semidefinite programs are more
general but still convex programs, to which many of the useful properties of linear programs
extend. Recently, semidefinite programming arose as a generalization of linear program-
ming with substantial novel applications. Again, it can be used both in proofs and in the
design of exact and approximation algorithms. It turns out that various combinatorial
optimization problems have semidefinite (rather than linear) relaxations which are still ef-
ficiently computable, but approximate the optimum much better. This fact has lead to a
real breakthrough in approximation algorithms.

In these notes we survey semidefinite optimization mainly as a relaxation of discrete op-
timization problems. We start with two examples, a proof and an approximation algorithm,
where semidefinite optimization plays a important role. Still among the preliminaries, we
survey some areas which play a role in semidefinite optimization: linear algebra (in par-
ticular, positive semidefinite matrices), linear programming (duality and algorithms), and
polyhedral combinatorics (which we illustrate on the example of the stable set polytope).

After introducing semidefinite programs and discussing some of their basic properties,
we show that semidefinite programs arise in a variety of ways: as certain geometric extremal
problems, as relaxations (stronger than linear relaxations) of combinatorial optimization
problems, in optimizing eigenvalue bounds in graph theory, as stability problems in engi-
neering.

Next we show through examples from graph theory, number theory, and logic how
semidefinite optimization can be used in proofs as well as in the design of approximation
algorithms.

In Chapter 7 we try to put the combinatorial applications of semidefinite optimization
in a broader perspective: they can be viewed as procedures to strengthen the descriptions
of combinatorial optimization problems as integer linear programs. It turns out that such
procedures can be formalized, and in some cases (like the stable set polytope, our favorite
example) they lead to efficient ways of generating the tight linear descriptions for most
cases when this description is known at all.
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There are many unsolved problems in this area; indeed, progress has been quite slow
(but steady) due to the difficulty of some of those. Several of these roadblocks are described
in Chapter 8.

For more comprehensive studies of issues concerning semidefinite optimization, see [98].

1.1 Shannon capacity

Consider a noisy channel through which we are sending messages over a finite alphabet V .
The noise may blur some letters so that certain pairs can be confounded. We want to select
as many words of length k as possible so that no two can possibly be confounded. As we
shall see, the number of words we can select grows as Θk for some Θ ≥ 1, which is called
the Shannon zero-error capacity of the channel.

In terms of graphs, we can model the problem as follows. We consider V as the set of
nodes of a graph, and connect two of them by an edge if they can be confounded. This way
we obtain a graph G = (V, E). We denote by α(G) the maximum number of independent
points (the maximum size of a stable set) in the graph G. If k = 1, then the maximum
number of non-confoundable messages is α(G).

To describe longer messages, we define the strong product G·H of two graphs G = (V, E)
and H = (W, F ) as the graph with V (G · H) = V × W , with (i, u)(j, v) ∈ E(G · H) iff
ij ∈ E and uv ∈ F , or ij ∈ E and u = v, or i = j and uv ∈ F . The product of k copies of
G is denoted by Gk. Thus α(Gk) is the maximum number of words of length k, composed
of elements of V , so that for every two words there is at least one i (1 ≤ i ≤ k) such that
the i-th letters are different and non-adjacent in G, i.e., non-confoundable.

The Shannon capacity of a graph G is the value Θ(G) = limk→∞ α(Gk)1/k (it is not
hard to see that the limit exists). It is not known whether Θ(G) can be computed for all
graphs by any algorithm (polynomial or not), although there are several special classes of
graphs for which this is not hard. For example, if G is a 4-cycle with nodes (a, b, c, d),
then for every k ≥ 1, all words of length k consisting of a and c only can be used, and so
α(Ck

4 ) ≥ 2k. On the other hand, if we use a word, then all the 2k words obtained from it
by replacing a and b by each other, as well as c and d by each other, are excluded. Hence
α(Ck

4 ) ≤ 4k/2k = 2k, and Θ(C4) = 2. More generally, we have α(Gk) ≥ α(G)k for any
graph G and so Θ((G) ≥ α(G). If we can also bound Θ(G) from above by α(G), then we
have determined it exactly (this method works for all perfect graphs; cf section 2.3).

The smallest graph for which Θ(G) cannot be computed by such elementary means is
the pentagon C5. If we set V (C5) = {0, 1, 2, 3, 4} with E(C5) = {01, 12, 23, 34, 40}, then
C2

5 contains the stable set {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}. So α(C2k
5 ) ≥ α(C2

5 )k ≥ 5k, and
hence Θ(C5) ≥

√
5.

We show that equality holds here [64]. Consider an “umbrella” in R3 with the unit
vector e1 as its handle, and 5 ribs of unit length (Figure 1). Open it up to the point when
non-consecutive ribs are orthogonal (i.e., form an angle of 90◦). This way we get 5 unit
vectors u0, u1, u2, u3, u4, assigned to the nodes of C5 so that each ui forms the same angle
with e1 and any two non-adjacent nodes are labeled with orthogonal vectors. (Elementary
trigonometry gives eT

1 ui = 5−1/4).
It turns out that we can obtain a similar labeling of the nodes of Ck

5 by unit vectors
vi ∈ R3k, so that any two non-adjacent nodes are labeled with orthogonal vectors. Moreover,
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Figure 1: An orthogonal representation of C5.

eT
1 vi = 5−k/4 for every i ∈ V (Ck

5 ). Such a labeling is obtained by taking tensor products.
The tensor product of two vectors (u1, . . . , un) ∈ Rn and (v1, . . . , vm) ∈ Rm is the vector

u ◦ v = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, . . . , unv1, . . . , unvm) ∈ Rnm.

The tensor product of several vectors is defined similarly. The property one uses in verifying
the properties claimed above is that if u, x ∈ Rn and v, y ∈ Rm, then

(u ◦ v)T(x ◦ y) = (uTx)(vTy).

If S is any stable set in Ck
5 , then {vi : i ∈ S} is a set of mutually orthogonal unit

vectors, and hence
∑

i∈S

(eT
1 vi)2 ≤ |e1|2 = 1

(if the vi formed a basis then this inequality would be an equality).
On the other hand, each term on the left hand side is 5−1/4, hence the left hand side is

|S|5−k/2, and so |S| ≤ 5k/2. Thus α(Ck
5 ) ≤ 5k/2 and Θ(C5) =

√
5.

This method extends to any graph G = (V, E) in place of C5: all we have to do is to
assign unit vectors to the nodes so that non-adjacent nodes correspond to orthogonal vectors
(such an assignment will be called an orthogonal representation). If the first coordinate of
each of these vectors is s, then the Shannon capacity of the graph is at most 1/s2. The
best bound that can be achieved by this method will be denoted by ϑ(G).

But how to construct an optimum (or even good) orthogonal representation? Some-
what surprisingly, the optimum representation can be computed in polynomial time using
semidefinite optimization. Furthermore, it has many nice properties, most of which are de-
rived using semidefinite duality and other fundamental properties of semidefinite programs
(section 3.1), as we shall see in section 5.1.

1.2 Maximum cuts

A cut in a graph G = (V, E) is the set of edges connecting a set S ⊆ V to V \ S, where
∅ ⊂ S ⊂ V . The Max Cut Problem is to find a cut with maximum cardinality. We denote
by MC this maximum.
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(More generally, we can be given a weighting w : V → R+, and we could be looking for
a cut with maximum total weight. Most other problems discussed below, like the stable set
problem, have such weighted versions. To keep things simple, however, we usually restrict
our discussions to the unweighted case.)

The Max Cut Problem is NP-hard; one natural approach is to find an approximately
maximum cut. Formulated differently, Erdős in 1967 described the following simple heuris-
tic: for an arbitrary ordering (v1, . . . , vn) of the nodes, we color v1, v2, . . . , vn successively
red or blue. For each i, vi is colored blue iff the number of edges connecting vi to blue nodes
among v1, . . . , vi−1 is less than the number of edges connecting vi to red nodes in this set.
Then the cut formed by the edges between red and blue nodes contains at least half of all
edges. In particular, we get a cut that is at least half as large as the maximum cut.

There is an even easier randomized algorithm to achieve this approximation, at least in
expected value. Let us 2-color the nodes of G randomly, so that each node is colored red
or blue independently, with probability 1/2. Then the probability that an edge belongs to
the cut between red and blue is 1/2, and expected number of edges in this cut is |E|/2.

Both of these algorithms show that the maximum cut can be approximated from below
in polynomial time with a multiplicative error of at most 1/2. Can we do better? The
following strong negative result [10, 19, 45] shows that we cannot get arbitrarily close to
the optimum:

Proposition 1.1 It is NP-hard to find a cut with more than (16/17)MC ≈ .94MC edges.

But we can do better than 1/2, as the following seminal result of Goemans and
Williamson [37, 38] shows:

Theorem 1.2 One can find in polynomial time a cut with at least .878MC edges.

The algorithm of Goemans and Williamson makes use of the following geometric con-
struction. We want to find an embedding i ,→ ui (i ∈ V ) of the nodes of the graph in the
unit sphere in Rd so that the following “energy” is minimized:

E = −
∑

ij∈E

1
4
(ui − uj)2 = −

∑

ij∈E

1 − uT
i uj

2
.

(Note the negative sign: this means that the “force” between adjacent nodes is repulsive,
and grows linearly with the distance.)

If we work in R1, then the problem is equivalent to MAX CUT: each node is represented
by either 1 or −1, and the edges between differently labeled nodes contribute -1 to the
energy, the other edges contribute 0. Hence the negative of the minimum energy E is an
upper bound on the maximum size MC of a cut.

Unfortunately, the argument above also implies that for d = 1, the optimal embedding
is NP-hard to find. While I am not aware of a proof of this, it is probably NP-hard for
d = 2 and more generally, for any fixed d. The surprising fact is that for d = n, such an
embedding can be found using semidefinite optimization (cf. section 4.1).

So −E is a polynomial time computable upper bound on the size of the maximum cut.
How good is this bound? And how to construct an approximately optimum cut from this
representation? Here is the simple but powerful trick: take a random hyperplane H through
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the origin in Rn (Figure 2). The partition of Rd given by H yields a cut in our graph.
Since the construction pushes adjacent points apart, one expects that the random cut will
intersect many edges.

Figure 2: A cut in the graph given by a random hyperplane

To be more precise, let ij ∈ E and let ui, uj ∈ Sn−1 be the corresponding vectors in
the embedding constructed above. It is easy to see that the probability that a random
hyperplane H through 0 separates ui and uj is αij/π, where αij = arccos uT

i uj is the
angle between ui and uj . It is not difficult to verify that if −1 ≤ t ≤ 1, then arccos t ≥
1.38005(1 − t). Thus the expected number of edges intersected by H is

∑

ij∈E

arccos uT
i uj

π
≥
∑

ij∈E

1.38005
1 − uT

i uj

π
=

1.38005
π

2(−E) ≥ .878MC.

(One objection to the above algorithm could be that it uses random numbers. In fact,
the algorithm can be derandomized by well established but non-trivial techniques. We do
not consider this issue in these notes; see e.g. [5], Chapter 15 for a survey of derandomization
methods.)

2 Preliminaries

We collect some of the basic results from linear programming, linear algebra, and polyhedral
combinatorics that we will use. While this is all textbook material, it will be convenient to
have this collection of results for the purposes of notation, reference and comparison. [88]
is a reference for linear algebra, and a [79], for linear programming.

2.1 Linear algebra

As the title of these lecture notes suggests, we’ll be concerned with semidefinite matrices;
to get to these, we start with a review of eigenvalues, and in particular eigenvalues of
symmetric matrices.

Let A be an n × n real matrix. An eigenvector of A is a vector such that Ax is parallel
to x; in other words, Ax = λx for some real or complex number λ. This number λ is called
the eigenvalue of A belonging to eigenvector v. Clearly λ is an eigenvalue iff the matrix

6



A−λI is singular, equivalently, iff det(A−λI) = 0. This is an algebraic equation of degree
n for λ, and hence has n roots (with multiplicity).

The trace of the (square) matrix A = (Aij) is defined as

tr(A) =
n∑

i=1

Aii.

The trace of A is the sum of the eigenvalues of A, each taken with the same multiplicity as
it occurs among the roots of the equation det(A − λI) = 0.

If the matrix A is symmetric, then its eigenvalues and eigenvectors are particularly well
behaved. All the eigenvalues are real. Furthermore, there is an orthogonal basis v1, . . . , vn

of the space consisting of eigenvectors of A, so that the corresponding eigenvalues λ1, . . . , λn

are precisely the roots of det(A − λI) = 0. We may assume that |v1| = . . . = |vn| = 1; then
A can be written as

A =
n∑

i=1

λiviv
T
i .

Another way of saying this is that every symmetric matrix can be written as UTDU , where
U is an orthogonal matrix and D is a diagonal matrix. The eigenvalues of A are just the
diagonal entries of D.

To state a further important property of eigenvalues of symmetric matrices, we need
the following definition. A symmetric minor of A is a submatrix B obtained by deleting
some rows and the corresponding columns.

Theorem 2.1 (Interlacing eigenvalues) Let A be an n×n symmetric matrix with eigen-
values λ1 ≥ . . . ≥ λn. Let B be an (n−k)× (n−k) symmetric minor of A with eigenvalues
µ1 ≥ . . . ≥ µn−k. Then

λi ≤ µi ≤ λi+k.

Now we come to the definition that is crucial for our lectures. A symmetric n×n matrix
A is called positive semidefinite, if all of its eigenvalues are nonnegative. This property is
denoted by A . 0. The matrix is positive definite, if all of its eigenvalues are positive.

There are many equivalent ways of defining positive semidefinite matrices, some of which
are summarized in the Proposition below.

Proposition 2.2 For a real symmetric n × n matrix A, the following are equivalent:
(i) A is positive semidefinite;
(ii) the quadratic form xT Ax is nonnegative for every x ∈ Rn;
(iii) A can be written as the Gram matrix of n vectors u1, ..., un ∈ Rm for some m; this

means that aij = uT
i uj. Equivalently, A = UTU for some matrix U ;

(iv) A is a nonnegative linear combination of matrices of the type xxT;
(v) The determinant of every symmetric minor of A is nonnegative.
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Let me add some comments. The least m for which a representation as in (iii) is possible
is equal to the rank of A. It follows e.g. from (ii) that the diagonal entries of any positive
semidefinite matrix are nonnegative, and it is not hard to work out the case of equality: all
entries in a row or column with a 0 diagonal entry are 0 as well. In particular, the trace of
a positive semidefinite matrix A is nonnegative, and tr(A) = 0 if and only if A = 0.

The sum of two positive semidefinite matrices is again positive semidefinite (this follows
e.g. from (ii) again). The simplest positive semidefinite matrices are of the form aaT for
some vector a (by (ii): we have xT(aaT)x = (aTx)2 ≥ 0 for every vector x). These matrices
are precisely the positive semidefinite matrices of rank 1. Property (iv) above shows that
every positive semidefinite matrix can be written as the sum of rank-1 positive semidefinite
matrices.

The product of two positive semidefinite matrices A and B is not even symmetric in
general (and so it is not positive semidefinite); but the following can still be claimed about
the product:

Proposition 2.3 If A and B are positive semidefinite matrices, then tr(AB) ≥ 0, and
equality holds iff AB = 0.

Property (v) provides a way to check whether a given matrix is positive semidefinite.
This works well for small matrices, but it becomes inefficient very soon, since there are
many symmetric minors to check. An efficient method to test if a symmetric matrix A is
positive semidefinite is the following algorithm. Carry out 2-sided Gaussian elimination on
A, pivoting always on diagonal entries (“2-sided” means that we eliminate all entries in
both the row and the column of the pivot element).

If you ever find a negative diagonal entry, or a 0 diagonal entry whose row contains a
non-zero, stop: the matrix is not positive semidefinite. If you obtain an all-zero matrix (or
eliminate the whole matrix), stop: the matrix is positive semidefinite.

If this simple algorithm finds that A is not positive semidefinite, it also provides a
certificate in the form of a vector v with vTAv < 0. Assume that the i-th diagonal entry of
the matrix A(k) after k steps is negative. Write A(k) = ET

k . . . ET
1 AE1 . . . Ek, where Ei are

elementary matrices. Then we can take the vector v = E1 . . . Ekei. The case when there is
a 0 diagonal entry whose row contains a non-zero is similar.

It will be important to think of n × n matrices as vectors with n2 coordinates. In this
space, the usual inner product is written as A · B. This should not be confused with the
matrix product AB. However, we can express the inner product of two n × n matrices A
and B as follows:

A · B =
n∑

i=1

n∑

j=1

AijBij = tr(ATB).

Positive semidefinite matrices have some important properties in terms of the geometry
of this space. To state these, we need two definitions. A convex cone in Rn is a set of
vectors which along with any vector, also contains any positive scalar multiple of it, and
along with any two vectors, also contains their sum. Any system of homogeneous linear
inequalities

aT
1 x ≥ 0, . . . aT

mx ≥ 0
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defines a convex cone; convex cones defined by such (finite) systems are called polyhedral.
For every convex cone C, we can form its polar cone C∗, defined by

C∗ = {x ∈ Rn : xTy ≥ 0 ∀y ∈ C}.

This is again a convex cone. If C is closed (in the topological sense), then we have (C∗)∗ =
C.

The fact that the sum of two such matrices is again positive semidefinite (together
with the trivial fact that every positive scalar multiple of a positive semidefinite matrix is
positive semidefinite), translates into the geometric statement that the set of all positive
semidefinite matrices forms a convex closed cone Pn in Rn×n with vertex 0. This cone Pn

is important, but its structure is quite non-trivial. In particular, it is non-polyhedral for
n ≥ 2; for n = 2 it is a nice rotational cone (Figure 3; the fourth coordinate x21, which is
always equal to x12 by symmetry, is suppressed). For n ≥ 3 the situation becomes more
complicated, because Pn is neither polyhedral nor smooth: any matrix of rank less than
n − 1 is on the boundary, but the boundary is not differentiable at that point.

x11

x12

x22

Figure 3: The semidefinite cone for n = 2.

The polar cone of P is itself; in other words,

Proposition 2.4 A matrix A is positive semidefinite iff A · B ≥ 0 for every positive
semidefinite matrix B.

We conclude this little overview with a further basic fact about nonnegative matrices.

Theorem 2.5 (Perron-Frobenius) If an n×n matrix has nonnegative entries then it has
a nonnegative real eigenvalue λ which has maximum absolute value among all eigenvalues.
This eigenvalue λ has a nonnegative real eigenvector. If, in addition, the matrix has no
block-triangular decomposition (i.e., it does not contain a k × (n − k) block of 0-s disjoint
from the diagonal), then λ has multiplicity 1 and the corresponding eigenvector is positive.
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2.2 Linear programming

Linear programming is closely related to (in a sense the same as) the study of systems of
linear inequalities. At the roots of this theory is the following basic lemma.

Lemma 2.6 (Farkas Lemma) A system of linear inequalities aT
1 x ≤ b1, . . ., aT

mx ≤ bm

has no solution iff there exist λ1, . . . , λm ≥ 0 such that
∑

i λiai = 0 and
∑

i λibi = −1.

Let us make a remark about the computational complexity aspect of this. The solvability
of a system of linear inequalities is in NP (“just show the solution”; to be precise, one has
to argue that there is a rational solution with small enough numerators and denominators
so that it can be exhibited in space polynomial in the input size; but this can be done).
One consequence of the Farkas Lemma (among many) is that this problem is also in co-NP
(“just show the λ’s”).

A closely related statement is the following:

Lemma 2.7 (Farkas Lemma, inference version) Let a1, . . . , am, c ∈ Rn and b1, . . . , bm,
d ∈ R. Assume that the system aT

1 x ≤ b1, . . . , aT
mx ≤ bm has a solution. Then cT x ≤ d

for all solutions of aT
1 x ≤ b1, . . . , aT

mx ≤ bm iff there exist λ1, . . . , λm ≥ 0 such that
c =

∑
i λiai and d ≥

∑
i λibi.

This again can be put into a general context: there is a semantical notion of a linear
inequality being a consequence of others (it holds whenever the others do), and a syntactical
(it is a linear combination of the others with non-negative coefficients). The lemma asserts
that these two are equivalent. We’ll see that e.g. for quadratic inequalities, the situation is
more complicated.

Now we turn to linear programming. A typical linear program has the following form.

maximize cTx
subject to aT

1 x ≤ b1,
...

aT
mx ≤ bm,

(1)

where a1, . . . , am are given vectors in Rn, b1, . . . , bm are real numbers, and x = (x1, . . . , xn)
is a vector of n unknowns. These inequalities can be summed up in matrix form as Ax ≤ b,
where A is a matrix with m rows and m columns and b ∈ Rm.

It is very fruitful to think of linear programs geometrically. The solution of the constraint
system Ax ≤ b (also called feasible solutions) form a convex polyhedron P in Rn. For the
following discussion, let us assume that P is bounded and has an internal point. Then each
facet ((n−1)-dimensional faces) of P corresponds to one of the inequalities aT

i x ≤ bi (there
may be other inequalities in the system, but those are redundant). The objective function
cTx can be visualized as a family of parallel hyperplanes; to find its maximum over P means
to translate this hyperplane in the direction of the vector c as far as possible so that it still
intersects P . If P is bounded, then these “ultimate” common points will form a face (a
vertex, an edge, or higher dimensional face) P , and there will be at least one vertex among
them (see Figure 4).
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x1+2x2

x1+x2§2 x1§1
x2§1

x2¥0

x1¥0

0

Figure 4: The feasible domain and optimum solution of the linear program: maximize x1 + 2x2,
subject to 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, and x1 + x2 ≤ 2.

There are many alternative ways to describe a linear program. We may want to max-
imize instead of minimize; we may have equations, and/or inequalities of the form ≥.
Sometimes we consider only nonnegative variables; the inequalities xi ≥ 0 may be included
in (1), but it may be advantageous to separate them. All these versions are easily reduced
to each other.

The dual of (1) is the linear program

minimize bTy
subject to ATy = c,

y ≥ 0.
(2)

The crucial property of this very important construction is the following.

Theorem 2.8 (Duality Theorem) If either one of the primal and dual programs has an
optimum solution, then so does the other and the two optimum values are equal.

The primal program is infeasible if and only if the dual is unbounded. The dual program
is infeasible iff the primal is unbounded.

The primal and dual linear programs are related to each other in many ways. The
following theorem describes the relationship between their optimal solutions.

Theorem 2.9 (Complementary Slackness Theorem) Let x be a solution of the pri-
mal program and y, a solution of the dual program. Then both x and y are optimal if and
only if for every j with yj > 0, the j-th constraint of the primal problem (1) is satisfied
with equality.

Linear programs are solvable in polynomial time. The classical, and still very well
usable algorithm to solve them is the Simplex Method. This is practically quite efficient,
but can be exponential on some instances. The first polynomial time algorithm to solve
linear programs was the Ellipsoid Method; this is, however, impractical. The most efficient
methods known today, both theoretically and practically, are Interior Point Methods.
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2.3 Polyhedral combinatorics: the stable set polytope

The basic technique of applying linear programming in discrete optimization is polyhedral
combinatorics. Instead of surveying this broad topic, we illustrate it by recalling some
results on the stable set polytope. A detailed account can be found e.g. in [43].

Let G = (V, E) be a graph; it is convenient to assume that it has no isolated nodes.
The Stable Set Problem is the problem of finding α(G). This problem is NP-hard.

The basic idea in applying linear programming to study the stable set problem is the
following. For every subset S ⊆ V , let χS ∈ RV denote its incidence vector, i.e., the vector
defined by

χS
i =

{
1, if i ∈ S,
0, otherwise,

The stable set polytope STAB(G) of G is the convex hull of incidence vectors of all stable
sets.

There is a system of linear inequalities whose solution set is exactly the polytope
STAB(G), and if we can find this system, then we can find α(G) by optimizing the linear
objective function

∑
i xi. Unfortunately, this system is in general exponentially large and

very complicated. But if we can find at least some linear inequalities valid for the stable
set polytope, then using these we get an upper bound on α(G), and for special graphs, we
get the exact value.

Let us survey some classes of known constraints.

Non-negativity constraints:

xi ≥ 0 (i ∈ V ). (3)

Edge constraints:

xi + xj ≤ 1 (ij ∈ E). (4)

These inequalities define a polytope FSTAB(G). The integral points in FSTAB(G) are
exactly the incidence vectors of stable sets, but FSTAB(G) may have other non-integral
vertices, and is in general larger than STAB(G) (see Figure 5).

Proposition 2.10 (a) STAB(G) = FSTAB(G) iff G is bipartite.
(b) The vertices of FSTAB(G) are half-integral.

A clique is a maximal complete subgraph.

Clique constraints:
∑

i∈B

xi ≤ 1, where B is a clique. (5)

Inequalities (3) and (5) define a polytope QSTAB(G), which is contained in FSTAB(G),
but is in general larger than STAB(G).

A graph G is called perfect if χ(G′) = ω(G′) for every induced subgraph G′ of G. If G
is perfect then so is G [62]. See [39, 43, 65] for the theory of perfect graphs.
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(1/2,1/2,1/2)

1x

2x

3x

Figure 5: The fractional stable set polytope of the triangle. The black dots are incidence vectors
of stable sets; the vertex (1/2, 1/2, 1/2) (closest to us) is not a vertex of STAB(K3).

Theorem 2.11 [Fulkerson–Chvatal] STAB(G) = QSTAB(G) iff G is perfect.

A convex corner in RV is a full-dimensional, compact, convex set P such that x ∈ P ,
0 ≤ y ≤ x implies y ∈ P . The antiblocker of a convex corner P is defined as P ∗ = {x ∈
RV

+ : xTy ≤ 1 for all y ∈ P}. P ∗ is a convex corner and P ∗∗ = P . Figure 6 illustrates this
important notion in 2 dimensions.

a aTxb1

Figure 6: A pair of antiblocking convex corners. The vertex a on the left corresponds to the facet
ax ≤ 1 on the right.

Proposition 2.12 For every graph G,

QSTAB(G) = STAB(G)∗.

Odd hole constraints:
∑

i∈C

xi ≤ |C| − 1
2

, where C induces a cordless odd cycle. (6)

A graph is called t-perfect if (3), (4) and (6) suffice to describe STAB(G), and h-perfect
if (3), (5) and (6) suffice to describe STAB(G).
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Odd antihole constraints:∑

i∈B

xi ≤ 2, where B induces the complement of a cordless odd cycle. (7)

How strong are these inequalities? An inequality valid for a (for simplicity, full-
dimensional) polytope P ⊆ Rn is called a facet if there are n affine independent vertices
of P that satisfy it with equality. Such an inequality must occur in every description of P
by linear inequalities (up to scaling by a positive number). The clique constraints are all
facets, the odd hole and antihole inequalities are facets if B = V , and in many other cases.
(If there are nodes not occurring in the inequality then they may sometimes be added to
the constraint with non-zero coefficient; this is called lifting.)

All the previous constraints are special cases of the following construction. Let GS

denote the subgraph of G induced by S ⊆ V .

Rank constraints:∑

i∈S

xi ≤ α(GS).

For this general class of constraints, however, we cannot even compute the right hand
side efficiently. Another of their shortcomings is that we don’t know when they are facets
(or can be lifted to facets). An important special case when at least we know that they
are facets was described by Chvátal [23]. A graph G is called α-critical if it has no isolated
nodes, and deleting any edge e, α(G) increases. These graphs have an interesting and
non-trivial structure theory; here we can only include figure 7 showing some of them.

Theorem 2.13 Let G = (V, E) be an α-critical graph. Then the inequality
∑

i∈V xi ≤ α(G)
defines a facet of STAB(G).

a=1 a=2

a=1 a=2 a=3

Figure 7: Some α-critical graphs.

3 Semidefinite programs

A semidefinite program is an optimization problem of the following form:

minimize cTx

subject to x1A1 + . . . xnAn − B . 0 (8)
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Here A1, . . . , An, B are given symmetric m × m matrices, and c ∈ Rn is a given vector. We
can think of X = x1A1 + . . . xnAn −B as a matrix whose entries are linear functions of the
variables.

As usual, any choice of the values xi that satisfies the given constraint is called a feasible
solution. A solution is strictly feasible, if the matrix X is positive definite. We denote by
vprimal the supremum of the objective function.

The special case when A1, . . . , An, B are diagonal matrices is just a “generic” linear
program, and it is very fruitful to think of semidefinite programs as generalizations of
linear programs. But there are important technical differences. The following example
shows that, unlike in the case of linear programs, the supremum may be finite but not a
maximum, i.e., not attained by any feasible solution.

Example 3.1 Consider the semidefinite program

minimize x1

subject to
(

x1 1
1 x2

)
. 0

The semidefiniteness condition boils down to the inequalities x1, x2 ≥ 0 and x1x2 ≥ 1, so
the possible values of the objective function are all positive real numbers. Thus vprimal = 0,
but the supremum is not attained.

As in the theory of linear programs, there are a large number of equivalent formulations
of a semidefinite program. Of course, we could consider minimization instead of maximiza-
tion. We could stipulate that the xi are nonnegative, or more generally, we could allow
additional linear constraints on the variables xi (inequalities and/or equations). These
could be incorporated into the form above by extending the Ai and B with new diagonal
entries.

We could introduce the entries of A as variables, in which case the fact that they
are linear functions of the original variables translates into linear relations between them.
Straightforward linear algebra transforms (8) into an optimization problem of the form

maximize C · X
subject to X . 0

D1 · X = d1
...

Dk · X = dk,

(9)

where C, D1, . . . , Dk are symmetric m × m matrices and d1, . . . , dk ∈ R. Note that C · X is
the general form of a linear combination of entries of X, and so Di · X = di is the general
form of a linear equation in the entries of X.

It is easy to see that we would not get any substantially more general problem if we
allowed linear inequalities in the entries of X in addition to the equations.

3.1 Fundamental properties of semidefinite programs

We begin with the semidefinite version of the Farkas Lemma:
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Lemma 3.2 [Homogeneous version] Let A1, . . . , An be symmetric m × m matrices. The
system

x1A1 + . . . + xnAn 0 0

has no solution in x1, . . . , xn if and only if there exists a symmetric matrix Y 1= 0 such that

A1 · Y = 0
A2 · Y = 0

...
An · Y = 0

Y . 0 .

Proof. As discussed in section 2.1, the set Pm of m × m positive semidefinite matrices
forms a closed convex cone. If

x1A1 + . . . + xnAn 0 0

has no solution, then the linear subspace L of matrices of the form x1A1 + . . . xnAn is
disjoint from the interior of this cone PSDm. It follows that this linear space is contained in
a hyperplane that is disjoint from the interior of PSDm. This hyperplane can be described
as {X : Y · X = 0}, where we may assume that X · Y ≥ 0 for every X ∈ PSDm. Then
Y 1= 0, Y . 0 by Lemma 2.4, and Ai · Y = 0 since the Ai belong to L. !

By similar methods one can prove:

Lemma 3.3 [Inhomogeneous version] Let A1, . . . , An, B be symmetric m × m matrices.
The system

x1A1 + . . . xnAn − B 0 0

has no solution in x1, . . . , xn if and only if there exists a symmetric matrix Y 1= 0 such that

A1 · Y = 0
A2 · Y = 0

...
An · Y = 0
B · Y ≥ 0

Y . 0 .

Given a semidefinite program (8), one can formulate the dual program:

maximize B · Y
subject to A1 · Y = c1

A2 · Y = c2
...

An · Y = cm

Y . 0.

(10)
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Note that this too is a semidefinite program in the general sense. We denote by vdual the
supremum of the objective function.

With this notion of duality, the Duality Theorem holds in the following sense (see e.g.
[96, 93, 94]):

Theorem 3.4 Assume that both the primal and the dual semidefinite programs have feasible
solutions. Then vprimal ≥ vdual. If, in addition, the primal program (say) has a strictly
feasible solution, then the dual optimum is attained and vprimal = vdual. In particular,
if both programs have strictly feasible solutions, then the supremum resp. infimum of the
objective functions are attained.

Proof. Let x1, . . . , xn be any solution of (8) and Y , any solution of (10). By Proposition
2.3, we have

∑

i

cixi − B · Y = tr(Y (
∑

i

xiAi − B)) ≥ 0,

which shows that vprimal ≥ vdual.
Moreover, the system

∑

i

cixi < vprimal

∑

i

xiAi . B

has no solution in the xi, by the definition of vprimal. Thus if we define the matrices

A′
i =

(
−ci 0
0 Ai

)
, B′ =

(
−vprimal 0

0 B

)
,

then the system

x1A
′
1 + . . . xnA′

n − B′ 0 0

has no solution. By Lemma 3.3, there is a positive semidefinite matrix Y ′ 1= 0 such that

A′
i · Y ′ = 0 (i = 1, . . . , n), B′ · Y ′ ≥ 0.

Writing

Y ′ =
(

y00 yT

y Y

)
,

we get that

Ai · Y = y00ci (i = 1, . . . , n), B · Y ≥ y00vprimal.

We claim that y00 1= 0. Indeed, if y00 = 0, then y = 0 by the semidefiniteness of Y ′, and
since Y ′ 1= 0, it follows that Y 1= 0. The existence of Y would imply (by Lemma 3.3 again)
that x1A1 + . . . xnAn − B 0 0 is not solvable, which is contrary to the hypothesis about
the existence of a strictly feasible solution.
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Thus y00 1= 0, and clearly y00 > 0. By scaling, we may assume that y00 = 1. But then Y
is a feasible solution of the dual problem (10), with objective value B · Y ≥ vprimal, proving
that vdual ≥ vprimal, and completing the proof.

The following complementary slackness conditions also follow from this argument.

Proposition 3.5 Let x be a feasible solution of the primal program and Y , a feasible
solution of the dual program. Then vprimal = vdual and both x and Y are optimal solutions
if and only if Y (

∑
i xiAi − B) = 0.

The following example shows that the somewhat awkward conditions about the strictly
feasible solvability of the primal and dual programs cannot be omitted (see [83] for a detailed
discussion of conditions for exact duality).

Example 3.6 Consider the semidefinite program

minimize x1

subject to




0 x1 0
x1 x2 0
0 0 x1 + 1



 . 0

The feasible solutions are x1 = 0, x2 ≥ 0. Hence vprimal is assumed and is equal to 0. The
dual program is

maximize −Y33
subject to Y12 + Y21 + Y33 = 1

Y22 = 0
Y . 0 .

The feasible solutions are all matrices of the form



a 0 b
0 0 0
b 0 1





where a ≥ b2. Hence vdual = −1.

3.2 Algorithms for semidefinite programs

There are two essentially different algorithms known that solve semidefinite programs in
polynomial time: the ellipsoid method and interior point/barrier methods. Both of these
have many variants, and the exact technical descriptions are quite complicated; so we
restrict ourselves to describing the general principles underlying these algorithms, and to
some comments on their usefulness. We ignore numerical problems, arising from the fact
that the optimum solutions may be irrational and the feasible regions may be very small;
we refer to [82, 83] for discussions of these problems.

The first polynomial time algorithm to solve semidefinite optimization problems in
polynomial time was the ellipsoid method. Let K be a convex body (closed, compact,
convex, full-dimensional set) in RN . We set S(K, t) = {x ∈ RN : d(x, K) ≤ t}, where d
denotes euclidean distance. Thus S(0, t) is the ball with radius t about 0.
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A (weak) separation oracle for a convex body K ⊆ RN is an oracle (a subroutine which
is handled as a black box; one call on the oracle is counted as one step only) whose input
is a rational vector x ∈ RN and a rational ε > 0; the oracle either asserts that x ∈ S(K, ε)
or returns an “almost separating hyperplane” in the form of a vector 0 1= y ∈ RN such that
yTx > yTz − ε|y| for all z ∈ K.

If we have a weak separation oracle for a convex body (in practice, any subroutine that
realizes this oracle) then we can use the ellipsoid method to optimize any linear objective
function over K [43]:

Theorem 3.7 Let K be a convex body in Rn and assume that we know two real numbers
R > r > 0 such that S(0, r) ⊆ K ⊆ S(0, R). Assume further that we have a weak separation
oracle for K. Let a (rational) vector c ∈ Rn and an error bound 0 < ε < 1 be also given.
Then we can compute a (rational) vector x ∈ Rn such that x ∈ K and cTx ≥ cT z − ε for
every y ∈ K. The number of calls on the oracle and the number of arithmetic operations
in the algorithm are polynomial in log(R/r) + log(1/ε) + n.

This method can be applied to solve semidefinite programs in polynomial time, modulo
some technical conditions. (Note that some complications arise already from the fact that
the optimum value is not necessarily a rational number, even if all parameters are rational.
A further warning is example 3.6.)

Assume that we are given a semidefinite program (8) with rational coefficients and a
rational error bound ε > 0. Also assume that we know a rational, strictly feasible solution
x̃, and a bound R > 0 for the coordinates of an optimal solution. Then the set K of feasible
solutions is a closed, convex, bounded, full-dimensional set in Rn. It is easy to compute a
small ball around x0 that is contained in K.

The key step is to design a separation oracle for K. Given a vector x, we need only check
whether x ∈ K and if not, find a separating hyperplane. Ignoring numerical problems, we
can use the algorithm described in section 2.1 to check whether the matrix Y =

∑
i xiAi−B

is positive semidefinite. If it is, then x ∈ K. If not, the algorithm also returns a vector
v ∈ Rm such that vTY v < 0. Then

∑
i xivTAiv = vTBv is a separating hyperplane.

(Because of numerical problems, the error bound in the definition of the weak separation
oracle is needed.)

Thus using the ellipsoid method we can compute, in time polynomial in log(1/ε) and in
the number of digits in the coefficients and in x0, a feasible solution x such that the value
of the objective function is at most vprimal + ε.

Unfortunately, the above argument gives an algorithm which is polynomial, but hope-
lessly slow, and practically useless. Still, the flexibility of the ellipsoid method makes it an
inevitable tool in proving the existence (and not much more) of a polynomial time algorithm
for many optimization problems.

Semidefinite programs can be solved in polynomial time and also practically efficiently
by interior point methods [77, 1, 2]. The key to this method is the following property of
the determinant of positive semidefinite matrices.

Lemma 3.8 The function F defined by

F (Y ) = − log det (Y )
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is convex and analytic in the interior of the semidefinite cone Pn, and tends to ∞ at the
boundary.

The algorithm can be described very informally as follows. The feasible domain of our
semidefinite optimization problem is of the form K = Pn ∩A, where A is an affine subspace
of symmetric matrices. We want to minimize a linear function C · X over X ∈ K. The
good news is that K is convex. The bad news is that the minimum will be attained on
the boundary of K, and this boundary can have a very complicated structure; it is neither
smooth nor polyhedral. Therefore, neither gradient-type methods nor the methods of linear
programming can be used to minimize C · X.

The main idea of barrier methods is that instead of minimizing CTX, we minimize the
function FC(X) = F (X)+λCTX for some λ > 0. Since Fλ tends to infinity on the boundary
of K, the minimum will be attained in the interior. Since Fλ is convex and analytic in the
interior, the minimum can be very efficiently computed by a variety of numerical methods
(conjugate gradient etc.)

Of course, the point we obtain this way is not what we want, but if λ is large it will be
close. If we don’t like it, we can increase λ and use the minimizing point for the old Fλ as
the starting point for a new gradient type algorithm. (In practice, we can increase λ after
each iteration of this gradient algorithm.)

One can show that (under some technical assumptions about the feasible domain) this
algorithm gives an approximation of the optimum with relative error ε in time polynomial
in log(1/ε) and the size of the presentation of the program. The proof of this depends on a
further rather technical property of the determinant, called ”self-concordance”. We don’t
go into the details, but refer to the articles [2, 93, 94] and the book [76].

4 Obtaining semidefinite programs

How do we obtain semidefinite programs? It turns out that there are a number of consider-
ations from which semidefinite programs, in particular semidefinite relaxations of combina-
torial optimization problems arise. These don’t always lead to different relaxations; in fact,
the best known applications of semidefinite programming seem to be very robust in the
sense that different methods for deriving their semidefinite relaxations yields the same, or
almost the same, result. However, these different methods seem to have different heuristic
power.

4.1 Unit distance graphs and orthogonal representations

We start with some semidefinite programs arising from geometric problems. A unit distance
representation of a graph G = (V, E) is a mapping u : V → Rd for some d ≥ 1 such that
|ui −uj | = 1 for every ij ∈ E (we allow that |ui −uj | = 1 for some ij ∈ E). Figure 8 shows
a 2-dimensional unit distance representation of the Petersen graph [31].

There are many questions one can ask about the existence of unit distance represen-
tations: what is the smallest dimension in which it exists? what is the smallest radius of
a ball containing a unit distance representation of G (in any dimension)? In this paper,
we are only concerned about the last question, which can be answered using semidefinite
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Figure 8: A unit distance representation of the Petersen graph.

programming (for a survey of other aspects of such geometric representations, see [73]).
Considering the Gram matrix A = (uT

i uj), it is easy to obtain the following reduction to
semidefinite programming:

Proposition 4.1 A graph G has a unit distance representation in a ball of radius R (in
some appropriately high dimension) if and only if there exists a positive semidefinite matrix
A such that

Aii ≤ R2 (i ∈ V )
Aii − 2Aij + Ajj = 1 (ij ∈ E).

In other words, the smallest radius R is the square root of the optimum value of the
semidefinite program

minimize w
subject to A . 0

Aii ≤ w (i ∈ V )
Aii − 2Aij + Ajj = 1 (ij ∈ E).

The unit distance embedding of the Petersen graph in Figure 8 is not an optimal solu-
tion of this problem. Let us illustrate how semidefinite optimization can find the optimal
embedding by determining this for the Petersen graph. In the formulation above, we have
to find a 10 × 10 positive semidefinite matrix A satisfying the given linear constraints. For
a given w, the set of feasible solutions is convex, and it is invariant under the automor-
phisms of the Petersen graph. Hence there is an optimum solution which is invariant under
these automorphisms (in the sense that if we permute the rows and columns by the same
automorphism of the Petersen graph, we get back the same matrix).

Now we know that the Petersen graph has a very rich automorphism group: not only
can we transform every node into every other node, but also every edge into every other
edge, and every nonadjacent pair of nodes into every other non-adjacent pair of nodes. A
matrix invariant under these automorphisms has only 3 different entries: one number in
the diagonal, another number in positions corresponding to edges, and a third number in
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positions corresponding to nonadjacent pairs of nodes. This means that this optimal matrix
A can be written as

A = xP + yJ + zI,

where P is the adjacency matrix of the Petersen graph, J is the all-1 matrix, and I is the
identity matrix. So we only have these 3 unknowns x, y and z to determine.

The linear conditions above are now easily translated into the variables x, y, z. But
what to do with the condition that A is positive semidefinite? Luckily, the eigenvalues of A
can also be expressed in terms of x, y, z. The eigenvalues of P are well known (and easy to
compute): they are 3, 1 (5 times) and -2 (4 times). Here 3 is the degree, and it corresponds
to the eigenvector 1 = (1, . . . , 1). This is also an eigenvector of J (with eigenvalue 10),
and so are the other eigenvectors of P , since they are orthogonal to 1, and so are in the
nullspace of J . Thus the eigenvalues of xP + yJ are 3x + 10y, x, and −2x. Adding zI just
shifts the spectrum by z, so the eigenvalues of A are 3x + 10y + z, x + z, and −2x + z.
Thus the positive semidefiniteness of A, together with the linear constraints above, gives
the following linear program for x, y, z, w:

minimize w
subject to 3x + 10y + z ≥ 0,

x + z ≥ 0,
−2x + z ≥ 0,

y + z ≤ w,
2z − 2x = 1.

It is easy to solve this: clearly the optimum solution will have w = y + z, and y =
(−3x − z)/10. We can also substitute x = z − 1/2, which leaves us with a single variable.
The solution is x = −1/4, y = 1/20, z = 1/4, and w = 3/10. Thus the smallest radius
of a ball in which the Petersen graph has a unit distance representation is

√
3/10. The

corresponding matrix A has rank 4, so this representation is in 4 dimension.
It would be difficult to draw a picture of this representation, but I can offer the following

nice matrix, whose columns will realize this representation (the center of the smallest ball
containing it is not at the origin!):





1/2 1/2 1/2 1/2 0 0 0 0 0 0
1/2 0 0 0 1/2 1/2 1/2 0 0 0
0 1/2 0 0 1/2 0 0 1/2 1/2 0
0 0 1/2 0 0 1/2 0 1/2 0 1/2
0 0 0 1/2 0 0 1/2 0 1/2 1/2




(11)

(This matrix reflects the fact that the Petersen graph is the complement of the line-graph
of K5.)

It turns out that from a graph theoretic point of view, it is more interesting to modify the
question and require that the nodes all lie on the surface of the sphere (in our example this
happened automatically, due to the symmetries of the Petersen graph). In other words,
we are interested in the smallest sphere (in any dimension) on which a given graph G
can be drawn so that the euclidean distance between adjacent nodes is 1 (of course, we
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could talk here about any other given distance instead of 1, or spherical distance instead
of euclidean, without essentially changing the problem). Again, by considering the Gram
matrix A = (uT

i uj), we find that this smallest radius t(G) is given by the square root of the
optimum value of the following semidefinite program:

minimize z
subject to A . 0

Aii = z (i ∈ V )
Aii − 2Aij + Ajj = 1 (ij ∈ E).

(12)

Since A = diag(1/2, . . . , 1/2) is a solution, it follows that the optimal z satisfies z ≤ 1/2.
Another way of looking at this question is to add a further dimension. Think of a unit

distance representation of the graph on the sphere with radius t as lying in a “horizontal”
hyperplane. Choose the origin above the center of the sphere so that the vectors pointing to
adjacent nodes of the graph are orthogonal (the distance of the origin to the hyperplane will
be
√

(1/2) − z). It is worth scaling up by a factor of
√

2, so that the vectors pointing to the
nodes of the graph become unit vectors. Such a system of vectors is called an orthonormal
representation of the complementary graph G (the complementation is, of course, just
a matter of convention). The matrix (11) above is an orthogonal representation of the
complement of the Petersen graph, which is related to its unit distance representation by
this construction, up to a change in coordinates.

In the introduction, we constructed an orthonormal representation of the pentagon
graph (Figure 1). This is not the simplest case (in a sense, it is the smallest interesting
orthogonal representation). Figure 9 below shows that it if we add a diagonal to the
pentagon, then a much easier orthogonal representation in 2 dimensions can be constructed.

a

d

e

b

c

c=d

a=b=c

0

Figure 9: An (almost) trivial orthogonal representation

Orthogonal representations of graphs have several applications in graph theory. In
particular, it turns out that the quantity 1/(1 − 2t(G)2) is just ϑ(G) introduced before (for
the complementary graph G. We’ll return to it in sections 5.1 and 6.1.

4.2 Discrete linear and quadratic programs

Consider a typical 0-1 optimization problem:

maximize ctx
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subject to
{

Ax ≤ b
x ∈ {0, 1}n.

(13)

We get an equivalent problem if we replace the last constraint by the quadratic equation

x2
i = xi (i = 1, . . . , n). (14)

Once we allow quadratic equations, many things become much simpler. First, we can
restrict ourselves to homogeneous quadratic equations, by introducing a new variable x0,
and setting it to 1. Thus (14) becomes

x2
i = x0xi (i = 1, . . . , n). (15)

Second, we don’t need inequalities: we can just replace F ≥ 0 by F − x2 = 0, where x
is a new variable. Third, we can often replace constraints by simpler and more powerful
constraints. For example, for the stable set problem (section 2.3), we could replace the edge
constraints by the quadratic equations

xixj = 0 (ij ∈ E). (16)

Trivially, the solutions of (14) and (16) are precisely the incidence vectors of stable sets. If
we are interested in α(G), we can consider the objective function

∑n
i=1 x0xi.

Unfortunately, this also shows that even the solvability of such a simple system of
quadratic equations (together with a linear equation

∑
i xi = α) is NP-hard.

The trick to obtain a polynomially solvable relaxation of such problems is to think of
the xi as vectors in Rk (and multiplication as inner product). For k = 1, we get back the
original 0-1 optimization problem. For k = 2, 3 . . ., we get various optimization problems
with geometric flavor, which are usually not any easier than the original. For example, for
the stable set problem we get the vector relaxation

maximize
∑

i∈V

vT
0 vi

subject to vi ∈ Rk

vT
0 vi = |vi|2 (i ∈ V ) (17)

vT
i vj = 0 (ij ∈ E). (18)

But if we take k = n, then we get a relaxation which is polynomial time solvable. Indeed,
we can introduce new variables Yij = vT

i vj and then the constraints and the objective
function become linear, and if in addition we impose the condition that Y . 0, then we get
a semidefinite optimization problem. If we solve this problem, and then write Y as a Gram
matrix, we obtain an optimum solution of the vector relaxation.

The conditions on vector relaxations often have useful geometric content. For example,
(17) (which is common to the vector relaxations of all 0-1 programs) can be written in the
following two forms:

(v0 − vi)Tvi = 0;
∣∣∣∣vi − 1

2
v0

∣∣∣∣
2

=
1
4
.
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This says that the vectors vi and v0 − vi are orthogonal to each other, and all the points
vi lie on the sphere with radius 1/2 centered at (1/2)v0. (18) says that the vi form an
orthogonal representation of the complement of G.

For discrete linear or quadratic programs with variables from {−1, 1}, (14) becomes
even simpler:

x2
i = 1, (19)

i.e., the vectors are unit vectors. In the case of the Maximum Cut Problem for a graph
G = (V, E), we can think of a 2-coloring as an assignment of 1’s and −1’s to the nodes,
and the number of edges in the cut is

∑

ij∈E

1
4
(xi − xj)2.

The vector relaxation of this problem has the nice physical meaning given in the introduc-
tory example (energy-minimization).

One can add further constraints. For example, if the variables xi are 0-1, then we have

(xi − xj)(xi − xk) ≥ 0

for any three variables. We may add these inequalities as quadratic constraints, and then
get a vector relaxation that satisfies, besides the other constraints, also

(vi − vj)T(vi − vk) ≥ 0.

Geometrically, this means that every triangle spanned by the vectors vi is acute; this
property is sometimes useful to have.

A further geometric property that can be exploited in some cases is symmetry. Linear
systems always have solutions invariant under the symmetries of the system, but quadratic
systems, or discrete linear systems do not. For example, if G is a cycle, then the system (14)-
(16) is invariant under rotation, but its only solution invariant under rotation is the trivial
all-0 vector. One advantage of the semidefinite relaxation is that it restores symmetric
solvability.

Assume that we start with a quadratic system such that both the constraint set and the
objective function are invariant under some permutation group Γ acting on the variables
(for example, it can be invariant under the cyclic shift of indices). It may be that no optimal
solution of the quadratic system is invariant under these permutations: For example, no
maximal stable set in a cycle is invariant under cyclic shifts. However, in a semidefinite
program feasible solutions define convex sets in the space of matrices, and the objective
function is linear. Hence by averaging, we can assert that there exists an optimum solution
Y which itself is invariant under all permutations of the indices under which the semidefinite
program is. In other words, the semidefinite relaxation of the quadratic system has an
optimal solution Y . 0, such that if γ ∈ Γ, then

Yγ(i),γ(j) = Yij . (20)

Now we go over to the vector relaxation: this is defined by Yij = vT
i vj , where vi ∈

Rd for some d ≤ n. We may assume that the vi span Rd. Let γ ∈ Γ. (20) says that
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vT
γ(i)vγ(j) = vT

i vj . In other words, the permutation vi ,→ vγ(i) preserves the length of the
ui and all the angles between them, and hence there is an orthogonal matrix Mγ such
that uγ(i) = Mγui. Since the ui span the space, this matrix Mγ is uniquely determined,
and so we get a representation of Γ in Rd. The vector solution (vi) is invariant under this
representation.

4.3 Spectra of graphs

Let G = (V, E) be a graph. We denote by G = (V, E) its complement and set ∆ = {ii : i ∈
V }. The adjacency matrix AG of G is defined by

(AG)ij =
{

1, if ij ∈ E,
0, if ij ∈ E ∪ ∆.

Let λ1 ≥ . . . ≥ λn be the eigenvalues of AG. It is well known and easy to show that if G is
d-regular than λ1 = d. Since the trace of AG is 0, we have λ1 + . . . + λn = 0, and hence if
E 1= ∅ then λ1 > 0 but λn < 0.

There are many useful connections between the eigenvalues of a graph and its combi-
natorial properties. The first of these follows easily from interlacing eigenvalues.

Proposition 4.2 The maximum size ω(G) of a clique in G is at most λ1 + 1. This bound
remains valid even if we replace the non-diagonal 0’s in the adjacency matrix by arbitrary
real numbers.

The following bound on the chromatic number is due to Hoffman.

Proposition 4.3 The chromatic number χ(G) of G is at least 1 − (λ1/λn). This bound
remains valid even if we replace the 1’s in the adjacency matrix by arbitrary real numbers.

The following bound on the maximum size of a cut is due to Delorme and Poljak
[28, 29, 75, 81], and was the basis for the Goemans-Williamson algorithm discussed in the
introduction.

Proposition 4.4 The maximum size γ(G) of a cut in G is at most |E|/2 − (n/4)λn. This
bound remains valid even if we replace the diagonal 0’s in the adjacency matrix by arbitrary
real numbers.

Observation: to determine the best choice of the “free” entries in 4.2, 4.3 and 4.4 takes
a semidefinite program. Consider 4.2 for example: we fix the diagonal entries at 0, the
entries corresponding to edges at 1, but are free to choose the entries corresponding to
non-adjacent pairs of vertices (replacing the off-diagonal 1’s in the adjacency matrix). We
want to minimize the largest eigenvalue. This can be written as a semidefinite program:

minimize t
subject to tI − X . 0,

Xii = 0 (∀i ∈ V ),
Xij = 1 (∀ij ∈ E).
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It turns out that the semidefinite program constructed for 4.3 is just the dual of this,
and their common optimum value is the parameter ϑ(G) introduced before. The program
for 4.4 gives the approximation used by Goemans and Williamson (for the case when all
weights are 1, from which it is easily extended). See [50] for a similar method to obtain an
improved bound on the mixing rate of random walks.

4.4 Engineering applications

Semidefinite optimization has many applications in stability problems of dynamical systems
and optimal control. Since this is not in the main line of these lecture notes, we only
illustrate this area by a simple example; see chapter 14 of [98] for a detailed survey.

Consider a “system” described by the differential equation
dx

dt
= A(t)x(t), (21)

where x ∈ Rn is a vector describing the state of the system, and A(t) is an n × n matrix,
about which we only know that it is a linear combination of m given matrices A1, . . . , Am

with nonnegative coefficients (an example of this situation is when we know the signs of
the matrix entries). Is the zero solution x(t) ≡ 0 asymptotically stable, i.e., is it true that
for every initial value x(0) = x0, we have x(t) → 0 as t → ∞?

Suppose first that A(t) = A is a constant matrix, and also suppose that we know from
the structure of the problem that it is symmetric. Then the basic theory of differential
equations tells us that the zero solution is asymptotically stable if and only if A is negative
definite.

But semidefinite optimization can be used even if A(t) can depend on t, and is not
necessarily symmetric, at least to establish a sufficient condition for asymptotic stability.
We look for a quadratic Lyapunov function xTPx, where P is a positive definite n × n
matrix, such that

d

dt
x(t)T Px(t) < 0 (22)

for every non-zero solution of the differential equation. If we find such a matrix P , then
Lyapunov’s theorem implies that the trivial solution is asymptotically stable.

Now the left hand side of (22) can be written as

d

dt
x(t)T Px(t) = ẋTPx + xTPẋ = xT(ATP + PA)x.

Thus (22) holds for every solution and every t if and only if ATP +PA (which is a symmetric
matrix) is negative semidefinite. We don’t explicitly know A(t), but we do know that it is
a linear combination of A1, . . . , Am; so it suffices we require that the matrices AT

i P + PAi,
i = 1, ..., m are negative semidefinite.

To sum up, we see that a sufficient condition for the asymptotic stability of the zero
solution of (21) is that the semidefinite system

P 0 0,

−ATP − PA 0 0 (i = 1, . . . , m)

has a solution in P .
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5 Semidefinite programming in proofs

5.1 More on stable sets and the Shannon capacity

An orthogonal representation of a graph G = (V, E) is a mapping (labeling) u : V → Rd for
some d such that uT

i uj = 0 for all ij ∈ E. An orthonormal representation is an orthogonal
representation with |ui| = 1 for all i. The angle of an orthonormal representation is the
smallest half-angle of a rotational cone containing the representing vectors.

Proposition 5.1 The minimum angle φ of any orthogonal representation of G is given by
cos2 φ = 1/ϑ(G).

In what follows we collect some properties of ϑ, mostly from [64] (see also [57] for a
survey).

We start with a formula that expresses ϑ(G) as a maximum over orthogonal represen-
tations of the complementary graph. Let the leaning of an orthonormal representation of
G be defined as

∑
i∈V (eT

1 ui)2.

Proposition 5.2 The maximum leaning of an orthonormal representation of G is ϑ(G).

The “umbrella” construction given in the introduction shows, by Proposition 5.1, that
ϑ(C5) ≤

√
5, and by Proposition 5.2, that ϑ(C5) ≥

√
5. Hence ϑ(C5) =

√
5.

Proposition 5.2 is a ”duality” result, which is in fact a consequence of the Duality
Theorem of semidefinite programs (Theorem 3.4). To see the connection, let us give a
”semidefinite” formulation of ϑ. This formulation is by no means unique; in fact, several
others come up in these lecture notes.

Proposition 5.3 ϑ(G) is the optimum of the following semidefinite program:

minimize t
subject to Y . 0

Yij = −1 (∀ ij ∈ E(G))
Yii = t − 1

(23)

It is also the optimum of the dual program

maximize
∑

i∈V

∑
j∈V Zij

subject to Z . 0
Zij = 0 (∀ ij ∈ E(G))

tr(Z) = 1

(24)

Any stable set S provides a feasible solution of (24), by choosing Zij = 1/|S| if i, j ∈ S
and 0 otherwise. Similarly, any k-coloring of G provides a feasible solution of (23), by
choosing Yij = −1 if i and j have different colors, Yii = k − 1 and Yij = 0 otherwise. These
explicit solutions imply the following.

Theorem 5.4 [Sandwich Theorem] For every graph G,

ω(G) ≤ ϑ(G) ≤ χ(G).
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The fractional chromatic number χ∗(G) is defined as the least t for which there exists a
family (Aj : j = 1, . . . , p) of stable sets in G, and nonnegative weights (τj : j = 1, . . . , p)
such that

∑
{τj : Aj 6 i} ≥ 1 for all i ∈ V and

∑
j τj = t. Note that the definition χ∗ can

be considered as a linear program. By linear programming duality, χ∗(G) is equal to the
largest s for which there exist weights (σi : i ∈ V ) such that

∑
i∈A σi ≤ 1 for every stable

set A and
∑

i σi = s.
Clearly ω(G) ≤ χ∗(G) ≤ χ(G).

Proposition 5.5 ϑ(G) ≤ χ∗(G).

Returning to orthogonal representations, it is easy to see that not only the angle, but
also the dimension of the representation yields an upper bound on α(G). This is, however,
not better that ϑ:

Proposition 5.6 Suppose that G has an orthonormal representation in dimension d. Then
ϑ(G) ≤ d.

On the other hand, if we consider orthogonal representations over fields of finite char-
acteristic, the dimension may be a better bound than ϑ [44, 6]. This, however, goes outside
the ideas of semidefinite optimization.

To relate ϑ to the Shannon capacity of a graph, the following is the key observation:

Proposition 5.7 For any two graphs,

ϑ(G · H) = ϑ(G)ϑ(H)

and

ϑ(G · H) = ϑ(G)ϑ(H).

It is now easy to generalize the bound for the Shannon capacity of the pentagon, given
in the introduction, to arbitrary graphs.

Corollary 5.8 For every graph,

Θ(G) ≤ ϑ(G).

Does equality hold here? Examples by Haemers [44], and more recent much sharper
examples by Alon [6] show that the answer is negative in general. But we can derive at
least one interesting class of examples from the general results below.

Proposition 5.9 For every graph G,

ϑ(G)ϑ(G) ≥ n.

If G has a vertex-transitive automorphism group, then equality holds.

Corollary 5.10 If G is a self-complementary graph on n nodes with a node-transitive
automorphism group, then

Θ(G) = ϑ(G) =
√

n.
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An example to which this corollary applies is the Paley graph: for a prime p ≡ 1
(mod 4), we take the {0, 1, . . . , p−1} as vertices, and connect two of them iff their difference
is a quadratic residue. Thus we get an infinite family for which the Shannon capacity is
non-trivial (i.e., Θ > α), and can be determined exactly.

The Paley graphs are quite similar to random graphs, and indeed, for random graphs
ϑ behaves similarly:

Theorem 5.11 (Juhász [49]) If G is a random graph on n nodes then
√

n < ϑ(G) < 2
√

n
with probability 1 − o(1).

It is not known how large the Shannon capacity of a random graph is.
We conclude this section by using semidefinite optimization to add further constraints

to the stable set polytope (continuing the treatment in section 2.3). For every orthonormal
representation (vi : i ∈ V ) of G, we consider the linear constraint

∑

i∈V

(eT
1 vi)2xi ≤ 1. (25)

It is easy to see that these inequalities are valid for STAB(G); we call them orthogonality
constraints. The solution set of non-negativity and orthogonality constraints is denoted by
TSTAB(G). It is clear that TSTAB is a closed, convex set. The incidence vector of any
stable set A satisfies (25). Indeed, it then says that

∑

i∈A

(eT
1 vi)2 ≤ 1.

Since the vi (i ∈ A) are mutually orthogonal, the left hand side is just the squared length
projection of e1 onto the subspace spanned by these ei, and the length of this projection is
at most the length of e1, which is 1.

Furthermore, every clique constraint is an orthogonality constraint. Indeed,
∑

i∈B

xi ≤ 1

is the constraint derived from the orthogonal representation

i ,→
{

e1, if i ∈ A,
ei, if i /∈ A.

Hence we have

STAB(G) ⊆ TSTAB(G) ⊆ QSTAB(G)

for every graph G.
There is a dual characterization of TSTAB [42], which can be derived from semidefinite

duality. For every orthonormal representation (ui : i ∈ V ), consider the vector x[u] =
(eT

1 ui)2 : i ∈ V ) ∈ RV .

Theorem 5.12 TSTAB(G) = {x[u] : u is an orthonormal representation of G}.
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Not every orthogonality constraint is a clique constraint; in fact, the number of essential
orthogonality constraints is infinite in general:

Theorem 5.13 TSTAB(G) is polyhedral if and only if the graph is perfect. In this case
TSTAB = STAB = QSTAB.

While TSTAB is a rather complicated set, in many respects it behaves much better
than, say, STAB. For example, it has a very nice connection with graph complementation:

Theorem 5.14 TSTAB(G) is the antiblocker of TSTAB(G).

Maximizing a linear function over STAB(G) or QSTAB(G) is NP-hard; but, surprisingly,
TSTAB behaves much better:

Theorem 5.15 Every linear objective function can be maximized over TSTAB(G) (with
arbitrarily small error) in polynomial time.

The maximum of
∑

i xi over TSTAB(G) is the familiar function ϑ(G).

5.2 Discrepancy and number theory

Let F be a family of subsets of {0, 1, . . . , n − 1}. We want to find a sequence x =
(x0, x1, . . . , xn−1) of ±1’s so that each member of F contains about as many 1’s as −1’s.
More exactly, we define the discrepancy of the sequence x by

max
A∈F

∣∣∣∣∣
∑

i∈A

xi

∣∣∣∣∣ ,

and the discrepancy of the family F by

∆(F) = min
x∈{−1,1}n

max
A∈F

∣∣∣∣∣
∑

i∈A

xi

∣∣∣∣∣ .

We can also consider the “average discrepancy” in various versions. For our purposes, we
only need the ,2-discrepancy

∆2(F) = min
x∈{−1,1}n

1
|F|

∑

A∈F

(
∑

i∈A

xi

)2

.

It is clear that ∆2 ≤ ∆2. (We refer to [17] and [18] for an exposition of combinatorial
discrepancy theory.)

Clearly, ∆(F) can be thought of as the optimum of a linear program in {−1, 1}-variables:

minimize t
subject to −t ≤

∑
i∈A xi ≤ t

xi ∈ {−1, 1},
(26)
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while ∆2 is optimum of a quadratic function in {−1, 1}-variables (but otherwise uncon-
strained). So both quantities have natural semidefinite relaxations. We only formulate the
second:

minimize 1
|F|
∑

A∈F
∑

i∈A

∑
j∈A Yij

subject to Y . 0,
Yii = 1 (∀ i ∈ V ).

(27)

We show how to use the semidefinite relaxation to estimate ∆(F) in the case when
F is the family of arithmetic progressions in {0, 1, . . . , n − 1} [68]. One way of looking
at this particular question is to think of the xi in the definition of discrepancy as the
output of a pseudorandom number generator, and of the discrepancy, as a randomness
test (a quantitative version of von Mises’ test). If the xi are truly random, we expect this
discrepancy to be about n1/2. Most “bad” sequences one encounters fail by producing a
larger discrepancy. Can a sequence fail by producing a discrepancy that is too small?

The theorem of Roth [85] below shows that the discrepancy ∆(F) cannot be smaller
than Ω(n1/4); this allows sequences to have substantially smaller discrepancy than a random
sequence. One might expect that the lower bound in the theorem can be strengthened to
about Ω(n1/2) (so that the random sequences would have, at least approximately, the
smallest discrepancy), but it was shown by Beck [16] that Roth’s estimate is sharp up to
a logarithmic factor. Recently, even this logarithmic factor was removed by Matoušek and
Spencer [74].

Theorem 5.16 For every sequence (x0, . . . , xn−1), xi ∈ {−1, 1}, there is an arithmetic
progression A ⊆ {0, . . . , n − 1} such that

∣∣∣∣∣
∑

i∈A

xi

∣∣∣∣∣ >
1
14

n1/4.

All proofs of this theorem establish more: one has such an arithmetic progression A with
difference at most 8k and length exactly k, where k = 7

√
n/88. We consider arithmetic

progressions modulo n, i.e., we let them wrap around. (Of course, in this case it may happen
that the progression with the large discrepancy is wrapped; but since (k − 1)(8k) < n, it
wraps over n at most once, and so it is the union of two unwrapped arithmetic progressions,
one of which has discrepancy at least half the original.) Let H denote the family of such
arithmetic progressions. Clearly |H| = 8kn.

Following Roth, we prove the stronger result that the ,2-discrepancy of arithmetic pro-
gressions in H is at least (1/49)n1/2; even stronger, we prove that the optimum of its
semidefinite relaxation is large: the minimum of

1
|H|

∑

A∈H

∑

i∈A

∑

j∈A

Yij (28)

subject to

Y . 0, (29)
Yii = 1 (1 ≤ i ≤ n) (30)
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is at least (1/49)n1/2.
The next step is to notice that both (30) and (29) are invariant under the cyclic shift

of indices. Hence by our discussions in section 4.2, we have an optimal vector solution
(u0, . . . , un), and an orthogonal matrix M such that Mn = I and ui = M iu0.

Elementary group representation theory tells us that the space decomposes into the
direct sum of 1- and 2-dimensional subspaces invariant under M . In other words, if we
choose a basis appropriately, M has a block-diagonal form

M =





M1 0 . . . 0
0 M2 . . . 0
...

...
0 0 . . . Md





where each Mt is a 1 × 1 or 2 × 2 real matrix of order n.
We show that the statement is true if M has only one block (thus d = 1 or 2). The

general case then follows easily by adding up the lower bounds on the objective function
for all diagonal blocks. We treat the case d = 2; the case d = 1 is trivial.

The matrix M defines a rotation in the plane with an angle 2πa/n for some 1 ≤ a ≤ n.
By Dirichlet’s Theorem, there are integers 1 ≤ q ≤ 8k and p such that |q(a/n)−p| < 1/(8k).
This implies that for every arithmetic progression A of difference q and length k, the vectors
M ju0 (j ∈ A) point in almost the same direction: the maximum angle between them is less
than (k − 1)(2π/(8k)) < π/4. Hence

∣∣∣∣∣∣

∑

j∈A

M ju0

∣∣∣∣∣∣

2

>
k2

2
.

Since there are n arithmetic progressions in H with this difference, we get

1
8kn

∑

A∈H

∣∣∣∣∣∣

∑

j∈A

M ju0

∣∣∣∣∣∣

2

>
1

8kn

k2n

2
=

k

16
>

n1/2

49
,

as claimed.

6 Semidefinite programming in approximation algorithms

The algorithm of Goemans and Williamson, discussed in the introduction, was a break-
through which showed that semidefinite optimization can lead to approximation algorithms
with very good approximation ratio. Since then, many other applications have been devel-
oped; a couple of these are discussed below.

6.1 Stable sets, cliques, and chromatic number

The Sandwich Theorem 5.4 implies that ϑ(G) can be considered as an approximation of
the clique size ω(G), which is at least as good as the natural upper bound χ(G). Note that
both quantities ω(G) and χ(G) are NP-hard, but ϑ(G), which is “sandwiched” between
them, is polynomial time computable.
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The most important algorithmic consequence of theorem 5.4 is that for perfect graphs,
ω(G) = χ(G) is polynomial time computable [41]. Of course, by complementation it follows
that α(G) is also polynomial time computable. It is not hard to see how to use this
algorithm to compute a maximum stable set and (with more work) an optimum coloring.
The surprising fact is that there is no algorithm known to find a maximum stable set in
a perfect graph without the use of semidefinite optimization. (For another application of
this result to complexity theory, see [90].)

How good an approximation does ϑ provide for α? Unfortunately, it can be quite bad.
First, consider the case when α is very small. Koniagin [55] constructed a graph that
has α(G) = 2 and ϑ(G) = Ω(n1/3). This is the largest ϑ(G) can be; in fact, Alon and
Kahale [8], improving results of Kashin and Koniagin [54], proved that if α(G) ≤ k then
ϑ(G) < Cn(k−1)/(k+1), for some absolute constant C.

Once α is unbounded, very little is true. Feige [32] showed that there are graphs for
which α(G) = no(1) and ϑ(G) = n1−o(1); in other words, ϑ/α can be larger than n1−ε for
every ε > 0. (The existence of such graphs also follows from the results of H̊astad [46]
showing that it is NP-hard to determine α(G) with a relative error less than n1−ε, where
n = |V |.) By results of Szegedy [89], this also implies that ϑ(G) does not approximate the
chromatic number within a factor of n1−ε.

Let us consider the other end of the scale, when ϑ(G) is small. Suppose first that
ϑ(G) = 2, then ϑ(G) = 2. Then it is not hard to see that G is bipartite, and hence perfect,
and hence ϑ(G) = α(G).

For the case when ϑ(G) is larger than 2 but bounded, the following (much weaker)
positive result was proved by Karger, Motwani and Sudan [51]:

Theorem 6.1 Let k = 9ϑ(G):, then α(G) ≥ (1/2)n3/(k+1)/
√

ln n. Furthermore, a stable
set of this size can be found in randomized polynomial time.

Note that we have ϑ(G) ≥ n/k by Proposition 5.9. It is not known how large a stable
set follows from the assumption ϑ(G) ≥ n/k.

Let us sketch the algorithm. If k = 2 then a stronger bound holds, as discussed above,
so suppose that k > 2.

We first treat the case when the maximum degree of the graph is ∆ > nk/(k+1). Let G′

be the subgraph induced by the neighbors of a node with maximum degree. It is easy to
see that ϑ(G′) ≤ k − 1, and so (by induction on k) we can find in G′ a stable set of size at
least ∆3/k/

√
ln ∆ ≥ n3/(k+1)/

√
lnn.

So suppose that ∆ ≤ nk/(k+1). Compute the optimum solution of (12) for the comple-
mentary graph G, and the corresponding vector representation. Thus we get unit vectors
ui ∈ Rd such that for every edge ij ∈ E, we have uT

i uj = −1/(k − 1).
Next, we take a random vector w ∈ Rd from the standard normal distribution in Rd,

and consider the set S of nodes i such that wTui ≥ c, where c =
√

2(lnn)(k − 2)/k. The
probability that a given node belongs to S is

1√
π

∫ ∞

c
e−t2/2 dt ≥ n−(k−2)/(k+1)/

√
lnn,

and hence the expected size of S is at least n3/(k+1)/
√

lnn). On the other hand, the
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probability that both endpoints ui and uj of an edge belong to S can be estimated as
follows:

P(wTui ≥ c, wTuj ≥ c) ≤ P(wT(ui + uj) ≥ 2c).

The conditions on the vector solution imply that |ui + uj | =
√

2(k − 2)/(k − 1), and using
this a more elaborate computation shows that the expected number of edges spanned by S
is less than |S|/2. Hence we can delete at most half of the nodes of S and get a stable set
of the desired size.

The previous algorithm has an important application to a coloring problem. Suppose
that somebody gives a graph and guarantees that the graph is 3-colorable, without telling
us its 3-coloring. Can we find this 3-coloring? (This may sound artificial, but this kind of
situation does arise in cryptography and other data security applications; one can think of
the hidden 3-coloring as a “watermark” that can be verified if we know where to look.)

It is easy to argue that knowing that the graph is 3-colorable does not help: it is still
NP-hard to find the 3-coloration. But suppose that we would be satisfied with finding a
4-coloration, or 5-coloration, or (log n)-coloration; is this easier? It is known that to find
a 4-coloration is still NP-hard, but little is known above this. Improving earlier results,
Karger, Motwani and Sudan [51] gave a polynomial time algorithm that, given a 3-colorable
graph, computes a coloring with O(n1/4(lnn)3/2) colors. More recently, this was improved
by Blum and Karger [20] to O(n3/14).

The algorithm of Karger, Motwani and Sudan starts with computing ϑ(G), which is at
most 3 by Theorem 5.4. Using Theorem 6.1, they find a stable set of size Ω(n3/4/

√
lnn).

Deleting this set from G and iterating, they get a coloring of G with O(n1/4(lnn)3/2) colors.

6.2 Satisfiability

One of the most fundamental problems in computer science is satisfiability. Let x1, . . . , xn

be Boolean variables. A literal is a variable xi or the negation of a variable xi. A clause is a
disjunction (OR) of literals; a conjunctive normal form is a conjunction (AND) of clauses.
In standard logics notation, the following formula is an example of a conjunctive normal
form:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5).

The Satisfiability Problem (SAT) is the problem of deciding whether there is an assign-
ment of values 0 or 1 to the variables that satisfies a given conjunctive normal form. The
restricted case when we assume that each clause in the input has at most k literals is called
k-SAT (the example above is an instance of 3-SAT). k-SAT is polynomial time solvable by
a rather easy algorithm if k = 2, but NP-hard if k > 2.

Suppose that the given conjunctive normal form is not satisfiable; then we may want to
find an assignment that satisfies as many clauses as possible; this optimization problem is
called the MAX-SAT problem (we could assign weights to the clauses, and try to maximize
the total weight of satisfied clauses; but we keep our discussion simple by assuming that all
clauses are equally valuable). The restricted case of MAX-k-SAT is defined in the natural
way. MAX-k-SAT is NP-hard already when k = 2; indeed, it is easy to see that MAX CUT
is a special case.

35



Can we extend the semidefinite programming method so successful for MAX CUT to
obtain good approximation algorithms for MAX-k-SAT? This idea was exploited already
by Goemans and Williamson [38], who showed how to obtain for MAX-2-SAT the same
approximation ratio .878 as for the MAX CUT problem; this was improved by Feige and
Goemans [34] to .931.

We do not survey all the developments for various versions of the Satisfiability Problem,
only the case of MAX-3-SAT. An important special case will be exact MAX-3-SAT, when
all clauses contain exactly 3 literals.

In the negative direction, H̊astad [45] proved that for the exact MAX-3-SAT problem no
polynomial time approximation algorithm can have an approximation ratio better than 7/8
(unless P=NP). This approximation ratio is easy to achieve, since if we randomly assign
values to the variables, we can expect to satisfy 7/8-th of all clauses.

Can this optimal approximation ratio be achieved in the more general case of MAX-
3-SAT (when the clauses may contain 1, 2 or 3 literals)? Of course, H̊astad’s negative
result remains valid. Using semidefinite optimization, Karloff and Zwick [53] (cf. also [99])
showed that this bound can be attained:

Theorem 6.2 There is a polynomial time approximation algorithm for MAX-3-SAT with
an approximation ratio of 7/8.

Let us sketch this algorithm. First, we give a quadratic programming formulation.
Let x1, . . . , xn be the original variables, where we consider TRUE=1 and FALSE=0. Let
xn+i = 1 − xi (i = n + 1, . . . , 2n) be their negations. Let x0 be a further variable needed
for homogenization, which is set to x0 = 1. We also introduce a variable zC ∈ 0, 1 for the
logical value of each clause C. Then we can relate zC algebraically to the xi as follows. For
a clause C = xi, we have zC = xi. For a clause C = xi ∨ xj , we have zC = xi + xj − xixj .
So far, this is all linear or quadratic, but clauses with 3 literals are a bit more difficult. If
C = xi ∨ xj ∨ xk, then clearly

zC = xi + xj + xk − xixj − xixk − xjxk + xixjxk.

unfortunately, this is cubic. We could get an upper bound on zC if we omitted the last
term, but as we will see, we need a lower bound. So we delete the cubic term and one of
the quadratic terms; then we do get a lower bound. But which quadratic term should we
delete? The trick is to create three inequalities, deleting one at a time:

zC ≥ xi + xj + xk − xixj − xixk

zC ≥ xi + xj + xk − xixj − xjxk

zC ≥ xi + xj + xk − xixk − xjxk

Writing these expressions in a homogeneous form, we get the following optimization prob-
lem:

x0xi + x0xj + x0xk − xixj − xixk ≥ zC ∀ clause C = xi ∨ xj ∨ xk

x0xi + x0xj − xixj = zC ∀ clause C = xi ∨ xj

xi = zC ∀ clause C = xi (31)
xn+i = x0 − xi ∀ 1 ≤ i ≤ n,

xi, zC ∈ {0, 1}.
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It is easy to see that every assignment of the variables xi and the values zC determined
by them give a solution of this system, and vice versa. Thus the value M of the MAX-3-SAT
problem is the maximum of

∑
C zC , subject to (31).

Now we consider the semidefinite relaxation where we replace the xi by unit vectors;
the variables zC are relaxed to real values satisfying 0 ≤ zC ≤ 1. Using semidefinite
programming, this can be solved in polynomial time (with an arbitrarily small error, which
causes some complications to be ignored here).

Next, similarly as in the Goemans–Williamson algorithm, we take a random hyperplane
H through the point (1/2)v0, and set xi = 1 if xi is separated from 0 by H, and xi = 0
otherwise. A clause with at most 2 variables will be satisfied with probability at least
.878zC > (7/8)zC (which follows similarly as in the case of the Maximum Cut problem). A
clause with 3 variables will be satisfied with probability at least (7/8)zC (this is quite a bit
more difficult to show). Hence the expected number of clauses that are satisfied is at least

∑

C

7
8
zC =

7
8
M.

7 Constraint generation and quadratic inequalities

7.1 Example: the stable set polytope again

Recall the stable set polytope of a graph G = (V, E) is the convex hull of integer solutions
of the following system of linear inequalities:

xi ≥ 0 (∀ i ∈ V ) (32)
xi + xj ≤ 1 (∀ ij ∈ E) (33)

Without the integrality condition, however, this system describes the larger polytope
FSTAB. We discussed above how to add new faces to get a sufficiently large set of in-
equalities for certain classes of graphs. The additional constraints were obtained by ad hoc
combinatorial considerations. We show now that many of them (in fact, all those mentioned
above) can also be derived by algebraic arguments ([71, 72]; see also [67]).

The trick is to go quadratic. As we have seen, the fact that the variables are 0-1 valued
implies that for every node i,

x2
i = xi, (34)

and the fact that x is the incidence vector of a stable set can be expressed as

xixj = 0 (ij ∈ E). (35)

Now we can start deriving inequalities, using only (34) and (35). We have

xi = x2
i ≥ 0,

and

1 − xi − xj = 1 − xi − xj + xixj = (1 − xi)(1 − xj) ≥ 0, (36)
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so (32) and (33) follow. These are rather trivial, so let us consider the odd hole constraint
associated with a pentagon (1, 2, 3, 4, 5). Then we have

1 − x1 − x2 − x3 + x1x3 = 1 − x1 − x2 − x3 + x1x2 + x1x3

= (1 − x1)(1 − x2 − x3) ≥ 0,

and similarly

1 − x1 − x4 − x5 + x1x4 ≥ 0.

Furthermore,

x1 − x1x3 − x1x4 = x1(1 − x3 − x4) ≥ 0

Summing these inequalities, we get the odd hole constraint

2 − x1 − x2 − x3 − x4 − x5 ≥ 0. (37)

One obtains all odd hole constraints in a similar way.
We can also derive the clique constraints. Assume that nodes 1,2,3,4,5 induce a complete

5-graph. Then

0 ≤ (1 − x1 − x2 − x3 − x4 − x5)2 = 1 +
5∑

i=1

x2
i − 2

5∑

i=1

xi + 2
∑

i)=j

xixj

= 1 − x1 − x2 − x3 − x4 − x5,

by (34) and (35). All clique constraints, and in fact all orthogonality constraints can be
derived similarly. Odd antihole constraints can be derived from the clique constraints in a
way similar to the derivation of the odd hole constraints.

7.2 Strong insolvability of quadratic equations

We describe the procedures behind the computations in the previous section in a general
context. We consider quadratic inequalities in n real variables x1, . . . , xn. Unfortunately,
for quadratic inequalities there is no full analogue of the Farkas Lemma or of the efficient
algorithms of linear programming. In fact, the system consisting of the quadratic equations
(14) and (16), and a single linear equation

∑
i xi = k has a solution if and only if α(G) ≥ k.

This reduction shows:

Proposition 7.1 It is NP-hard to decide whether a system of quadratic inequalities has a
real solution.

However, using a semidefiniteness test for matrices, at least the case of a single inequality
is solvable:

Proposition 7.2 We can decide in polynomial time whether a single quadratic inequality
is solvable. In fact, the quadratic polynomial

q(x) = xTAx + bTx + c
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(where A is an n × n symmetric matrix, b ∈ Rn and c ∈ R) is everywhere positive if and
only if

(a) A . 0,
(b) b = Ah for some h ∈ Rn, and
(c) for this h, hTb < 4c.

These conditions are easy to verify.
A system of quadratic inequalities is strongly unsolvable if there is a single unsolvable

quadratic inequality that can be obtained as a linear combination of the given inequalities.
By the Farkas Lemma, the analogous condition for the solvability of a system of linear
inequalities is necessary and sufficient. In the quadratic case, there are unsolvable but
not strongly unsolvable systems. A nice example is given by the quadratic equations (14)
and (16), and the linear equation

∑
i xi = k. As we noted, this system is unsolvable for

k > α(G). However, it can be shown that it is strongly unsolvable only for k > θ(G).
So if we take G to be the pentagon and k = 2.1, we get an unsolvable, but not strongly
unsolvable system.

Using semidefinite optimization, we get a solution for a very special but important case:

Theorem 7.3 It is decidable in polynomial time whether a system of quadratic inequalities
is strongly unsolvable.

7.3 Inference rules

An inference rule for algebraic inequalities is a procedure that, given a system α1 ≥
0, . . . , αm ≥ 0 of algebraic inequalities in n variables, determines a new algebraic inequality
α ≥ 0, which is a logical consequence of the given system in the sense that every vector
x ∈ Rn satisfying α1(x) ≥ 0, . . . , αm(x) ≥ 0 also satisfies α(x) ≥ 0. Perhaps the simplest
inference rule is the following.
Linear combination rule:

α1 ≥ 0, . . . , αm ≥ 0 =⇒ c0 + c1α1 + . . . cmαm ≥ 0 (c0, c1, . . . , cm ≥ 0). (38)

The Farkas Lemma asserts that among linear inequalities, this single rule generates all
logical consequences. As we have mentioned, it is not sufficient once we have quadratic
inequalities; however, in this case we can formulate other inference rules.
Multiplication rule:

α1 ≥ 0, α2 ≥ 0 =⇒ α1α2 ≥ 0. (39)

Assume that the linear inequalities 0 ≤ xi ≤ 1 as well as the quadratic equations x2
i = xi

are present. Under this assumption, one can formulate the following
Restricted multiplication rule:

α ≥ 0 =⇒ xiα ≥ 0, (1 − xi)α ≥ 0. (40)

The following rule will provide the connection with semidefinite optimization:
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Square rule:

α ≥ 0 =⇒ α + β2
1 + . . . + β2

m ≥ 0 (41)

(where the βi are arbitrary polynomials). We can consider the Restricted square rule
where all the βi are linear.

Finally, let us formulate one other rule:
Division rule:

α1 ≥ 0, (1 + α1)α2 ≥ 0 =⇒ α2 ≥ 0. (42)

A further restriction is obtained when we are not allowed to use the commutativity of
the variables. We’ll only consider this in connection with the restricted multiplication and
linear rules.

Artin’s Theorem (see below) implies that these rules are sufficient to derive all conse-
quences of a system of algebraic inequalities. In the case of interest for us, namely linear
consequences of linear programs with 0-1 variables, we don’t need all these rules to generate
all the logical consequences of our starting system. In fact, the following is true [71, 72, 12]:

Theorem 7.4 Starting with any system of linear inequalities and the equations x2
i = xi,

repeated application of the Linear rule and the Restricted multiplication rule (even with
the further non-commutativity restriction) generates all linear inequalities valid for the 0-1
solutions, in at most n iterations.

7.4 Deriving facets of the stable set polytope

Deriving a facet in n iterations (as guaranteed by Theorem 7.4) gives little information
about it. We have seen in section 7.1 that the most important facets of the stable set
polytope can be derived in just one or two iterations. It turns out that (for the stable set
polytope) one can obtain reasonably good bounds on the number of iterations needed to
derive a facet, in terms of other useful parameters.

Let
∑

i aixi ≤ b be an inequality defining a facet of STAB(G); we assume that it is
scaled so that the ai are relatively prime integers. We define its defect as

∑
i ai − 2b. The

defect of an odd hole constraint is 1; the defect of a clique constraint (5) is |B| − 2. In
the case of a facet defined by an α-critical graph G, this value is the Gallai class number
δ(G) = |V (G)| − 2α(G) of the graph.

Lemma 7.5 [72] Let
∑

i aixi ≤ b be a facet of STAB(G). Then

max

{
∑

i

aixi : x ∈ FSTAB(G)

}
=

1
2

∑

i

ai.

It follows that the defect is non-negative, and in fact it can be characterized as twice
the integrality gap between optimizing over STAB and FSTAB:
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Corollary 7.6 The defect of a facet
∑

i aixi ≤ b satisfies

∑

i

ai − 2b = 2 max

{
∑

i

aixi : x ∈ FSTAB(G)

}

− 2 max

{
∑

i

aixi : x ∈ STAB(G)

}
.

Graphs that are α-critical with bounded Gallai class number have a finite classification
[63]. There is a similar classification of facets of STAB(G) with bounded defect [61].

The following theorem can be proved by calculations similar to those given in section
7.1 above.

Theorem 7.7 [71, 72] Let G any graph, and let F be a facet of STAB(G), defined by the
inequality

∑
i aixi ≤ b, with defect δ.

(a) Starting with the non-negativity constraints (3) and the edge constraints (4), the
facet F can be derived, using the Linear and Restricted Multiplication rules, in at most δ
steps.

(b) Starting with the non-negativity constraints (3) and the edge constraints (4), the
facet F can be derived, using the Linear, Restricted Multiplication, and Restricted Square
rules, in at most b steps.

If we also use the square rule, then the derivation may be much faster. For example,
to derive a k-clique constraint using the Linear and Restricted multiplication rules takes
k − 2 steps; with the Restricted square rule, it takes only one. It seems that all the known
“nice” (polynomially separable, see below) classes of facets of the stable set polytope, with
the exception of the ”Edmonds facets” in the case of the matching polytope, can be derived
by one or two rounds of applications of the Linear, Restricted Multiplication, and Square
Rules.

7.5 A bit of real algebraic geometry

Finally, let us put these considerations into a more general context. A fundamental theorem
in real algebraic geometry is Artin’s Theorem:

Theorem 7.8 A polynomial f ∈ R[x1, . . . , xn] is nonnegative for all (x1, . . . , xn) ∈ Rn if
and only if it is a sum of squares of rational functions.

One might expect that the term ”rational functions” can be replaced by ”polynomials”,
but this cannot be guaranteed in general. In special cases of combinatorial interest, however,
we do get a simpler representation.

Let G = (V, E) be a graph and let I(G) denote the polynomial ideal generated by the
polynomials x2

i − xi (i ∈ V ) and xixj (ij ∈ E). Obviously, the roots of this ideal are the
incidence vectors of stable sets. We write f ≥ 0 (mod I(G)) iff f(x) ≥ 0 for every root of
the ideal I(G).
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Proposition 7.9 For any polynomial f , we have f ≥ 0 (mod I(G)) iff there exist polyno-
mials g1, . . . , gN such that f ≡ g2

1 + . . . + g2
N (mod I(G)).

From theorem 5.13 it is easy to derive the following characterization of perfect graphs:

Theorem 7.10 A graph G is perfect if and only if the following holds: For any linear
polynomial f , we have f ≥ 0 (mod I(G)) iff there exist linear polynomials g1, . . . , gN such
that f ≡ g2

1 + . . . + g2
N (mod I(G)).

7.6 Algorithmic aspects of inference rules

Let L be a possibly infinite system of linear inequalities in n variables, associated to a
finite structure (e.g., a graph). We say that L is polynomially separable, if for every vector
x ∈ Rn, we can decide in polynomial time whether x satisfies every member of L, and if it
does not, we can find a violated member.

Let R be any inference rule, and let RL denote the set of all linear inequalities produced
by one application of R to members of L. We say that the rule is polynomial, if RL is
polynomially separable whenever L is.

Using the ellipsoid method combined with semidefinite optimization, we get:

Lemma 7.11 The Linear Rule (38), the Restricted Multiplication Rule (40) and the Re-
stricted Square Rule (41) are polynomial.

It follows that if for some class of graphs, all facets of the stable set polytope can be
derived by a bounded number of “rounds” of these three rules, then the stable set problem
is polynomial for the class. In particular, we have the following consequences [42, 71, 72].

Corollary 7.12 The Stable Set Problem can be solved for perfect, t-perfect and h-perfect
graphs in polynomial time.

Corollary 7.13 Assume that for a class of graphs either the right hand side or the defect
of each facet of the stable set polytope is bounded. Then the Stable Set Problem can be solved
polynomially for this class.

8 Extensions and problems

8.1 Small dimension representations and rank minimization

If we consider a semidefinite relaxation of a discrete optimization problem (say, a 0-1 linear
program), then typically the original solutions correspond to semidefinite matrices of rank
1. In linear programming, there are special but useful conditions that guarantee that the
solutions of the relaxed linear problem are also solutions of the original integer problem
(for example, perfectness, or total unimodularity).

Problem 8.1 Find combinatorial conditions that guarantee that the semidefinite relaxation
has a solution of rank 1.
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This question can be interesting for special combinatorial semidefinite relaxations. For
example,

Problem 8.2 Which graphs are “max-cut-perfect?”

Theorem 7.10 suggests an algebraic question:

Problem 8.3 Which polynomial ideals I are “perfect” in the sense that for any linear
polynomial f , we have f ≥ 0 (mod I) iff there exist linear polynomials g1, . . . , gN such that
f ≡ g2

1 + . . . + g2
N (mod I)? Of course, there is a lot of room to modify the question by

replacing “linear” with “bounded degree”, etc.

Coming back to semidefinite programs, if we find a solution that has, instead of rank
1, some other small rank, (i.e., a vector solution in low dimension), then this may decrease
the error of the rounding methods, used to extract approximate solutions to the original
problems. Thus the version of problem 8.1 with “low rank” instead of “rank 1” also seems
very interesting. One result in this direction is the following (discovered in many versions
[14, 36, 80, 59]; see also [27], section 31.5, and [15]):

Theorem 8.4 The semidefinite system

X . 0
D1 · X = d1
...
Dk · X = dk,

has a solution of rank at most 9
√

2k:.

Also from a geometric point of view, it is natural to consider unit distance (orthogonal,
etc.) representations in a fixed small dimension. Without control over the rank of the
solutions of semidefinite programs, this additional condition makes the use of semidefinite
optimization methods very limited. On the other hand, several of these geometric repre-
sentations of graphs are connected to interesting graph-theoretic properties, and some of
them are related to semidefinite optimization. This connection is largely unexplored.

Let us mention a few examples where we do have some information about low rank
solutions. A vector labeling V → Rd is generic if any d labels are linearly independent. Let
κ(G) denote the node-connectivity of G. The following was proved in [69] (see also [70]):

Theorem 8.5 The minimum dimension in which a graph G has a generic orthogonal rep-
resentation is n − κ(G).

In other words, the smallest d for which the semidefinite constraints

Y . 0
Yij = 0 ∀ ij /∈ E, i 1= j

have a solution of rank d such that every d × d subdeterminant is non-zero, is exactly
n − κ(G).
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Figure 10: Representing a planar graph by touching circles

A classical result of Koebe [58] (see also [9, 91, 86], asserts that every planar graph can be
represented in the plane by touching circular disks (Figure 10. One of the many extensions
of this theorem characterizes triangulations of the plane that have a representation by
orthogonal circles: more exactly, circles representing adjacent nodes must intersect at 90◦,
other pairs, at > 90◦ (i.e., their centers must be farther apart) [9, 91, 56] (Figure 11.

Figure 11: Representing a planar graph by orthogonal circles

Such a representation, if it exists, can be projected to a representation by orthogonal
circles on the unit sphere; with a little care, one can do the projection so that each disk
bounded by one of the circles is mapped onto a “cap” which covers less than half of the
sphere. Then each cap has a unique pole: the point in space from which the part of
the sphere you see is exactly the given cap. The key observation is that two circles are
orthogonal if and only if the corresponding poles have inner product 1 (Figure 12). This
translates a representation with orthogonal circles into a representation by vectors of length
larger than 1, where adjacent nodes are represented by vectors with inner product 1, non-
adjacent nodes by vectors with inner product less than 1.

This in turn can be translated into semidefinite matrices. We only state the final result
of these transformations. Consider the following two sets of semidefinite constraints:

Y . 0
Yij = 1 ∀ ij ∈ E, (43)
Yij < 1 ∀ ij /∈ E, i 1= j,

44



uiCi

Cj
uj

Figure 12: Poles of circles

Yii > 1

and the weaker set of constraints

Y . 0
Yij = 1 ∀ ij ∈ E, (44)
Yij < 1 ∀ ij /∈ E, i 1= j,

(45)

To formulate the theorem, we need two simple definitions. A cycle C in a graph G is
called separating, if G \ V (C) has at least two connected components, where any chord of
C is counted as a connected component here. The cycle C is called strongly separating, if
G \ V (C) has at least two connected components, each of which has at least 2 nodes. If G
is a 3-connected planar map, then its non-separating cycles are exactly the boundaries of
the faces.

Theorem 8.6 Let G be a 3-connected graph
(a) If (44) has a solution of rank 3, then G is planar.
(b) Assume that G is a maximal planar graph. Then (43) has a solution of rank 3 if

and only if G has no separating 3- and 4-cycles.
(c) Assume that G is a maximal planar graph. Then (44) has a solution with rank 3 if

and only if G has no strongly separating 3- and 4-cycles.

Colin de Verdière [24] introduced an interesting spectral invariant of graphs that is re-
lated to topological properties. Kotlov, Lovász and Vempala [56] showed that this invariant
can be defined in terms of the minimum rank of a “non-degenerate” solution of (44) (see
[3] for the definition and theory of non-degeneracy in semidefinite programs).

Tutte [92] constructed a straight-line embedding in the plane of a 3-connected planar
graph by fixing the vertices of a face to the vertices of a convex polygon, replacing the
edges by ”rubber bands”, and letting the other nodes find their equilibrium (Figure 13).
A similar construction was used in [60] to characterize k-connectivity of a graph, and to
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Figure 13: Tutte’s ”rubber band” representation of planar graphs

design an efficient randomized k-connectivity test. There is an obvious similarity with our
description of the Goemans-Williamson algorithm in the introduction, and we could obtain
the equilibrium situation through a semidefinite program. But in Tutte’s case the sum of
squares of edge lengths is to be minimized, rather than maximized; since this function is
concave, this makes a substantially better behaved optimization problem, which can be
solved efficiently in every fixed dimension. What is important for us, however, is that this
is an example of a semidefinite program whose solution has fixed small rank.

Rubber band problems form a special class of semidefinite optimization problems which
can be solved by direct means. Further such problems are described in [95]. It would be
interesting to understand the structure of such special classes.

A final remark: many problems in graph theory, matroid theory, electrical engineer-
ing, statics etc. can be formulated as maximizing the rank of a matrix subject to linear
constraints (see [84, 66]). Such problems can be solved by an obvious polynomial time
randomized algorithm, by substituting random numbers for the variables. Unlike in the
case of the randomized algorithms described above for the Max Cut and other problems,
it is not known whether these rank maximization problems can be solved in deterministic
polynomial time.

8.2 Approximation algorithms

The most important open question is: can the randomized “rounding” method of Goemans–
Williamson and Karger–Motwani–Sudan be generalized to semidefinite relaxations of more
general problems? Can other, different rounding techniques be found?

There are many candidate problems, the most interesting is the “class of the factor 2”.
We have seen that the Maximum Cut problem has a trivial factor 2 approximation algo-
rithm. There are several other such optimization problems; here are three very fundamental
examples:
The Node Cover problem: given a graph G, find a minimum set of nodes covering all
edges.
The Acyclic Subgraph problem: given a directed graph, find the maximum number of
edges that form no directed cycle.
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The Overdetermined Binary Equations problem: given a system of linear equations
over GF(2), find an assignment of the variables that satisfies as many of them as possible.

We leave it to the reader to find the easy algorithms that give suboptimal solutions
off by a factor of 2 or less. In all cases it is known that we cannot bring this error factor
arbitrarily close to 1.

Problem 8.7 Can we do better than the trivial factor of 2?

In the case of the Maximum Cut problem, we saw that the answer is positive. Surpris-
ingly, for the Overdetermined Binary Equations problem (which is in fact a generalization
of the Maximum Cut problem) H̊astad [45] showed that the answer is negative: the factor
of 2 is optimal. For the Node Cover and Acyclic Subgraph problems the question is open.
The most promising technique to attack these questions is semidefinite optimization, even
though the attempts by many have not been successful so far.

There are many open questions about approximating the stability number (or equiv-
alently, the largest clique), and the chromatic number (whether or not semidefinite opti-
mization can be used in answering these is not clear):

Problem 8.8 Can the ratio ϑ/α be estimated by n1−ε for special classes of graphs? Are
there interesting classes of graphs for which the ϑ can be bounded by some function (or
small function) of α?

Problem 8.9 Can α(G) be approximated better than the error factor n/(log n)2 (this is
achieved in [21]).

Problem 8.10 Is there a polynomial time algorithm that outputs an upper bound φ(G)
for α(G) such that there is a function f : Z+ → Z+ with φ(G) < f(α(G)) (f is independent
of the size of the graph)?

Problem 8.11 Is is true that for every ε > 0 there exists an algorithm that computes
α(G) in time O((1 + ε)n)?

Problem 8.12 Suppose that G is a graph with chromatic number 3. Can G be k-colored
in polynomial time, where (a) k = no(1); (b) k = log n; (c) k = O(1)?

8.3 Inference rules

We discussed strong insolvability of systems of quadratic equations. Barvinok [13] gives a
polynomial time algorithm to decide whether a system of a bounded number of quadratic
equations is solvable (over the real field). This suggests a hierarchy of extensions of strong
insolvability: produce a fixed number k of quadratic equations by linear combination which
are collectively unsolvable.

Problem 8.13 Can one decide in polynomial time the k-th version of strong insolvability?
Is this a real hierarchy? Are there any natural problems in higher classes?
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Problem 8.14 Are the multiplication rule (39) and the division rule (42) polynomial? Are
they polynomial if we restrict ourselves to quadratic inequalities? If not, does the division
rule have a natural and useful restriction that is polynomial?

Problem 8.15 Are there other combinatorial optimization problems for which interesting
classes of facets can be derived using the division rule?

Problem 8.16 Are there other inference rules that are worth considering? Can any inter-
esting discrete programming problem be attacked using polynomials of higher degree?

Problem 8.17 How to implement the restricted multiplication rule (40) efficiently? Is
there a way to use interior point methods, in a way parallel to Alizadeh’s application of
interior point methods to semidefinite programming?

Problem 8.18 If a graph G contains no subdivision of K4, then it is series-parallel, and
hence t-perfect [22]. This means that every facet of STAB(G) has defect at most 1. Is there
an analogous simple graph-theoretic condition that guarantees that every facet has defect
at most 2, 3, etc.?

Acknowledgement. My thanks are due to András Frank and to Bruce Reed for orga-
nizing two series of talks on this subject. I am particularly indebted to Miklós Újváry for
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[31] P. Erdős, F. Harary and W.T. Tutte, On the dimension of a graph Mathematika 12
(1965), 118–122.

[32] U. Feige: Randomized graph products, chromatic numbers, and the Lovász ϑ-function,
Combinatorica 17 (1997), 79–90.

[33] U. Feige: Approximating the Bandwidth via Volume Respecting Embeddings, Tech.
Report CS98-03, Weizmann Institute (1998).

[34] U. Feige and M. Goemans, Approximating the value of two-prover proof systems, with
applications to MAX-2SAT and MAX-DICUT, in: Proc. 3rd Israel Symp. on Theory
and Comp. Sys., Tel Aviv, Isr. (1995), 182–189.

[35] U. Feige and L. Lovász: Two-prover one-round proof systems: Their power and their
problems. Proc. 24th ACM Symp. on Theory of Computing (1992), 733-744.

[36] S. Friedland and R. Loewy, Subspaces of symmetric matrices containing matrices with
multiple first eigenvalue, Pacific J. Math. 62 (1976), 389–399.

[37] M. X. Goemans and D. P. Williamson: .878-Approximation algorithms for MAX CUT
and MAX 2SAT, Proc. 26th ACM Symp. on Theory of Computing (1994), 422-431.

[38] M. X. Goemans and D. P. Williamson: Improved approximation algorithms for max-
imum cut and satisfiablity problems using semidefinite programming, J. ACM 42
(1995), 1115–1145.

[39] M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York (1980).

[40] M. Grötschel, L. Lovász and A. Schrijver: The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica 1 (1981), 169-197.

[41] M. Grötschel, L. Lovász and A. Schrijver: Polynomial algorithms for perfect graphs,
Annals of Discrete Math. 21 (1984), 325-256.

50



[42] M. Grötschel, L. Lovász and A. Schrijver: Relaxations of vertex packing, J. Combin.
Theory B 40 (1986), 330-343.

[43] M. Grötschel, L. Lovász and A. Schrijver: Geometric Algorithms and Combinatorial
Optimization, Springer, Heidelberg, 1988.

[44] W. Haemers: On some problems of Lovász concerning the Shannon capacity of a graph,
IEEE Trans. Inform. Theory 25 (1979), 231–232.

[45] J. H̊astad: Some optimal in-approximability results, Proc. 29th ACM Symp. on Theory
of Comp., 1997, 1–10.

[46] J. H̊astad: Clique is hard to approximate within a factor of n1−ε, Acta Math. 182
(1999), 105–142.

[47] H. van der Holst, A short proof of the planarity characterization of Colin de Verdière,
Preprint, CWI Amsterdam, 1994.

[48] H. van der Holst, L. Lovász and A. Schrijver: On the invariance of Colin de Verdière’s
graph parameter under clique sums, Linear Algebra and its Applications, 226–228
(1995), 509–518.

[49] F. Juhász: The asymptotic behaviour of Lovász’ ϑ function for random graphs, Com-
binatorica 2 (1982) 153–155.

[50] N. Kahale: A semidefinite bound for mixing rates of Markov chains, DIMACS Tech.
Report No. 95-41.

[51] D. Karger, R. Motwani, M. Sudan: Approximate graph coloring by semidefinite pro-
gramming, Proc. 35th FOCS (1994), 2–13; full version: J. ACM 45 (1998), 246–265.

[52] H. Karloff: How good is the Goemans-Williamson MAX CUT algorithm? SIAM J.
Comput. 29 (1999), 336–350.

[53] H. Karloff and U. Zwick: A 7/8-approximation algorithm for MAX 3SAT? in: Proc.
of the 38th Ann. IEEE Symp. in Found. of Comp. Sci. (1997), 406–415.

[54] B. S. Kashin and S. V. Konyagin: On systems of vectors in Hilbert spaces, Trudy Mat.
Inst. V.A.Steklova 157 (1981), 64–67; English translation: Proc. of the Steklov Inst.
of Math. (AMS 1983), 67–70.

[55] V. S. Konyagin, Systems of vectors in Euclidean space and an extremal problem for
polynomials, Mat. Zametky 29 (1981), 63–74. English translation: Math. Notes of the
Academy USSR 29 (1981), 33–39.

[56] A. Kotlov, L. Lovász, S. Vempala, The Colin de Verdière number and sphere repre-
sentations of a graph, Combinatorica 17 (1997) 483–521.

[57] D. E. Knuth: The sandwich theorem, The Electronic Journal of Combinatorics 1
(1994) 48 pp.

51



[58] P. Koebe: Kontaktprobleme der konformen Abbildung, Berichte uber die Verhandlun-
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