


50 Years of Integer Programming 1958–2008



50 Years of Integer
Programming 1958–2008

From the Early Years to the State-of-the-Art

123

Michael Jünger · Thomas Liebling ·

Denis Naddef · George Nemhauser ·

William Pulleyblank · Gerhard Reinelt ·

Giovanni Rinaldi · Laurence Wolsey

Editors



Thomas M. Liebling

Ecole Polytechnique Fédérale de Lausanne

Faculté des Sciences de Base

Institut de Mathématiques

Station 8

1015 Lausanne

Switzerland

thomas.liebling@epfl.ch

George L. Nemhauser

Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0205

USA

george.nemhauser@isye.gatech.edu

Gerhard Reinelt

Universität Heidelberg

Institut für Informatik

Im Neuenheimer Feld 368

69120 Heidelberg

Germany

gerhard.reinelt@informatik.uni-heidelberg.de

Laurence A. Wolsey

Université Catholique de Louvain

Center for Operations Research and

Econometrics (CORE)

voie du Roman Pays 34

1348 Louvain-la-Neuve

Belgium

laurence.wolsey@uclouvain.be

ISBN 978-3-540-68274-5 e-ISBN 978-3-540-68279-0
DOI 10.1007/978-3-540-68279-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009938839

Mathematics Subject Classification (2000): 01-02, 01-06, 01-08, 65K05, 65K10, 90-01, 90-02, 90-03,
90-06, 90-08, 90C05, 90C06, 90C08, 90C09, 90C10, 90C11, 90C20, 90C22, 90C27, 90C30, 90C35,
90C46, 90C47, 90C57, 90C59, 90C60, 90C90

c© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on

microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is

permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,

and permission for use must always be obtained from Springer. Violations are liable to prosecution under the

German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,

even in the absence of a specific statement, that such names are exempt from the relevant protective laws and

regulations and therefore free for general use.

Cover design: WMXDesign, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors

Michael Jünger

Universität zu Köln

Institut für Informatik

Pohligstraße 1

50969 Köln

Germany

mjuenger@informatik.uni-koeln.de

Denis Naddef

Grenoble Institute of Technology - Ensimag

Laboratoire G-SCOP

46 avenue Félix Viallet

38031 Grenoble Cedex 1

France

denis.naddef@grenoble-inp.fr

William R. Pulleyblank

Somers NY 10589

USA

wp@us.ibm.com

Giovanni Rinaldi

CNR - Istituto di Analisi dei Sistemi

ed Informatica “Antonio Ruberti”

Viale Manzoni, 30

00185 Roma

Italy

rinaldi@iasi.cnr.it

IBM Corporation

294 Route 100



We dedicate this book to the pioneers of

Integer Programming.



Preface

The name integer programming refers to the class of constrained optimization prob-

lems in which some or all of the variables are required to be integers. In the most

widely studied and used integer programs, the objective function is linear and the

constraints are linear inequalities. The field of integer programming has achieved

great success in the academic and business worlds. Hundreds of papers are published

every year in a variety of journals, several international conferences are held annu-

ally and software for solving integer programs, both commercial and open source, is

widely available and used by thousands of organizations. The application areas in-

clude logistics and supply chains, telecommunications, finance, manufacturing and

many others.

This book is dedicated to the theoretical, algorithmic and computational aspects

of integer programming. While it is not a textbook, it can be read as an introduction

to the field and provides a historical perspective. Graduate students, academics and

practitioners, even those who have spent most of their careers in discrete optimiza-

tion, will all find something useful to learn from the material in this book. Given

the amount that has been accomplished, it is remarkable that the field of integer

programming began only fifty years ago.

vii

The 12th Combinatorial Optimization Workshop AUSSOIS 2008 took place in

Aussois, France, 7–11 January 2008. The workshop, entitled Fifty Years of Inte-

ger Programming, and this book, which resulted from the workshop, were created

to celebrate the 50th anniversary of integer programming. The workshop had a to-

tal of 136 participants from 14 countries ranging in experience from pioneers who

founded the field to current graduate students. In addition to the formal program, the

workshop provided many opportunities for informal discussions among participants

as well as a chance to enjoy the spectacular Alpine setting provided by Aussois.

The book is organized into four parts. The first day of the workshop honored

some of the pioneers of the field. Ralph Gomory’s path-breaking paper, showing

how the simplex algorithm could be generalized to provide a finite algorithm for

integer programming and published in 1958, provided the justification of the an-

niversary celebration. The activities of the first day, led by George Nemhauser and

Bill Pulleyblank, included a panel discussion with the pioneers who attended the



viii Preface

workshop (Egon Balas, Michel Balinski, Jack Edmonds, Arthur Geoffrion, Ralph

Gomory and Richard Karp) as well as three invited talks by Bill Cook, Gérard

Cornuéjols and Laurence Wolsey on integer programming and combinatorial op-

timization from the beginnings to the state-of-the-art. The whole day is captured in

two Video DVDs which come with the book (Part IV). Parts I, II, and III contain 20

papers of historical and current interest.

Part I of the book, entitled The Early Years, presents, in order of publication

date, reprints of eleven fundamental papers published between 1954 and 1979. Ten

of these papers were selected by one or more of the authors of the paper, who also

wrote new introductions to the papers that explain their motivations for working

on the problems addressed and their reason for selecting the paper for inclusion

in this volume. The authors are Egon Balas, Michel Balinski, Alison Doig, Jack

Edmonds, Arthur Geoffrion, Ralph Gomory, Alan Hoffman, Richard Karp, Joseph

Kruskal, Harold Kuhn, and Ailsa Land. Each of these heavily cited papers has had

a major influence on the development of the field and lasting value. The eleventh

selection, which starts this section, is a groundbreaking paper by George Dantzig,

Ray Fulkerson, and Selmer Johnson, with an introduction by Vašek Chvátal and

William Cook. The introduction to Part I closes with a list, in chronological order,

of our selection of some of the most influential papers appearing between 1954 and

1973 pertaining to the many facets of integer programming.

Part II contains papers based on the talks given by Cornuéjols, Cook, andWolsey.

The paper Polyhedral Approaches to Mixed Integer Programming by Michele Con-

forti, Gérard Cornuéjols, and Giacomo Zambelli presents tools from polyhedral the-

ory that are used in integer programming. It applies them to the study of valid

inequalities for mixed integer linear sets, such as Gomory’s mixed integer cuts.

The study of combinatorial optimization problems such as the traveling salesman

problem has had a significant influence on integer programming. Fifty-plus Years of

Combinatorial Integer Programming by Bill Cook discusses these connections. In

solving integer programming problems by branch-and-bound methods, it is impor-

tant to use relaxations that provide tight bounds. In the third paper entitled Refor-

mulation and Decomposition of Integer Programs, François Vanderbeck and Lau-

rence Wolsey survey ways to reformulate integer and mixed integer programs to

obtain stronger linear programming relaxations. Together, these three papers give a

remarkably broad and comprehensive survey of developments in the last fifty-plus

years and their impacts on state-of-the-art theory and methodology.

Six survey talks on current hot topics in integer programming were given at the

workshop by Fritz Eisenbrand, Andrea Lodi, François Margot, Franz Rendl, Jean-

Philippe P. Richard, and Robert Weismantel. These talks covered topics that are

actively being researched now and likely to have substantial influence in the coming

decade and beyond.

Part III contains the six papers that are based on these talks. Integer Programming

and Algorithmic Geometry of Numbers by Fritz Eisenbrand surveys some of the

most important results from the interplay of integer programming and the geome-

try of numbers. Nonlinear Integer Programming by Raymond Hemmecke, Matthias

Köppe, Jon Lee, and Robert Weismantel generalizes the usual integer programming



Preface ix

model by studying integer programs with nonlinear objective functions. Mixed Inte-

ger Programming Computation by Andrea Lodi discusses the important ingredients

involved in building a successful mixed integer solver as well as the problems that

need to be solved in building the next generation of faster and more stable solvers.

Symmetry is a huge obstacle encountered in solving mixed integer programs ef-

ficiently. In Symmetry in Integer Programming, François Margot presents several

techniques that have been used successfully to overcome this difficulty. Semidefi-

nite programming is a generalization of linear programming that provides a tighter

relaxation to integer programs than linear programs. In Semidefinite Relaxations for

Integer Programming, Franz Rendl surveys how semidefinite models and algorithms

can be used effectively in solving certain combinatorial optimization problems. In

the 1960s Ralph Gomory created a new tight relaxation for integer programs based

on group theory. Recently the group theoretic model has been revived in the study

of two-row integer programs. In The Group-Theoretic Approach in Mixed Integer

Programming, Jean-Philippe P. Richard and Santanu S. Dey provide an overview of

the mathematical foundations and recent theoretical and computational advances in

the study of the group-theoretic approach.

We close with the hope that the next fifty years will be as rich as the last fifty

have been in theoretical and practical accomplishments in integer programming.

November 2009

Cologne, Germany Michael Jünger

Lausanne, Switzerland Thomas Liebling

Grenoble, France Denis Naddef

Atlanta, USA George Nemhauser

New York, USA William Pulleyblank

Heidelberg, Germany Gerhard Reinelt

Rome, Italy Giovanni Rinaldi

Louvain-la-Neuve, Belgium Laurence Wolsey



About the Cover Illustration

The four figures on the cover illustrate adding Gomory mixed integer cuts to a poly-

hedron of dimension 3. The x-axis is horizontal, the y-axis is vertical and the z-axis

is orthogonal to the cover. The starting polyhedron P shown in Fig. 1(a) is a cone

with a square base and a peak having y = 4.25. P contains twelve integer lattice

points. Suppose we solve the linear program: maximize y, subject to y ∈ P. The

unique optimum will have y = 4.25. However, if we add the constraint that y be

integral, then there are four optima, the lattice points illustrated on the edges of P

having y = 2.

Fig. 1 The Cover Illustration.

(a) (b)

(c) (d)

xi



xii About the Cover Illustration

This example is a 3-D version of a 2-D example, first shown to us by Vašek

Chvátal, which Bill Cook told us that Vašek attributes to Adrian Bondy. A “stan-

dard” Chvátal-Gomory cut (CG cut) is obtained by taking a hyperplane that sup-

ports a polyhedron and which contains no lattice points in space, then moving in

a direction orthogonal to the hyperplane into the polyhedron until it hits a lattice

point somewhere in space (not necessarily in the polyhedron). This gives a new

valid inequality for all lattice points in the polyhedron, and which cuts off part of

the original polyhedron. Gomory’s fundamental result described a finite algorithm

that, given any integer program, would automatically generate a finite sequence of

CG cuts such that when they were added, the resulting linear program would have

an integer optimum.

What cuts must be added to P to remove all points having y > 2? How do we

generate the inequality y ≤ 2 which must be added if the resulting linear program is

going to have an integral optimum? The Bondy-Chvátal example showed that, even

for dimension 2, the number of CG cuts that would have to added was unbounded,

depending only on the height of the peak of the pyramid (provided that we adjust

the base so that the lattice points in P having y = 2 continue to lie on the edges). In

particular, the number of CG cuts that need to be added to solve an integer program

is independent of the dimension of the polyhedron, and is not polynomial in the size

of a linear system necessary to define the original polyhedron.

In 1960, Gomory described a method to generate so-called mixed integer cuts.

These cuts have turned out to be very powerful in practice, both for integer and

mixed integer programs. They work as follows: Take a hyperplane that intersects

the polyhedron and passes through no lattice points in space. In Fig. 1(b), we chose

the hyperplane x = 1.5. Note that it passes right through P. Consider the inequalities

x ≤ 1 and x ≥ 2 which are obtained by shifting the hyperplane left and right respec-

tively, until it hits a lattice point in space. We construct two new polyhedra P1 and

P2 from P, one by adding the inequality x ≤ 1 and one by adding x ≥ 2. Then every

lattice point in P will belong to one of P1 and P2.

These two polyhedra are the two wedges shown in Fig. 1(c). Note that every

lattice point contained in P is in one of the two wedges.

The final step is to take the convex hull of the union of P1 and P2. This is the

polyhedron shown in Fig. 1(d). Note that one hyperplane was used to create two

subproblems. Then by maximizing y over these two subproblems, we get the solu-

tion we are seeking. Balas, Ceria and Cornuéjols describe a method called lift-and-

project for generating a cut after a polyhedron has been split into two subpolyhedra.

This is discussed in Balas’ introduction to Chapter 10.

Also, everything we have done remains valid if x and z are allowed to be contin-

uous variables and only y is required to be integral. For this reason, these types of

cuts are usually called “mixed integer cuts”.



Acknowledgements

We gratefully acknowledge the sponsors of the 12th Combinatorial Optimization

Workshop, Aussois, France, 7–11 January 2008, on which this book is based:

In addition, we would like to express our gratitude to

• Martin Peters of Springer Verlag who enthusiastically supported this book project

from the first phone call in which we roughly sketched the idea,

• Ruth Allewelt of Springer Verlag who accompanied us all the way from the early

stages to the final book,

• Marc Egger of the University of Cologne for his technical support during the

organization of the 12th Combinatorial Optimization Workshop AUSSOIS 2008

on which this book is based,

• Michael Belling of the University of Cologne for tracking down printed originals

of the pioneering articles reprinted in Part I at various libraries and scanning them

at high resolution,

• Mark Sprenger of the University of Cologne who spent many hours adjusting

angles and removing specks and handwritten remarks and corrections in the scans

of the pioneering articles,

• Thomas Lange of the University of Cologne for technical advice and various

“quick hacks” whenever needed,

• Mauro Pioli and his team at PGM Video in Turin for the care they put in produc-

ing and editing the material on the two DVDs,

• Manfred Bender of WMXDesign in Heidelberg for turning our rough sketches

of “artwork” into a beautiful cover design,

• the authors of Part II and Part III, who patiently dealt with our many requests and

strict deadlines, and

• the pioneers, without whom . . .

xiii



Contents

xv

Part I The Early Years

1 Solution of a Large-Scale Traveling-Salesman Problem . . . . . . . . . . . . 7

George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

2 The Hungarian Method for the Assignment Problem . . . . . . . . . . . . . . 29

Harold W. Kuhn

3 Integral Boundary Points of Convex Polyhedra . . . . . . . . . . . . . . . . . . 49

Alan J. Hoffman and Joseph B. Kruskal

4 Outline of an Algorithm for Integer Solutions to Linear Programs

and An Algorithm for the Mixed Integer Problem . . . . . . . . . . . . . . . . 77

Ralph E. Gomory

5 An Automatic Method for Solving Discrete Programming Problems . 105

Ailsa H. Land and Alison G. Doig

6 Integer Programming: Methods, Uses, Computation . . . . . . . . . . . . . . 133

Michel Balinski

7 Matroid Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Jack Edmonds

8 Reducibility Among Combinatorial Problems . . . . . . . . . . . . . . . . . . . . 219

Richard M. Karp

9 Lagrangian Relaxation for Integer Programming . . . . . . . . . . . . . . . . . 243

Arthur M. Geoffrion

10 Disjunctive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Egon Balas



xvi Contents

Part II From the Beginnings to the State-of-the-Art

11 Polyhedral Approaches to Mixed Integer Linear Programming . . . . . 343

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

11.1.1 Mixed integer linear programming . . . . . . . . . . . . . . . . . . . 343

11.1.2 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

11.1.3 Cutting plane methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

11.2 Polyhedra and the fundamental theorem of integer programming . . 348

11.2.1 Farkas’ lemma and linear programming duality . . . . . . . . 349

11.2.2 Carathéodory’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

11.2.3 The theorem of Minkowski-Weyl . . . . . . . . . . . . . . . . . . . . 353

11.2.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

11.2.5 The fundamental theorem for MILP . . . . . . . . . . . . . . . . . . 356

11.2.6 Valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11.2.7 Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11.3 Union of polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

11.4 Split disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

11.4.1 One-side splits, Chvátal inequalities . . . . . . . . . . . . . . . . . . 365

11.5 Gomory’s mixed-integer inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 366

11.5.1 Equivalence of split closure and Gomory mixed integer

closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

11.6 Polyhedrality of closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

11.6.1 The Chvátal closure of a pure integer set . . . . . . . . . . . . . . 370

11.6.2 The split closure of a mixed integer set . . . . . . . . . . . . . . . . 370

11.7 Lift-and-project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

11.7.1 Lift-and-project cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

11.7.2 Strengthened lift-and-project cuts . . . . . . . . . . . . . . . . . . . . 376

11.7.3 Improving mixed integer Gomory cuts by lift-and-project 377

11.7.4 Sequential convexification . . . . . . . . . . . . . . . . . . . . . . . . . . 378

11.8 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

11.8.1 Chvatal rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380´

11.8.2 Split rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

12 Fifty-Plus Years of Combinatorial Integer Programming . . . . . . . . . . 387

William Cook

12.1 Combinatorial integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . 387

12.2 The TSP in the 1950s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

12.3 Proving theorems with linear-programming duality . . . . . . . . . . . . . 397

12.4 Cutting-plane computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

12.5 Jack Edmonds, polynomial-time algorithms, and polyhedral

combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

12.6 Progress in the solution of the TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

12.7 Widening the field of application in the 1980s . . . . . . . . . . . . . . . . . 415



Contents xvii

12.8 Optimization ≡ Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

12.9 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

13 Reformulation and Decomposition of Integer Programs . . . . . . . . . . . 431

François Vanderbeck and Laurence A. Wolsey

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

13.2 Polyhedra, reformulation and decomposition . . . . . . . . . . . . . . . . . . 433

13.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

13.2.2 Polyhedra and reformulation . . . . . . . . . . . . . . . . . . . . . . . . 434

13.2.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

13.3 Price or constraint decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

13.3.1 Lagrangean relaxation and the Lagrangean dual . . . . . . . . 443

13.3.2 Dantzig-Wolfe reformulations . . . . . . . . . . . . . . . . . . . . . . . 445

13.3.3 Solving the Dantzig-Wolfe relaxation by column

generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

13.3.4 Alternative methods for solving the Lagrangean dual . . . . 451

13.3.5 Optimal integer solutions: branch-and-price . . . . . . . . . . . 456

13.3.6 Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

13.4 Resource or variable decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 464

13.4.1 Benders’ reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

13.4.2 Benders with integer subproblems . . . . . . . . . . . . . . . . . . . . 468

13.4.3 Block diagonal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

13.4.4 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

13.5 Extended formulations: problem specific approaches . . . . . . . . . . . . 471

13.5.1 Using compact extended formulations . . . . . . . . . . . . . . . . 472

13.5.2 Variable splitting I: multi-commodity extended

formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

13.5.3 Variable splitting II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

13.5.4 Reformulations based on dynamic programming . . . . . . . 480

13.5.5 The union of polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

13.5.6 From polyhedra and separation to extended formulations 485

13.5.7 Miscellaneous reformulations . . . . . . . . . . . . . . . . . . . . . . . 487

13.5.8 Existence of polynomial size extended formulations . . . . 489

13.6 Hybrid algorithms and stronger dual bounds . . . . . . . . . . . . . . . . . . . 490

13.6.1 Lagrangean decomposition or price-and-price . . . . . . . . . . 490

13.6.2 Cut-and-price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

13.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

13.7.1 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

13.7.2 Dantzig-Wolfe and price decomposition . . . . . . . . . . . . . . . 494

13.7.3 Resource decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.7.4 Extended formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.7.5 Hybrid algorithms and stronger dual bounds . . . . . . . . . . . 498

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498



xviii Contents

Part III Current Topics

14 Integer Programming and Algorithmic Geometry of Numbers . . . . . . 505

Friedrich Eisenbrand

14.1 Lattices, integer programming and the geometry of numbers . . . . . 505

14.2 Informal introduction to basis reduction . . . . . . . . . . . . . . . . . . . . . . 507

14.3 The Hermite normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

14.4 Minkowski’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

14.5 The LLL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

14.6 Kannan’s shortest vector algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

14.7 A randomized simply exponential algorithm for shortest vector . . . 529

14.8 Integer programming in fixed dimension . . . . . . . . . . . . . . . . . . . . . . 535

14.9 The integer linear optimization problem . . . . . . . . . . . . . . . . . . . . . . 542

14.10 Diophantine approximation and strongly polynomial algorithms . . 545

14.11 Parametric integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

15 Nonlinear Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Raymond Hemmecke, Matthias Köppe, Jon Lee, and Robert

Weismantel

15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

15.2 Convex integer maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

15.2.1 Fixed dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

15.2.2 Boundary cases of complexity . . . . . . . . . . . . . . . . . . . . . . . 565

15.2.3 Reduction to linear integer programming . . . . . . . . . . . . . . 568

15.3 Convex integer minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

15.3.1 Fixed dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

15.3.2 Boundary cases of complexity . . . . . . . . . . . . . . . . . . . . . . . 577

15.3.3 Practical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

15.4 Polynomial optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

15.4.1 Fixed dimension and linear constraints: An FPTAS . . . . . 587

15.4.2 Semi-algebraic sets and SOS programming . . . . . . . . . . . . 597

15.4.3 Quadratic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

15.5 Global optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

15.5.1 Spatial Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 605

15.5.2 Boundary cases of complexity . . . . . . . . . . . . . . . . . . . . . . . 607

15.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

16 Mixed Integer Programming Computation . . . . . . . . . . . . . . . . . . . . . . 619

Andrea Lodi

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

16.2 MIP evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

16.2.1 A performance perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 624

16.2.2 A modeling/application perspective . . . . . . . . . . . . . . . . . . 631

16.3 MIP challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632



Contents xix

16.3.1 A performance perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 634

16.3.2 A modeling perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

16.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

17 Symmetry in Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . 647

François Margot

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

17.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

17.3 Detecting symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

17.4 Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

17.5 Fixing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

17.6 Symmetric polyhedra and related topics . . . . . . . . . . . . . . . . . . . . . . 656

17.7 Partitioning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

17.7.1 Dantzig-Wolfe decomposition . . . . . . . . . . . . . . . . . . . . . . . 659

17.7.2 Partitioning orbitope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

17.7.3 Asymmetric representatives . . . . . . . . . . . . . . . . . . . . . . . . . 662

17.8 Symmetry breaking inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

17.8.1 Dynamic symmetry breaking inequalities . . . . . . . . . . . . . . 664

17.8.2 Static symmetry breaking inequalities . . . . . . . . . . . . . . . . 664

17.9 Pruning the enumeration tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

17.9.1 Pruning with a fixed order on the variables . . . . . . . . . . . . 670

17.9.2 Pruning without a fixed order of the variables . . . . . . . . . . 673

17.10 Group representation and operations . . . . . . . . . . . . . . . . . . . . . . . . . 674

17.11 Enumerating all non-isomorphic solutions . . . . . . . . . . . . . . . . . . . . . 678

17.12 Furthering the reach of isomorphism pruning . . . . . . . . . . . . . . . . . . 679

17.13 Choice of formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

17.14 Exploiting additional symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

18 Semidefinite Relaxations for Integer Programming . . . . . . . . . . . . . . . 687

Franz Rendl

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

18.2 Basics on semidefinite optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 690

18.3 Modeling with semidefinite programs . . . . . . . . . . . . . . . . . . . . . . . . 692

18.3.1 Quadratic 0/1 optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 692

18.3.2 Max-Cut and graph bisection . . . . . . . . . . . . . . . . . . . . . . . . 693

18.3.3 Stable sets, cliques and the Lovász theta function . . . . . . . 694

18.3.4 Chromatic number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

18.3.5 General graph partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

18.3.6 Generic cutting planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

18.3.7 SDP, eigenvalues and the Hoffman-Wielandt inequality . . 702

18.4 The theoretical power of SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

18.4.1 Hyperplane rounding for Max-Cut . . . . . . . . . . . . . . . . . . . 705

18.4.2 Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

18.5 Solving SDP in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711



xx Contents

18.5.1 Interior point algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

18.5.2 Partial Lagrangian and the bundle method . . . . . . . . . . . . . 715

18.5.3 The spectral bundle method . . . . . . . . . . . . . . . . . . . . . . . . . 718

18.6 SDP and beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

18.6.1 Copositive and completely positive matrices . . . . . . . . . . . 721

18.6.2 Copositive relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

19 The Group-Theoretic Approach in Mixed Integer Programming . . . . 727
Jean-Philippe P. Richard and Santanu S. Dey

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

19.2 The corner relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

19.2.1 Linear programming relaxations . . . . . . . . . . . . . . . . . . . . . 730

19.2.2 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

19.2.3 Gomory’s corner relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 737

19.3 Group relaxations: optimal solutions and structure . . . . . . . . . . . . . . 739

19.3.1 Optimizing linear functions over the corner relaxation . . . 739

19.3.2 Using corner relaxations to solve MIPs . . . . . . . . . . . . . . . 744

19.3.3 Extended group relaxations . . . . . . . . . . . . . . . . . . . . . . . . . 749

19.4 Master group relaxations: definitions and inequalities . . . . . . . . . . . 754

19.4.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

19.4.2 Master group relaxations of mixed integer programs . . . . 756

19.4.3 A hierarchy of inequalities for master group problems . . . 759

19.5 Extreme inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

19.5.1 Extreme inequalities of finite master group problems . . . . 766

19.5.2 Extreme inequalities for infinite group problems . . . . . . . . 769

19.5.3 A compendium of known extreme inequalities for finite

and infinite group problems . . . . . . . . . . . . . . . . . . . . . . . . . 784

19.6 On the strength of group cuts and the group approach . . . . . . . . . . . 785

19.6.1 Absolute strength of group relaxation . . . . . . . . . . . . . . . . . 785

19.6.2 Relative strength of different families of group cuts . . . . . 788

19.6.3 Summary on strength of group cuts . . . . . . . . . . . . . . . . . . . 795

19.7 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

Part IV DVD-Video / DVD-ROM



Part I

The Early Years



2

In 1947, George Dantzig created the simplex algorithm, which was subsequently

published in 1951. This landmark paper described a finite method for optimizing a

linear objective function subject to a finite set of linear constraints. It was already

recognized that this type of problem, called a linear programming problem, occurred

in a great many situations. Moreover, Dantzig’s simplex method was proving to be

very effective in practice.

It was recognized that adding integrality constraints on some or all of the vari-

ables significantly increased the applicability of these models. A great many prob-

lems, including combinatorial optimization problems, could be modeled using lin-

ear functions and integer variables, but no method was known for modeling these

problems using linear functions and continuous variables. (It is noteworthy that now,

more than fifty years later, it is still not known whether integer programming is more

powerful than linear programming.) Moreover, no general method was known for

solving this type of problem, called mixed-integer linear programming problem.

In 1958, Ralph Gomory published a short paper which described how, with rela-

tively straightforward modifications, Dantzig’s simplex algorithm could be adapted

to provide a finite algorithm for finding an optimal integral solution to a linear

program. He showed how the simplex tableau could be used to generate new in-

equalities which were valid for all solutions satisfying the integrality constraints, but

which were violated by the current linear program’s optimum solution. The study

of these inequalities, called cuts, quickly became a major area of activity both for

theoretical reasons and because of the promise they showed as a computational tool.

Recall that at the end of the decade of the 50s, digital computers were emerging as a

force in the way that business was conducted with the potential to actually optimize

business processes.

The year 2008 marked the 50th anniversary of the appearance of Gomory’s

groundbreaking paper. There is an annual meeting on combinatorial optimization

and integer programming held each year at the French ski resort of Aussois. The ed-

itors of this volume proposed dedicating the January 2008 meeting to a celebration

of the development of the field of integer programming together with an overview of

the field today, including state-of-the-art surveys and recent results on selected hot

topics. Our plan was to invite a number of pioneers of the field of integer program-

ming who had been active in the fifties and sixties to provide a historical perspec-

tive and to participate in the scientific agenda. The first person we contacted was, of

course, Ralph Gomory who enthusiastically accepted. (This may have been influ-

enced by the fact that Ralph is an avid skier.) Each of these pioneers agreed to select

one of their papers for inclusion in this volume, and to write a new introduction for

it that would provide a historical and mathematical perspective.

We include two of Gomory’s foundational papers on the cutting plane method

for integer programming. The second dealt with the mixed integer problem and in-

troduced a method of cut generation that has proved to be very effective in practice.

Previously, this paper was only available as a Rand report.

The earliest paper we reprint here contains the solution to a 49 city traveling

salesman problem using linear programming and cuts by George Dantzig, Ray Fulk-

erson, and Selmer Johnson. In addition to showing how a small set of cuts could be



3

sufficient to prove optimality of a solution to an integer programming problem, this

paper laid a foundation for much of the subsequent work on computational polyhe-

dral combinatorics. Because the authors are deceased, Vašek Chvátal and William

Cook, two of the coauthors of a recent book on the traveling salesman problem,

volunteered to write the introduction.

The 1955 paper by Harold Kuhn describes a combinatorial algorithm for a spe-

cially structured integer program, the assignment problem. This work provided an

early example of a specialized method for solving a structured problem and was one

of the first uses of a primal-dual linear programming algorithm.

Alan Hoffman and Joseph Kruskal’s 1956 paper showed the importance of the

notion of total unimodularity to finding integer solutions to linear programs. They

showed that this property characterized when this would happen automatically for

all linear objective functions and choices of integral right-hand sides.

The 1960 paper by Ailsa Land and Alison Doig introduced the other method

that has been so important in obtaining solutions to integer programming problems,

branch-and-bound. In fact, most successful modern computer codes integrate cuts

with branch-and-bound.

Michel Balinski’s 1965 paper described the power of integer programming mod-

els to a range of real world problems. It provided the first comprehensive survey and

introduced integer programming to a much broader audience.

Jack Edmonds’ 1968 paper on matroid partition is one of a remarkable series

of papers that he wrote showing a number of cases for which a combinatorially

described set of cuts added to a linear program would yield the integer hull and

would provide the basis for a polynomial run-time algorithm to solve the integer

problem.

The importance of polynomial algorithms for combinatorial algorithms reached

a broader audience in the early 1970s with the introduction of the classes P (poly-

nomial) and NP (nondeterministic polynomial) in the theoretical computer science

community. Steven Cook’s fundamental result showed that there was a set of so-

called NP-complete problems with the property that if any were solvable in poly-

nomial time, then so too were all problems in the class NP. Richard Karp’s 1972

paper highlighted the importance of these results to the mathematical programming

community and showed that a long list of specially structured integer programs,

for which no polynomially bounded algorithm was known, belonged to the class of

NP-complete programs.

Art Geoffrion’s 1974 paper showed how Lagrangean methods provided an alter-

native method for solving integer programming problems by incorporating certain

constraints into the objective function and then alternating between solving primal

and dual problems. He also established connections between the Lagrangean ap-

proach and Dantzig-Wolfe decomposition.

Egon Balas’ 1979 paper showed that the class of integer programming problems

could be extended to a much broader class defined by considering disjunctions of

polyhedra, and that methods for this broader framework had specializations to inte-

ger programming that have turned out to have computational as well as theoretical

importance.



4

We conclude with a list, in chronological order, of our selections of some of

the most influential papers pertaining to the many facets of integer programming

appearing between 1954 and 1973.

20 YEARS OF MIXED-INTEGER PROGRAMMING:

MILESTONES (1954–1973)

G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large scale traveling

salesman problem, Operations Research 2 (1954) 393–410.

H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research

Logistics Quarterly 2 (1955) 83–97.

A.J. Hoffman and J.B. Kruskal, Integral boundary points of convex polyhedra, Lin-

ear Inequalities and Related Systems (H.W. Kuhn and A.J. Tucker eds.), Princeton

University Press, 1956, pp. 223–246.

G.B. Dantzig, Discrete variable extremum problems, Operations Research 5 (1957)

266–277.

R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bul-

letin of the American Mathematical Society 64 (1958) 275–278.

G.B. Dantzig, On the significance of solving linear programs with some integer

variables, Econometrica 28 (1960) 30–34.

A.H. Land and A.G. Doig, An automatic method for solving discrete programming

problems, Econometrica 28 (1960) 497–520.

R.E. Gomory, An algorithm for the mixed integer problem, Research Memorandum

RM-2597, The Rand Corporation, 1960.

J.F. Benders, Partitioning procedures for solving mixed variables programming

problems, Numerische Mathematik 4 (1962) 238–252.

H. Everett III, Generalized Lagrange multiplier method for solving problems of op-

timal allocation of resources, Operations Research 11 (1963) 399–417.

R.E. Gomory, An algorithm for integer solutions to linear programs, Recent Ad-

vances in Mathematical Programming (R.L. Graves and P. Wolfe, eds.), McGraw-

Hill, 1963, pp. 269–302.

J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel, An algorithm for the trav-

eling salesman problem, Operations Research 11 (1963) 972–989.

M. Balinski and R. Quandt, On an integer program for a delivery problem, Opera-

tions Research 12 (1964) 300–304.

E. Balas, An additive algorithm for solving linear programs with zero-one variables,

Operations Research 13 (1965) 517–546.

M. Balinski, Integer programming: methods, uses, computation, Management Sci-

ence 12 (1965) 253–313.

R.J. Dakin, A tree-search algorithm for mixed integer programming problems, The

Computer Journal 8 (1965) 250–254.



5

J. Edmonds Paths, trees, and flowers, Canadian journal of Mathematics 17 (1965)

449–467.

J. Edmonds, Maximum matching and a polyhedron with 0,1- vertices, Journal of

Research of the National Bureau of Standards, Section B 69 (1965) 125–130.

R.E. Gomory, On the relation between integer and noninteger solutions to linear

programs, Proceedings of the National Academy of Sciences of the United States of

America 53 (1965) 260–263.

R.D. Young, A primal (all integer) integer programming algorithm, Journal of Re-

search of the National Bureau of Standards, Section B 69 (1965) 213–250.

R. Brooks and A.M. Geoffrion, Finding Everett’s Lagrange multipliers by linear

programming, Operations Research 14 (1966) 1149–1153.

P.C. Gilmore and R.E. Gomory, The theory and computation of knapsack functions,

Operations Research 14 (1966) 1045–1074.

J. Edmonds, Optimum branchings, Journal of Research of the National Bureau of

Standards, Section B 71 (1967) 233–240.

J. Edmonds, Matroid partition, Mathematics of the Decision Sciences: Part 1

(G.B. Dantzig and A.F. Veinott, eds.), American Mathematical Society, 1968, pp.

335–345.

A.M. Geoffrion, An improved implicit enumeration approach for integer program-

ming, Operations Research 17 (1969) 437–454.

R.E. Gomory, Some polyhedra related to combinatorial problems, Linear Algebra

and its Applications 2 (1969) 451–558.

E.M.L. Beale and J. Tomlin, Special facilities for nonconvex problems using ordered

sets of variables, Proceedings of the 5th International Conference on Operational

Research (J. Lawrence, ed.), Tavistock Publications, 1970, pp. 447–454.

D.R. Fulkerson, The perfect graph conjecture and pluperfect graph theorem, Pro-

ceedings of the Second Chapel Hill Conference on Combinatorial Mathematics and

its Applications (R.C. Bose, ed.), University of North Carolina Press, 1970, pp.

171–175.

M. Held and R.M. Karp, The traveling salesman problem and minimum spanning

trees, Operations Research 18 (1970) 1138–1162.

E. Balas, Intersection cuts – A new type of cutting plane for integer programming,

Operations Research 19 (1971) 19–39.

J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1

(1971) 125–136.

D.R. Fulkerson, Blocking and antiblocking pairs of polyhedra, Mathematical Pro-

gramming 1 (1971) 168–194.

M. Held and R.M. Karp, The traveling salesman problem and minimum spanning

trees: Part II, Mathematical Programming 1 (1971) 6–25.

R.S. Garfinkel and G.L. Nemhauser, Integer Programming, Wiley, 1972.



A.M. Geoffrion, Generalized Benders decomposition, Journal of Optimization The-

ory and Applications 10 (1972) 237–260.

R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer

Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, 1972, pp. 85–

103.

L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathe-

matics 2 (1972) 253–267.

V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete

Mathematics 4 (1973) 305–337.

J. Edmonds and E.L. Johnson, Matching, Euler tours and the Chinese postman,

Mathematical Programming 5 (1973) 88–124.

S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling sales-

man problem, Operations Research 21 (1973) 498–516.

M.W. Padberg, On the facial structure of set packing polyhedra, Mathematical Pro-

gramming 5 (1973) 199–215.

References to the history of integer programming

J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, eds., History of Mathematical

Programming: A Collection of Personal Reminiscences, North-Holland, 1991.

K. Spielberg and M. Guignard-Spielberg, eds., History of Integer Programming:

Distinguished Personal Notes and Reminiscences, Annals of Operations Research

149, 2007.



Chapter 1

Solution of a Large-Scale Traveling-Salesman
Problem

George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

Introduction by Vašek Chvátal and William Cook

The birth of the cutting-plane method

The RAND Corporation in the early 1950s contained “what may have been the

most remarkable group of mathematicians working on optimization ever assem-

bled” [6]: Arrow, Bellman, Dantzig, Flood, Ford, Fulkerson, Gale, Johnson, Nash,

Orchard-Hays, Robinson, Shapley, Simon, Wagner, and other household names.

Groups like this need their challenges. One of them appears to have been the travel-

ing salesman problem (TSP) and particularly its instance of finding a shortest route

through Washington, DC, and the 48 states [4, 7].

Dantzig’s work on the assignment problem [1] revealed a paradigm for minimiz-

ing a linear function f : Rn → R over a finite subset S of Rn: first describe the

convex hull of S by a system Ax ≤ b of linear constraints and then solve the linear

programming problem

minimize f (x) subject to Ax ≤ b

by the simplex method. Attempts by Heller and by Kuhn to apply this paradigm

to the TSP indicated that sets of linear constraints describing the convex hull of

all tours are far too large to be handled directly. Undeterred, Dantzig, Fulkerson,

and Johnson bashed on. The preliminary version of their paper [2] includes a dis-

cussion of the convex hull of all tours, nowadays called “the TSP polytope”. The

version submitted for publication four months later (and eventually published and

Vašek Chvátal
Canada Research Chair in Combinatorial Optimization
Department of Computer Science and Software Engineering, Concordia University, Canada
e-mail: chvatal@cse.concordia.ca

William Cook
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA
e-mail: bico@isye.gatech.edu

7M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_1, © Springer-Verlag Berlin Heidelberg 2010 



8 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

reproduced here) breaks free of the dogma: without letting the TSP polytope obscure

their exposition, the authors just go ahead and solve the 49-city instance. (Regarding

this change, Fulkerson writes in a September 2, 1954, letter to Operations Research

editor George Shortly “In an effort to keep the version submitted for publication

elementary, we avoid going into these matters in any detail.”)

This case study ushered in the cutting-plane method. To solve a problem

minimize f (x) subject to x ∈ S (1.1)

where f : Rn →R is a linear function and S is a finite subset of Rn, choose a system

Ax ≤ b of linear inequalities satisfied by all points of S and use the simplex method

to find an optimal solution x∗ of the linear programming problem

minimize f (x) subject to Ax ≤ b, (1.2)

called the linear programming relaxation of (1.1). If x∗ belongs to S , then it is an

optimal solution of (1.1); else there are linear inequalities satisfied by all points of

S and violated by x∗, called cutting planes. Find one or more such inequalities, add

them to Ax ≤ b, and iterate. (The method actually used by Dantzig, Fulkerson, and

Johnson—described also in [2, 3]—is a slight variation on this theme: rather than

introducing cutting planes only when an optimal solution x∗ of (1.2) lies outside S ,

they introduce them after each simplex pivot leading to a basic feasible solution x∗

of (1.2) that lies outside S .)

The role played by the convex hull of S in this new paradigm is only implicit:

we have to be able to find a cutting plane whenever one exists, which is the case

if and only if x∗ lies outside the convex hull of S . In particular, the number of

linear constraints in a description of the convex hull of S is irrelevant here. Another

important difference between the two paradigms is that the cutting-plane method

is an engineering rather than mathematical method: unlike the simplex method, it

carries no guarantee that the sequence of its iterations will terminate. (But then

again, a guarantee of termination after finitely many iterations is a far cry from a

guarantee of termination before the end of our solar system.) Our three authors write

“. . . what we shall do is outline a way of approaching the problem that sometimes,

at least, enables one to find an optimal path and prove it so.”

Until 1954, no one had an inkling of a way to solve large instances of the TSP.

The lament about the number of tours through n cities being too large to allow their

listing one by one marked the vanguard of scientific progress on this front. Then

Dantzig, Fulkerson, and Johnson let the light in and inaugurated a new era. All

successful TSP solvers echo their breakthrough. This was the Big Bang.

This Big Bang reverberates far beyond the narrow confines of the TSP. It provides

a tempting template for coping with any NP-complete problem of minimizing a

linear function over a finite set S . For each problem of this kind, the challenge lies

in finding cutting planes quickly. In the special case of integer linear programming,

where S consists all integer solutions of a prescribed set of linear constraints, this

challenge was met with remarkable elegance (and termination after finitely many

iterations guaranteed) by Gomory in a series of papers beginning with [5].



1 Solution of a Large-Scale Traveling-Salesman Problem 9

Great new ideas may transform the discipline they came from so profoundly that

they become hard to discern against the changed background. When terms such as

“defense mechanism” and “libido” are in the common vocabulary, it is easy to forget

that they came from Sigmund Freud. The cutting-plane method of George Dantzig,

Ray Fulkerson, and Selmer Johnson had the same kind of impact on the discipline

of mathematical programming.

References

1. G.B. Dantzig, Application of the simplex method to a transportation problem, Activity Analysis
of Production and Allocation (T.C. Koopmans, ed.), Cowles Commission Monograph No. 13.
John Wiley & Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1951, pp. 359–373.

2. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large scale traveling salesman

problem, Technical Report P-510, RAND Corporation, Santa Monica, California, USA, 1954.
3. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, On a linear-programming, combinatorial

approach to the traveling-salesman problem, Operations Research 7 (1959) 58–66.
4. M.M. Flood, Merrill Flood (with Albert Tucker), Interview of Merrill Flood in San Francisco

on 14 May 1984, The Princeton Mathematics Community in the 1930s, Transcript Number 11
(PMC11), Princeton University, 1984.

5. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the
American Mathematical Society 64 (1958) 275–278.

6. M. Grötschel and G.L. Nemhauser, George Dantzig’s contributions to integer programming,
Discrete Optimization 5 (2008) 168–173.

7. J. Robinson, On the Hamiltonian game (a traveling salesman problem), RAND Research Mem-
orandum RM-303, RAND Corporation, Santa Monica, California, USA, 1949.



10 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

The following article originally appeared as:

G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a Large-Scale Travel-

ing-Salesman Problem, Operations Research 2 (1954) 393–410.

Copyright c© 1954 by the Operations Research Society of America.

Reprinted by permission from The Institute for Operations Research and the Man-

agement Sciences.



1 Solution of a Large-Scale Traveling-Salesman Problem 11



12 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 13



14 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 15



16 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 17



18 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 19



20 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 21



22 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 23



24 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 25



26 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



1 Solution of a Large-Scale Traveling-Salesman Problem 27



28 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson



Chapter 2

The Hungarian Method for the Assignment
Problem

Harold W. Kuhn

Introduction by Harold W. Kuhn

This paper has always been one of my favorite “children,” combining as it does

elements of the duality of linear programming and combinatorial tools from graph

theory. It may be of some interest to tell the story of its origin.

I spent the summer of 1953 at the Institute for Numerical Analysis which was

housed on the U.C.L.A. campus. I was supported by the National Bureau of Stan-

dards and shared an office with Ted Motzkin, a pioneer in the theory of inequalities

and one of the most scholarly mathematicians I have ever known. I had no fixed

duties and spent the summer working on subjects that were of interest to me at the

time, such as the traveling salesman problem and the assignment problem.

The Institute for Numerical Analysis was the home of the SWAC (Standards

Western Automatic Computer), which had been designed by Harry Huskey and had

a memory of 256 words of 40 bits each on 40 Williamson tubes. The formulation

of the assignment problem as a linear program was well known, but a 10 by 10 as-

signment problem has 100 variables in its primal statement and 100 constraints in

the dual and so was too large for the SWAC to solve as a linear program. The SEAC

(Standard Eastern Automatic Computer), housed in the National Bureau of Stan-

dards in Washington, could solve linear programs with about 25 variables and 25

constraints. The SEAC had a liquid mercury memory system which was extremely

limiting.

During that summer, I was reading König’s book on graph theory. I recognized

the following theorem of König to be a pre-linear programming example of duality:

If the numbers of a matrix are 0’s and 1’s, then the minimum number of rows and

columns that will contain all of the 1’s is equal to the maximum number of 1’s that

can be chosen, with no two in the same row or column.

Harold W. Kuhn
Princeton University, USA
e-mail: kuhn@math.princeton.edu

29
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_2, © Springer-Verlag Berlin Heidelberg 2010 



30 Harold W. Kuhn

Indeed, the primal problem is the special case of an assignment problem in which

the ratings of the individuals in the jobs are only 0’s and 1’s. In a footnote, König

refers to a paper of E. Egerváry (in Hungarian), which seemed to contain the treat-

ment of a more general case. When I returned to Bryn Mawr, where I was on the

faculty in 1953, I took out a Hungarian grammar and a large Hungarian-English

dictionary and taught myself enough Hungarian to translate Egerváry’s paper. I then

realized that Egerváry’s paper gave a computationally trivial method for reducing

the general assignment problem to a 0-1 problem. Thus, by putting the two ideas

together, the Hungarian Method was born. I tested the algorithm by solving 12 by

12 problems with random 3-digit ratings by hand. I could do any such problem, with

pencil and paper, in no more than 2 hours. This seemed to be much better than any

other method known at the time.

The paper was published in Naval Research Logistics Quarterly. This was a nat-

ural choice since the project in Game Theory, Linear and Nonlinear Programming,

and Combinatorics at Princeton, with which Al Tucker and I were associated from

1948 to 1972, was supported by the Office of Naval Research Logistics Branch.

Many mathematicians were benificiaries of the wise stewardship of Mina Rees as

head of the ONR and Fred Rigby as chief of the Logistics branch. We were also

fortunate to have Jack Laderman, the first editor of the journal, as our project super-

visor.

I have told much of the same story in my paper [1]. Large sections of this account

are reproduced in the book by Alexander Schrijver [2]. Schrijver’s account places

the Hungarian Method in the mathematical context of combinatorial optimization

and rephrases the concepts in graph-theoretical language.

References

1. H.W. Kuhn, On the origin of the Hungarian Method, History of mathematical programming;
a collection of personal reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver,
eds.), North Holland, Amsterdam, 1991, pp. 77–81.

2. A. Schrijver, Combinatorial optimization: polyhedra and efficiency, Vol. A. Paths, Flows,
Matchings, Springer, Berlin, 2003.



2 The Hungarian Method for the Assignment Problem 31



32 Harold W. Kuhn

The following article originally appeared as:

H.W. Kuhn, The Hungarian Method for the Assignment Problem, Naval Research

Logistics Quarterly 2 (1955) 83–97.



2 The Hungarian Method for the Assignment Problem 33



34 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 35



36 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 37



38 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 39



40 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 41



42 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 43



44 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 45



46 Harold W. Kuhn



2 The Hungarian Method for the Assignment Problem 47



Chapter 3

Integral Boundary Points of Convex Polyhedra

Alan J. Hoffman and Joseph B. Kruskal

Introduction by Alan J. Hoffman and Joseph B. Kruskal

Here is the story of how this paper was written.

(a) Independently, Alan and Joe discovered this easy theorem: if the “right hand

side” consists of integers, and if the matrix is “totally unimodular”, then the vertices

of the polyhedron defined by the linear inequalities will all be integral. This is easy

to prove and useful. As far as we know, this is the only part of our theorem that

anyone has ever used.

(b) But this was so easy, we each wanted to generalize it. Independently we

worked hard to understand the cases where there are no vertices, i.e., the lowest

dimensional faces of the polyhedron are 1-dimensional or higher. This was hard to

write and hard to read.

(c) At this point, Alan benefitted greatly from simplifications suggested by David

Gale and anonymous referees, but it was still not so simple.

(d) Independently, we both wondered: If the vertices were integral for every in-

tegral right hand side, did this mean the matrix was totally unimodular? This is

discussed in our paper, and also in References [1] and [2], especially the latter.

Harold Kuhn and Al Tucker saw drafts from both of us and realized that we were

working on the same problem, so they suggested that we start working together, and

that Alan should send his latest draft to Joe to take the next step. For Joe, this turned

out to be the most exciting collaboration he had ever experienced; and he still feels

that way today.

Alan J. Hoffman
IBM Research, Yorktown Heights, New York, USA
e-mail: ajh@us.ibm.com

Joseph B. Kruskal
Bell Laboratories, Murray Hill, New Jersey, USA
e-mail: jkruskal@comcast.net

49
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_3, © Springer-Verlag Berlin Heidelberg 2010 



50 Alan J. Hoffman and Joseph B. Kruskal

We must have met casually before the collaboration, but we never saw each

other during it nor for a long time afterwards. Joe knew nothing about Alan’s work.

However Alan, who was working for the Navy, knew something about Joe’s work

through a Navy report on a real operations research project on which Joe and Bob

Aumann had gotten impressive results. (Many years later, in 2005, Bob won the

Nobel Prize for Economics.)

As it turned out, Joe merged our two papers—but did much more; Alan’s ideas

were very stimulating. When Alan got that version, he was also stimulated and made

substantial improvements. Then Joe made further improvements, and finally Alan

did the same. We could probably have made much more progress, but the deadline

for publication cut off further work.

(e) One of our discoveries when collaborating was a new general class of totally

unimodular matrices . . . but several years later we were chagrined to learn from Jack

Edmonds that in the 1800’s Gustav Kirchoff (who was the inventor of Kirchoff’s

Laws) had constructed a class of totally unimodular matrices of which ours was

only a special case.

(f) The term “totally unimodular” is due to Claude Berge, and far superior to our

wishywashy phrase “matrices with the unimodular property”. Claude had a flair for

language.

(g) We had no thought about computational questions, practical or theoretical,

that could be influenced by our work. We also did not imagine the host of interest-

ing concepts, like total dual integrality, lattice polyhedral, etc. that would emerge,

extending our idea. And we never dreamed that totally unimodular matrices could

be completely described, see [3], because we didn’t anticipate that a mathematician

with the great talent of Paul Seymour would get interested in these concepts.

After we wrote the paper, we met once in a while (a theater in London, a meeting

in Washington), but our interests diverged and we never got together again pro-

fessionally. The last time we met was almost 15 years ago, when Vašek Chvátal

organized at Rutgers a surprise 70th birthday party cum symposium for Alan. Joe

spoke about this paper and read some of the letters we wrote each other, including

reciprocal requests that each of us made begging the partner to forgive his stupidity.

References

1. A.J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combi-

natorial analysis, Proceedings Symposium Applied Mathematics 10, American Mathematical
Society, 1960, pp. 113–128.

2. A.J. Hoffman, Total unimodularity and combinatorial theorems, Linear Algebra and its Appli-
cations 13 (1976) 103–108.

3. P.D. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory B 29
(1980) 305–359.



3 Integral Boundary Points of Convex Polyhedra 51



52 Alan J. Hoffman and Joseph B. Kruskal

The following article originally appeared as:

A.J. Hoffman and J.B. Kruskal, Integral Boundary Points of Convex Polyhedra, Lin-

ear Inequalities and Related Systems (H.W. Kuhn and A.J. Tucker, eds.), Princeton

University Press, 1956, pp. 223–246.

Copyright c© 1956 Princeton University Press, 1984 renewed PUP.

Reprinted by permission from Princeton University Press.



3 Integral Boundary Points of Convex Polyhedra 53



54 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 55



56 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 57



58 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 59



60 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 61



62 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 63



64 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 65



66 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 67



68 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 69



70 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 71



72 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 73



74 Alan J. Hoffman and Joseph B. Kruskal



3 Integral Boundary Points of Convex Polyhedra 75



76 Alan J. Hoffman and Joseph B. Kruskal



Chapter 4

Outline of an Algorithm for Integer Solutions to
Linear Programs and
An Algorithm for the Mixed Integer Problem

Ralph E. Gomory

Introduction by Ralph E. Gomory

Later in 1957, as the end of my three-year tour of duty in the Navy was approach-

ing, Princeton invited me to return as Higgins Lecturer in Mathematics. I had been

a Williams undergraduate and a then a graduate student at Cambridge and Princeton

while getting my Ph.D. I had published 4 papers in non-linear differential equations,

a subject to which I had been introduced by two wonderful people whose support

and encouragement made an unforgettable and wonderful difference in my life: Pro-

fessor Donald Richmond of Williams College and Professor Solomon Lefschetz of

Princeton.

Because of my interest in applied work I had planned to look for an industrial

position rather than an academic one on leaving the Navy, but I decided instead

to accept this attractive offer and spend a year or two at Princeton before going

on. When I returned to Princeton late in the fall of 1957, I got to know Professor

A. W. Tucker, then the department head, who was the organizer and prime mover

of a group interested in game theory and related topics. This group included Harold

Kuhn and Martin (E. M. L.) Beale.

As the Navy had kept me on as a consultant I continued to work on Navy prob-

lems through monthly trips to Washington. On one of these trips a group presented

a linear programming model of a Navy Task Force. One of the presenters remarked

that it would be nice to have whole number answers as 1.3 aircraft carriers, for

example, was not directly usable.

I thought about his remark and determined to try inventing a method that would

produce integer results. I saw the problem as clearly important, indivisibilities are

everywhere, but I also thought it should be possible. My view of linear programming

was that it was the study of systems of linear inequalities and that it was closely anal-

Ralph E. Gomory
Alfred P. Sloan Foundation, New York, USA
e-mail: gomory@sloan.org

77
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_4, © Springer-Verlag Berlin Heidelberg 2010 



78 Ralph E. Gomory

ogous to studying systems of linear equations. Systems of linear equations could be

solved in integers (Diophantine equations), so why not systems of linear inequali-

ties? Returning to the office I shared with Bob Gunning (later Dean of the Faculty

at Princeton), I set to work and spent about a week of continuous thought trying to

combine methods for linear Diophantine equations with linear programming. This

produced nothing but a large number of partly worked out numerical examples and

a huge amount of waste paper.

Late in the afternoon of the eighth day of this I had run out of ideas. Yet I still

believed that, if I had to, in one-way or another, I would always be able to get at an

integer answer to any particular numerical example. At that point I said to myself,

suppose you really had to solve some particular problem and get the answer by any

means, what would be the first thing that you would do? The immediate answer was

that as a first step I would solve the linear programming (maximization) problem

and, if the answer turned out to be 7.14, then I would at least know that the integer

maximum could not be more than 7. No sooner had I made this obvious remark to

myself than I felt a sudden tingling in two of my left toes, and realized that I had just

done something different, and something that certainly was not a part of classical

Diophantine analysis.

How exactly had I managed to conclude, almost without thought, that, if the LP

answer was 7.14, the integer answer was at most 7? As I was working with equa-

tions having integer coefficients and only integer variables, it did not take long to

conclude that the reasoning consisted of two simple steps. First that the objective

function was maximal on the linear programming problem and therefore as large or

larger than it could ever be on the integer problem. Second that the objective func-

tion was an integer linear form and therefore had to produce integer results for any

integer values of the variables, including the unknown integer answer. Therefore the

objective function had to be an integer less than 7.14. Clearly then it was legitimate

to add an additional constraint that confined the objective function to be less than

or equal to 7. I thought of this as “pushing in” the objective function. It was also

immediately clear to me that there would always be many other integer forms max-

imal at that vertex in addition to the given objective function and that they could be

“pushed in” too.

Greatly excited I set to work and within a few days had discovered how to gener-

ate maximal integer forms easily from the rows of the transformed simplex matrix.

It became clear rapidly that any entry in a given row of the tableau could be changed

by an integer amount while remaining an integer form, that these changes could be

used to create a form that was maximal, as that simply meant that all the row entries

had to become negative (in the sign convention I was then using). It also was clear

that, once an entry became negative, it strengthened the new inequality if the entry

was as small as possible in absolute value; so all coefficients were best reduced to

their negative fractional parts. This was the origin of the “fractional cut.”

Within a very few days, I had worked out a complete method using the fractional

cuts. I thought of this method as the “The Method of Integer Forms.” With it I was

steadily solving by hand one small numerical example after another and getting the

right answer. However, I had no proof of finiteness. I also observed that the fractional



4 Algorithms for Integer Programming 79

rows I was creating seemed to have a lot of special properties, all of which were

explained later in terms of the factor group.

Just at this time I ran into Martin Beale in the hall. He was looking for a speaker

for the seminar we had on game theory and linear programming. I said I would be

glad to give a talk on solving linear programs in integers. Martin said “but that’s

impossible.” That was my first indication that others had thought about the problem.

During the exciting weeks that followed, I finally worked out a finiteness proof and

then programmed the algorithm on the E101, a pin board computer that was busy

during the day but that I could use after midnight. The E101 had only about 100

characters of memory and the board held only 120 instructions at one time, so that I

had to change boards after each simplex maximization cycle and put in a new board

that generated the cut, and then put the old board back to re-maximize. It was also

hard work to get the simplex method down to 120 E101 instructions. But the results

were better and more reliable than my hand calculations, and I was able to steadily

and rapidly produce solutions to four- and five-variable problems.

During these weeks I learned that others had thought about the problem and that

George Dantzig had worked on the traveling salesman problem and had applied spe-

cial handmade cuts to that problem. Professor Tucker, who was enormously helpful

to me during my entire stay at Princeton, gave me the time he had for himself on

the program of a mathematical society meeting. There early in 1958 I made the first

public presentation of the cutting plane algorithm. This produced a great deal of

reaction, many people wrote to me, and Rand Corporation invited me to come out

to California for the summer.

In the summer of 1958 I flew west to Los Angeles, where Rand was located, car-

rying the first edition of the manual for Fortran, then a brand new language. I spent

one month at Rand and succeeded in producing a working Fortran version of the

algorithm for the IBM 704. During my stay at Rand, I renewed my acquaintance of

graduate student days with Lloyd Shapley and with Herb Scarf and met for the first

time George Dantzig, Dick Bellman, and Phil Wolfe. Phil, already well known for

his work on quadratic programming, generously took on the assignment of orienting

me during my visit at Rand. He helped me in every conceivable way.

The Fortran program seemed to be debugged about two days before I left Rand

so I was able to do larger examples. Larger meant something like ten to fifteen vari-

ables. Most of these problems ran quickly, but one went on and on and producing

reams of printout but never reaching a final answer. I thought at the time that per-

haps there were still bugs left in the program, but in fact it was the first hint of the

computational problems that lay ahead.

It seems likely that it was during that summer that I worked out the mixed integer

method, which I never sent in to a journal but appeared later as a Rand report. At the

time I regarded it as a pretty straightforward extension of the original cutting plane

method. Having done so many hand problems I was aware that, despite its obvious

strengths in some of its computational detail it lacked some attractive properties

of the all integer calculation. However at this late date I am quite reconciled to

the mixed integer cut by (1) its computational success in a world of larges scale

computing and (2) a rather recent result in which I have shown that it provides the



80 Ralph E. Gomory

only facet for the one dimensional corner polyhedron problem that is a facet both

for the continuous and for the integer variables case. This finally locates the mixed

cutting plane in its proper theoretical setting.



4 Algorithms for Integer Programming 81



82 Ralph E. Gomory

The following article originally appeared as:

R.E. Gomory, Outline of an Algorithm for Integer Solutions to Linear Programs,

Bulletin Of the American Mathematical Society 64 (1958) 275–278.

Copyright c© 1958 The American Mathematical Society.

Reprinted by permission from The American Mathematical Society.



4 Algorithms for Integer Programming 83



84 Ralph E. Gomory



4 Algorithms for Integer Programming 85



86 Ralph E. Gomory



4 Algorithms for Integer Programming 87



88 Ralph E. Gomory

The following article originally appeared as:

R.E. Gomory, An Algorithm for the Mixed Integer Problem, Research Memorandum

RM-2597, The Rand Corporation, 1960.

Copyright c© 1960 The RAND Corporation.

Reprinted by permission from The RAND Corporation.



4 Algorithms for Integer Programming 89



90 Ralph E. Gomory



4 Algorithms for Integer Programming 91



92 Ralph E. Gomory



4 Algorithms for Integer Programming 93



94 Ralph E. Gomory



4 Algorithms for Integer Programming 95



96 Ralph E. Gomory



4 Algorithms for Integer Programming 97



98 Ralph E. Gomory



4 Algorithms for Integer Programming 99



100 Ralph E. Gomory



4 Algorithms for Integer Programming 101



102 Ralph E. Gomory



4 Algorithms for Integer Programming 103



Chapter 5

An Automatic Method for Solving Discrete
Programming Problems

Ailsa H. Land and Alison G. Doig

Introduction by Ailsa H. Land and Alison G. Doig

In the late 1950s there was a group of teachers and research assistants at the

London School of Economics interested in linear programming and its extensions,

in particular Helen Makower, George Morton, Ailsa Land and Alison Doig. We had

considered the ‘Laundry Van Problem’ until we discovered that it was known as the

Traveling Salesman Problem, and had looked at aircraft timetabling, until quickly

realizing that even the planning for the Scottish sector was beyond our capability!

Alison Doig (now Harcourt) had studied the paper trim problem for her Masters

project in Melbourne before coming to England.

At the same time, British Petroleum was developing linear programming mod-

els for their refinery operations. They had ambitions to extend the model to deal

also with the planning of world movement of oil from source to refinery, but knew

that the capacity restrictions on the ships and storage tanks introduced discrete vari-

ables into their models. BP contracted with LSE to pay the salaries of Alison Doig

and Ailsa Land for one year to investigate the possibility of incorporating discrete

variables into linear programming models.

We rapidly decided that the oil transport model was much too big to tackle un-

til we had a working method to handle discrete variables. We easily found papers

with smaller examples, ones with known optimal solutions, to use for testing pur-

poses [1]. We are pretty sure that we got the approval of BP for this switch of

attention. At the time, BP did not want their sponsorship acknowledged for any

publication we might make on discrete variables. We suppose they did not want

Ailsa H. Land
London School of Economics and Political Science, United Kingdom
e-mail: a.land@lse.ac.uk

Alison G. Doig (now Harcourt)
Department of Mathematics and Statistics, University of Melbourne, Australia
e-mail: harc@ms.unimelb.edu.au

105
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_5, © Springer-Verlag Berlin Heidelberg 2010 



106 Ailsa H. Land and Alison G. Doig

to alert competitors to their interest in the area, but we assume this prohibition no

longer applies!

We were very well aware that the solution of this type of problem required elec-

tronic computation, but unfortunately LSE at that time did not have any access to

such a facility. However, we had no doubt that using the same approach to comput-

ing could be achieved, if rather painfully, on desk computers, which were plentifully

available. We became quite skilful at doing vector operations by multiplying with

the left hand, and adding and subtracting with the right hand on another machine!

Storage of bases and intermediate results did not present a limitation since it was

all simply recorded on paper and kept in a folder. Hence we found it efficient to

pursue each branch of our tree until its bound was no longer the best bound. To that

extent our implementation was not exactly as we would later come to code it on a

computer. It was efficient to make an estimate on the next bound in each direction

of a branch before putting it aside for possible later development.

As well as solving the original zero-one model from the Markowitz and Manne

paper, we felt we had also to publish one for which the solution was not already

known. Hence we solved also an ‘any integer’ model using the same data set. We

did not initially think of the method as ‘branch and bound’, but rather in the ‘ge-

ometrical’ interpretation of exploring the convex feasible region defined by the LP

constraints. We are not sure if ‘branch and bound’ was already in the literature, but,

if so, it had not occurred to us to use that name. We remember Steven Vajda telling

us that he had met some French people solving ILPs by ‘Lawndwa’, and realising

that they were applying a French pronunciation to ‘Land-Doig’, so we don’t think

they knew of it as branch and bound either. Much later someone wrote a paper about

‘shoulder branch and bound’ (no reference, we are afraid), which in fact was what

we were doing by not leaving a node of the tree without bounding it on the upper

and lower direction of the current integer variable. This, of course, isn’t much help

in the zero-one ILP, but we were very much thinking of the ‘any-integer’ discrete

variable problem.

The paper we submitted to Econometrica described the thinking that led to our

development of the algorithm, but much clearer expositions of Branch and Bound

have been published since then and we wouldn’t recommend the paper to students

for learning the algorithm!

References

1. H.M. Markowitz and A.S. Manne, On the solution of discrete programming problems, Econo-
metrica 25 (1957) 84–110.



5 An Automatic Method for Solving Discrete Programming Problems 107



108 Ailsa H. Land and Alison G. Doig

The following article originally appeared as:

A.H. Land and A.G. Doig, An Automatic Method for Solving Discrete Programming

Problems, Econometrica 28 (1960) 497–520.

Copyright c© 1960 The Econometric Society.

Reprinted by permission from The Econometric Society.



5 An Automatic Method for Solving Discrete Programming Problems 109



110 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 111



112 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 113



114 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 115



116 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 117



118 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 119



120 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 121



122 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 123



124 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 125



126 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 127



128 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 129



130 Ailsa H. Land and Alison G. Doig



5 An Automatic Method for Solving Discrete Programming Problems 131



132 Ailsa H. Land and Alison G. Doig



Chapter 6

Integer Programming: Methods, Uses,
Computation

Michel Balinski

Introduction by Michel Balinski

This article exists because Robert Thrall, at the time Editor of Management Sci-

ence, invited me to write a survey of the then new area of “integer programming.”

First printed in 1965, it was subsequently reprinted in 1968 in Mathematics of the

Decision Sciences (edited by George B. Dantzig and Arthur F Veinott, Jr., a volume

of the AMS’s Lectures in Applied Mathematics) and in 1970 in Proceedings of the

Princeton Symposium on Mathematical Programming (edited by Harold W. Kuhn, a

Princeton University Press publication). In its last resurrection it was supplemented

by 16 pages of “Recent Developments.” By then the bibliography had grown from

the original 105 items to 232 items: the field was burgeoning.

I now believe that this article was the first virtual text book on integer program-

ming, for it seems to have been used as such in a rich variety of university courses.

In fact, I was well on my way to integrating, supplementing and transforming the

material of the article and other more recent developments into a bona fide textbook

when in June 1967 a particularly violent summer storm decided otherwise: lightning

caused a surge of current in the main electric line connected to our house, it skipped

over the fuse, destroyed a part of the insulation in my study on the top floor, allow-

ing a fire to ignite and warm up slowly undetected until a noise of slamming doors

turned out to be the booms of falling beams. All of my work, books, notes, papers

and articles were consumed in the flames. The burning desire to write a book extin-

guished: the effort to remember and redo was at once too daunting and too boring.

I looked elsewhere, though not so far afield.

Why Bob Thrall asked me I really don’t know! I had written several papers with

Ralph Gomory, but not in integer programming. I belonged to the Princeton crowd

that worked in linear programming and its extensions. My formal thesis adviser had

Michel Balinski
Département d’Économie, École Polytechnique, Palaiseau, France
e-mail: michel.balinski@polytechnique.edu

133
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_6, © Springer-Verlag Berlin Heidelberg 2010 



134 Michel Balinski

been Albert Tucker—though he was away on a sabbatical leave in 1958-59 while I

wrote the thesis—so the person to whom I turned for advice and solace was Ralph

Gomory, then a Lecturer in mathematics at Princeton, working on his first algorithm

for general integer programs. Ralph tells me that—given this premise—I can claim

to be his only student, a distinction that I accept with pleasure. The year that Jack

Edmonds spent at Princeton we shared an office. I had also spent several summers

at the RAND Corporation, so with Philip Wolfe, George Dantzig, Ray Fulkerson,

Lloyd Shapley and others.

The decade of the 1960’s was a very exciting one for a budding mathematician.

It was a golden age: the idea pervaded that every problem could be solved with

mathematics (or operations research, its applied arm)! There were not that many

mathematicians: I remember noticing once that I was one of slightly more than two

hundred persons in the entire USA who had earned a Ph.D. in the discipline in

1959. In addition to teaching first in mathematics at Princeton, then in economics

at the University of Pennsylvania, finally in mathematics at the Graduate Center

of C.U.N.Y., I also worked with Mathematica, a consulting company, located in

Princeton. I began working there as a graduate student before it was named. I still

have a brochure describing its services and personnel (which dates from later on

in the 1960’s). The people pictured include Oskar Morgenstern (Chairman of the

Board), Tibor Fabian (President, trained in O.R. and a pioneer in the use of linear

programming in the iron and steel industry), Harold Kuhn, Al Tucker and me. In

earlier days Ralph Gomory was involved (indeed, to the best of my memory, he was

the person who proposed the name of the company), in later days George Dantzig

and Robert Aumann were involved in one or another contract. The brochure’s list

(complete and in the order given) of

“Characteristic Assignments in Mathematical Analysis and Programming:

• Basic research in algorithms for discrete optimization problems.

• Development of nonlinear programming algorithms for transportation and rout-

ing problems.

• Development of an algorithm and computer program for reliability analysis of

electromechanical networks.

• Devising computer programs for the solution of decomposable linear programs

to handle up to 30,000 inequalities.

• Establishing game theoretic models of bargaining processes.

• Game theoretic analyses of antisubmarine warfare.”

This article was frequently used to claim up-to-date expertise in discrete opti-

mization and, in particular, helped obtain important contracts to study “fixed-cost

transportation problems” and to redistrict the state of New Jersey’s legislative dis-

tricts, among others.

Optimization and game theory and their applications were the big themes of those

days. They have been the big themes for me too, though in research game theory fol-

lowed optimization. More and more, as the years past, equity—fairness and how to

achieve it—came to the fore as the focus of my work. I first worked on problems



6 Integer Programming: Methods, Uses, Computation 135

described in this article: apportioning the seats of the (or a) House of Representa-

tives among the various states. Then, I worked on another problem described in this

article, also in the political realm, the districting or redistricting problem: how to cut

up a state into congressional districts. Later I extended the “vector” apportionment

problem to the “matrix” apportionment problem (a method of voting which has re-

cently been adopted in some Swiss elections). Early on I worked on the matching

problem (the Edmonds type), later on—with equity on my mind—I worked on sta-

ble matching (the Gale-Shapley type). Now I have come full circle and work on

the more fundamental problem of how to elect one person and how to rank several

competitors when more than one judge or voter has opinions in the matter. Here

optimization plays only a minor role, whereas game theory plays a crucial part.

In retrospect what seems to be the most likely explanation for Bob Thrall’s invi-

tation to write this article is the company I kept. Whether this be true or not, I am

indebted to him: the problems I found and talked about in it have kept me busy for a

lifetime—if I am allowed to construe that the earlier political questions engendered

the later one and that game theory is but a multi-function extension of finding an

optimum solution.



136 Michel Balinski

The following article originally appeared as:

M. Balinski, Integer Programming: Methods, Uses, Computation, Management Sci-

ence 12 (1965) 253–313.

Copyright c© 1965 by The Institute of Management Science.

Reprinted by permission from The Institute for Operations Research and the Man-

agement Sciences.



6 Integer Programming: Methods, Uses, Computation 137



138 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 139



140 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 141



142 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 143



144 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 145



146 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 147



148 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 149



150 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 151



152 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 153



154 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 155



156 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 157



158 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 159



160 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 161



162 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 163



164 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 165



166 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 167



168 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 169



170 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 171



172 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 173



174 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 175



176 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 177



178 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 179



180 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 181



182 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 183



184 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 185



186 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 187



188 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 189



190 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 191



192 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 193



194 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 195



196 Michel Balinski



6 Integer Programming: Methods, Uses, Computation 197



Chapter 7

Matroid Partition

Jack Edmonds

Introduction by Jack Edmonds

This article, “Matroid Partition”, which first appeared in the book edited by

George Dantzig and Pete Veinott, is important to me for many reasons: First for per-

sonal memories of my mentors, Alan J. Goldman, George Dantzig, and Al Tucker.

Second, for memories of close friends, as well as mentors, Al Lehman, Ray Fulker-

son, and Alan Hoffman. Third, for memories of Pete Veinott, who, many years after

he invited and published the present paper, became a closest friend. And, finally,

for memories of how my mixed-blessing obsession with good characterizations and

good algorithms developed.

Alan Goldman was my boss at the National Bureau of Standards in Washington,

D.C., now the National Institutes of Science and Technology, in the suburbs. He

meticulously vetted all of my math including this paper, and I would not have been

a math researcher at all if he had not encouraged it when I was a university drop-out

trying to support a baby and stay-at-home teenage wife. His mentor at Princeton,

Al Tucker, through him of course, invited me with my child and wife to be one

of the three junior participants in a 1963 Summer of Combinatorics at the Rand

Corporation in California, across the road from Muscle Beach. The Bureau chiefs

would not approve this so I quit my job at the Bureau so that I could attend. At the

end of the summer Alan hired me back with a big raise.

Dantzig was and still is the only historically towering person I have known. He

cared about me from a few days before my preaching at Rand about blossoms and

about good algorithms and good characterizations. There were some eminent com-

binatorial hecklers at my presentation but support from Dantzig, and Alan Hoffman,

made me brave.

Jack Edmonds
Department of Combinatorics and Optimization, University of Waterloo, Canada
e-mail: jackedmonds@rogers.com

199
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_7, © Springer-Verlag Berlin Heidelberg 2010 



200 Jack Edmonds

I think of Bertrand Russell, Alan Turing, and George Dantzig as the three most

important philosophers of the last century. During an infrequent visit to California

from Washington, D.C., sometime in the 60s, Dantzig took me, a wife, and three

kids, to Marineland and also to see a new shopping mall in order to prove to us that

having a ceiling of a certain height in his carefully planned Compact City is as good

as a sky.

One time when I unexpectedly dropped in on Dantzig, the thrill of my life was

him asking me to lecture to his linear programming class about how the number

of pivots of a simplex method can grow exponentially for non-degenerate linear

programming formulations of shortest path problems, and also asking me to vet

contributions for a math programming symposium which he was organizing.

One of my great joys with George Dantzig was when a friend working at Hewlett-

Packard asked me to come discuss the future of operations research with his artificial

intelligence colleagues. I was discouraged when no one I knew in O.R. seemed in-

terested in helping—that is, until I asked George. He told my second wife Kathie

and me that he was a neighbor and had socialized with Mr. Hewlett, or was it

Mr. Packard, for years, and had never been invited to HP, two blocks away. George

took over the show and was wonderful. Kathie video-taped it. The next morning he

asked if she had made him a copy yet.

Al Tucker made me a Research Associate and put me in charge of his Com-

binatorics Seminar at Princeton during 1963–64. Combinatorists whom I wanted

to meet accepted paying their own way to speak at my ‘Princeton Combinatorics

and Games Seminar’. However, except for Ron Graham who came over from Bell,

and Moses Richardson who came down from City University, they were unable to

schedule their visits. So I hastily organized a Princeton Conference in the spring of

1964 where the eminent seminar invitees could lecture to each other.

At that conference I met Al Lehman who led me, by his matroidal treatment

of what he called the Shannon switching game, to see that matroids are impor-

tant for oracle-based good algorithms and characterizations. I persuaded Al, along

with Chris Witzgall, to come work at the Bureau of Standards, and immediately we

started looking for people to participate in a two-week Matroid Workshop at the Bu-

reau of Standards in autumn 1964. We didn’t find more than six who had even heard

of the term ‘matroid’. About twenty serious people came to it, including Ray Fulk-

erson, George Minty, Henry Crapo, Dan Younger, Neil Robertson, and Bill Tutte.

Within a year it seemed the whole world was discovering matroids.

The Bureau was delighted at the prospect of hiring Al Lehman. However, an

aftermath of McCartheism left the Bureau with the rule that new employees had to

take an oath of loyalty. The early computer-guru, Ida Rhodes, actually tugged at Al’s

arm to try to get him to take the oath but he wouldn’t. Instead he took a research job

with a Johns Hopkins satellite of the U.S. Army which did not require such an oath.

He literally picketed the Matroid Workshop, speaking to whomever would listen

about the ‘Bureau of Double Standards’. We stayed friends for the many years until

his recent death in Toronto.



7 Matroid Partition 201

At the same workshop, Gian-Carlo Rota conceived of and started organizing the

Journal of Combinatorial Theory. He also insisted that the ‘ineffably cacophonic

word matroid’ be replaced by ‘combinatorial geometry’.

George Minty was an especially sweet and brilliant participant. He wrote a paper

which Bob Bland credits with being a precursor of oriented matroids. He spent years

afterwards on successfully extending the good algorithm for optimum matchings in

a graph to optimum independent sets in a clawfree graph. His work is still the most

interesting aspect of matching theory.

During the year after the Matroid Workshop, Ray Fulkerson and I regularly spent

hours talking math by government telephone between Santa Monica and Washing-

ton. Ray and I never did learn how to work computers, and though I think the pro-

totype of email did exist back then in our government circles, he and I didn’t know

about it. One of the outcomes of our talk was combining a version of the matroid

partitioning algorithm described in the paper here with Ray’s interest in doing ev-

erything possible by using network flow methods.

My huff about him and Ellis Johnson calling the blossom method “a primal-

dual method” led me to look for algorithms for network flow problems which were

polytime relative to the number of bits in the capacities as well as in the costs.

The reason I had presented the blossom method only for 1-matchings is that for

b-matchings I could not call it a “good algorithm” until I had figured out how to

do that for network flows. Once it’s done for flows, it’s easy to reduce optimum

b-matchings to a flow problem and a b-matching problem where the b is ones and

twos. Dick Karp was independently developing good algorithms for network flows

and so much later I published with Dick instead of, as intended, with Ray and Ellis.

I enjoyed working with Ray and I coined the terms “clutter” and “blocker”. I can’t

remember who suggested the term “greedy” but it must have been Alan Goldman

and probably Ray as well.

It was important to me to ask Ray to check with the subadditive set function

expert he knew about submodular set functions. When the answer came back that

they are probably the same as convex functions of additive set functions, I knew I

had a new tiger by the tail.

Ray and I liked to show off to each other. I bragged to him about discovering the

disjoint branchings theorem, mentioned later. Trouble is, I then became desperate to

find quickly a correction of my faulty proof. I think I would have done a better job

on the theorem if I had not been frantic to cover my hubris.

During a phone call, Ray mentioned that one day later, four months after the

Matroid Workshop, there would be a combinatorics workshop in Waterloo. My boss

Alan Goldman rescued me as usual and I quickly hopped a plane to Canada to sleep

along with George Minty on sofas in Tutte’s living room.

Neil Robertson, a meticulous note-taker, had reported to Crispin Nash-Williams

on my Matroid Workshop lectures. Crispin, by his own description, was too enthu-

siastic about them. He was giving a keynote lecture about matroid partitioning on

the first morning of this Waterloo workshop. I felt compelled immediately after his

talk to speak for an impromptu hour on the following:



202 Jack Edmonds

Theorem 1. A non-negative, monotone, submodular set function, f (S), of the sub-

sets S of a finite set E, is called a polymatroid function on E. For any integer-

valued polymatroid function on E, let F be the family of subsets J of E such

that for every non-empty subset S of J, the cardinality of S is at most f (S). Then

M = (E,F) is a matroid. Its rank function is, for every subset A of E, r(A), mean-

ing max[cardinality of a subset of A which is in F ] = min[ f (S)+cardinality of (A\

S) for any subset S of A].

After this opening of the Waterloo meeting I urgently needed a mimeographed

abstract handout and so I submitted Theorem 1.

The theorem is dramatic because people had only seen matroids as an axiomatic

abstraction of algebraic independence, and not as something so concrete as a kind

of linear programming construction quite different from algebraic independence.

I tried to explain on that snowy April Waterloo morning how the theorem is a

corollary of a theory of a class of polyhedra, called polymatroids, given by non-

negative vectors x satisfying inequality systems of the form:

For every subset S of E, the sum of the coordinates of x indexed by the j in S is

at most f (S).
However, even now, this is often outside the interest of graph theorists, or formal

axiomatists. I am sorry when expositions of matroid theory still treat the subject only

as axiomatic abstract algebra, citing the mimeographed abstract of that Waterloo

meeting with no hint about the linear programming foundations of pure matroid

theory.

What does Theorem 1 have to do with matroid partitioning? Well—the rank func-

tion of a matroid is a polymatroid function, and hence so is the sum of the rank

functions of any family of matroids all on the same set E. Hence a special case of

Theorem 1, applied to this sum, yields a matroid on E as the ‘sum’ of matroids on E.

I had hoped to understand the prime matroids relative to this sum, but, so far, not

much has come of that.

Suppose we have an oracle which for an integer polymatroid function f (S) on E

gives the value of f (S) for any subset S of E. Then the theorem gives an easy way

to recognize when a given subset J of E is not a member of F , in other words not

independent in the matroid determined by Theorem 1. Simply observe some single

subset S of J having cardinality greater than f (S).
Does there exist an easy way to recognize when a set J is independent? The

answer is yes. For a general integer polymatroid function f , this easy way needs

some of the linear programming theory which led me to Theorem 1, which I will

describe in a moment.

However for the special case of Theorem 1 where f is the sum of a given family,

say H, of matroid rank functions, an easy way to recognize that a set J is indepen-

dent, which even the most lp resistant combinatorist can appreciate, is given by the

‘matroid partition theorem’ of the present paper: a set J is independent if and only

if it can be partitioned into a family of sets, which correspond to the members of H,

and which are independent respectively in the matroids of H.

Thus, relative to oracles for the matroids of H, for the matroid M determined as

in Theorem 1 by the f which is the sum of the rank functions of H, we have a ‘good



7 Matroid Partition 203

characterization’ for whether or not a subset J of E is independent in M. To me this

meant that there was an excellent chance of proving the matroid partition theorem

by a good algorithm which, for a given J, decides whether or not J is independent

in matroid M. That is what the present paper does.

Having an instance of a good characterization relative to an oracle, and having

a good algorithm relative to the oracle which proves the good characterization, was

the main point and motivation for the subject.

One reason I like the choice of “Matroid Partition” for the present volume is

that, as far as I know, it is the first time that the idea of what is now called NP

explicitly appears in mathematics. The idea of NP is what forced me to try to do

some mathematics, and it has been my obsession since 1962.

I talked about it with Knuth at about that time and ten years later he asked me

to vote on whether to call it NP. I regret that I did not respond. I did not see what

non-deterministic had to do with it. NP is a very positive thing and it has saddened

me for these many years that the justified success of the theory of NP-completeness

has so often been interpreted as giving a bad rap to NP.

Let me turn my attention to linear programming which gave me Theorem 1,

which led to the present paper.

Given the enormous success that the marriage problem and network flows had

had with linear programming, I wanted to understand the goodness of optimum

spanning trees in the context of linear programming. I wanted to find some combi-

natorial example of linear programming duality which was not an optimum network

flow problem. Until optimum matchings, every min max theorem in combinatorics

which was understood to be linear programming was in fact derivable from network

flows—thanks in great measure to Alan Hoffman and Ray Fulkerson. Since that was

(slightly) before my time, I took it for granted as ancient.

It seemed to be more or less presumed that the goodness of network flow came

from the fact that an optimum flow problem could be written explicitly as a lin-

ear program. The Farkas lemma and the duality theorem of linear programming are

good characterizations for explicitly written linear programs. It occurred to me, pre-

ceding any success with the idea, that if you know a polytope as the hull of a set

of points with a good, i.e., easily recognizable, description, and you also know that

polytope as the solution-set of a set of inequalities with a good description, then us-

ing lp duality you have a good characterization. And I hoped, and still hope, that if

you have good characterization then there exists a good algorithm which proves it.

This philosophy worked for optimum matchings. It eventually worked for explicitly

written linear programs. I hoped in looking at spanning trees, and I still hope, that it

works in many other contexts.

The main thing I learned about matroids from my forefathers, other than Lehman,

is that the edge-sets of forests in a graph are the independent sets of a matroid, called

the matroid of the graph. What is it about a matroid which could be relevant to a set

of linear inequalities determining the polytope which is the hull of the 0-1 vectors of

independent sets of the matroid? The rank function of course. Well what is it about

the rank function of a matroid which makes that polytope extraordinarily nice for



204 Jack Edmonds

optimizing over? That it is a polymatroid function of course. So we’re on our way

to being pure matroid theorists.

A “polymatroid” is the polytope P( f ) of non-negative solutions to the system of

inequalities where the vectors of coefficients of the vector of variables is the 0-1

vectors of subsets S of E and the r.h.s. constants are the values of the polymatroidal

function f (S). It turns out that it is as easy, relative to an oracle for f , to optimimize

any linear function over P( f ), as it is to find a maximum weight forest in an edge-

weighted graph. Hence it is easy to describe a set of points for which P( f ) is the

convex hull. Where f is the rank function of a matroid, those points are the 0-1

vectors of the independent sets of the matroid, in particular of the edge-sets of the

forests for the matroid of a graph.

A polymatroid has other nice properties. For example, one especially relevant

here is that any polymatroid intersected with any box, 0 ≤ x ≤ a, is a polymatroid.

In particular, any integer-valued polymatroid function gives a polymatroid which

intersected with a unit cube, 0 ≤ x ≤ 1, is the polytope of a matroid. That is Theo-

rem 1.

So what? Is this linear programming needed to understand Theorem 1? Not to

prove it, though it helps. For Theorem 1, rather than for any box, the lp proof can

be specialized, though not simplified, to being more elementary. However linear

programming helps answer “yes” to the crucial question asked earlier: Does there

exist an easy way to recognize when a set J is independent?

It is obvious that the 0-1 vector of the set J is in the unit box. Using the oracle

for function f we can easily recognize if J is not independent by seeing just one

of the inequalities defining P( f ) violated by the 0-1 vector of J. But if the vector

of J satisfies all of those inequalities, and hence J is independent in the matroid M

described by Theorem 1, how can we recognize that? Well using linear program-

ming theory you can immediately answer. We have mentioned that we have a very

easy algorithm for optimizing over polytope P( f ) and so, where n is the size of the

ground set E which indexes the coordinates of the points of P( f ), we have an easy

way to recognize any size n+1 subset of points each of which optimizes some linear

objective over P( f ). Linear programming theory tells that the 0-1 vector of J is in

P( f ), and hence J is independent, if and only if it is a convex combination of some

n+1 points each of which optimizes some linear function over P( f ).
That’s it. We have a good characterization of whether or not a set J is independent

in the matroid described by Theorem 1. It takes a lot more work to say that directly

without linear programming. We do that in the paper here with the matroid partition

theorem for the case where f is the sum of some given matroid rank functions.

For concreteness assume that a is any vector of non-negative integers correspond-

ing to the elements of finite set E. Of course Theorem 1 is the special case for a unit

box of the theorem which says that box, 0 ≤ x ≤ a, intersected with integer polyma-

troid, P( f ), is an integer polymatroid. Call it P( f ,a).
The rank r( f ,a) of P( f ,a), meaning the maximum sum of coordinates of an in-

teger valued vector x in P( f ,a) is equal to the minimum of f (S) + the sum of the

coordinates of a which correspond to E \S. If you know the meaning of a submod-

ular set function, the proof of this is very easy. At the same time, you prove that



7 Matroid Partition 205

the max sum of x is achieved by taking any integer valued x in P( f ,a), such as the

zero vector, and pushing up the value of its coordinates in any way you can while

staying in P( f ,a). (By analogy with matroid, having this property is in fact the way

we define polymatroid.) The only difficulty with this otherwise easy algorithm is

deciding how to be sure that the x stays in P( f ,a). Hence the crux of the problem

algorithmically is getting an algorithm for deciding whether or not a given x is in

P( f ,a). We do get a good characterization for recognizing whether or not an x is

in P( f ,a) in the same way we suggested for characterizing whether or not a subset

J of E is member of matroid M. Hence from this we have a good characterization

of the rank r( f ,a) without necessarily having a good algorithm for determining the

rank r( f ,a).
Any integer-valued submodular set function g(S), not necessarily monotone or

non-negative, can be easily represented in the form constant + f (S) + the sum of

the coordinates of a which correspond to E \ S, where f is an integer polymatroid

function and a is a vector of non-negative integers. Hence, since the mid sixties,

we have had a good characterization of the minimum of a general integer-valued

submodular function, relative to an oracle for evaluating it. Lovász expressed to

me a strong interest in finding a good algorithm for it in the early seventies. He,

Grötschel, and Schrijver, showed in the late seventies that the ellipsoid method for

linear programming officially provides such an algorithm. However it has taken

many years, many papers, and the efforts of many people, to get satisfying direct

algorithms, and this currently still has wide research interest. We have observed

here how the matroid partitioning algorithm was a first step. The methods by which

Dick Karp and I got algorithms for network flows was another first step.

There are other interesting things to say about matroid and submodular set-

function optimization theory which I won’t mention, but there is one I would like

to mention. Gilberto Calvillo and I have developed good direct algorithms for the

optimum branching system problem, which might have some down to earth interest.

Given a directed graph G, a value c( j) and a capacity d( j) for each edge, find a fam-

ily of k branchings which together do not exceed the capacity of any edge and which

together maximize total value. A branching in G is a forest such that each node of G

has at most one edge of the forest directed toward it. Of course there are a number of

equivalent problems but this one is convenient to say and to treat. By looking at the

study of branchings and the study of optimum network flow in chapters of combi-

natorial optimization you might agree that the optimum branching systems problem

is a natural gap. The analogous problem for forest systems in an undirected graph is

solved by the matroid partitioning algorithm here together with the matroid greedy

algorithm. The optimum branching system problem is quite different. It is solved in

principle by a stew of matroid ideas including the ones here, and was first done that

way, but it is better treated directly.



206 Jack Edmonds

The following article originally appeared as:

J. Edmonds, Matroid Partition, Mathematics of the Decision Sciences: Part 1

(G.B. Dantzig and A.F. Veinott, eds.), American Mathematical Society, 1968, pp.

335–345.

Copyright c© 1968 The American Mathematical Society.

Reprinted by permission from the The American Mathematical Society.



7 Matroid Partition 207



208 Jack Edmonds



7 Matroid Partition 209



210 Jack Edmonds



7 Matroid Partition 211



212 Jack Edmonds



7 Matroid Partition 213



214 Jack Edmonds



7 Matroid Partition 215



216 Jack Edmonds



7 Matroid Partition 217



Chapter 8

Reducibility Among Combinatorial Problems

Richard M. Karp

Introduction by Richard M. Karp

Throughout the 1960s I worked on combinatorial optimization problems includ-

ing logic circuit design with Paul Roth and assembly line balancing and the traveling

salesman problem with Mike Held. These experiences made me aware that seem-

ingly simple discrete optimization problems could hold the seeds of combinatorial

explosions. The work of Dantzig, Fulkerson, Hoffman, Edmonds, Lawler and other

pioneers on network flows, matching and matroids acquainted me with the elegant

and efficient algorithms that were sometimes possible. Jack Edmonds’ papers and

a few key discussions with him drew my attention to the crucial distinction be-

tween polynomial-time and superpolynomial-time solvability. I was also influenced

by Jack’s emphasis on min-max theorems as a tool for fast verification of optimal

solutions, which foreshadowed Steve Cook’s definition of the complexity class NP.

Another influence was George Dantzig’s suggestion that integer programming could

serve as a universal format for combinatorial optimization problems.

Throughout the ’60s I followed developments in computational complexity the-

ory, pioneered by Rabin, Blum, Hartmanis, Stearns and others. In the late ’60s

I studied Hartley Rogers’ beautiful book on recursive function theory while teach-

ing a course on the subject at the Polytechnic Institute of Brooklyn. This experience

brought home to me the key role of reducibilities in recursive function theory, and

started me wondering whether subrecursive reducibilities could play a similar role

in complexity theory, but I did not yet pursue the analogy.

Cook’s 1971 paper [1], in which he defined the class NP and showed that propo-

sitional satisfiability was an NP-complete problem, brought together for me the two

strands of complexity theory and combinatorial optimization. It was immediately

apparent to me that many familiar combinatorial problems were likely to have the

Richard M. Karp
The University of California at Berkeley, USA
e-mail: karp@icsi.berkeley.edu

219
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_8, © Springer-Verlag Berlin Heidelberg 2010 



220 Richard M. Karp

same universal role as satisfiability. I enjoyed constructing the polynomial-time re-

ductions that verified this intuition. Most of them were easy to find, but I failed to

prove the NP-completeness of the undirected hamiltonian circuit problem; that re-

duction was provided independently by Lawler and Tarjan. I was also frustrated by

my inability to classify linear programming, graph isomorphism and primality.

As I recall I first presented my results at an informal seminar at Don Knuth’s

home, and a few months later, in April 1972, I exposed the work more broadly at

an IBM symposium. In the next couple of years many results more refined than

my own were added to the accumulation of NP-completeness proofs, and later the

Garey-Johnson book [2] presented the concepts to a wide audience.

Heuristic algorithms often find near-optimal solutions to NP-hard optimization

problems. For some time in the mid-1970s I tried to explain this phenomenon by

departing from worst-case analysis, and instead analyzing the performance of sim-

ple heuristics on instances drawn from simple probability distributions. This work

was technically successful but gained limited traction, because there was no way

to show that the problem instances drawn from these probability distributions are

representative of those arising in practice. The surprising success of many heuristics

remains a mystery.

References

1. S.A. Cook, The complexity of theorem proving procedures, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

2. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman & Co., 1979.



8 Reducibility Among Combinatorial Problems 221



222 Richard M. Karp

The following article originally appeared as:

R.M. Karp, Reducibility Among Combinatorial Problems, Complexity of Computer

Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, 1972, pp. 85–

103.

Copyright c© 1972 Plenum Press.

Reprinted by permission from Kluwer Academic Publishers.



8 Reducibility Among Combinatorial Problems 223



224 Richard M. Karp



8 Reducibility Among Combinatorial Problems 225



226 Richard M. Karp



8 Reducibility Among Combinatorial Problems 227



228 Richard M. Karp



8 Reducibility Among Combinatorial Problems 229



230 Richard M. Karp



8 Reducibility Among Combinatorial Problems 231



232 Richard M. Karp



8 Reducibility Among Combinatorial Problems 233



234 Richard M. Karp



8 Reducibility Among Combinatorial Problems 235



236 Richard M. Karp



8 Reducibility Among Combinatorial Problems 237



238 Richard M. Karp



8 Reducibility Among Combinatorial Problems 239



240 Richard M. Karp



8 Reducibility Among Combinatorial Problems 241



Chapter 9

Lagrangian Relaxation for Integer
Programming

Arthur M. Geoffrion

Introduction by Arthur M. Geoffrion

It is a pleasure to write this commentary because it offers an opportunity to ex-

press my gratitude to several people who helped me in ways that turned out to be

essential to the birth of [8]. They also had a good deal to do with shaping my early

career and, consequently, much of what followed.

The immediate event that triggered my interest in this topic occurred early in

1971 in connection with a consulting project I was doing for Hunt-Wesson Foods

(now part of ConAgra Foods) with my colleague Glenn Graves. It was a distribution

system design problem: how many distribution centers should there be and where,

how should plant outputs flow through the DCs to customers, and related questions.

We had figured out how to solve this large-scale MILP problem optimally via Ben-

ders Decomposition, a method that had been known for about a decade but had not

yet seen practical application to our knowledge. This involved repeatedly solving a

large 0-1 integer linear programming master problem in alternation with as many

pure classical transportation subproblems as there were commodity classes. The

master problem was challenging, and one day Glenn, who did all the implementa-

tion, came up with a new way to calculate conditional “penalties” to help decide

which variable to branch on in our LP-based branch-and-bound approach.

I regularly taught a doctoral course in those days that covered, inter alia, the

main types of penalties used by branch-and-bound algorithms. But after studying the

math that Glenn used to justify his, I didn’t see a connection to any of the penalties

I knew about. I did, however, notice that Glenn made use of a Lagrangean term,

and I was very familiar with Lagrangeans owing to my earlier work on solving

discrete optimization problems via Lagrange multipliers [2] and on duality theory

in nonlinear programming [6]. It often happens that a mathematical result can be

Arthur M. Geoffrion
UCLA Anderson School of Management, Los Angeles, USA
e-mail: ageoffri@anderson.ucla.edu

243
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_9, © Springer-Verlag Berlin Heidelberg 2010 



244 Arthur M. Geoffrion

derived in quite distinct ways, and so it was in this case: I found that not only Glenn’s

penalties, but several other kinds of penalties could be derived in a unified way

as shown in Sec. 4 of [8], and that numerous special problem structures could be

exploited to produce additional penalties. This pleased me greatly, because I had a

passion for trying to unify and simplify results that others had derived from disparate

viewpoints, especially in the context of exploiting special problem structure. At that

point, I knew that I had to write this up.

Shortly it became clear that what I later dubbed Lagrangean relaxation was use-

ful for exploiting various kinds of special structures of integer programming prob-

lems in other ways besides penalties. In particular, it can be used to tailor most of

the main operations found in branch-and-bound algorithms as explained in Sec. 3

of [8]. It also rendered obsolete the need for so-called surrogate constraints as ex-

plained in Sec. 5, and it can be used to derive new cutting planes as explained in

Sec. 6. Some basic theory of Lagrangean relaxation had to be filled in, the subject

of Sec. 3, and this drew importantly on my earlier work on nonlinear duality. I had

a working paper version of [8] by late 1971, and in late 1972 presented the main

results at a symposium in Germany. When Glenn and I wrote up the work surround-

ing the Hunt-Wesson Foods project, we included a comment in Sec. 3.1 of [7] on

the branching penalties used in our implementation.

To explain more fully where [8] came from, I should also explain how the trig-

gering Hunt-Wesson project came about, especially since this was my first indus-

trial consulting engagement since obtaining my Ph.D. 5 years earlier (how does one

boot a consulting practice?), and I should comment on the prior research that sup-

ported [8] and the novel solution method used for the Hunt-Wesson problem. First

a few words about the origin of the project.

A very senior UCLA colleague of mine, Professor Elwood Buffa, opened a door

in 1970 that would change my life in unforeseen ways. A former doctoral student of

his, Dr. William Taubert, was then a vice president of Hunt-Wesson Foods, which

had been struggling for years to rationalize its network of distribution centers. El

knew that I was working on large-scale optimization methods that might conceiv-

ably apply to such problems, but he couldn’t have known whether I could adapt

those methods successfully. Neither did I. With no prompting whatever, he decided

to recommend me to Bill Taubert as a consultant. El didn’t have to take that risk,

nor did Bill in hiring me. If I failed—which my inexperience as a consultant and

unfamiliarity with distribution systems should have made the safest bet—it would

have been an embarrassment to El, Bill, and UCLA.

But a streak of good luck ensued, leading to a successful project at Hunt-Wesson

Foods, to many more consulting engagements in what is now called supply chain

management, to the founding of a consulting and software firm that celebrates its

30th anniversary this year (2008), to the discovery of several important research

problems that would occupy most of the rest of my career, and to an appreciation

for the synergies of research, practice, and teaching that has shaped my professional

life, including my service to TIMS and INFORMS.

If fortune favors the prepared mind, mine must have been prepared by my previ-

ous work on topics that proved useful not only for the Hunt-Wesson Foods project



9 Lagrangian Relaxation for Integer Programming 245

and what followed from it, but also for the paper which this commentary introduces.

Especially my work on integer programming (especially [3, 4]), nonlinear duality

theory [6], and large-scale optimization methods (especially [5]). Most of that work

came about because of another door opened for me by my dissertation advisor at

Stanford University, Professor Harvey Wagner.

When I accepted a job at UCLA’s business school in 1964, just prior to finishing

my thesis, Harvey suggested that I would benefit from being a day-a-week con-

sultant at RAND Corporation, just a few miles from UCLA. He arranged it with

Dr. Murray Geisler, head of RAND’s Logistics Department. At that time, RAND

was not far past its prime as the greatest think tank in the world, including its aston-

ishing role as the fertile spawning ground or incubator of such important OR meth-

ods as discrete event and Monte Carlo simulation, dynamic programming, game the-

ory, parts of inventory and logistics theory, network flow theory, and mathematical

programming—linear, quadratic, stochastic, and integer. RAND was also a major

contributor to the very early history of artificial intelligence, digital computing, the

Internet, both systems analysis and policy analysis, the U.S. space program, and

much more besides. That day a week, which lasted fairly steadily until the early

1970s, was disproportionately important to my early research life.

I had fine operations research colleagues at UCLA, but none did research in op-

timization, whereas at RAND I could interact with many staff members and A-list

consultants who did, including Robin Brooks, Eric Denardo, Ben Fox, Ray Fulker-

son, Glenn Graves, Al Madansky, Harry Markowitz, Bob Thrall, and Philip Wolfe.

Moreover, at RAND I had excellent computer programming and clerical/data ser-

vices (they had an IBM 7044 when I arrived), a full-service publication department

that professionally edited and widely disseminated most of my research papers on

optimization, and a good library that would even translate Russian-language articles

at my request. I was in heaven there, and could not overstate the advantages gained

from RAND’s infrastructure and my second set of colleagues there as I launched

my career.

It was at RAND that, very early in 1965, Murray handed me a somewhat beat

up copy of Egon Balas’ additive algorithm paper prior to its publication [1] (written

while Egon was still in Rumania), and asked me to take a look at it since it was

creating a stir. Thus commenced my enduring interest in integer programming. I re-

cast this work as LP-based implicit enumeration in a limited-circulation manuscript

dated August 23, 1965, published internally at RAND in September 1967 and ex-

ternally about two years later [4]. Murray quickly arranged for Richard Clasen—an

important early figure in mathematical programming in his own right—to be as-

signed to me to implement my first 0-1 integer programming code, the RIP30C

incarnation of which RAND distributed externally starting mid-1968. Murray also

arranged for others to assist me with the extensive numerical experiments.

My debt to RAND goes beyond even what is mentioned above: as a hotbed of

OR for many years, RAND’s influence on nearby UCLA for more than a decade

prior to my arrival helped to build and shape an OR group with a vitality and local

culture that provided a comfortable home for my entire career. The group’s found-

ing in the early 1950s originated independently of RAND, but its frequent interac-



246 Arthur M. Geoffrion

tions with RAND staff and consultants in its early days were of incalculable value;

there are records of visits in the 1950s by Kenneth Arrow, Richard Bellman, Abe

Charnes, Bill Cooper, George Dantzig, Merrill Flood, Ray Fulkerson, Alan Manne,

Harry Markowitz, Oscar Morgenstern, Lloyd Shapley, Andy Vaszonyi, and dozens

of others. (As an aside, the phrase “management sciences” was coined during a

conversation between Melvin Salveson, the former Tjalling Koopmans student who

founded UCLA’s OR group, and Merrill Flood of RAND in September, 1953, the

same month when Mel hosted on campus the first pre-founding meeting—attended

by many RAND OR people—of what became The Institute of Management Sci-

ences (TIMS) three months later.) Some taught courses as lecturers, and some even

joined the faculty. By the time of my arrival, these interactions had largely tailed

off, but they left a palpable tradition of creativity and excellence in my group that

inspired my best efforts as an impressionable young faculty member.

Let me summarize. The paper following this commentary did not appear out of

nowhere. It was enabled by multiple gifts of wisdom and kindness toward me by

Harvey Wagner, who taught me how to do research and arranged for me to con-

sult at RAND; by Elwood Buffa, who dropped my first and all-important consulting

job in my lap; by Murray Geisler, who turned my attention to integer program-

ming and arranged generous assistance in support of my research; and by my early

colleague/mentors at UCLA, Jim Jackson (an OR pioneer whose contributions in-

cluded “Jackson networks”) and Jacob Marschak (a world-class economist), who

helped shape my understanding of what it means to be a professor, arranged for me

to be supported from the outset on their research grants, and then helped me obtain

my own grants (from NSF starting in 1970 and ONR starting in 1972). I will always

be grateful to these people for the important roles they played in my professional

life.

References

1. E. Balas, An additive algorithm for solving linear programs with zero-one variables, Operations
Research 13 (1965) 517–546.

2. R. Brooks and A.M. Geoffrion, Finding Everett’s Lagrange multipliers by linear programming,
Operations Research 14 (1966) 1149–1153.

3. A.M. Geoffrion, Integer programming by implicit enumeration and Balas’ method, Review of
the Society for Industrial and Applied Mathematics 9 (1967) 178–190.

4. A.M. Geoffrion, An improved implicit enumeration approach for integer programming, Opera-
tions Research 17 (1969) 437–454.

5. A.M. Geoffrion, Elements of large-scale mathematical programming, Management Science 16
(1970) 652–691.

6. A.M. Geoffrion, Duality in nonlinear programming, SIAM Review 13 (1971) 1–37.
7. A.M. Geoffrion and G.W. Graves, Multicommodity distribution system design by Benders de-

composition, Management Science 20 (1974) 822–844.
8. A.M. Geoffrion, Lagrangean relaxation for integer programming, Mathematical Programming

Study 2 (1974) 82–114.



9 Lagrangian Relaxation for Integer Programming 247



248 Arthur M. Geoffrion

The following article originally appeared as:

A.M. Geoffrion, Lagrangian Relaxation for Integer Programming, Mathematical

Programming Study 2 (1974) 82–114.

Copyright c© 1974 The Mathematical Programming Society.

Reprinted by permission from Springer.



9 Lagrangian Relaxation for Integer Programming 249



250 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 251



252 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 253



254 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 255



256 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 257



258 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 259



260 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 261



262 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 263



264 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 265



266 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 267



268 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 269



270 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 271



272 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 273



274 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 275



276 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 277



278 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 279



280 Arthur M. Geoffrion



9 Lagrangian Relaxation for Integer Programming 281



Chapter 10

Disjunctive Programming

Egon Balas

Introduction by Egon Balas

In April 1967 I and my family arrived into the US as fresh immigrants from be-

hind the Iron Curtain. After a fruitful semester spent with George Dantzig’s group

in Stanford, I started working at CMU. My debut in integer programming and entry

ticket into Academia was the additive algorithm for 0-1 programming [B65], an im-

plicit enumeration procedure based on logical tests akin to what today goes under

the name of constraint propagation. As it used only additions and comparisons, it

was easy to implement and was highly popular for a while. However, I was aware

of its limitations and soon after I joined CMU I started investigating cutting plane

procedures, trying to use for this purpose the tools of convex analysis: support func-

tions and their level sets, maximal convex extensions, polarity, etc. During the five

years starting in 1969, I proposed a number of procedures based on the central idea

of intersection cuts [2] (numbered references are to those at the end of the paper,

whereas mnemonicized ones are to the ones listed at the end of this introduction):

Given any convex set S containing the LP optimum of a mixed integer program

(MIP) but containing no feasible integer point in its interior, one can generate a

valid cut by intersecting the boundary of S with the extreme rays of the cone defined

by the optimal solution to the linear programming relaxation of the MIP and tak-

ing the hyperplane defined by the intersection points as the cut. The search for the

most appropriate sets S in this role has led to the concept of outer polars and related

constructs [3, 6]. In our days, the idea of intersection cuts has been revived in the

form of cutting planes from convex sets with lattice-free interiors, and is the object

of numerous investigations (e.g., [ALWW07], [BC07], [CM07], [DW07]).

It was this line of research that has led to the idea of disjunctive programming,

through a process outlined in section 1 of the paper below. Optimizing a function

Egon Balas
Carnegie Mellon University, Pittsburgh, USA
e-mail: eb17@andrew.cmu.edu

283
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_10, © Springer-Verlag Berlin Heidelberg 2010 



284 Egon Balas

subject to a set of linear inequalities connected by conjunction or disjunction is a

special type of nonconvex programming problem called disjunctive programming.

Mixed 0-1 programming is its most important special case. More broadly speak-

ing, disjunctive programming is optimization over a union of polyhedra. The basic

document on disjunctive programming is the July 1974 technical report “Disjunc-

tive Programming: Properties of the convex hull of feasible points,” MSRR #348,

referenced as [10] in the survey below, which however has not appeared in print

until 24 years later, when it was published as an invited paper with a preface by

Gérard Cornuéjols and Bill Pulleyblank [B98]. The reasons for this situation are

complex. The 1974 paper was not rejected, but the report I received at the end of

a very long refereeing process was asking for a revision that would have involved

a major rewriting effort at a time when I was engaged in other, complementary re-

search projects. As a result, when shortly thereafter I was invited by the late Peter

Hammer to prepare an introductory survey of disjunctive programming for the up-

coming 1977 ARIDAM conference in Vancouver, I decided to incorporate into that

survey the main results of MSSR #348 and forego its publication as a stand alone

paper. This is how this survey came about.

Looking back on that decision, I find that not much of substance was lost. Sec-

tions 2–6 of this survey adequately summarize the main findings of the 1974 pa-

per, with one important exception, which I will now explain. MSRR #348 explored

the basic properties of disjunctive programs from a polyhedral point of view. It

gave two compact characterizations of the convex hull of a union P of polyhe-

dra Pi = {x : Aix ≥ bi}, i ∈ Q, in a higher dimensional space, a procedure we call

today extended formulation. The first one describes convP as the set of points x

satisfying x = ∑(xi : i ∈ Q) for some (xi,xi
0), i ∈ Q, such that Aixi ≥ bixi

0, i ∈ Q,

∑(xi
0 : i ∈ Q) = 1, xi

0 ≥ 0, i ∈ Q. The second one describes the facets of convP

as the vertices of the reverse polar of P, defined as P# := {y : yx ≥ 1 ∀x ∈ P},
shown to be the set of points y satisfying y ≥ uiAi, i ∈ Q for some ui ≥ 0 such that

uibi ≥ 1, i ∈ Q. Both characterizations are linear in |Q|, the number of polyhedra in

the union. In a certain sense the two characterizations are equivalent: projecting the

higher-dimensional polyhedron of the convex hull characterization onto the x-space

yields the set of all valid inequalities and conversely, taking the reverse polar of the

reverse polar yields the convex hull. Thus in the survey paper I only included the

second characterization, so that the first one did not appear in print until 1985 [B85].

But it is precisely this first characterization which has served as a prototype for the

many extended formulations that have proved to be such prolific tools for polyhedral

analysis of combinatorial problems, starting with the early studies of this type in the

1980’s [BP83], [BP89], [BLP89], and continuing with a plethora of results, the more

recent ones being exemplified by [PW06], [A06], [CW08]. It is also this first char-

acterization that was generalized to nonlinear disjunctive programming [SM99] and

was extensively used in the modeling of a variety of practical situations in industry.

Habent sua fata libelli, goes the Latin saying: books have their own fate. This

apparently also applies to papers or theorems or discoveries. While the work on

disjunctive programming, including the cutting planes that it entailed, stirred little

if any enthusiasm at the time of its inception, about 15 years later when Sebas-



10 Disjunctive Programming 285

tian Ceria, Gérard Cornuéjols and myself recast essentially the same results in a

new framework which we called lift-and-project [BCC93], the reaction was quite

different. This time our work was focused on algorithmic aspects, with the cutting

planes generated in rounds and embedded into an enumerative framework (branch

and cut), and was accompanied by the development of an efficient computer code

(MIPO, developed by Sebastian) that was able to solve many problem instances that

had been impervious to solution by branch-and-bound alone. Our interest in return-

ing to the ideas of disjunctive programming was prompted by the exciting work

of Lovász and Schrijver on matrix cones [LS91]. We discovered that a streamlined

version of the Lovász-Schrijver procedure was isomorphic to the disjunctive pro-

gramming procedure for generating the integer hull of a 0-1 program by starting

with the higher dimensional representation and projecting it onto the original space.

Thus the Lovász-Schrijver Theorem according to which n applications of this pro-

cedure (n being the number of 0-1 variables) yields the integer hull, follows directly

from the sequential convexification procedure for facial disjunctive programs, of

which 0-1 programs are a prime example (see Section 6 below). The reader will no

doubt recognize in the linear program P∗
1 (g,α0) preceding Theorem 4.4 of section

4 below, the ancestor of the cut generating linear program of the lift-and-project

(L&P) algorithm [BCC93], which is the specialization of P∗
1 (g,α0) to the case of

the disjunction xk = 0 or xk = 1.

The computational success of L&P cuts triggered a strong revival of interest in

cutting planes. Gérard and Sebastian soon discovered [BCCN96] that mixed inte-

ger Gomory (MIG) cuts, when used in the MIPO fashion, i.e., generated in rounds

and embedded into a branch-and-bound framework, could also solve many of the

problem instances unsolved at the time. Since the MIG cuts were easier to imple-

ment than the L&P ones, they were the first to find their way into the commercial

codes. The combination of cutting planes with branch and bound played a central

role in the revolution in the state of the art in integer programming that started in

the mid-90s. The commercial implementation of lift-and-project cuts had to await

the discovery of a method [BP03], [P03] for generating them directly from the LP

simplex tableau, without explicit recourse to the higher dimensional cut generating

linear program. Today, due to the efforts of Pierre Bonami [BB07], an open-source

implementation is also publicly available [COIN-OR].

References

[A06] A. Atamtürk, Strong formulations of robust mixed 0-1 programming, Mathematical
Programming 108 (2006) 235–250.

[ALWW07] K. Andersen, Q. Louveaux, R. Weismantel and L.A. Wolsey, Inequalities from two

rows of the simplex tableau, Integer Programming and Combinatorial Optimization
IPCO 12 (M. Fischetti and D.P. Williamson, eds.), Springer, 2007, pp. 1–16.

[B65] E. Balas, An additive algorithm for solving linear programs in 0-1 variables, Opera-
tions Research 13 (1965) 517–546.

[B85] E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete op-

timization problems, SIAM Journal on Algebraic and Discrete Methods 6 (1985)
466–486.



286 Egon Balas

[B98] E. Balas, Disjunctive programming: Properties of the convex hull of feasible points,
Invited paper with a Foreword by G. Cornuéjols and G. Pulleyblank, Discrete Ap-
plied Mathematics 89 (1998) 1–44.

[BB07] E. Balas and P. Bonami, New variants of lift-and-project cut generation from the LP

tableau: Open source implementation and testing, Integer Programming and Combi-
natorial Oprtimization IPCO 12 (M. Fischetti and D.P. Williamson, eds.), Springer,
2007, pp. 89–103.

[BC07] V. Borozan and G. Cornuéjols, Minimal inequalities for integer constraints, Techni-
cal Report, Tepper School, Carnegie Mellon University, 2007.

[BCC93] E. Balas, S. Ceria and G. Cornuéjols, A lift-and-project cutting plane algorithm for

mixed 0-1 programs, Mathematical Programming 58 (1993) 295–324.
[BCCN96] E. Balas, S. Ceria, G. Cornuéjols and N. Natraj, Gomory cuts revisited, Operations

Research Letters 19 (1996) 1–10.
[BLP89] M. Ball, W. Liu and W.R. Pulleyblank, Two-terminal Steiner tree polyhedra, Contri-

butions to Operations Research and Economics, MIT Press, 1989, pp. 251–284.
[BP83] E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of a bi-

partite graph, Networks 13 (1983) 495–516.
[BP89] E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of an

arbitrary graph, Combinatorica 9 (1989) 321–337.
[BP03] E. Balas and M. Perregaard, A precise correspondence between lift-and-project cuts,

simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming, Math-
ematical Programming 94 (2003) 221–245.

[CM07] G. Cornuéjols and F. Margot, On the facets of mixed integer programs with two inte-

ger variables and two constraints, Technical Report, Tepper School, Carnegie Mel-
lon University, 2007.

[COIN-OR] http://www.coin-or.org
[CW08] M. Conforti and L.A. Wolsey, Compact formulations as a union of polyhedra, Math-

ematical Programming 114 (2008) 277–289.
[DW07] S.S. Dey and L.A. Wolsey, Lifting integer variables in minimal inequalities cor-

responding to lattice-free triangles, Integer Programming and Combinatorial Opti-
mization IPCO 13 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Springer, 2008, pp.
463–475.

[LS91] L. Lovász and A. Schrijver, Cones of matrices and set functions and 0-1 optimization,
SIAM Journal of Optimization 1 (1991) 166–190.

[P03] M. Perregaard, A Practical implementation of lift-and-project cuts: a computational

exploration of lift-and-project with XPRESS-MP, International Symposium on Math-
ematical Programming, Copenhagen, August 2003.

[PW06] Y. Pochet and L.A. Wolsey, Production Planning by Mixed Integer Programming,
Springer, 2006.

[SM99] R. Stubbs and S. Mehrotra, A branch and cut method for 0-1 mixed integer convex

programming, Mathematical Programming 86 (1999) 515–532.



10 Disjunctive Programming 287



288 Egon Balas

The following article originally appeared as:

E. Balas, Disjunctive Programming, Discrete Optimization II (P.L. Hammer, E.L.

Johnson, and B.H. Korte, eds.), Annals of Discrete Mathematics 5 (1979) 3–51.

Copyright c© 1979 North-Holland Publishing Company.

Reprinted by permission from Elsevier.



10 Disjunctive Programming 289



290 Egon Balas



10 Disjunctive Programming 291



292 Egon Balas



10 Disjunctive Programming 293



294 Egon Balas



10 Disjunctive Programming 295



296 Egon Balas



10 Disjunctive Programming 297



298 Egon Balas



10 Disjunctive Programming 299



300 Egon Balas



10 Disjunctive Programming 301



302 Egon Balas



10 Disjunctive Programming 303



304 Egon Balas



10 Disjunctive Programming 305



306 Egon Balas



10 Disjunctive Programming 307



308 Egon Balas



10 Disjunctive Programming 309



310 Egon Balas



10 Disjunctive Programming 311



312 Egon Balas



10 Disjunctive Programming 313



314 Egon Balas



10 Disjunctive Programming 315



316 Egon Balas



10 Disjunctive Programming 317



318 Egon Balas



10 Disjunctive Programming 319



320 Egon Balas



10 Disjunctive Programming 321



322 Egon Balas



10 Disjunctive Programming 323



324 Egon Balas



10 Disjunctive Programming 325



326 Egon Balas



10 Disjunctive Programming 327



328 Egon Balas



10 Disjunctive Programming 329



330 Egon Balas



10 Disjunctive Programming 331



332 Egon Balas



10 Disjunctive Programming 333



334 Egon Balas



10 Disjunctive Programming 335



336 Egon Balas



10 Disjunctive Programming 337



338 Egon Balas

The following article originally appeared as:

E. Balas, Erratum to: Disjunctive Programming, Discrete Applied Mathematics 5

(1983) 247–248.

Copyright c© 1983 North-Holland Publishing Company.

Reprinted by permission from Elsevier.



10 Disjunctive Programming 339



340 Egon Balas



Part II

From the Beginnings to the
State-of-the-Art



The celebration of 50 Years of Integer Programming started with three invited talks

by Gérard Cornuéjols, William Cook, and Laurence Wolsey on integer program-

ming and combinatorial optimization from the beginnings to the state-of-the-art.

While their original lectures can be enjoyed on the DVD-Video that accompanies

this book, the written versions of their presentations are presented here. Michele

Conforti and Giacomo Zambelli have joined Gérard Cornuéjols as co-authors and

François Vanderbeck has joined Laurence Wolsey as a co-author.



Chapter 11

Polyhedral Approaches to
Mixed Integer Linear Programming

Michele Conforti, Gérard Cornuéjols,∗ and Giacomo Zambelli

Abstract This survey presents tools from polyhedral theory that are used in integer

programming. It applies them to the study of valid inequalities for mixed integer

linear sets, such as Gomory’s mixed integer cuts.

11.1 Introduction

11.1.1 Mixed integer linear programming

In this tutorial we consider mixed integer linear programs. These are problems

of the form

max cx+hy

Ax+Gy 6 b

x > 0 integral

y > 0,

(11.1)

Michele Conforti
Università di Padova, Italy
e-mail: conforti@math.unipd.it

Gérard Cornuéjols
Carnegie Mellon University, Pittsburgh, USA, and Université d’Aix-Marseille, France
e-mail: gc0v@andrew.cmu.edu

Giacomo Zambelli
Università di Padova, Italy
e-mail: giacomo@math.unipd.it

∗ Supported by NSF grant CMMI0653419, ONR grant N00014-09-1-0133 and ANR grant
ANR06-BLAN-0375.

343
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_11, © Springer-Verlag Berlin Heidelberg 2010 



344 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

where the data are the row vectors c∈Qn, h∈Qp, the matrices A∈Qm×n, G∈Qm×p

and the column vector b ∈ Qm; and the variables are the column vectors x ∈ Rn and

y ∈ Rp. The set S of feasible solutions to (11.1) is called a mixed integer linear set

when p > 1 and a pure integer linear set when p = 0.

y
S

1 2 30 4 5 x

Fig. 11.1 A mixed integer set

The polyhedral approach is a powerful tool for solving mixed integer linear pro-

grams (11.1). This is the topic of this tutorial.

11.1.2 Historical perspective

Babylonian tablets show that mathematicians were already solving systems of

linear equations over 3000 years ago. The eighth book of the Chinese Nine Books of

Arithmetic, written over 2000 years ago, describes the Gaussian elimination method.

In 1809, Gauss [29] used this method in his work and presented it as a “standard

technique”. Surprisingly, the method was subsequently named after him.

A major breakthrough occurred when mathematicians started analyzing sys-

tems of linear inequalities. This is a fertile ground for beautiful theories. In 1826

Fourier [28] gave an algorithm for solving such systems by eliminating variables one

at a time. Other important contributions are due to Farkas [26] and Minkowski [39].

Systems of linear inequalities define polyhedra and it is natural to optimize a lin-

ear function over them. This is the topic of linear programming, arguably one of

the greatest successes of computational mathematics in the twentieth century. The

simplex method, developed by Dantzig [20] in 1951, is currently used to solve large-

scale applications in all sorts of human endeavors. It is often desirable to find integer

solutions to linear programs. This is the topic of this tutorial. The first algorithm for

solving (11.1) in the pure integer case was discovered in 1958 by Gomory [31].

When considering algorithmic questions, a fundamental issue is the increase in

computing time when the size of the problem instance increases. In the 1960s Ed-



11 Polyhedral Approaches to Mixed Integer Linear Programming 345

monds [23] was one of the pioneers in stressing the importance of polynomial-time

algorithms. These are algorithms whose computing time is bounded by a polynomial

function of the instance size. In particular Edmonds [24] pointed out that, by being

a bit careful with the intermediate numbers that are generated, the Gaussian elimi-

nation method can be turned into a polynomial-time algorithm. The existence of a

polynomial-time algorithm for linear programming remained a challenge for many

years. This question was resolved positively by Khachiyan [34] in 1979, and later by

Karmarkar [33] using a totally different algorithm. Both algorithms were (and still

are) very influential, each in its own way. In integer programming, Lenstra [36]

found a polynomial-time algorithm when the number of variables is fixed. Al-

though integer programming is NP-hard in general, the polyhedral approach has

proved successful in practice. It can be traced back to the work of Dantzig, Fulk-

erson and Johnson [21]. Research is currently very active in this area. Also very

promising are non-polyhedral approximations that can be computed in polynomial-

time, such as semidefinite relaxations (Lovász and Schrijver [37], Goemans and

Williamson [30]).

In the next section, we motivate the polyhedral approach by presenting a cutting

plane method for solving mixed integer linear programs (11.1).

11.1.3 Cutting plane methods

Solving a mixed integer linear program (MILP) such as (11.1) is NP-hard

(Cook [16]). One approach that has been quite successful in practice is based on

an idea that is commonly used in computational mathematics: Find a relaxation that

is easier to compute and gives a tight approximation. We focus on linear program-

ming (LP) relaxations.

Given a mixed integer linear set S := {(x,y) ∈ Zn
+ ×Rp

+ : Ax+Gy 6 b}, a linear

programming relaxation of S is a set P′ = {(x,y) : A′x + G′y 6 b′} that contains S.

Why LP relaxations? Mainly for two reasons: As mentioned already, there are ef-

ficient practical algorithms for solving linear programs [20], [33]. Second, one can

generate a sequence of LP relaxations that provide increasingly tight approxima-

tions of the set S.

For a mixed integer set S, there is a natural LP relaxation:

P0 := {(x,y) : Ax+Gy 6 b, x > 0, y > 0}

which is obtained from the system that defines S by discarding the integrality re-

quirement on the vector x.

Let (x0,y0) be an optimal solution and z0 the value of the linear program

max{cx+hy : (x,y) ∈ P0} (11.2)

whose constraint set is the natural linear programming relaxation of S. We will as-

sume that we have a linear programming solver at our disposal, thus (x0,y0) and z0



346 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

are available to us. Let z∗ be the optimal value of (11.1). Since S ⊆ P0, it follows

that z0 > z∗. Furthermore if x0 is an integral vector, then (x0,y0) ∈ S, z∗ = z0 and the

MILP (11.1) is solved.

A strategy for dealing with an optimal solution (x0,y0) of (11.2) that is not in S

is to find an inequality αx+γy 6 β that is satisfied by every point in S and such that

αx0 + γy0 > β . The existence of such an inequality is guaranteed when (x0,y0) is

an optimal basic solution of (11.2), which can be found by standard LP algorithms.

An inequality αx+γy 6 β that is satisfied by every point in S is a valid inequality

for S. If such an inequality is violated by (x0,y0), it is a cutting plane separating

(x0,y0) from S.

Define now

P1 := P0 ∩{(x,y) : αx+ γy 6 β}.

Since S ⊆ P1 ⊂ P0, a linear programming relaxation for MILP based on P1 is

stronger than the natural relaxation based on P0 in the sense that the solution (x0,y0)
of the natural LP relaxation does not belong to P1. So the optimal value of the LP

max{cx+hy : (x,y) ∈ P1}

is at least as good an approximation of the value z∗ as z0. The recursive application

of this idea leads to the cutting plane approach:

Starting with i = 0, repeat:

Recursive Step: Solve the linear program max{cx + hy : (x,y) ∈ Pi}. If the associ-

ated optimal basic solution (xi,yi) belongs to S , Stop.

Otherwise solve the following separation problem:

Find a cutting plane αx+ γy 6 β separating (xi,yi) from S.

Set Pi+1 := Pi ∩{(x,y) : αx+ γy 6 β} and repeat the recursive step.

If (xi,yi) is not in S, there are infinitely many cutting planes separating (xi,yi)
from S. So the separation problem that is recursively solved in the above algorithm

has many solutions. There is usually a tradeoff between the running time of a sep-

aration procedure and the quality of the cutting planes it produces. We will discuss

several possibilities in this survey.

For now, we illustrate the cutting plane approach on a two variable example (see

Figure 11.2):
max z = 11x1 +4.2x2

−x1 + x2 ≤ 2

8x1 +2x2 ≤ 17

x1,x2 ≥ 0 integer.

(11.3)

We first add slack variables x3 and x4 to turn the inequality constraints into equali-

ties. The problem becomes:

z−11x1 −4.2x2 = 0

−x1 + x2 + x3 = 2

8x1 +2x2 + x4 = 17

x1,x2,x3,x4 ≥ 0 integer.



11 Polyhedral Approaches to Mixed Integer Linear Programming 347

Solving the LP relaxation, we get the optimal tableau:

z+1.16x3 +1.52x4 = 28.16

x2 +0.8x3 +0.1x4 = 3.3
x1 −0.2x3 +0.1x4 = 1.3

x1,x2,x3,x4 ≥ 0.

The corresponding basic solution is x3 = x4 = 0, x1 = 1.3, x2 = 3.3 with objective

value z = 28.16. Since the values of x1 and x2 are not integer, this is not a solution

of (11.3). We can generate a cut from the constraint x2 + 0.8x3 + 0.1x4 = 3.3 using

the following reasoning. Since x2 is an integer variable, we have

0.8x3 +0.1x4 = 0.3+ k where k ∈ Z.

Since the left-hand-side is nonnegative, we must have k > 0, which implies

0.8x3 +0.1x4 > 0.3.

This is the famous Gomory fractional cut [31]. Note that it cuts off the above frac-

tional LP solution x3 = x4 = 0.

Since x3 = 2 + x1 − x2 and x4 = 17−8x1 −2x2, we can express Gomory’s frac-

tional cut in the space (x1,x2). This yields x2 6 3 (see Figure 11.2).

Cut 1

Cut 2

3

x1

x2

Fig. 11.2 The first two cuts in the cutting plane algorithm

Adding this cut to the linear programming relaxation, we get the following for-

mulation.
max 11x1 +4.2x2

−x1 + x2 ≤ 2

8x1 +2x2 ≤ 17

x2 ≤ 3

x1,x2 ≥ 0.

Solving this linear program, we find the basic solution x1 = 1.375, x2 = 3 with

value z = 27.725. From the optimal tableau, we can generate a new fractional cut:



348 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

x1 + x2 6 4.

Adding this cut to the LP, we find a new LP optimum x1 = 1.5, x2 = 2.5 with value

z = 27. Two more iterations are needed to obtain the optimal integer solution x1 = 1,

x2 = 3 with value z = 23.6.

11.2 Polyhedra and the fundamental theorem of integer

programming

A polyhedron in Rn is a set of the form P := {x ∈ Rn : Ax 6 b} where A is a real

matrix and b a real vector. If A and b have rational entries, P is a rational polyhedron.

A polyhedron of the form {x ∈ Rn : Ax 6 0} is called a polyhedral cone. Note that

a polyhedral cone is always nonempty since it contains the null vector 0.

For S ⊆ Rn, the convex hull of S is the set conv(S) := {x ∈ Rn : x = ∑k
i=1 λix

i

where k > 1, λ ∈ Rk
+,∑k

i=1 λi = 1 and x1, . . . ,xk ∈ S}. This is the smallest convex

set that contains S. Note that conv( /0) = /0. The convex hull of a finite set of points in

Rn is called a polytope. It will sometimes be useful to work with conv(S), the closure

of conv(S), which is the smallest closed convex set that contains S. The conic hull

of a nonempty set S ⊆ Rn is cone(S) := {x ∈ Rn : x = ∑k
i=1 λix

i where k > 1, λ ∈

Rk
+ and x1, . . . ,xk ∈ S}. If S is a finite set, cone(S) is said to be finitely generated. It

will be convenient to define cone( /0) = {0}.

Given a cone C and r ∈ C \ {0}, the set cone(r) = {λ r : λ > 0} is called a ray

of C. Since cone(λ r) = cone(r) for every λ > 0, we will sometimes simply refer to

a vector r ∈ C as a ray, to denote the corresponding ray cone(r). So when we say

that r and r′ are distinct rays, we mean cone(r) 6= cone(r′). We say that r ∈C \{0}

is an extreme ray if there are no distinct rays r1 and r2 such that r = r1 + r2. We

say that C is pointed if, for every r ∈C \{0}, −r /∈C. One can verify that if C is a

finitely generated pointed cone, then C is generated by its extreme rays.

An important theorem, due to Minkowski and Weyl, states that every polyhe-

dron P can be written as the sum of a polytope Q and a finitely generated cone C.

Here Q +C := {x ∈ Rn : x = y + z for some y ∈ Q and z ∈ C}. Note that P = /0

if and only if Q = /0. If P := {x ∈ Rn : Ax 6 b} is nonempty, then C is the cone

{x ∈ Rn : Ax 6 0}, which is called the recession cone of P and denoted by rec(P).
We will prove this theorem in Section 11.2.3.

Using the Minkowski-Weyl theorem, we will prove the fundamental theorem of

integer programming, due to Meyer [38]:

Given rational matrices A and G and a rational vector b, let P := {(x,y) : Ax +
Gy 6 b} and S := {(x,y) ∈ P : x integral}. Then there exist rational matrices A′, G′

and a rational vector b′ such that conv(S) = {(x,y) : A′x+G′y 6 b′}.

In other words, when P is a rational polyhedron, then the convex hull of S is also

a rational polyhedron. Note that, if matrices A, G are not rational, then conv(S) may

not be a polyhedron as shown by the example S := {x ∈ Z2 : 1 6 x2 6
√

2x1}. In

this case, infinitely many inequalities are required to describe conv(S) by a system



11 Polyhedral Approaches to Mixed Integer Linear Programming 349

of linear inequalities. In this survey we assume that the data A,G,b are rational.

Meyer’s theorem is the theoretical underpinning of the polyhedral approach to in-

teger programming. Indeed it shows that (11.1), the problem of optimizing a linear

function over a mixed integer set S, is equivalent to solving a linear program. The

main difficulty is that the polyhedron conv(S) is not known explicitly. In the later

sections of the tutorial, we will address the constructive aspects of conv(S).

11.2.1 Farkas’ lemma and linear programming duality

The following is a fundamental fact in linear algebra:

Theorem 11.1. A system of linear equations Ax = b is infeasible if and only if the

system uA = 0, ub < 0 is feasible.

A constructive proof of Theorem 11.1 is straightforward using Gaussian elimina-

tion on the system Ax = b. Furthermore, one can decide in polynomial time which

of the two systems is feasible, and find a solution, again using Gaussian elimination

(Edmonds [24], see e.g. Schrijver [45] p. 27). Farkas’ lemma [26] provides a cer-

tificate of the solvability of a system of linear inequalities Ax ≤ b in the same spirit

as Theorem 11.1. However its proof is not as straightforward. This is not surprising

since checking feasibility of a system of linear inequalities is a linear programming

problem. In fact, Farkas’ lemma can be used to derive the strong duality theorem of

linear programming, as we will show later in this section. We first give a proof of

Farkas’ lemma based on Theorem 11.1, following Conforti, Di Summa and Zam-

belli [15]. A linear system aix = bi, i = 1, . . . , p, aix 6 bi, i = p + 1, . . . ,m is min-

imally infeasible if it has no solution but each of the m linear systems obtained by

removing a single constraint has a solution.

Theorem 11.2 (Farkas’ lemma). The system of linear inequalities Ax 6 b is infea-

sible if and only if the system uA = 0, ub < 0, u > 0 is feasible.

Proof. Assume uA = 0, ub < 0, u > 0 is feasible. Then 0 = uAx 6 ub < 0 for any x

satisfying Ax 6 b. It follows that Ax 6 b is infeasible and this proves the “if” part.

Now we prove the “only if” part. Let A′x 6 b′ be an infeasible system. Let ai,

i ∈ R, denote the rows of A′. Remove inequalities from the system A′x 6 b′ until it

becomes minimally infeasible. Let Ax 6 b be the resulting system and let M ⊆ R

index the rows of A. We will show that there exists u > 0 such that uA = 0 and

ub < 0. Setting ui = 0 for all i ∈ R \M, this will show that there exists u > 0 such

that uA′ = 0 and ub′ < 0, proving the “only if” part. Given S ⊆ M, define S̄ := M \S.

Claim. For every S ⊆ M the system aix = bi, i ∈ S, aix 6 bi, i ∈ S̄ is minimally

infeasible.

The proof is by induction on |S|. The claim is true when S = /0. Consider S ⊆ M

with |S| > 1 and assume by induction that the claim holds for any set of cardinality

smaller than |S|.



350 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

The system aix = bi, i ∈ S, aix 6 bi, i ∈ S̄ is infeasible. Let k ∈ M. By the induc-

tion hypothesis applied to S\{k}, the system

aix = bi, i ∈ S\{k}, aix 6 bi, i ∈ S̄ (11.4)

is feasible for any k ∈ S. Therefore, to prove the claim, we only need to show that

aix = bi, i ∈ S, aix 6 bi, i ∈ S̄\{k} (11.5)

is feasible for any k ∈ S̄. Let h ∈ S. By induction, there exist xh and xk such that

aix
h = bi, i ∈ S\{h}, aix

h 6 bi, i ∈ S̄

and

aix
k = bi, i ∈ S\{h}, aix

k 6 bi, i ∈ S̄∪{h}\{k}.

Notice that ahxk 6 bh and ahxh > bh, so, setting α = ahxh − bh > 0 and β = bh −

ahxk > 0, the vector y = α
α+β xk + β

α+β xh is a solution for (11.5). This proves the

claim.

Now, since aix 6 bi, i ∈ M, is infeasible, then clearly aix = bi, i ∈ M, is infeasible

and by Theorem 11.1, there exists a vector u such that uA = 0, ub < 0. The lemma

holds if u > 0. So suppose u1 < 0. According to the Claim, there is a vector x∗ such

that aix
∗ = bi, i ∈ M \ {1}. Since Ax ≤ b is an infeasible system, a1x∗ > b1. This

(together with u1 < 0) shows u(Ax∗−b) < 0, contradicting

u(Ax∗−b) = (uA)x∗−ub > 0

where the inequality follows from uA = 0 and ub < 0. ⊓⊔

Equivalently, Farkas’ lemma can be written as:

Corollary 11.1. The system of linear inequalities Ax 6 b is feasible if and only if

ub ≥ 0 for every vector u satisfying uA = 0, u > 0.

Farkas’ lemma can also be restated as follows:

Theorem 11.3. The system Ax = b, x > 0 is feasible if and only if ub ≥ 0 for every

u satisfying uA > 0.

Proof. The system Ax = b, x > 0 is equivalent to Ax 6 b, −Ax 6 −b, −x 6 0. The

theorem follows by applying Corollary 11.1 to this latter system. ⊓⊔

The following is a more general, yet still equivalent, form of Farkas’ lemma.

Theorem 11.4. The system Ax+By ≤ f , Cx+Dy = g, x > 0 is feasible if and only

if u f + vg ≥ 0 for every (u,v) satisfying uA+ vC > 0, uB+ vD = 0, u ≥ 0.

Checking the feasibility of a system of linear inequalities can be done in poly-

nomial time (Khachiyan [34], Karmarkar [33]). Next we derive the fundamental

theorem of Linear Programming from Farkas’ lemma.



11 Polyhedral Approaches to Mixed Integer Linear Programming 351

Theorem 11.5 (Linear Programming Duality). Let

P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0}.

If P and D are both nonempty, then

max{cx : x ∈ P} = min{ub : u ∈ D}. (11.6)

Proof. For x̄ ∈ P and ū ∈ D we have that cx̄ = ūAx̄ ≤ ūb. Therefore “max ≤ min′′

always holds. To prove equality, we need to prove that the system

−cx+bT uT ≤ 0, Ax ≤ b, AT uT = cT , uT ≥ 0 (11.7)

is feasible. By Farkas’ lemma (Theorem 11.4), (11.7) is feasible if and only µb +
νcT ≥ 0 for every vector (λ ,µ,ν) satisfying

µA−λc = 0, νAT +λbT ≥ 0, λ ,µ ≥ 0.

If λ > 0, then µb = λ−1λbT µT ≥−λ−1νAT µT = −λ−1νcT λ = −νcT .

If λ = 0, let x̄ ∈ P and ū ∈ D. Then µb ≥ µAx̄ = 0 ≥−νAT uT = −νcT .

Therefore in both cases we have µb+νcT ≥ 0 and the proof is complete. ⊓⊔

Theorem 11.6 (Complementary slackness). Let Xopt and Uopt be subsets of P :=
{x : Ax 6 b} and D := {u : uA = c, u > 0} respectively. Define I = {i : ui > 0

for some u ∈Uopt}.

Then Xopt and Uopt are the sets of optimal solutions of the pair of dual LPs

max{cx : x ∈ P} and min{ub : u ∈ D}

if and only if

Xopt = {x : aix = bi, i ∈ I, aix ≤ bi, i 6∈ I}.

Proof. By Theorem 11.5, the sets Xopt and Uopt are the sets of optimal solutions of

the pair of dual LPs above if and only if cx = ub for every x ∈ Xopt, u ∈ Uopt. For

every x ∈ P and u ∈ D, cx = uAx 6 ub, hence equality holds throughout if and only

if aix = bi for every i ∈ I and every x ∈ Xopt. ⊓⊔

Here is another well-known consequence of Farkas’ lemma:

Remark 11.1. Let P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0}. If D = /0 and

P 6= /0, then max{cx : x ∈ P} is unbounded.

Proof. Since D = /0, by Farkas’ lemma, the system Ay ≤ 0, cy > 0 is feasible: Let

ȳ be a solution of this system and x̄ ∈ P. Then x̄ + λ ȳ ∈ P for every λ ≥ 0. Since

cȳ > 0, max{cx : x ∈ P} is unbounded. ⊓⊔



352 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

11.2.2 Carathéodory’s theorem

Theorem 11.7 (Carathéodory’s theorem). If the linear system Ax = b,x > 0 is fea-

sible, then it has a solution x̄ where the columns of A corresponding to the positive

entries of x̄ are linearly independent.

Proof. Let x̄ be a solution with the minimum number of positive entries and let Ā be

the column submatrix of A corresponding to the positive entries of x̄. If the columns

of Ā are linearly dependent, there exists a vector y 6= 0 such that Ay = 0 and y j = 0

whenever x̄ j = 0. We assume w.l.o.g. that y has at least one positive component. Let

λ = miny j>0
x̄ j

y j
, let j∗ be an index for which this minimum is attained and define

x∗ = x̄−λy. Clearly Ax∗ = b. By the choice of λ , x∗ > 0 and x∗j = 0 whenever x̄ j = 0.

Furthermore x∗j∗ = 0 while x̄ j∗ > 0, a contradiction to our choice of x̄. ⊓⊔

The next theorem combines Carathéodory’s Theorem 11.7 with a strengthening

of Farkas’ lemma.

Theorem 11.8. For a linear system Ax = b,x > 0 exactly one of the following two

alternatives holds:

• Ax = b,x > 0 admits a solution x̄ where the columns of A, corresponding to the

positive entries of x̄, are linearly independent.

• There is a vector u such that uA > 0, ub < 0 and there is a column submatrix A0

of A such that uA0 = 0 and rank(A0) = rank(A|b)−1.

Proof. If Ax = b,x > 0 admits a solution, then Theorem 11.7 shows that the first

outcome holds. So we assume that Ax = b, x > 0 is infeasible and we show that the

second outcome holds.

If rank(A) = rank(A|b)−1, then by standard linear algebra Ax = b is infeasible, so

by Theorem 11.1 there exists a vector u such that uA = 0, ub < 0 and the theorem

obviously holds in this case.

So we consider the case rank(A) = rank(A|b) and we can assume that A has full

row-rank m. By Theorem 11.3, there exists a vector u such that uA > 0, ub < 0.

Among such vectors, choose u such that the column submatrix A0 of A where

uA0 = 0 has maximum rank. Suppose by contradiction that rank(A0) 6 m−2. Then

rank(A0|A1) 6 m− 1 where 1 denotes the vector of all 1s. So there exists a vector

v 6= 0 such that vA0 = 0, vA1 = 0, and we may choose v such that vb > 0.

Let J be the set of column-indices of A = (a1, . . . ,an) and J0 be the subset of J,

corresponding to the column indices of A0. Since v 6= 0 and A has full row-rank,

there is an index j such that va j 6= 0. Since vA1 = 0, then there is an index j such

that va j > 0. (Note that such an index j is in J \ J0).

Let λ = min j∈J:va j>0
ua j

va j and let j∗ be an index for which this minimum is at-

tained. Then by the choice of λ , (u− λv)A > 0 and (u− λv)b < 0. Furthermore

(u−λv)A0 = 0 and (u−λv)a j∗ = 0. Since vA0 = 0 and va j∗ > 0, then A0x = a j∗

is infeasible by Theorem 11.1. This implies rank(A0|a j∗) = rank(A0)+1. Therefore

u−λv contradicts the choice of u. ⊓⊔



11 Polyhedral Approaches to Mixed Integer Linear Programming 353

11.2.3 The theorem of Minkowski-Weyl

We first present the Minkowski-Weyl theorem for cones.

Theorem 11.9 (Minkowski-Weyl theorem for cones). For a set C ⊆ Rn, the two

following conditions are equivalent:

1. There is a matrix A such that C = {x ∈ Rn : Ax ≥ 0}.

2. There is a matrix R such that C = {x ∈ Rn : x = Rµ , µ > 0}.

Theorem 11.9 states that a cone is polyhedral if and only if it is finitely generated.

The columns of R are the generators of the cone C.

A pair of two matrices (A,R) that satisfy {x ∈ Rn : Ax ≥ 0} = {x ∈ Rn : x =
Rµ , µ > 0} will be called an MW-pair. Theorem 11.9 states that, for every matrix A,

there exists a matrix R such that (A,R) is an MW-pair and, conversely, for every

matrix R, there exists a matrix A such that (A,R) is an MW-pair. The next lemma

shows that any one of these two statements implies the other.

Lemma 11.1. A pair of matrices (A,R) is an MW-pair if and only if (RT ,AT ) is an

MW-pair.

Proof. We only need to show that if (A,R) is an MW-pair, then (RT ,AT ) is an MW-

pair. Assume (A,R) is an MW-pair. By Farkas’ lemma (Theorem 11.3), {x ∈ Rn :

x = Rµ ,µ > 0} = {x ∈ Rn : xT y ≥ 0 for every y satisfying RT y ≥ 0}. Therefore

{x : Ax ≥ 0} = {x : xT y ≥ 0 for every y such that RT y ≥ 0}. (11.8)

We need to show that {y : RT y ≥ 0} = {y : y = AT ν , ν ≥ 0}.

We first show {y : RT y ≥ 0} ⊆ {y : y = AT ν , ν ≥ 0}. Let ȳ satisfying RT ȳ ≥ 0. By

(11.8), inequality ȳT x ≥ 0 is valid for Ax ≥ 0. By Farkas’ Lemma (Theorem 11.3),

it follows that there exists a vector ν such that ȳ = AT ν and ν > 0.

We show the reverse inclusion. Given ȳ such that ȳ = AT ν for some ν ≥ 0, RT ȳ =
RT AT ν ≥ 0, where the inequality follows from the assumption that (A,R) is an MW-

pair, because AR has nonnonnegative entries (since ARe j ≥ 0 for the unit vectors e j).

⊓⊔

Proof of Theorem 11.9

By Lemma 11.1 it is enough to prove that 2 implies 1.

Let r1, . . . ,rk be the columns of R. We may assume that the vectors r1, . . . ,rk

span Rn, else all these vectors satisfy an equation dr = 0 where d 6= 0 and one

variable can be eliminated (i.e., the dimension can be reduced). Now consider the

half spaces {x ∈ Rn : ax ≥ 0} that contain {r1, . . . ,rk} such that the hyperplane

{x∈Rn : ax = 0} contains n−1 linearly independent vectors among r1, . . . ,rk. Since

these vectors span Rn, there is a finite number of such half-spaces. (In fact, at most(
k

n−1

)
). Let A be the matrix whose rows contain the incidence vector a of all such

subspaces and consider the cones



354 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

CA := {x ∈ Rn : Ax ≥ 0}, CR := {x ∈ Rn : x = Rµ ,µ > 0}.

Since every inequality of the system Ax ≥ 0 is valid for r1, . . . ,rk, we have CR ⊆CA.

Let x̄ 6∈CR. Then the system x̄ = Rµ,µ ≥ 0 is infeasible. By Theorem 11.8, there

exists u such that uR > 0, ux̄ < 0 and there exists a column submatrix R0 of R such

that uR0 = 0 and rank(R0) = rank(R|x̄)− 1 = n− 1 (because r1, . . . ,rk span Rn).

Therefore u is one of the vectors a from Ax ≥ 0. But then ax̄ < 0, i.e., x̄ 6∈CA. So CR

coincides with CA and the theorem follows. ¤

Remark 11.2. The proof of Theorem 11.9 shows that, if A is a rational matrix, there

exists a rational matrix R such that (A,R) is an MW-pair.

We now present the Minkowski-Weyl theorem for polyhedra. Given subsets V , R

of Rn, the Minkowski sum of V, R is the set:

V +R := {x ∈ Rn : there exist v ∈V, r ∈ R such that x = v+ r}.

If one of V , R is empty, the Minkowski sum of V, R is empty.

Theorem 11.10 (Minkowski-Weyl theorem for polyhedra). For a subset P of Rn,

the following two conditions are equivalent:

1. P is a polyhedron, i.e., there is a matrix A and a vector b such that P = {x ∈

Rn : Ax 6 b}.

2. There exist vectors v1, . . . ,vp, r1, . . . ,rq such that

P = conv(v1, . . . ,vp)+ cone(r1, . . . ,rq).

Proof. We show that 1 implies 2. Consider the polyhedral cone CP := {(x,y) ∈
Rn+1 : by−Ax > 0,y > 0}. Notice that P = {x : (x,1) ∈ CP}. By Theorem 11.9,

the cone CP is finitely generated. Since y > 0 for every vector (x,y) ∈ CP, we can

assume that y = 0 or 1 for all the rays that generate CP. That is,

CP = cone

{(
v1

1

)
, . . . ,

(
vp

1

)
,

(
r1

0

)
, . . . ,

(
rq

0

)}
.

Therefore P = conv{v1, . . . ,vp}+ cone{r1, . . . ,rq}.
The converse statement follows analogously from Theorem 11.9. ⊓⊔

Corollary 11.2 (Minkowski-Weyl theorem for polytopes). For a set P ⊆ Rn, the

following two conditions are equivalent:

1. P is bounded and there is a matrix A and a vector b such that P = {x ∈ Rn :

Ax 6 b}.

2. There is a finite set of vectors v1, . . . ,vp such that P = conv(v1, . . . ,vp).

For a matrix V := (v1, . . . ,vp) whose columns are the vectors v j, it will be conve-

nient to denote by conv(V ) the set conv(v1, . . . ,vp). Similarly cone(V ) will denote

the set cone(v1, . . . ,vp).



11 Polyhedral Approaches to Mixed Integer Linear Programming 355

11.2.4 Projections

Let P ⊆Rn+p where (x,y)∈ P will be interpreted as meaning x ∈Rn and y ∈Rp.

The projection of P onto the x-space Rn is

projx(P) := {x ∈ Rn : ∃y ∈ Rp with (x,y) ∈ P}.

x

y

P

projx(P)

Fig. 11.3 Projection

Theorem 11.11. Let P := {(x,y) ∈ Rn ×Rp : Ax + Gy 6 b}. Then projx(P) = {x ∈

Rn : vt(b−Ax) > 0 for all t ∈ T} where {vt}t∈T is the set of extreme rays of Q :=
{v ∈ Rm : vG = 0,v > 0}.

Proof. Let x ∈ Rn. By Farkas’s Lemma, Gy 6 b−Ax has a solution y if and only if

vt(b−Ax) > 0 for all v ∈ Q. Since v > 0 for every v ∈ Q, then Q is pointed, hence it

is generated by its extreme rays, and the statement follows. ⊓⊔

Remark 11.3. It follows from Theorem 11.11 that the projection of a polyhedron is

again a polyhedron. If a polyhedron is rational, then its projection is also a rational

polyhedron.

Remark 11.4. Variants of Theorem 11.11 can be proved similarly:

If y > 0 in P, then the relevant cone Q is {v : vG > 0, v > 0}.

If y > 0 and Ax+Gy = b in P, the relevant cone is {v : vG > 0} with v unrestricted

in sign.

Enumerating the extreme rays of Q may not be an easy task in applications.

Another way of obtaining the projection of P is to eliminate the variables yi one at

a time (Fourier elimination procedure):

Consider a polyhedron P ⊆ Rn+1 defined by the system of inequalities:

n

∑
j=1

ai jx j +giz 6 bi for i ∈ I. (11.9)

Let I0 = {i ∈ I : gi = 0}, I+ = {i ∈ I : gi > 0}, I− = {i ∈ I : gi < 0}. The Fourier

procedure eliminates the variable z as follows: It keeps the inequalities of (11.9)

in I0, and it combines each pair of inequalities i ∈ I+ and l ∈ I− to eliminate z.



356 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

Theorem 11.12. The system of |I0|+ |I+||I−| inequalities obtained by the Fourier

procedure is the projection projx(P) of P in the x-space Rn.

We leave the proof as a (fairly easy) exercise to the reader.

11.2.5 The fundamental theorem for MILP

Let S := {(x,y) : Ax + Gy 6 b, x integral} be a mixed integer set, where matri-

ces A, G and vector b have rational entries. Meyer [38] proved that conv(S) is a

rational polyhedron, i.e., there exist rational matrices A′ and G′ and a rational vector

b′ such that conv(S) = {(x,y) : A′x+G′y 6 b′}.

Note first that if S contains finitely many vectors (for instance this happens when

S is the set of integral vectors contained in a polytope), the above result follows from

Corollary 11.2, without the need for the assumption that A, G and b have rational

entries.

Theorem 11.13 (Meyer [38]). Let P := {(x,y) : Ax + Gy 6 b} be a rational poly-

hedron and let S := {(x,y) ∈ P : x integral}. Then conv(S) is a rational polyhedron.

Furthermore, if S is nonempty, the recession cones of conv(S) and P coincide.

Proof. If S = /0, the theorem is obvious. We assume that S and P are both nonempty.

By the Minkowski-Weyl theorem (Theorem 11.10), P = conv(V )+ cone(R) where

V = (v1, . . . ,vp), R = (r1, . . . ,rq). Since P is a rational polyhedron, by Remark 11.2

we can assume that V is a rational matrix and R is an integral matrix.

Consider the following truncation of P

T := {(x,y) : (x,y) =
p

∑
i=1

λiv
i +

q

∑
j=1

µ jr
j,

p

∑
i=1

λi = 1,λ ≥ 0, 0 ≤ µ ≤ 1}.

T is the projection of a rational polyhedron and therefore it is a rational polyhe-

dron by Remark 11.3. Furthermore T is bounded, which implies that it is a rational

polytope by Corollary 11.2. Let TI := {(x,y) ∈ T : x integral}.

Claim. conv(TI) is a rational polytope.

Since T is a polytope, the set X := {x : there exist y such that (x,y) ∈ TI} is a finite

set. For fixed x̄ ∈ X , the set Tx̄ := {(x̄,y) : (x̄,y) ∈ TI} is a rational polytope and

therefore by Corollary 11.2, Tx̄ = conv(Vx̄) for some rational matrix Vx̄. Since X is

a finite set, there is a rational matrix VTI
which contains all the columns of all the

matrices Vx̄, for x̄ ∈ X . Therefore conv(TI) = conv(VTI
) and this proves the claim.

A point (x̄, ȳ) belongs to S if and only if x̄ is integral and there exist multipliers

λ > 0, ∑
p
i=1 λi = 1 and µ ≥ 0 such that

(x̄, ȳ) =
p

∑
i=1

λiv
i +

q

∑
j=1

(µ j −⌊µ j⌋)r
j +

q

∑
j=1

⌊µ j⌋r j.



11 Polyhedral Approaches to Mixed Integer Linear Programming 357

The point ∑
p
i=1 λiv

i + ∑
q
j=1(µ j −⌊µ j⌋)r

j belongs to T and therefore it also be-

longs to TI since x̄ and ∑
q
j=1⌊µ j⌋r j are integral vectors. Thus

S = TI +RI (11.10)

where RI is the set of integral conic combinations of r1, . . . ,rq.

This shows in particular that TI is nonempty. Equation (11.10) implies that conv(S)=
conv(TI) + cone(R). By the above claim, conv(TI) is a rational polytope. Thus

conv(S) = conv(TI)+ cone(R) is a rational polyhedron having the same recession

cone (namely cone(R)) as P. ⊓⊔

Remark 11.5. In Theorem 11.13:

• If matrices A, G are not rational, then conv(S) may not be a polyhedron. One

such example is the set S := {x ∈ Z2 : 1 6 x2 6
√

2x1}.

• If A, G are rational matrices but b is not rational, then conv(S) is a polyhedron

that has the same recession cone as P. However conv(S) is not always a rational

polyhedron. (This can be inferred from the above proof).

11.2.6 Valid inequalities

An inequality cx ≤ δ is valid for the set P ⊆ Rn if cx ≤ δ is satisfied by every

point in P.

Theorem 11.14. Let P := {x : Ax ≤ b} be a nonempty polyhedron. An inequality

cx ≤ δ is valid for P if and only if the system uA = c,ub ≤ δ ,u ≥ 0 is feasible.

Proof. Consider the linear program max{cx : x ∈ P}. Since P 6= /0 and cx ≤ δ is a

valid inequality for P, the above program admits a finite optimum and its value is

δ ′ ≤ δ .

By Remark 11.1, the set D = {u : uA = c, u ≥ 0} is nonempty. Therefore by Theo-

rem 11.5, δ ′ is the common value of the equation (11.6). Thus an optimum solution u

of min{ub : u ∈ D} satisfies uA = c, ub 6 δ , u > 0.

Conversely, assume uA = c, ub 6 δ , u > 0 is feasible. Then, for all x ∈ P, we

have cx = uAx 6 ub 6 δ . This shows that cx 6 δ is valid for P. ⊓⊔

11.2.7 Facets

Let P := {x ∈ Rn : Ax 6 b} be a polyhedron. A face of P is a set of the form

F := P∩{x ∈ Rn : cx = δ}

where cx 6 δ is a valid inequality for P (the inequality is said to define the face F).

A face is itself a polyhedron since it is the intersection of the polyhedron P with an-



358 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

other polyhedron (the hyperplane cx = δ ). A face of P is said proper if it is nonempty

and properly contained in P. Maximal proper faces of P are called facets.

Theorem 11.15. Let P := {x ∈ Rn : Ax 6 b} be a nonempty polyhedron. Let M be

the set of row indices of A and let I ⊆ M. The set

FI := {x ∈ Rn : aix = bi, i ∈ I, aix ≤ bi, i ∈ M \ I}.

is a face of P. Conversely, if F is a nonempty face of P, then F = FI for some I ⊆ M.

Proof. Let u be a vector such that ui > 0, i ∈ I, ui = 0, i ∈ M \ I, and let c := uA,

δ := ub. Then, given x∈P, clearly x satisfies cx = δ if and only if it satisfies aix = bi,

i ∈ I. Thus FI = P∩{x ∈ Rn : cx = δ}, so FI is a face.

Conversely, let F := {x ∈ P : cx = δ} be a nonempty face of P. Then F is the set

of optimal solutions of the LP max{cx : x ∈ P}. Let I be the set of indices defined

as in Theorem 11.6. Then by Theorem 11.6, F = FI . ⊓⊔

Theorem 11.15 has important consequences:

• The number of faces of P is finite.

• The intersection of faces of P is a face of P.

• If F is a face of P and F ′ is a face of F , then F ′ is also a face of P.

• If F1, F2 are faces of P, there is a unique minimal face F of P that contains both F1

and F2 (The system of equalities that defines F is the intersection of the systems

of equalities that define F1 and F2).

Furthermore, by Theorem 11.15, we can express a face F of P as follows. Let

A=
F x 6 b=

F be the set of all the inequalities aix 6 bi in Ax 6 b such that F ⊆ {x ∈Rn :

aix = bi}. Then

F = P∩{x ∈ Rn : A=
F x = b=

F }.

An inequality aix 6 bi from Ax 6 b such that aix = bi for all x ∈ P is called an

implicit equality of P. Let us partition the inequalities Ax 6 b defining P into the

implicit equalities A=x 6 b= and the rest A<x 6 b< (either of these two families of

inequalities could be empty). Thus P = {x ∈ Rn : A=x = b=, A<x 6 b<} and for

each inequality aix 6 bi in A<x 6 b<, there exists x̄ ∈ P such that aix̄ < bi.

Remark 11.6. P contains a point x̄ such that A=x̄ = b=, A<x̄ < b<.

Proof. Indeed, for every inequality aix 6 bi in A<x 6 b<, there is a point xi ∈ P such

that aix
i < bi. Let r be the number of these points. Then x̄ := 1

r ∑r
i=1 xi satisfies the

statement. ⊓⊔

An inequality aix ≤ bi of the system Ax ≤ b is redundant if aix ≤ bi is a valid

inequality for the system obtained from Ax ≤ b by removing the inequality aix ≤ bi.

Theorem 11.14 provides a characterization of redundant inequalities.

Let I< denote the set of indices of the rows of A<x ≤ b<. For every i ∈ I<, de-

note by A<
−ix 6 b<

−i the system obtained from A<x ≤ b< by removing the inequality

a<
i x ≤ b<

i .



11 Polyhedral Approaches to Mixed Integer Linear Programming 359

Lemma 11.2. Assume that A<x ≤ b< contains no redundant inequality. Then for

every i ∈ I<, the polyhedron P contains a point xi satisfying

A=x = b=, A<
−ix < b<

−i, a<
i x = b<

i .

Proof. Let i ∈ I<. Since no inequality in A<x ≤ b< is redundant, the system:

A=x = b=, A<
−ix ≤ b<

−i, a<
i x > b<

i

is feasible. Let x̄i be a point satisfying this system. By Remark 11.6, there is a point

x̄ satisfying A=x = b=,A<x < b<. Then a point on the segment having x̄ and x̄i as

endpoints satisfies the above property. ⊓⊔

Theorem 11.16. Let P ⊆ Rn be a polyhedron. Partition the inequalities defining P

into the implicit equalities and the rest P = {x ∈Rn : A=x = b=,A<x ≤ b<}. Assume

that A<x ≤ b< contains no redundant inequality. Then a face of P is a facet if and

only if it is of the form

Fi := {x ∈ P,a<
i x = β<

i }, for some i ∈ I<.

Proof. Let F be a facet of P. Since no inequality in A<x ≤ b< in an implicit equality

for P, by Theorem 11.15 and the maximality of F , we have that F = Fi, for some

i ∈ I<.

Conversely, we show that for every i ∈ I<, the set Fi is a facet. By Lemma 11.2, Fi is

a proper face of P and it is not contained in any other face Fj, j ∈ I<. Since all the

facets of P are of the form Fj for j ∈ I<, Fi is a proper face of P that is maximal with

respect to inclusion, i.e., Fi a facet of P. ⊓⊔

This result states that, if a polyhedron in Rn has m facets, any representation by a

system of linear inequalities in Rn contains at least m inequalities. In integer linear

programming, we often consider polyhedra that are given implicitly as conv(S). It

is not unusual for such polyhedra to have a number of facets that is exponential in

the size of the input. Thus their representation by linear inequalities in Rn is large.

In some cases, there is a way to get around this difficulty: a polyhedron with a large

number of facets can sometimes be obtained as the projection of a polyhedron with

a small number of facets. We illustrate this idea in the next section.

11.3 Union of polyhedra

In this section, we prove a result of Balas [2, 3] about the union of k polyhedra.

Consider k polyhedra Pi := {x ∈ Rn : Aix 6 bi}, i = 1, . . . ,k and their union ∪k
i=1Pi.

We will show that conv(∪k
i=1Pi), the smallest closed convex set that contains ∪k

i=1Pi,

is a polyhedron. Furthermore we will show that this polyhedron can be obtained

as the projection onto Rn of a polyhedron with polynomially many variables and

constraints in a higher-dimensional space.



360 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

The closure is needed as shown by the following example: P1 consists of a single

point, and P2 is a line that does not contain the point P1 (see Figure 11.4). Let

P3 denote the line going through P1 that is parallel to P2. It is easy to verify that

conv(P1 ∪ P2) = conv(P2 ∪ P3) and that conv(P1 ∪ P2) = conv(P2 ∪ P3) \ (P3 \ P1)
(indeed, a point x∗ in P3 \P1 is not in conv(P1∪P2), but there is a sequence of points

xk ∈ conv(P1 ∪P2) that converges to x∗). Here conv(P1 ∪P2) is not a closed set, and

therefore it is not a polyhedron.

P2

P3

conv(P1 ∪P2)

P1

Fig. 11.4 conv(P1 ∪P2) 6= conv(P1 ∪P2)

We recall that, by Minkowski-Weil’s Theorem 11.10, Pi = Qi +Ci, where Qi is a

polytope and Ci a finitely generated cone.

Theorem 11.17. Let Pi = Qi +Ci be nonempty polyhedra i = 1, . . . ,k. Then Q =
conv(∪k

i=1Qi) is a polytope, C = conv(∪k
i=1Ci) is a finitely generated cone, and

conv(∪k
i=1Pi) is the polyhedron

conv(∪k
i=1Pi) = Q+C.

Proof. We first show that Q is a polytope and C a finitely generated cone. For i =
1, . . . ,k, let Vi and Ci be finite sets in Rn such that Qi = conv(Vi) and Ci = cone(Ri).
Then it is straightforward to show that Q = conv(∪k

i=1Vi) and C = cone(∪k
i=1Ri),

thus Q is a polytope and C a finitely generated cone.

We show conv(∪k
i=1Pi) ⊆ Q+C.

We just need to show conv(∪k
i=1Pi) ⊆ Q+C, because Q+C is a polyhedron, and so

it is closed. Let x ∈ conv(∪k
i=1Pi). Then x is a convex combination of a finite number

of points in ∪k
i=1Pi. Since Pi is convex, we can write x as a convex combination of

points zi ∈ Pi, say x = ∑k
i=1 yiz

i where yi > 0 for i = 1, . . . ,k and ∑k
i=1 yi = 1. Since

Pi = Qi +Ci, then zi = wi +xi where wi ∈ Qi, xi ∈Ci, thus x = ∑k
i=1 yiw

i +∑k
i=1 yix

i,

so x ∈ Q+C since ∑k
i=1 yiw

i ∈ Q and ∑k
i=1 yix

i ∈C.

We show Q+C ⊆ conv(∪k
i=1Pi).

Let x ∈ Q +C. Then x = ∑k
i=1 yiw

i + ∑k
i=1 xi where wi ∈ Qi, yi > 0, xi ∈ Ci for i =

1, . . . ,k, and ∑k
i=1 yi = 1.

Define I := {i : yi > 0} and consider the point



11 Polyhedral Approaches to Mixed Integer Linear Programming 361

xε := ∑
i∈I

(yi −
k

|I|
ε)wi +

k

∑
i=1

ε(wi +
1

ε
xi)

for ε > 0 small enough so that yi −
k
|I|

ε > 0 for all i ∈ I.

Notice that xε ∈ conv(∪k
i=1Pi) since ∑i∈I(yi −

k
|I|

ε)+∑k
i=1 ε = 1 and wi + 1

ε xi ∈ Pi.

Since limε→0+ xε = x, we have x ∈ conv(∪k
i=1Pi). ⊓⊔

Corollary 11.3. If P1, . . . ,Pk are polyhedra with the same recession cone, then the

convex hull of their union conv(∪k
i=1Pi) is a polyhedron.

Proof. We leave it as an exercise to the reader to check how the last part of the proof

of Theorem 11.17 simplifies to show Q+C ⊆ conv(∪k
i=1Pi). ⊓⊔

Although conv(∪k
i=1Pi) may have exponentially many facets, Balas [2, 3] proved

that it is the projection of a higher-dimensional polyhedron Y with a polynomial size

representation:

Y :=





Aix
i 6 biyi

∑xi = x

∑yi = 1

yi > 0 for i = 1, . . . ,k.

(11.11)

In this formulation, xi is a vector in Rn and yi is a scalar, for i = 1, . . . ,k. The

vector x ∈ Rn corresponds to the original space onto which Y is projected. Thus,

the polyhedron Y is defined in Rkn+n+k. A formulation with a polynomial number

of variables and constraints is said to be compact. The gist of Balas’s result is that

conv(∪k
i=1Pi) has a compact representation with respect to the systems Aix 6 bi,

i = 1, . . . ,k. This fact will be fundamental in the development of this survey.

Since it is convenient to consider also the case where some of the systems

Aix 6 bi are infeasible, we need a condition that is typically satisfied in the con-

text of integer programming.

Given the polyhedra Pi := {x ∈ Rn : Aix 6 bi}, i = 1, . . . ,k, let Ci := {x ∈ Rn :

Aix 6 0}. So Ci is the recession cone of Pi when Pi 6= /0.

Cone Condition: If ∪Pi 6= /0, then C j ⊆ conv(∪i:Pi 6= /0Ci) for j = 1, . . . ,k.

By Minkowski-Weil’s Theorem 11.10, if Pi 6= /0 then Pi = Qi +Ci for some poly-

tope Qi. If we let Qi = /0 whenever Pi = /0, then Pi = Qi +Ci, i = 1 . . . ,k.

Theorem 11.18 (Balas [2, 3]). Consider k polyhedra Pi := {x ∈ Rn : Aix 6 bi} and

let Y be the polyhedron defined in (11.11). Then

projx Y = Q+C,

where Q = conv(∪k
i=1Qi) and C = conv(∪k

i=1Ci).
Furthermore, if the Cone Condition is satisfied, then

projx Y = conv(∪k
i=1Pi).



362 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

Proof. Notice that, if the Cone Condition is satisfied, then C = conv(∪i:Pi 6= /0Ci),
therefore by Theorem 11.17 Q +C = conv(∪k

i=1Pi). Thus, if projx Y = Q +C, then

projx Y = conv(∪k
i=1Pi). So we only need to show projx Y = Q+C.

(a) Q+C ⊆ projx Y .

The result holds trivially when ∪k
i=1Pi = /0, so we assume ∪k

i=1Pi 6= /0. Without loss

of generality, P1, . . . ,Ph are nonempty and Ph+1, . . . ,Pk are empty, where 1 6 h 6 k.

Let x ∈ Q +C. Then there exist wi ∈ Qi, i = 1, . . . ,h, and zi ∈ Ci, i = 1, . . . ,k,

such that x = ∑h
i=1 yiw

i + ∑k
i=1 zi, where yi > 0 for i = 1, . . . ,h and ∑h

i=1 yi = 1. Let

xi = yiw
i + zi for i = 1, . . . ,h and yi = 0, xi = zi for i = h+1, . . . ,k. Then Aix

i 6 biyi

for i = 1, . . .k and x = ∑k
i=1 xi. This shows that x ∈ projx Y and therefore (a) holds.

(b) projx Y ⊆ Q+C.

The result holds if Y = /0, so we assume Y 6= /0. Let x ∈ projx Y . By the definition

of projection, there exist x1, . . . ,xk,y such that x = ∑k
i=1 xi where Axi 6 biyi, ∑yi = 1,

y > 0. Let I := {i : yi > 0}.

For i ∈ I, let zi := xi

yi
. Then zi ∈ Pi. Since Pi = Qi +Ci, we can write zi = wi +yiri

where wi ∈ Qi and ri ∈Ci.

For i 6∈ I, we have Aix
i 6 0, that is xi ∈Ci. Let ri = xi if i /∈ I. Then

x = ∑
i∈I

yiz
i +∑

i6∈I

xi = ∑
i∈I

yiw
i

︸ ︷︷ ︸
∈Q

+
k

∑
i=1

ri

︸︷︷︸
∈C

∈ Q+C. ⊓⊔

Remark 11.7. The Cone Condition assumption in Theorem 11.18 is necessary as

shown by the following example (see Figure 11.5): P1 := {x ∈ R2 : 0 6 x 6 1} and

P2 := {x ∈ R2 : x1 6 0,x1 > 1}. Note that P2 = /0 and C2 = {x ∈ R2 : x1 = 0}.

So in this case projx Y = P1 +C2 = {x ∈ R2 : 0 6 x1 6 1}, which is different from

conv(P1 ∪P2) = P1.

Remark 11.8. The Cone Condition assumption in Theorem 11.18 is automatically

satisfied if

(i) Ci = {0} whenever Pi = /0, or

(ii) all the cones Ci are identical.

For example (i) holds when all the Pis are nonempty, or when Ci = {0} for all i.

11.4 Split disjunctions

Let P := {(x,y)∈Rn×Rp : Ax+Gy 6 b} and let S := P∩(Zn×Rp). For π ∈Zn

and π0 ∈ Z, define
Π1 = P∩{(x,y) : πx 6 π0}

Π2 = P∩{(x,y) : πx > π0 +1}.
(11.12)



11 Polyhedral Approaches to Mixed Integer Linear Programming 363

Fig. 11.5 conv(P1 ∪P2) 6= projx Y

Clearly S ⊆ Π1 ∪Π2 and therefore conv(S) ⊆ conv(Π1 ∪Π2). We call this latter

set P(π,π0).

Theorem 11.19. P(π,π0) is a polyhedron.

Proof. It follows from Theorem 11.17 that P(π,π0) is a polyhedron, thus we only

need to show that P(π,π0) is closed. This is obvious if at least one of Π1 and Π2 is

empty, so we assume Π1,Π2 6= /0. Because Π1 ∪Π2 ⊂ P(π,π0) ⊆ P, Π1 = P(π,π0) ∩

{(x,y) : πx 6 π0} and Π2 = P(π,π0) ∩{(x,y) : πx > π0 + 1}. Thus P(π,π0) = Π1 ∪

Π2 ∪Π , where Π = P(π,π0)∩{(x,y) : π0 6 πx 6 π0 +1}. By definition, Π1 and Π2

are polyhedra, so they are closed. We show that Π is a polyhedron, thus P(π,π0) is

closed because it is the union of a finite number of closed sets.

Let P1 := Π1 ∩{(x,y) : πx = π0} and P2 := Π2 ∩{(x,y) : πx = π0 +1}. Notice

that P1 and P2 have the same recession cone C := {(x,y) : Ax + Gy 6 0,πx = 0},

thus, by Corollary 11.3, conv(P1 ∪P2) is a polyhedron.

We show that Π = conv(P1 ∪P2), thus showing that Π is a polyhedron.

The inclusion Π ⊇ conv(P1 ∪ P2) comes from the definition. We prove Π ⊆

conv(P1 ∪ P2). If (x̄, ȳ) ∈ Π , then there exist (x′,y′) ∈ Π1, (x′′,y′′) ∈ Π2 such

that (x̄, ȳ) is contained in the line segment L joining (x′,y′) and (x′′,y′′). Since

π0 6 π x̄ 6 π0 + 1, L intersects {(x,y) : πx = π0} in a point (x̄′, ȳ′) ∈ Π1, and

{(x,y) : πx = π0 + 1} in a point (x̄′′, ȳ′′) ∈ Π2. Furthermore, (x̄, ȳ) is contained

in the line segment joining (x̄′, ȳ′) and (x̄′′, ȳ′′). Thus (x̄, ȳ) ∈ conv(P1 ∪P2). ⊓⊔

Lemma 11.3. The polyhedra Π1 and Π2 satisfy the Cone Condition of Theo-

rem 11.18.

Proof. The conditions of Theorem 11.18 trivially hold when Π1 and Π2 are either

both empty or both nonempty.

C2

0

1

1 x1

x2

projxY

P1



364 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

Assume now that Π1 = /0 and Π2 6= /0. For the conditions of Theorem 11.18 to

hold, we need to show that C1 ⊆C2 where C1 := {(x,y) : Ax+Gy 6 0,πx 6 0} and

C2 := {(x,y) : Ax+Gy 6 0,πx > 0}.

We claim that C1 = {(x,y) : Ax + Gy 6 0,πx = 0}. Suppose not. Then there

exists (x̄, ȳ) such that Ax̄ + Gȳ 6 0 and π x̄ < 0. Since Π2 6= /0, there exists (x̂, ŷ)
such that Ax̂ + Gŷ 6 b. Now consider the point (xλ ,yλ ) = (x̂, ŷ)+λ (x̄, ȳ). We have

Axλ + Gyλ 6 b and, for λ >
π x̂−π0
|π x̄|

, we have πxλ 6 π0. But then (xλ ,yλ ) is in Π1,

contradicting the assumption that Π1 = /0. This proves the claim.

The claim implies C1 ⊆C2. ⊓⊔

Thus, by Theorem 11.18, P(π,π0) has the following extended formulation, with

additional vectors of variables (x1,y1), (x2,y2) and variable λ .

Ax1 +Gy1 6 λb

πx1 6 λπ0

Ax2 +Gy2 6 (1−λ )b
πx2 > (1−λ )(π0 +1)

x1 + x2 = x

y1 + y2 = y

0 6 λ 6 1.

(11.13)

If the system Ax + Gy 6 b has m constraints, the extended formulation (11.13) has

2m+n+ p+4 constraints. By contrast, a formulation of P(π,π0) in the original space

(x,y) may be considerably more complicated, as P(π,π0) may have a large number of

facets (Recall from Section 11.2.7 that any description of a polyhedron must have

at least one inequality for each facet).

Π1 Π2P

πx 6 π0 πx > π0 +1

split inequality

Fig. 11.6 A split inequality

A split is a disjunction πx 6 π0 or πx > π0 + 1 where π ∈ Zn and π0 ∈ Z. We

will also say that (π,π0) defines a split. An inequality cx + hy 6 c0 is called a split



11 Polyhedral Approaches to Mixed Integer Linear Programming 365

inequality [17] if it is valid for some polyhedron P(π,π0) where (π,π0) ∈ Zn ×Z
defines a split (see Figure 11.6).

The split closure PSplit of P is

⋂

(π,π0)∈Zn×Z

P(π,π0). (11.14)

Clearly S ⊆ PSplit ⊆ P. In general PSplit provides a tighter relaxation of S than P.

Although each of the sets P(π,π0) is a polyhedron, it is not clear however that PSplit

is a polyhedral set, for it is the intersection of infinitely many of them. This will be

discussed in Section 11.6.

11.4.1 One-side splits, Chvátal inequalities

Given a polyhedron P := {(x,y) ∈ Rn ×Rp : Ax + Gy 6 b}, we consider the

mixed integer set S = P∩ (Zn ×Rp). Let π ∈ Zn and z := max{πx : (x,y) ∈ P}. A

split defined by (π,π0) ∈ Zn ×Z is a one-side split for P if

π0 ≤ z < π0 +1. (11.15)

This is equivalent to:

Π1 ⊆ P and Π2 = /0

where Π1 and Π2 are the polyhedra defined in (11.12). Note that, if (π,π0) defines

a one-side split, then the polyhedron P(π,π0) can be easily described in its original

space, for P(π,π0) = Π1 = {(x,y) : Ax+Gy 6 b, πx ≤ π0}. The inequality πx ≤ π0

is valid for S. It is called a Chvátal inequality.

The Chvátal closure PCh of P is

⋂

(π,π0)∈Zn×Z defines a one-side split

P(π,π0). (11.16)

Equivalently, PCh is the set of vectors (x,y) that satisfy the system Ax+Gy 6 b and

all the Chvátal inequalities. Note that S ⊆ PSplit ⊆ PCh ⊆ P.

Notice that inequality πx ≤ π0 satisfies (11.15) if and only if ⌊z⌋= π0. Since π is

an integral vector and πx ≤ z is a valid inequality for P, by Theorem 11.14, πx ≤ π0

is a Chvátal inequality if and only if the system:

u ≥ 0, uA = π ∈ Zn, uG = 0, ub 6 z (11.17)

is feasible. By Theorem 11.11, condition u ≥ 0, uG = 0 shows that πx ≤ z is valid

for the projection projx(P) of P onto the x-space.



366 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

P

Chvátal inequality

πx 6 z

πx 6 π0

Fig. 11.7 Chvátal inequality

We can assume that u is chosen so that the coefficients of π are relatively prime:

If not, let m be the G.C.D. of the components of π: The inequality π
m

x ≤ ⌊
π0
m
⌋ is

a Chvátal inequality that dominates πx ≤ π0. The equation πx = π0 = ⌊z⌋ admits

infinitely many integral solutions, while the equation πx = α , has obviously no

integral solution for ⌊z⌋ < α ≤ z.

Therefore the Chvátal closure is obtained by taking any rational inequality πx≤ z

that is valid for the projection projx(P) of P (which is generated without loss of

generality by a vector u such that u ≥ 0, uA = π ∈ Zn, uG = 0 such that the coef-

ficients of π are relatively prime) and then tightening the inequality by decreasing

the right-hand side until an integral point (and hence infinitely many integral points)

are encountered. See Figure 11.7.

11.5 Gomory’s mixed-integer inequalities

We consider a polyhedron P := {(x,y) ∈ Rn
+ ×Rp

+ : Ax + Gy ≤ b} and the set

S := P∩(Zn
+×Rp

+). Note that, here, P is defined by a system of inequalities together

with nonnegativity constraints on the variables, and this is important in this section.

By standard linear algebra, any system of linear inequalities can be converted into a

system of the above type (variables that are unrestricted in sign can be replaced by

the difference of two nonnegative variables, etc.).

We consider the following equality form of the system defining P:

Ax+Gy+ Is = b, x,y,s ≥ 0. (11.18)

For λ ∈ Qm, we consider the equation λAx+λGy+λ Is = λb, which we denote by

n

∑
j=1

aλ
j x j +

p

∑
j=1

gλ
j y j +

m

∑
i=1

λisi = β λ . (11.19)



11 Polyhedral Approaches to Mixed Integer Linear Programming 367

Let f0 = β λ − ⌊β λ ⌋ and f j = aλ
j − ⌊aλ

j ⌋. We consider the following Gomory

mixed-integer (GMI) inequality [32] :

n

∑
j=1

(⌊aλ
j ⌋+

( f j − f0)
+

1− f0
)x j +

1

1− f0
( ∑

j:gλ
j <0

gλ
j y j + ∑

i:λi<0

λisi) 6 ⌊β λ ⌋ (11.20)

where ( f j − f0)
+ = max{ f j − f0, 0}. By substituting s = b− (Ax + Gy) we get an

inequality in the (x,y)-space.

We denote by (πλ ,πλ
0 ) the vector in Zn ×Z defining the following split:

Either ∑
f j≤ f0

⌊aλ
j ⌋x j + ∑

f j> f0

⌈aλ
j ⌉x j ≤ ⌊β λ ⌋ (11.21)

or ∑
f j≤ f0

⌊aλ
j ⌋x j + ∑

f j> f0

⌈aλ
j ⌉x j ≥ ⌊β λ ⌋+1; (11.22)

where (11.21) is πλ x 6 πλ
0 while (11.22) is πλ x > πλ

0 +1.

Lemma 11.4. Inequality (11.20) is a split inequality, valid for P(πλ ,πλ
0 ).

Proof. Consider the sets

Π1 = P∩{(x,y) : πλ x 6 πλ
0 }, Π2 = P∩{(x,y) : πλ x > πλ

0 +1}.

To prove that inequality (11.20) is a split inequality, we will show that it is valid

for Π1 ∪Π2.

Since the constraints x ≥ 0, y ≥ 0, s ≥ 0 are valid for Π1 and Π2, it is enough to

show that each of Π1 and Π2 admits a valid inequality ax + gy + ls ≤ ⌊β λ ⌋ whose

coefficients are greater than or equal to the corresponding coefficients in inequality

(11.20). (This is where the nonnegativity plays a role).

Since inequality πλ x 6 πλ
0 has this property, inequality (11.20) is valid for Π1.

Inequality (11.20) is valid for Π2 since it is implied by the inequality

1

1− f0
(11.19)−

f0

1− f0
(11.22).

⊓⊔

A consequence of the above lemma is that the GMI inequalities (11.20) are valid

for S.

Lemma 11.5. Chvátal inequalities are GMI inequalities.

Proof. For λ ≥ 0 such that λA ∈ Zn and λG = 0 the Chvátal inequality (11.17)

coincides with the inequality given by the formula (11.20). ⊓⊔



368 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

The Gomory mixed integer closure PGMI of P is the set of points in P that satisfy

all the GMI inequalities (11.20). It follows from Lemmas 11.4 and 11.5 that PSplit ⊆

PGMI ⊆ PCh. In light of the particular derivation of the GMI inequalities, it may

appear that the first containment can be strict. This is not the case: In the next section

we show that PSplit coincides with PGMI.

11.5.1 Equivalence of split closure and Gomory mixed integer

closure

In this section we will need the following.

Lemma 11.6. Let P := {x ∈ Rn : Ax 6 b} be a polyhedron and let Π := P∩{x :

πx 6 π0}. If Π 6= /0 and αx 6 β is a valid inequality for Π , then there exists a scalar

λ ∈ R+ such that

αx−λ (πx−π0) 6 β

is valid for P.

Proof. By Theorem 11.14, since Π 6= /0, there exist u > 0, λ > 0 such that

α = uA+λπ and β > ub+λπ0.

Since uAx 6 ub is valid for P, so is uAx 6 β − λπ0. Since uAx = αx− λπx, the

inequality αx−λ (πx−π0) 6 β is valid for P. ⊓⊔

ΠP

αx−λ (πx−π0) 6 β

πx 6 π0

αx 6 β

Fig. 11.8 Illustration of Lemma 11.6

Remark 11.9. The assumption Π 6= /0 is necessary in Lemma 11.6, as shown by the

following example: P := {x ∈ R2 : x1 > 0, x2 > 0} and Π := P∩{x : x2 6 −1}.



11 Polyhedral Approaches to Mixed Integer Linear Programming 369

Thus Π is empty. The inequality x1 6 1 is valid for Π but there is no scalar λ such

that x1 −λ (x2 +1) 6 1 is valid for P.

Theorem 11.20 (Nemhauser and Wolsey [40]). Let P := {(x,y)∈Rn
+×Rp

+ : Ax+
Gy 6 b} be a polyhedron and let S := P∩ (Zn

+ ×Rp
+). Then PSplit coincides with

PGMI.

Proof. (Cornuéjols and Li [18]) Lemma 11.4 shows that PSplit ⊆ PGMI. To prove the

reverse inclusion, we show that every split inequality is a GMI inequality.

We assume that the constraints x > 0 and y > 0 are part of the system Ax+Gy 6 b

that defines P. Let cx+hy 6 c0 be a split inequality. Let (π,π0) ∈ Zn ×Z define the

split disjunction used in deriving this inequality and let Π1, Π2 be the corresponding

intersections with P as defined in (11.12).

First assume that one of Π1, Π2 is empty. Then the inequality cx + hy 6 c0 is a

Chvátal inequality and by Lemma 11.5 it is also a GMI inequality.

We now assume that both Π1, Π2 are nonempty. By Lemma 11.6, there exist

α,β ∈ R+ such that

cx+hy−α(πx−π0) 6 c0 and (11.23)

cx+hy+β (πx− (π0 +1)) 6 c0 (11.24)

are both valid for P. We can assume α > 0 and β > 0 since, otherwise, cx+hy 6 c0

is valid for P and therefore also for PGMI. We now introduce slack variables s1 and s2

in (11.23) and (11.24) respectively and subtract (11.23) from (11.24). We obtain

(α +β )πx+ s2 − s1 = (α +β )π0 +β .

Dividing by α +β we get

πx+
s2

α +β
−

s1

α +β
= π0 +

β

α +β
. (11.25)

We now derive the GMI inequality associated with equation (11.25). Note that the

fractional part of the right-hand side is
β

α+β and that the continuous variable s2 has

a positive coefficient while s1 has a negative coefficient. So the GMI inequality is

πx+
1

α
s1 ≤ π0.

We now use (11.23) to eliminate s1 to get the GMI inequality in the space of the

x,y variables. The resulting inequality is cx + hy 6 c0 and therefore cx + hy 6 c0 is

a GMI inequality. ⊓⊔

11.6 Polyhedrality of closures

In this section we show that the GMI closure (or equivalently, the split closure) of

a rational polyhedron is a rational polyhedron. This result is due to Cook, Kannan,



370 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

and Schrijver [17]. Simpler proofs appear in [1], [22] and [47]. In this section, we

follow the approach of Dash, Günlük and Lodi [22]. The idea is to prove that a

finite number of splits are sufficient to generate PSplit defined in (11.14). The result

follows, since then PSplit is the intersection of a finite number of polyhedra and

therefore is a polyhedron.

For this idea to work, it is fundamental to assume that the polyhedra that we deal

with are rational. We first illustrate this in an easy case: The Chvátal closure of a

pure integer set.

11.6.1 The Chvátal closure of a pure integer set

We consider here pure integer sets of the type S := P∩Zn, where P := {x ∈ Rn :

Ax 6 b} is a rational polyhedron. Therefore we can assume that A, b have integral

entries.

In the pure integer case, a Chvátal inequality πx ≤ π0 is derived from a vector u

satisfying:

u ≥ 0, uA = π ∈ Zn, ⌊ub⌋ = π0. (11.26)

Lemma 11.7. Let (π,π0) ∈ Zn+1 and u ∈ Q satisfying (11.26) such that πx 6 π0 is

not valid for P and not redundant for PCh. Then u < 1.

Proof. Suppose u does not satisfy u < 1. We will show that πx 6 π0 is the sum of a

Chvátal inequality π1x 6 π1
0 and an inequality π2x 6 π2

0 valid for P such that π2 6= 0.

This contradicts the assumption that πx 6 π0 is not valid for P and not redundant

for PCh.

Let f = u−⌊u⌋, and let π1 = f A, π1
0 = ⌊ f b⌋, π2 = ⌊u⌋A, π2

0 = ⌊⌊u⌋b⌋. Since A is

an integral matrix, π2 is an integral vector. Since π is an integral vector, π1 = π−π2

is integral as well.

Since b is integral, π2
0 = ⌊u⌋b, therefore π2x ≤ π2

0 is valid for P. Furthermore,

πx 6 π0 is the sum of π1x 6 π1
0 and π2x 6 π2

0 . Since πx 6 π0 is not valid for P, then

f 6= 0. Since u does not satisfy u < 1, then ⌊u⌋ 6= 0, thus π2 6= 0. ⊓⊔

Theorem 11.21 (Chvátal [13]). PCh is a rational polyhedron.

Proof. By Lemma 11.7, any irredundant valid inequality for PCh that is not valid

for P is of the form (uA)x 6 ⌊ub⌋ for some u satisfying uA ∈ Zn, 0 6 u < 1. Since

{uA ∈ Rn : 0 6 u < 1} is bounded, {uA ∈ Zn : 0 6 u < 1} is finite. Thus there is

only a finite number of such inequalities, hence PCh is a polyhedron. ⊓⊔

11.6.2 The split closure of a mixed integer set

This is more tricky, uses the fact that PSplit = PGMI (Theorem 11.20), but the idea

is the same.



11 Polyhedral Approaches to Mixed Integer Linear Programming 371

Throughout this section, P := {(x,y) ∈ Rn
+ ×Rp

+ : Ax + Gy ≤ b} is a rational

polyhedron, and S := P∩ (Zn
+×Rp

+). We will also assume that A, G, b are integral.

We let s = b− (Ax+Gy) be the slacks of Ax+Gy 6 b.

Recall from Section 11.5 that a vector λ ∈ Qm yields the GMI inequality:

n

∑
j=1

(⌊aλ
j ⌋+

( f j − f0)
+

1− f0
)x j +

1

1− f0
∑

j:gλ
j <0

gλ
j y j + ∑

i:λi<0

+λisi 6 ⌊β λ ⌋

which is valid for S. We denote it by GM(λ ).
Given λ ∈ Qm and the corresponding GMI inequality GM(λ ), we consider the

following partitions of M := {1, . . . ,m} and P := {1, . . . , p}:

M+ := {i ∈ M : λi ≥ 0} M− := {i ∈ M : λi < 0}

P+ := { j ∈ P : gλ
j ≥ 0} P− := { j ∈ P : gλ

j < 0}

and the following cone:

Cλ := {µ ∈ Rm : g
µ
j ≥ 0, j ∈ P+, g

µ
j ≤ 0, j ∈ P−, µi ≥ 0, i ∈ M+, µi ≤ 0, i ∈ M−}

(11.27)

Lemma 11.8. Let λ ∈ Qm. Let λ 1,λ 2 ∈Cλ where λ = λ 1 +λ 2 and λ 2 ∈ Zm \{0}.

Then

GM(λ ) = GM(λ 1)+GM(λ 2)

and either GM(λ ) is valid for P or it is redundant for PGMI.

Proof. Since λ 2b is an integer, f0 = 0 and GM(λ 2) is the following inequality:

n

∑
j=1

aλ 2

j x j + ∑
j:gλ2

j <0

gλ 2

j y j + ∑
i:λ 2

i <0

+λ 2
i si 6 β λ 2

.

Therefore GM(λ 2) is implied by the following inequalities, valid for P:

n

∑
j=1

aλ 2

j x j +
p

∑
j=1

gλ 2

j y j +
m

∑
i=1

λ 2
i si = β λ 2

, s ≥ 0, y ≥ 0.

Hence GM(λ 2) is valid for P. Moreover, since A, G, b are integral, all coefficients

of GM(λ 2) are integral.

Since λ 1, λ 2 ∈ Cλ , gλ
j < 0 implies gλ 1

j 6 0 and gλ 2

j 6 0; and λi < 0 implies

λ 1
i 6 0 and λ 2

i 6 0. This shows that GM(λ ) = GM(λ 1) + GM(λ 2). Thus, since

GM(λ 2) is valid for P, either GM(λ ) is valid for P, or it is redundant for PGMI. ⊓⊔

Let ∆ be the largest of the absolute values of the determinants of the square

submatrices of G.



372 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

Lemma 11.9. Let λ ∈ Qm such that GM(λ ) is not valid for P and it is irredundant

for PGMI. Then

−m∆ ≤ λi ≤ m∆ , i = 1, . . . ,m. (11.28)

Proof. We will show that if λ does not satisfy (11.28), then there exist λ 1,λ 2 ∈Cλ

such that λ = λ 1 +λ 2 and λ 2 ∈ Zm \{0}. This will prove the lemma since then, by

Lemma 11.8, either GM(λ ) is valid for P or it is redundant for PGMI, a contradiction.

Assume λ violates (11.28). Let r1, . . . ,rq be a set of vectors generating Cλ . By

Remark 11.2, we can choose r1, . . . ,rq integral, and by standard linear algebra we

can choose them so that −∆1 ≤ rt ≤ ∆1, t = 1, . . . ,q (we leave this as an exercise).

Since λ ∈Cλ , by Carathéodory’s Theorem 11.7, λ = ∑
q
t=1 νtr

t , and at most m of the

νt are positive, while the others are 0. Let

λ 1 =
q

∑
t=1

(νt −⌊νt⌋)r
t , λ 2 =

q

∑
t=1

⌊νt⌋rt .

Clearly λ 1,λ 2 ∈Cλ and λ = λ 1 +λ 2. Since r1, . . . ,rq are integral vectors, λ 2 is in-

tegral. We show that λ 2 6= 0. Since at most m of the νt are positive, and by definition

−∆1 ≤ rt ≤ ∆1, t = 1, . . . ,q, then −∆m ≤ λ 1 ≤ ∆m. Thus λ 2 6= 0, as λ violates

(11.28). ⊓⊔

Theorem 11.22 (Cook, Kannan, and Schrijver [17]). PGMI(= PSplit) is a rational

polyhedron.

Proof. By Lemma 11.4, for every λ ∈ Qm, GM(λ ) is a split inequality valid

for P(πλ ,πλ
0 ), where the split (πλ ,πλ

0 ) ∈ Zn+1 is defined by (11.21)–(11.22). By

Lemma 11.9, if GM(λ ) is irredundant for PGMI and not valid for P, then λ satisfies

(11.28). By Theorem 11.20, PGMI = PSplit, thus any inequality valid for P(πλ ,πλ
0 ) is

valid for PGMI. Therefore

PGMI =
⋂

(πλ ,πλ
0 )∈Zn+1 s.t.

λ satisfies (11.28)

P(πλ ,πλ
0 ).

Since the set {λ ∈ Rm : λ satisifes (11.28)} is bounded, the set {(πλ ,πλ
0 ) ∈ Zn+1 :

λ satisifes (11.28)} is finite. Therefore PGMI is the intersection of a finite number

of polyhedra, hence it is a polyhedron. ⊓⊔

A natural question is whether one can optimize a linear function over PGMI in

polynomial time. It turns out that this problem is NP-hard (Caprara and Letch-

ford [12], Cornuéjols and Li [19]). Equivalently, given a point (x,y) ∈ P, it is NP-

hard to find a GMI inequality that cuts off (x,y) or show that none exists. A sim-

ilar NP-hardness result was proved earlier by Eisenbrand [25] for the Chvátal clo-

sure PCh.

Note that this is in contrast with the problem of finding a GMI inequality that

cuts off a basic solution (x,y) ∈ P\S. Indeed, any row of the simplex tableau where

x j is fractional generates a GMI inequality that cuts off (x,y).



11 Polyhedral Approaches to Mixed Integer Linear Programming 373

Although it is NP-hard to optimize over the Chvátal closure, there are empirical

results on its strength. For 24 instances from the MIPLIB library [8] (all the pure

integer programs in MIPLIB 3 with nonzero integrality gap), Fischetti and Lodi [27]

found that the Chvátal closure closes at least 63 % of the integrality gap on average

(The integrality gap is the difference between the values of the objective function

when optimized over conv(S) and over P respectively). Bonami, Cornuéjols, Dash,

Fischetti, and Lodi [10] found that the Chvátal closure closes at least 29 % of the

integrality gap on average on the remaining 41 MIPLIB instances (all the MIPLIB 3

instances that have at least one continuous variable and nonzero integrality gap).

The split closure and the GMI closure are identical. How tight is it in practice?

Balas and Saxena [7] addressed this question by formulating the separation problem

for the split closure as a parametric mixed integer linear program with a single pa-

rameter in the objective function and the right hand side. They found that the split

closure closes 72 % of the integrality gap on average on the MIPLIB instances. This

experiment shows that the split closure is surprisingly strong. Finding deep split

inequalities efficiently remains a challenging practical issue.

11.7 Lift-and-project

In this section, we consider mixed 0,1 linear programs. These are mixed integer

linear programs where the integer variables are only allowed to take the values 0

or 1. It will be convenient to write mixed 0,1 linear programs in the form

min cx

Ax > b

x j ∈ {0,1} for j = 1, . . . ,n
x j > 0 for j = n+1, . . . ,n+ p,

where the matrix A ∈ Qm×(n+p), the row vector c ∈ Qn+p and the column vector

b ∈ Qm are data, and x ∈ Rn+p is a column vector of variables.

Consider the polyhedron P := {x ∈ Rn+p
+ : Ax > b} and the mixed 0,1 linear set

S := {x ∈ {0,1}n×Rp
+ : Ax > b}. Without loss of generality, throughout this section

we assume that the constraints Ax > b include −x j > −1 for j = 1, . . . ,n, but not

x > 0.

Balas, Ceria and Cornuéjols [4] study the following “lift-and-project” relaxation

for S: given an index j ∈ {1, . . . ,n}, let

Pj = conv{(Ax > b, x > 0, x j = 0)∪ (Ax > b, x > 0, x j = 1)}.

Clearly S ⊆ Pj ⊆ P, so Pj is a relaxation of S tighter than P, and by definition

it is the tightest possible among the relaxations that ignore the integrality of all the

variables xi for i 6= j.

The set
⋂n

j=1 Pj is called the lift-and-project closure. It is a better approximation

of conv(S) than P:



374 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

conv(S) ⊆

n⋂

j=1

Pj ⊆ P.

How much better is it in practice? Bonami and Minoux [11] performed compu-

tational experiments (see also Bonami’s dissertation [9]). On 35 mixed 0,1 linear

programs from MIPLIB, they found that the lift-and-project closure reduces the in-

tegrality gap by 37 % on average.

11.7.1 Lift-and-project cuts

Optimizing a linear function over Pj amounts to solving a linear program. In

fact, it is possible to express Pj using Theorem 11.18 and then projecting onto the

x-space. Pj is the convex hull of the union of two polyhedra:

Ax > b

x > 0

−x j > 0

and

Ax > b

x > 0

x j > 1

By Theorem 11.18,

Pj = projx





Ax0 > by0

−x0
j > 0

Ax1 > by1

x1
j > y1

x0 + x1 = x

y0 + y1 = 1

x,x0,x1,y0,y1 > 0.

Let e j denote the j-th unit vector. Using the projection theorem (Theorem 11.11),

we get that Pj is defined by the inequalities αx > β such that

α −uA +u0e j > 0

α −vA −v0e j > 0

β −ub 6 0

β −vb −v0 6 0

u, u0, v, v0 > 0.

(11.29)

The inequality αx > β is called a lift-and-project inequality. Clearly lift-and-

project inequalities are special type of split inequalities, relative to splits of the type

x j 6 0 or x j > 1.

Given a fractional point x̄, we can determine if there exists a lift-and-project

inequality αx > β valid for Pj that cuts off x̄. In fact, this problem amounts to

finding (α,β ,u,u0,v,v0) satisfying (11.29) such that α x̄−β < 0. In order to find a



11 Polyhedral Approaches to Mixed Integer Linear Programming 375

“best” cut in cone (11.29), one usually adds a normalization constraint to truncate

the cone. We then obtain the following cut generating LP:

min αx −β
α −uA +u0e j > 0

α −vA −v0e j > 0

β −ub 6 0

β −vb −v0 6 0

∑m
i=1 ui +u0 +∑m

i=1 vi +v0 = 1

u, u0, v, v0 > 0.

(11.30)

Balas and Perregaard [6] give a precise correspondence between the basic feasi-

ble solutions of (11.30) and the basic solutions (possibly infeasible) of the usual LP

relaxation

(R) min{cx : Ax > b,x > 0}.

0 1

cut 2

cut 1

basic solution 2

basic solution 1

P

Fig. 11.9 Correspondence between basic solutions and lift-and-project cuts

A geometric view of this correspondence may be helpful: The n+ p extreme rays

emanating from a basic solution of (R) intersect the hyperplanes x j = 0 and x j = 1 in

n+ p points (some of these points may be at infinity). These points uniquely deter-

mine a hyperplane αx = β where (α,β ) are associated with a basic feasible solution

of the cut generating LP (11.30). For example, in Figure 11.9, cut 1 corresponds to

the basic solution 1 of (R) and cut 2 corresponds to the basic (infeasible) solution 2

of (R).

Using the correspondence, Balas and Perregaard [6] show how simplex pivots in

the cut generating LP (11.30) can be mimicked by pivots in (R). The major practical

consequence is that the cut generating LP (11.30) need not be formulated and solved

explicitly. A sequence of increasingly deep lift-and-project cuts can be computed by

pivoting directly in (R). We elaborate on these pivoting rules in section 11.7.3.



376 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

11.7.2 Strengthened lift-and-project cuts

Again we consider the mixed 0,1 linear set S := {x ∈ {0,1}n ×Rp
+ : Ax > b}.

We assume that the constraints Ax > b contain −x j > −1 for j = 1, . . . ,n, but not

x > 0. The cut generating LP (11.30) produces a lift-and-project inequality αx > β
that is valid for Pj. The derivation only uses the integrality of variable x j, not of the

variables xk for k = 1, . . . ,n and k 6= j. Balas and Jeroslow [5] found a simple way to

use the integrality of the other variables to strengthen the lift-and-project cut. This

strengthening has the nice property that it is straightforward to implement once the

cut generating LP (11.30) has been solved.

Note that, given u,u0,v,v0, the optimal values of αk and β in (11.30) are:

αk =

{
max(uak,vak) for k 6= j,
max(ua j −u0,va j + v0) for k = j,

(11.31)

where ak denotes the k-th column of A, and

β = min(ub,vb+ v0).

To strengthen the inequality αx > β , one can try to decrease the coefficients αk.

Balas and Jeroslow [5] found a way to do just that by using the integrality of the

variables xk for k = 1, . . . ,n.

Theorem 11.23 (Balas and Jeroslow [5]). Let x̄ satisfy Ax > b,x > 0. Given an

optimal solution u,u0,v,v0 of the cut generating LP (11.30), define mk = vak−uak

u0+v0
,

αk =

{
min(uak +u0⌈mk⌉,vak − v0⌊mk⌋) for k = 1, . . . ,n,
max(uak,vak) for k = n+1, . . . ,n+ p,

and β = min(ub,vb+ v0). Then the inequality αx > β is valid for conv(S).

Proof. For π ∈ Zn, the following disjunction is valid for conv(S):

either
n

∑
k=1

πkxk > 0 or −
n

∑
k=1

πkxk > 1.

Let us repeat the derivation of (11.30) with this disjunction in place of −x j > 0 or

x j > 1 as before. We consider the union of

Ax > b

x > 0

∑n
k=1 πkxk > 0

and

Ax > b

x > 0

−∑n
k=1 πkxk > 1.

Using Theorem 11.18 and the projection theorem (Theorem 11.11), we get that any

inequality αx > β that satisfies



11 Polyhedral Approaches to Mixed Integer Linear Programming 377

α −uA −u0(∑
n
k=1 πkek) > 0

α −vA +v0(∑
n
k=1 πkek) > 0

β −ub 6 0

β −vb −v0 6 0

u, u0, v, v0 > 0

is valid for conv(S). We can choose u,u0,v,v0 to be an optimal solution of the orig-

inal cut generating LP (11.30). This implies that, for k = 1, . . . ,n, we can choose

αk = max(uak +u0πk,vak−v0πk). Smaller coefficients αk produce stronger inequal-

ities since the variables are nonnegative. What is the best choice of πk ∈ Z to get

a small αk? It is obtained by equating uak + u0πk and vak − v0πk, which yields the

value mk in the statement of the theorem (both u0 and v0 are strictly positive since

otherwise αx > β is valid for P, contradicting that it is a cut for x̄), and then round-

ing this value mk either up or down since πk must be integer. The best choice is the

minimum stated in the theorem. ⊓⊔

Bonami and Minoux [11] found that applying the Balas-Jeroslow strengthening

step improves the average gap closed by an additional 8 %, as compared to the

lift-and-project closure, on the 35 MIPLIB instances in their experiment. Specifi-

cally, the integrality gap closed goes from 37 % to 45 %. The time to perform the

strengthening step is negligible.

11.7.3 Improving mixed integer Gomory cuts by lift-and-project

In this section we discuss the correspondence between basic feasible solutions of

the cut generating LP (11.30) and basic solutions (possibly infeasible) of the usual

LP relaxation (R) introduced in Section 11.7.1. The simplex tableaux of (11.30)

and (R) will be referred to as large and small respectively.

Let

x j = a j0 − ∑
h∈J

a jhxh (11.32)

be a row of the small optimal simplex tableau such that 0 < a j0 < 1. The GMI

cut from this row is equivalent to the strengthened lift-and-project cut from some

basic feasible solution of (11.30), where index j in (11.30) is the same as in (11.32).

To identify this solution, partition J into subsets M1 and M2, such that h ∈ M1 if

a jh < 0, and h ∈ M2 if a jh > 0 (h ∈ J such that a jh = 0 can go into either subset).

Then eliminating α , β from (11.30), the n columns indexed by M1 ∪M2 together

with the two columns indexed by u0 and v0 define a feasible basis of the resulting

system of n+2 equations. The strengthened lift-and-project cut associated with this

basic feasible solution to (11.30) is equivalent to the GMI cut from (11.32).

To evaluate the GMI cut generated from the small simplex tableau (11.32) as a

lift-and-project cut, we calculate the reduced costs in the large tableau of the non-

basic variables of the above solution to (11.30). Each row xi of the small tableau

corresponds to a pair of columns of the large tableau, associated with variables ui



378 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

and vi. The reduced costs r(ui), r(vi) of these variables in the large tableau are

known simple functions of the entries aih and a jh, for h ∈ J, of rows j and i of the

small tableau. If they are all nonnegative, the current large tableau is optimal, hence

the GMI cut from (11.32) cannot be improved. Otherwise, the cut can be improved

by executing a pivot in a row i of the small tableau, such that r(ui) < 0 or r(vi) < 0.

To identify the nonbasic variable xk to replace xi in the basis of the small tableau,

we calculate for each h ∈ J the objective function value f (aih) of (11.30) resulting

from the corresponding exchange in the large tableau. This value is a known simple

function of the ratio a jh/aih and of the coefficients of rows j and i of the small

tableau. Any column h for which f (aih) < 0 is a candidate for an improving pivot,

and the most negative value indicates the best column k.

Executing the pivot in the small tableau that exchanges xi for xk yields a new

simplex tableau (whose solution is typically infeasible), whose j-th row (the same j

as before!) is of the form

x j = a j0 + tai0 − ∑
h∈J∪i\k

(a jh + taih)xh, (11.33)

with t := a jk/aik. The GMI cut from (11.33) is then stronger than the one from

(11.32), in the sense that it cuts off the LP optimum of (R) by a larger amount.

These steps can then be repeated with (11.33) replacing (11.32) for as long as

improvements are possible.

Practical experience shows that in about three quarters of the cases GMI cuts

from the optimal simplex tableau can be improved by the pivoting procedure de-

scribed above. On the other hand, improvements beyond 10 pivots are not frequent,

and beyond 20 pivots they are very rare.

This procedure was extensively tested and has been incorporated into the mixed

integer module of XPRESS, with computational results reported in [42].

11.7.4 Sequential convexification

Theorem 11.24 (Balas [2]). Pn(Pn−1(. . .P2(P1) . . .)) = conv(S).

Before proving Theorem 11.24, we need a lemma. Let H ⊆ Rn be a hyperplane

and S ⊆ Rn. In general, conv(S)∩ H 6= conv(S ∩ H), as shown by the example

where S consists of two points not in H but the line segment connecting them inter-

sects H. The following lemma shows that equality holds when S lies entirely in one

of the closed half spaces defined by the hyperplane H (see Figure 11.10).

Lemma 11.10. Let H := {x ∈ Rn : ax = b} be a hyperplane and S ⊆ {x : ax 6 b}.

Then conv(S)∩H = conv(S∩H).

Proof. Clearly conv(S ∩ H) ⊆ conv(S) and conv(S ∩ H) ⊆ H so conv(S ∩ H) ⊆
conv(S)∩H.



11 Polyhedral Approaches to Mixed Integer Linear Programming 379

H

S

conv(S)

Fig. 11.10 Illustration of Lemma 11.10

We show conv(S)∩H ⊆ conv(S∩H). Let x ∈ conv(S)∩H. This means ax = b

and x = ∑k
i=1 λix

i where x1, . . . ,xk ∈ S, λ > 0 and ∑k
i=1 λi = 1. We have

b = ax =
k

∑
i=1

λiaxi 6
k

∑
i=1

λib = b (11.34)

where the inequality follows from axi 6 b and λi > 0. Relation (11.34) implies

that these inequalities are in fact equations, i.e., axi = b for i = 1, . . . ,k. Therefore

xi ∈ S∩H. This implies x ∈ conv(S∩H). ⊓⊔

Proof of Theorem 11.24. By induction. Let St := {x∈{0,1}t ×Rn−t+p
+ : Ax > b}. We

want to show Pt(Pt−1(. . .P2(P1) . . .)) = conv(St). By definition, this is true for t = 1,

so consider t > 2. Suppose that this is true for t −1. By the induction hypothesis we

have

Pt(Pt−1(. . .P2(P1) . . .)) = Pt(conv(St−1))

= conv(conv(St−1)∩{xt = 0})∪ (conv(St−1)∩{xt = 1}).

By Lemma 11.10, conv(St−1)∩{xt = 0} = conv(St−1 ∩{xt = 0}) and conv(St−1)∩
{xt = 1} = conv(St−1 ∩{xt = 1}). Thus

Pt(Pt−1(. . .P2(P1) . . .)) = conv((St−1 ∩{xt = 0})∪ (St−1 ∩{xt = 1}))

= conv(St).

¤



380 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

11.8 Rank

11.8.1 Chvátal rank

In this section, we consider a pure integer set S := P∩Zn where P := {x ∈ Rn :

Ax 6 b} is a rational polyhedron. We denote conv(S) by PI . The Chvátal closure PCh

introduced in Section 11.4.1 will be denoted by P(1) in this section. We can iterate

the closure process to obtain the Chvátal closure of P(1). We denote by P(2) this

second Chvátal closure. Iteratively, we define the tth Chvátal closure of P to be the

Chvátal closure of P(t−1), for t > 2 integer. An inequality that is valid for P(t) but not

P(t−1) is said to have Chvátal rank t. Are there inequalities of arbitrary large Chvátal

rank or is there a value t after which P(t) = P(t+1)? The main result of this section is

that the second statement is the correct one. In fact, we will prove that there exists

a finite t such that P(t) = PI . Therefore, every valid inequality for PI := conv(S) has

a bounded Chvátal rank. This result for the pure integer case is in contrast with the

situation for the mixed case, as we will see in the next section.

We will need the following theorem, whose proof can be found in textbooks such

as [45].

Theorem 11.25 (Integer Farkas Lemma or Kronecker Approximation Theo-

rem). Let A be a rational matrix and b a rational vector. The system Ax = b has an

integral solution if and only if for every rational vector u such that uA is integral,

ub is an integer.

Given a set P ⊂ Rn, we denote by aff(P) the affine hull of P, that is the minimal

affine subspace of Rn containing P.

Lemma 11.11. Let P ⊆ Rn be a nonempty rational polyhedron such that aff(P)∩
Zn 6= /0. If PI = /0, then dim(rec(P)) < dim(P).

Proof. Let d = dim(P) = dim(aff(P)). Suppose, by contradiction, that PI = /0 and

there are d linearly independent integral vectors r1, . . . ,rd ∈ rec(P). Let z ∈ P. Since

aff(P)∩Zn 6= /0, and z + r1, . . . ,z + rd is a basis of aff(P), there exist µ1, . . . ,µd

such that z + ∑d
i=1 µir

i ∈ Zn. Thus z + ∑d
i=1(µi −⌊µi⌋)r

i is an integral point in P,

contradicting the fact that PI = /0. ⊓⊔

A consequence of the above lemma is that every rational polyhedron having full-

dimensional recession cone contains an integer point.

Lemma 11.12. Let P⊆Rn be a rational polyhedron such that aff(P)∩Zn 6= /0. Then

PI = {x : Ax 6 b}∩aff(P) for some integral A and b such that, for every row ai of A,

1. ai is not orthogonal to aff(P);
2. there exists di ∈ R such that aix 6 di is valid for P.

Proof. Assume first PI 6= /0. Then clearly there exist an integral matrix A and an

integral vector b such that PI = {x : Ax 6 b}∩aff(P) and no row of A is orthogonal



11 Polyhedral Approaches to Mixed Integer Linear Programming 381

to aff(P). We prove 2): Since rec(PI) = rec(P) by Theorem 11.13, for every row ai,

di = max{aix : x ∈ P} is finite, thus aix 6 di is valid for P.

Assume now PI = /0. By standard linear algebra, aff(P) = z + L where z ∈ P and L

is a linear subspace of Rn such that dim(L) = dim(P). Notice that rec(P) ⊂ L. By

Lemma 11.11, dim(rec(P)) < dim(P), thus there exists an integral a ∈ L such that a

is orthogonal to rec(P). Thus both u = max{ax : x ∈ P} and l = min{ax : x ∈ P} are

finite, hence PI = {x : ax 6 −1, −ax 6 0} = /0, a,−a are not orthogonal to aff(P),
and ax 6 u, −ax 6 −l are valid for P. ⊓⊔

Lemma 11.13. Let P be a rational polyhedron and F a nonempty face of P. Then

F(s) = P(s) ∩F for every s ∈ Z+.

Proof. It suffices to show that F(1) = P(1)∩F . This is a consequence of the follow-

ing statement, which we prove next:

If cx ≤ ⌊d⌋ is a Chvátal inequality for F, there is a Chvátal inequality c∗x ≤ ⌊d∗⌋

for P such that F ∩{x : cx ≤ ⌊d⌋} = F ∩{x : c∗x ≤ ⌊d∗⌋}.

Since P is rational, by Theorem 11.15, we can write P as {x : A′x ≤ b′,A′′x ≤ b′′},

where A′, A′′, b′, b′′ are integral, so that F = {x : A′x≤ b′,A′′x = b′′}. We can assume

that d = max{cx : x ∈ F}. By the duality theorem 11.5 there exist vectors y′, y′′ such

that

y′A′ + y′′A′′ = c, y′b′ + y′′b′′ = d, y′ ≥ 0.

Note that y′′ is unrestricted in sign. To obtain a Chvátal inequality for P, we have to

use nonnegative multipliers. Define c∗ and d∗ as:

c∗ = y′A′ +(y′′−⌊y′′⌋)A′′, d∗ = y′b′ +(y′′−⌊y′′⌋)b′′.

The multipliers y′ and y′′−⌊y′′⌋ are nonnegative. We have c∗ = c− (⌊y′′⌋)A′′), d∗ =
d−(⌊y′′⌋)b′′). Since A′′ is an integral matrix and b′′, c are integral vectors, then c∗ is

integral and ⌊d⌋ = ⌊d∗⌋− (⌊y′′⌋)b′′. So c∗x ≤ ⌊d∗⌋ is a Chvátal inequality for P and

F ∩{x : c∗x ≤ ⌊d∗⌋} = F ∩{x : ⌊y′′⌋A′′x = ⌊y′′⌋b′′, c∗x ≤ ⌊d∗⌋}F ∩{x : cx ≤ ⌊d⌋}.

⊓⊔

Theorem 11.26 (Chvátal [13], Schrijver [44]). Let P be a rational polyhedron.

Then there exists t ∈ Z+ such that P(t) = PI .

Proof. The proof is by induction on d = dim(P), the cases d = −1, d = 0 being

trivial. If aff(P)∩Zn = /0, by Theorem 11.25 there exists an integral vector a and

a scalar d 6∈ Z such that P ⊆ {x : ax = d}, hence PI = /0 = {x : ax 6 ⌊d⌋, −ax 6

−⌈d⌉} = P(1). Therefore we may assume aff(P)∩Zn 6= /0. By Lemma 11.12, PI =
{x : Ax 6 b}∩ aff(P) for some integral A and b such that, for every row ai of A, ai

is not orthogonal to aff(P) and aix 6 di is valid for P for some di ∈ R.

We only need to show that, for any row ai of A, there exists a nonnegative integer t

such that the inequality aix 6 bi is valid for P(t). Suppose not, then, since aix 6 di

is valid for P, there exists an integer d > bi and r ∈ Z+ such that, for every s > r,

aix 6 d is valid for P(s) but aix 6 d − 1 is not valid for P(s). Then F = P(r) ∩{x :

aix = d} is a face of P(r) and FI = /0. Since ai is not orthogonal to aff(P), dim(F) <



382 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

dim(P), therefore, by induction, there exists h such that F(h) = /0. By Lemma 11.13,

F(h) = P(r+h)∩F , hence aix < d for every x ∈ P(r+h), therefore aix 6 β −1 is valid

for P(r+h+1), contradicting the choice of d and r. ⊓⊔

11.8.2 Split rank

Let P := {(x,y) ∈ Rn ×Rp : Ax + Gy 6 b} and let S := P∩ (Zn ×Rp). In this

section, we denote the split closure PSplit of P by P1.

For k > 2, Pk denotes the split closure relative to Pk−1 and it is called the k-th

split closure relative to P. It follows from Theorem 11.22 that Pk is a polyhedron.

Unlike for the pure integer case, there is in general no finite r such that Pr = conv(S)
in the mixed integer case, as shown by the following example [17].

Example 11.1. Let S := {(x,y)∈Z2
+×R+ : x1 > y, x2 > y, x1 +x2 +2y 6 2}. Start-

ing from P := {(x1,x2,y) ∈ R3
+ : x1 > y, x2 > y, x1 + x2 + 2y 6 2}, we claim that

there is no finite r such that Pr = conv(S).
To see this, note that P is a simplex with vertices O = (0,0,0), A = (2,0,0), B =

(0,2,0) and C = ( 1
2 , 1

2 , 1
2 ) (see Figure11.11). S is contained in the plane y = 0. More

generally, consider a simplex P with vertices O,A,B and C = ( 1
2 , 1

2 , t) with t > 0.

Let C1 = C, let C2 be the point on the edge from C to A with coordinate x1 = 1 and

C3 the point on the edge from C to B with coordinate x2 = 1. Observe that no split

disjunction removes all three points C1, C2, C3. Let Qi be the intersection of all split

inequalities that do not cut off Ci. All split inequalities belong to at least one of these

three sets, thus P1 = Q1 ∩Q2 ∩Q3. Let Si be the simplex with vertices O,A,B,Ci.

Clearly, Si ⊆ Qi. Thus S1 ∩ S2 ∩ S3 ⊆ P1. It is easy to verify that ( 1
2 , 1

2 , t
3 ) ∈ Si for

i = 1,2 and 3. Thus ( 1
2 , 1

2 , t
3 ) ∈ P1. By induction, ( 1

2 , 1
2 , t

3k ) ∈ Pk.

O A

B

C

Fig. 11.11 Example showing that the split rank can be unbounded

Remark 11.10. For mixed 0,1 programs, Theorem 11.24 implies that Pn = conv(S).



11 Polyhedral Approaches to Mixed Integer Linear Programming 383

Example 11.2. Cornuéjols and Li [18] observed that the n-th split closure is needed

for 0,1 programs, i.e., there are examples where Pk 6= conv(S) for all k < n. They use

the following well-known polytope studied by Chvátal, Cook, and Hartmann [14]:

PCCH := {x ∈ [0,1]n : ∑
j∈J

x j + ∑
j 6∈J

(1− x j) > 1
2 , for all J ⊆ {1,2, · · · ,n}}

Let Fj be the set of all vectors x ∈ Rn such that j components of x are 1
2 and each

of the remaining n− j components are equal to 0 or 1. The polytope PCCH is the

convex hull of F1.

Lemma 11.14. If a polyhedron P ⊆ Rn contains Fj, then its split closure P1 con-

tains Fj+1.

Proof. It suffices to show that, for every (π,π0) ∈ Zn ×Z, the polyhedron Π =
conv((P∩{x : πx 6 π0})∪ (P∩{x : πx > π0 + 1})) contains Fj+1. Let v ∈ Fj+1

and assume w.l.o.g. that the first j +1 elements of v are equal to 1
2 . If πv ∈ Z, then

clearly v ∈ Π . If πv 6∈ Z, then at least one of the first j + 1 components of π is

nonzero. Assume w.l.o.g. that π1 > 0. Let v1,v2 ∈ Fj be equal to v except for the

first component which is 0 and 1 respectively. Notice that v = v1+v2
2 . Clearly, each

of the intervals [πv1,πv] and [πv,πv2] contains an integer. Since πx is a continuous

function, there are points ṽ1 on the line segment conv(v,v1) and ṽ2 on the line seg-

ment conv(v,v2) with π ṽ1 ∈ Z and π ṽ2 ∈ Z. This means that ṽ1 and ṽ2 are in Π .

Since v ∈ conv(ṽ1, ṽ2), this implies v ∈ Π . ⊓⊔

Starting from P = PCCH and applying the lemma recursively, it follows that

the (n− 1)-st split closure relative to PCCH contains Fn, which is nonempty. Since

conv(PCCH∩{0,1}n) is empty, the n-th split closure is needed to obtain conv(PCCH∩

{0,1}n).

End of Example 11.2.

Remark 11.11. In view of Example 11.1 showing that no bound may exist on the

split rank when the integer variables are general, and Remark 11.10 showing that the

rank is always bounded when they are 0,1 valued, one is tempted to convert general

integer variables into 0,1 variables. For a bounded integer variable 0 6 x 6 u, there

are several natural transformations:

(i) a binary expansion of x (see Owen and Mehrotra [41]);

(ii) x = ∑u
i=1 izi, ∑zi 6 1, zi ∈ {0,1} (see Sherali and Adams [46] and Köppe,

Louveaux and Weismantel [35]);

(iii) x = ∑u
i=1 zi, zi 6 zi−1, zi ∈ {0,1} (see Roy [43]).

More studies are needed to determine whether any practical benefit can be gained

from such transformations.



384 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

References

1. K. Andersen, G. Cornuéjols and Y. Li, Split closure and intersection cuts, Mathematical Pro-
gramming 102 (2005) 457–493.

2. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, GSIA
Management Science Research Report MSRR 348, Carnegie Mellon University (1974), pub-
lished as invited paper in Discrete Applied Mathematics 89 (1998) 1–44.

3. E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimization

problems, SIAM Journal on Algebraic and Discrete Methods 6 (1985) 466–486.
4. E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1

programs, Mathematical Programming 58 (1993) 295–324.
5. E. Balas and R. Jeroslow, Strengthening cuts for mixed integer programs, European Journal of

Operations Research 4 (1980) 224–234.
6. E. Balas and M. Perregaard, A Precise correspondence between lift-and-project cuts, simple

disjunctive cuts and mixed integer Gomory cuts for 0-1 programming, Mathematical Program-
ming 94 (2003) 221–245.

7. E. Balas and A. Saxena, Optimizing over the split closure, Mathematical Programming 113
(2008) 219–240.

8. R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh, An updated mixed integer pro-

gramming library: MIPLIB 3.0, Optima 58 (1998) 12–15.
9. P. Bonami, Etude et mise en oeuvre d’approches polyédriques pour la résolution de pro-

grammes en nombres entiers ou mixtes généraux, PhD Thesis, Université de Paris 6 (2003).
10. P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi, Projected Chvátal-Gomory cuts

for mixed integer linear programs, Mathematical Programming 113 (2008) 241–257.
11. P. Bonami and M. Minoux, Using rank-1 lift-and-project closures to generate cuts for 0–1

MIPs, a computational investigation, Discrete Optimization 2 (2005) 288–307.
12. A. Caprara and A.N. Letchford, On the separation of split cuts and related inequalities, Math-

ematical Programming 94 (2003) 279–294.
13. V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial optimization, Discrete Math-

ematics 4 (1973) 305–337.
14. V. Chvátal, W. Cook, and M. Hartmann, On cutting-plane proofs in combinatorial optimiza-

tion, Linear Algebra and its Applications 114/115 (1989) 455–499.
15. M. Conforti, M. Di Summa, and G. Zambelli, Minimally infeasible set partitioning problems

with balanced constraints, Mathematics of Operations Research 32 (2007) 497–507.
16. S.A. Cook, The complexity of theorem-proving procedures, Proceedings of the Third Annual

ACM Symposium on the Theory of Computing (Shaker Heights, Ohio 1971), ACM, New
York, 1971, pp. 151–158.

17. W. Cook, R. Kannan, and A. Schrijver, Chvátal closures for mixed integer programming prob-

lems, Mathematical Programming 47 (1990) 155–174.
18. G. Cornuéjols and Y. Li, On the rank of mixed 0,1 polyhedra, Mathematical Programming 91

(2002) 391–397.
19. G. Cornuéjols and Y. Li, A connection between cutting plane theory and the geometry of

numbers, Mathematical Programming 93 (2002) 123–127.
20. G.B. Dantzig, Maximization of a linear function of variables subject to linear inequalities,

in: Activity Analysis of Production and allocation (T.C. Koopmans, ed.), Wiley N.Y. (1951)
339–347.

21. G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-salesman prob-

lem, Operations Research 2 (1954) 393–410.
22. S. Dash, O. Günlük and A. Lodi, MIR closures of polyhedral sets, Mathematical Programming

121 (2010) 33–60.
23. J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965) 449–467.
24. J. Edmonds, Systems of distinct representatives and linear algebra, Journal of Research of the

National Bureau of Standards B 71 (1967) 241–245.



11 Polyhedral Approaches to Mixed Integer Linear Programming 385

25. F. Eisenbrand, On the membership problem for the elementary closure of a polyhedron, Com-
binatorica 19 (1999) 297–300.

26. Gy. Farkas, On the applications of the mechanical principle of Fourier, Mathematikai és
Természettudományi Értesotö 12 (1894) 457–472.

27. M. Fischetti and A. Lodi, Optimizing over the first Chvátal closure, Mathematical Program-
ming 110 (2007) 3–20.

28. J.B.J. Fourier, Solution d’une question particulière du calcul des inégalités, Nouveau Bulletin
des Sciences par la Société Philomatique de Paris (1826) 317–319.

29. C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium,
F. Perthes & J.H. Besser, Hamburg, 1809.

30. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995)
1115–1145.

31. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the
American Mathematical Society 64 (1958) 275–278.

32. R.E. Gomory, An algorithm for integer solutions to linear programs, Recent Advances in
Mathematical Programming (R.L. Graves and P. Wolfe, eds.), McGraw-Hill, New York,1963,
pp. 269–302.

33. N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4
(1984) 373–395.

34. L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Dok-
lady 20 (1979) 191–194.

35. M. Köppe, Q. Louveaux, and R. Weismantel, Intermediate integer programming representa-

tions using value disjunctions, Discrete Optimization 5 (2008) 293–313.
36. H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Opera-

tions Research 8 (1983) 538–548.
37. L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM

Journal of Optimization 1 (1991) 166–190.
38. R.R. Meyer, On the existence of optimal solutions to integer and mixed integer programming

problems, Mathematical Programming 7 (1974) 223–235.
39. H. Minkowski, Geometrie der Zahlen (Erste Lieferung), Teubner, Leipzig, 1896.
40. G.L. Nemhauser and L.A. Wolsey, A recursive procedure to generate all cuts for 0-1 mixed

integer programs, Mathematical Programming 46 (1990) 379–390.
41. J.H. Owen and S. Mehrotra, On the value of binary expansions for general mixed-integer

linear programs, Operations Research 50 (2002) 810–819.
42. M. Perregaard, A practical implementation of lift-and-project cuts: A computational explo-

ration of lift-and-project cuts with XPRESS-MP, 18th ISMP, Copenhagen, 2003.
43. J.-S. Roy, “Binarize and project” to generate cuts for general mixed-integer programs, Algo-

rithmic Operations Research 2 (2007) 37–51.
44. A. Schrijver, On cutting planes, Annals of Discrete Mathematics 9 (1980) 291–296.
45. A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
46. H. Sherali and W. Adams, A reformulation-linearization technique for solving discrete and

continuous nonconvex problems, Kluwer Academic Publishers, Dordrecht, 1998.
47. J.P. Vielma, A constructive characterization of the split closure of a mixed integer linear pro-

gram, Operations Research Letters 35 (2007) 29–35.



Chapter 12

Fifty-Plus Years of Combinatorial Integer
Programming

William Cook

Abstract Throughout the history of integer programming, the field has been guided

by research into solution approaches to combinatorial problems. We discuss some

of the highlights and defining moments of this area.

12.1 Combinatorial integer programming

Integer-programming models arise naturally in optimization problems over com-

binatorial structures, most notably in problems on graphs and general set systems.

The translation from combinatorics to the language of integer programming is often

straightforward, but the new rendering typically suggests direct lines of attack via

linear programming.

As an example, consider the stable-set problem in graphs. Given a graph G =
(V,E) with vertices V and edges E, a stable set of G is a subset S ⊆V such that no

two vertices in S are joined by an edge. The stable-set problem is to find a maximum-

cardinality stable set. To formulate this as an integer-programming (IP) problem,

consider a vector of variables x = (xv : v ∈ V ) and identify a set U ⊆ V with its

characteristic vector x̄, defined as x̄v = 1 if v ∈ U and x̄v = 0 otherwise. For e ∈ E

write e = (u,v), where u and v are the ends of the edge. The stable-set problem is

equivalent to the IP model

max∑(xv : v ∈V ) (12.1)

xu + xv 6 1, ∀ e = (u,v) ∈ E,

xv > 0, ∀ v ∈V,

xv integer, ∀ v ∈V.

William Cook
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA
e-mail: bico@isye.gatech.edu

387M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_12, © Springer-Verlag Berlin Heidelberg 2010 



388 William Cook

To express this model in matrix notation, let A denote the edge-vertex incidence

matrix of G, that is, A has rows indexed by E, columns indexed by V , and for each

e ∈ E and v ∈ V , entry Aev = 1 if v is an end of e and Aev = 0 otherwise. Letting 0

and 1 denote the vectors of all zeros and all ones, respectively, problem (12.1) can

be written as

max(1T x : Ax 6 1, x > 0, x integer). (12.2)

In a similar fashion, the vertex-cover problem can be modeled as

min(1T x : Ax > 1, x > 0, x integer). (12.3)

This later problem asks for a minimum-cardinality set C ⊆ V such that every edge

in E has at least one of its ends in C.

By dropping the integrality constraints on the variables, we obtain linear pro-

gramming (LP) relaxations for the IP models. From these relaxations we get the LP

dual

min(yT 1 : yT A > 1T , y > 0) (12.4)

for the stable-set problem and the LP dual

max(yT 1 : yT A 6 1T , y > 0) (12.5)

for the vertex-cover problem. Solutions to (12.4) and (12.5) give upper bounds and

lower bounds for the two combinatorial problems, respectively, through the weak

LP-duality theorem. When these bounds are unsatisfactory in a given application, IP

techniques can be employed to improve the relaxations and reduce the gap between

the cardinality of a stable set or vertex cover and the value of the corresponding

dual LP. The primary tool for obtaining such an improvement is to add, to the LP

relaxation, inequalities that are satisfied by all integer solutions, but violated by an

optimal solution to the LP problem. This is known as the cutting-plane method and

it was first proposed in the context of a combinatorial problem, as we discuss in the

next section.

The use of cutting planes is a practical step to improve a given model, but the

LP-duality framework can also be a powerful tool in proving theorems in combina-

torics. The idea is to formulate a relaxation such that the LP optimum can always

be attained by an integer-valued vector. Such a relaxation gives a characterization of

optimal solutions to the combinatorial problem. If it can be shown that the dual LP

also always has integer solutions, then strong LP duality provides a form of combi-

natorial min-max theorem. Such statements are among the most beautiful results in

combinatorics.

The pursuit of LP-based proofs of min-max theorems often involves showing

that a polyhedron P, defined as the solution set to a system of linear inequalities

Ax 6 b, has the property that each of its vertices is integer valued. In this case P

is said to be an integer polyhedron. If for each integer objective vector w the dual

LP min(yT b : yT A = wT ,y > 0) has an integer optimal solution, then the system

Ax 6 b is called totally dual integral (TDI). Such systems are often the final goal

of research efforts, since they translate to min-max results for the weighted version



12 Fifty-Plus Years of Combinatorial Integer Programming 389

of the combinatorial problem, where w provides the weights and the integer dual

solutions correspond to combinatorial structures.

The study of integer polyhedra and totally dual integral systems for combinatorial

problems is known as polyhedral combinatorics. The area we are calling combina-

torial integer programming includes both the application of IP techniques to solve

particular instances of possibly difficult problems, as well as the development of

general methods and examples in polyhedral combinatorics.

In this paper we give a brief history of combinatorial IP. It is not our intent to

be comprehensive in any form, but rather to touch on some of the highlights in the

development and growth of the field, with particular emphasis on breakthroughs in

combinatorial methods that have led to successful techniques for general integer

programming. For a marvelously complete account of the history of the wider field

of combinatorial optimization, the reader is directed to the work of Schrijver [135].

We refer the reader also to the reprints of classical papers contained in this volume,

and to the fascinating historical perspectives offered by the authors of these papers

in their newly written introductions.

12.2 The TSP in the 1950s

The birth of combinatorial integer programming occurred in the spring of 1954,

pre-dating the start of general integer-programming research by several years. The

event was described as follows in the popular journal Newsweek, July 26, 1954.

Finding the shortest route for a traveling salesman—starting from a given city, visiting each
of a series of other cities, and then returning to his original point of departure—is more
than an after-dinner teaser. For years it has baffled not only goods- and salesman-routing
businessmen but mathematicians as well. If a drummer visits 50 cities, for example, he has
1062 (62 zeros) possible itineraries. No electronic computer in existence could sort out such
a large number of routes and find the shortest.

Three Rand Corp. mathematicians, using Rand McNally road-map distances between the
District of Columbia and major cities in each of the 48 states, have finally produced a
solution. By an ingenious application of linear programming—a mathematical tool recently
used to solve production-scheduling problems—it took only a few weeks for the California
experts to calculate “by hand” the shortest route to cover the 49 cities: 12,345 miles.

The California experts were George Dantzig, Ray Fulkerson, and Selmer Johnson,

part of an exceptionally strong and influential center for the new field of mathemat-

ical programming, housed at the RAND Corporation in Santa Monica. Dantzig et

al. took up the computational challenge of the traveling salesman problem (TSP),

solving a 49-city instance with hand-only computations. Along the way they set the

stage for the study of integer programming.



390 William Cook

The traveling salesman problem

Before going into the details of the RAND team’s work, it is appropriate to con-

sider the research environment where conditions were set for their breakthrough

study. The starting point of the discussion is the TSP itself and how the problem

came to the prominent role it has played in the history of integer programming.

Concerning this issue, Dantzig et al. [29] write the following.

The origin of this problem is somewhat obscure. It appears to have been discussed infor-
mally among mathematicians at mathematics meetings for many years. Surprisingly lit-
tle in the way of results has appeared in the mathematical literature. It may be that the
minimal-distance tour problem was stimulated by the so-called Hamiltonian game which
is concerned with finding the number of tours possible over a specified network. The lat-
ter problem is cited by some as the origin of group theory and has some connections with
the famous Four-Color Conjecture. Merrill Flood (Columbia University) should be credited
with stimulating interest in the traveling-salesman problem in many quarters. As early as
1937, he tried to obtain near optimal solutions in reference to routing of school buses. Both
Flood and A. W. Tucker (Princeton University) recall that they heard the problem first in a
seminar talk by Hassler Whitney at Princeton in 1934 (although Whitney, recently queried,
does not seem to recall the problem).

This brief summary of TSP history is expanded in Hoffman and Wolfe [81] and

Schrijver [135, 136]. In these works it is noted that Karl Menger described a geo-

metric variant of the TSP in a record of a mathematics colloquium held in Vienna

on February 5, 1930 [113]. Schrijver [135, 136] also points out that Menger and

Whitney met at Harvard University in 1930–31, during a semester-long visit by

Menger. This Menger-Whitney interaction supports the idea of a possible connec-

tion between Menger’s Vienna colloquium and Whitney’s Princeton seminar.

It remains a question whether Whitney did in fact discuss the TSP at Princeton.

There unfortunately is not an accessible record at Princeton University covering

the seminars delivered in the Department of Mathematics in the 1930s. The Pusey

Library at Harvard University does, however, contain an archive of 3.9 cubic feet of

Whitney’s papers, and within the collection there is a set of handwritten notes that

appear to be preparation for a seminar by Whitney, written sometime in the years

shortly after 1930. The notes give an introduction to graph theory, including the

following paragraph.

A similar, but much more difficult problem is the following. Can we trace a simple closed
curve in a graph through each vertex exactly once? This corresponds to the following prob-
lem. Given a set of countries, is it possible to travel through them in such a way that at the
end of the trip we have visited each country exactly once?

This is an unusual example for the Hamilton-circuit problem, and clearly not a far

step away from the TSP. The geographic aspect also matches well with Flood’s rec-

ollection of the “‘48-states problem’ of Hassler Whitney” in a 1984 interview [45]

with Albert Tucker.

There is not a record of TSP research, under the TSP name, in the late 1930s

and into the 1940s, but by the end the 1940s it had become a known challenge in

Princeton and RAND, supported by the interest of Merrill Flood. On the Princeton

side, Harold Kuhn writes the following in a recent email letter [95].



12 Fifty-Plus Years of Combinatorial Integer Programming 391

The traveling salesman problem was known by name around Fine Hall by 1949. For in-
stance, it was one of a number of problems for which the RAND corporation offered a
money prize. I believe that the list was posted on a bulletin board in Fine Hall in the aca-
demic year 1948–49.

At the RAND Corporation, Julia Robinson published a research report in 1949 that

appears to be the first reference to the TSP by name [132]. Interestingly, Robinson

formulates the problem as finding “the shortest route for a salesman starting from

Washington, visiting all the state capitals and then returning to Washington.”

Heller and Kuhn

Robinson’s work considers an LP approach to the TSP, treating a variation of the

assignment problem. This problem asks for an optimal assignment of n workers to n

tasks, where the quality of assigning worker i to task j is specified by a weight wi j.

The goal is to maximize the total weight of the n assignments. A feasible solution

to the problem can be viewed as a graph having vertices labeled 1 up to n, with

the assignment of worker i to task j indicated by an edge directed from i to j. The

assignment solution gives a collection of disjoint directed circuits meeting every

vertex. The connection to the TSP is clear: a TSP solution is the special case when

the assignment yields a single circuit containing all vertices.

The assignment problem is a member of a more general class called transporta-

tion problems. Efforts to solve instances from this class played a prominent role in

the early history of linear programming. Julia Robinson’s research in this area is

mentioned in the following quote from Dantzig et al. [29].

The relations between the traveling-salesman problem and the transportation problem ap-
pear to have been first explored by M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann,
and latter by I. Heller and H. Kuhn.

Robinson’s paper begins an LP line of attack, but it is the work of Isidor Heller

and Harold Kuhn that appears to have had the most influence on the computational

study of Dantzig et al. Both Heller [72] and Kuhn [91] began investigations of linear

descriptions of the convex hull of TSP tours, considering tours as characteristic

vectors of their edge sets. Their approach aims at a direct LP formulation of the TSP.

In notes from a George Dantzig Memorial Lecture delivered in 2008 [94], Kuhn

writes the following concerning his TSP study.

My efforts centered around the formulation of the traveling salesman problem as a linear
program that has as feasible solutions the convex hull of the “tours”. A tour is defined as a
0-1 matrix that presents a permutation that is a single cycle. For example, with 5 cities, there
are 24 tours that are the extreme points of an 11 dimensional feasible set. In the summer of
1953, I found that this convex polyhedron has 390 faces, a very discouraging fact.

I had a number of contacts with George throughout the summer discussing this and other
problems. And I know that George attended my lecture at the end of the summer (as did
Selmer Johnson, Ray Fulkerson, and Alan Hoffman). We were both keenly aware of the
fact that, although the complete set of faces (or constraints) in the linear programming
formulation of the Traveling Salesman Problem was enormous, if you could find an optimal



392 William Cook

solution to a relaxed problem with a subset of the faces that is a tour, then you had solved
the underlying Traveling Salesman Problem.

Fig. 12.1 Harold Kuhn, 1961. Photograph courtesy of Harold Kuhn.

Kuhn presented his TSP work at the Sixth Symposium in Applied Mathemat-

ics, held in Santa Monica on August 26–28, 1953. His lecture is titled “The trav-

eling salesman problem” in the conference program [2], and Dantzig, Fulkerson,

and Johnson are listed as participants of the meeting. Kuhn [95] notes that his Santa

Monica lecture included the following points.

1. A statement of the TSP as an LP and a clear statement that if you solved over a

subset of the constraints and obtained a tour then the tour was optimal.

2. Results of a shooting experiment on the five-city TSP polytope to explore the

distribution of its faces. (This experiment is described in [55] and in [93].)

3. The fact that in the five-city polytope any two vertices are contained in a face of

dimension one, that is, the polytope is neighborly, and that the six-city polytope

does not have this property.

4. An account of constructions of classes of faces whose number grows exponen-

tially with the number of cities.

Concerning this last point, Kuhn writes that the number of faces “was so large that

it discouraged me from pursuing this direction of research.”

Kuhn’s work was inspired in part by a study of the five-city TSP polytope by

Heller, which was also carried out in 1953. Heller presented his research in a lecture

“On the problem of shortest path between points” [72] at the Summer Meeting of the



12 Fifty-Plus Years of Combinatorial Integer Programming 393

American Mathematical Society, held in Kingston, Ontario, August 31 to Septem-

ber 5, 1953. Dantzig again participated in the meeting, while Fulkerson and Johnson

are not listed as participants [3].

The studies of Heller and Kuhn conclude with the fact that the natural LP model

of the TSP necessarily contains far too many inequalities for any solver to handle

directly. Undeterred, Dantzig et al. saw this as an opportunity to demonstrate the

versatility of the simplex algorithm.

The cutting-plane method

The approach adopted by the RAND team is laid out in a preliminary version [28]

of their paper. In the following quote, C1 denotes the solution set of the LP relax-

ation, Tn denotes the convex hull of all tours through n cities, and di j is the cost of

travel between city i and city j.

What we do is this: Pick a tour x which looks good, and consider it as an extreme point
of C1; use the simplex algorithm to move to an adjacent extreme point e in C1 which gives
a smaller value of the functional; either e is a tour, in which case start again with this new
tour, or there exists a hyperplane separating e from the convex of tours; in the latter case cut
down C1 by one such hyperplane that passes through x, obtaining a new convex C2 with x

as an extreme point. Starting with x again, repeat the process until a tour x̂ and a convex
Cm ⊃ Tn are obtained over which x̂ gives a minimum of ∑di jxi j .

The process clearly applies to problems beyond the TSP, and it is known today as

the primal cutting-plane method; see, for example, Letchford and Lodi [102].

The published version of the paper excludes a general description of their

method, relying on a sequence of five-city and six-city examples to convey the idea.

There was a four-month gap between the release of the preliminary report and the

submission of their paper, and the authors appear to have changed their minds as to

how best to describe the methodology. Among other things, the preliminary report

also contains a discussion of the convex hull of tours, similar in style to the modern

treatment of the TSP polytope. Regarding this, Fulkerson writes in a September 2,

1954, letter to Operations Research editor George Shortly: “In an effort to keep the

version submitted for publication elementary, we avoid going into these matters in

any detail.” It is a pity this choice was made, but it is not a surprising decision given

the nature of operations research literature at the time.

The LP relaxation adopted by Dantzig et al. has a variable xi j for each unordered

pair of cities (i, j). It is convenient to describe this model in terms of a complete

graph G = (V,E), denoting variable xi j as xe, where e is the edge having ends i

and j. The initial relaxation consists of the degree equations

∑(xe : v is an end of e) = 2 for all cities v (12.6)

together with the restriction xe > 0 for all e ∈ E. A ready supply of potential cutting

planes is derived from the observation that every proper subset of k cities can contain

at most k−1 edges in a tour. The corresponding subtour constraints are



394 William Cook

∑(xe : both ends of e are in S) 6 |S|−1 for all S ⊆V,S 6= V . (12.7)

These inequalities are called “loop conditions” in [29] and they are the first line-of-

defense in the RAND computations.

The published descriptions of the small TSP examples in [29] focus on the in-

tegration of the simplex algorithm and the cutting-plane method, suggesting how

Dantzig et al. were able to handle the 49-city LP relaxation with hand-only cal-

culations. For this large TSP, using LP duality, they present a succinct proof that

their method produced an optimal tour. The final LP relaxation contains a set of 23

subtour inequalities (of which 16 have the form xe 6 1 for edges e ∈ E, that is, the

set S has only two cities) and two additional inequalities. The second of these two

non-subtour cutting planes points to Irving Glicksberg as an unsung hero in the TSP

effort, cited in the footnote: “We are indebted to I. Glicksberg of Rand for pointing

out relations of this kind to us.”

Fig. 12.2 Irving Glicksberg, 1978. Photograph copyright Mathematisches Forschungsintitut Ober-
wolfach.

It should be noted that the Dantzig et al. study considers the symmetric version

of the TSP, where the travel cost between city i and city j is the same as the cost

between city j and city i. This differs from the Heller and Kuhn studies, where the

directed version of the problem is considered. This point generated some discus-

sion among TSP researchers. In his September 2, 1954, letter to George Shortley,

Fulkerson writes the following.

The assumption di j = d ji certainly seems to be of some importance, although we are not sure
that it is crucial. (Dr. I. Heller, who has done considerable research on the problem, feels
that the symmetry assumption, which permits representing the convex of tours in a different
space, is of the utmost importance.) It is true, as the referee says, that the loop conditions
and combinatorial analysis can be used for directed tours as well, and some work should
be done along these lines. (The fact that the analogues of the loop conditions are faces of
the convex of directed tours has been known for a couple of years.) However, if one has a
symmetric problem, much is gained by using undirected tours. This is probably due to two



12 Fifty-Plus Years of Combinatorial Integer Programming 395

things: (1) The simplex algorithm of linear programming becomes especially easy, and (2)
there is some reason to believe that the convex of undirected tours may have significantly
fewer faces than the directed tours.

This point is also brought up in a letter from Fulkerson to Heller, dated March 11,

1954.

I read your abstracts “On the problem of shortest path between points” in the November
issue of the Bulletin of the American Mathematical Society with much interest. If it is not
too much trouble, I would greatly appreciate it if you would send me more details of your
results.

Recently, G. Dantzig, S. Johnson, and I have been working on computational aspects of the
problem via linear programming techniques even though we don’t know, of course, all the
faces of the convex Cn of tours for general n. The methods we have been using seem hopeful,
however; in particular, an optimal tour has been found by hand computation for a large scale
problem using 48 cities, rather quickly. We have found it convenient in translating Dantzig’s
simplex algorithm in terms of the map of points, to identify tours which differ only in
direction of traversal. For example, C5 can be characterized by a system of 25 hyperplanes
in 10 dimensional space. We don’t know very much about Cn in general, but thought we
might learn more from reading your papers, if they are available.

Similar requests for polyhedral results were sent from Dantzig to Kuhn (March 11,

1954) and from Dantzig to Tucker (March 25, 1954). It is clear that Dantzig et al.

were actively seeking more information on the facial structure of the TSP polytope,

to better equip their cutting-plane method. This is a topic that was taken up in force

two decades later, as we describe in Section 12.6.

Reduced-cost fixing and branch-and-bound algorithms

In the 1954 reports and in a follow-up 1959 paper [30], Dantzig et al. assert the

effectiveness of a method for transforming the TSP into a problem on a sparse graph.

This transformation is known as reduced-cost fixing and it was described for the first

time in this TSP work. The idea is the following. When a minimization LP problem

with nonnegative variables is solved by the simplex method, the objective function

is rewritten in the form z = zo + ∑(c̄ jx j : j = 1, . . . ,m) such that zo is a constant,

c̄ j > 0 for all j, and a solution vector x∗ is found such that x∗j = 0 for all j such

that c̄ j is positive. If the variables are required to take on integer values, then any x j

such that zo + c̄ j is greater than the cost of a known feasible integer solution can be

set to the value 0, and eliminated from the problem. This process is used in modern

integer-programming solvers, reducing the problem space in a preliminary step to

an enumeration phase.

The RAND team’s implementation of this idea is more subtle, since they do not

actually solve the LP relaxation in their primal cutting-plane method, carrying out

only single pivots of the simplex algorithm. Nevertheless, they show that reduced-

cost fixing can be accomplished, taking advantage of the fact that the variables in the

TSP relaxation are bounded between 0 and 1. The explicit variable bounds allow one

to obtain a bound on the objective value even in the case when some of the c̄ j values

are negative, and again variables can be eliminated. In the following comment on



396 William Cook

this process from Dantzig et al. [29], E denotes a value such that variables x j with

c̄ j > E can be eliminated.

During the early stages of the computation, E may be quite large and very few links can be
dropped by this rule; however, in the latter stages often so many links are eliminated that
one can list all possible tours that use the remaining admissible links.

A general method for carrying out this enumeration of tours is not given, but in [30]

an example is used to describe a possible scheme, relying on forbidding subtours

and vertices of degree three when growing a tour in the sparse edge set.

The enumeration aspect of the Dantzig et al. work has not been followed up to

any large degree in modern computational studies of the TSP, but it was pursued in

the late 1950s in various combinatorial approaches by Frederick Bock [14], G. A.

Croes [24], and others. These studies, in turn, contributed to the development of the

branch-and-bound algorithm, where the set of solutions is split into two or more

subsets (the branching step), a lower-bounding method is applied separately to each

of the subsets (the bounding step), and the process is applied repeatedly to the re-

sulting subproblems (growing a search tree).

The first full-version of the branch-and-bound method may be the TSP algorithm

described in the 1958 Ph.D. thesis of Willard Eastman [32]. In Eastman’s algorithm,

the lower bound is provided by the solution of a variant of the assignment problem.

In his branching step, a subtour having k edges in the assignment solution is chosen,

and k subproblems are created by setting to 0, one at a time, each of the variables

corresponding to the edges in the subtour. Eastman carried out his method on a

ten-city TSP; an illustration of part of his search tree is given in Figure 12.3.

Fig. 12.3 Branch-and-bound search tree from W.L. Eastman’s 1958 Ph.D. thesis.



12 Fifty-Plus Years of Combinatorial Integer Programming 397

The TSP-driven branch-and-bound research had a great impact on the practi-

cal solution of general integer-programming instances, starting with the important

1960 paper of Land and Doig [98]. We close this section by noting that the name

“branch-and-bound” first appeared several years after Land and Doig, when the

method was again applied to the TSP in the 1963 work of Little, Murty, Sweeney,

and Karel [104].

12.3 Proving theorems with linear-programming duality

In the preface to a collection of his papers [114], Alan Hoffman thanks Harold

Kuhn and David Gale: “in fond recollection of the early ’50s, when we taught each

other to use the ostensibly practical subject of linear programming to prove aesthetic

combinatorial theorems that were ostentatiously useless.” The work of these gentle-

men and their colleagues set basic research directions that formed a roadmap for the

early development of polyhedral combinatorics. The topics considered include the

assignment problem by Kuhn [92], systems of distinct representatives by Hoffman

and Kuhn [78], bipartite matching by Hoffman [74], network flows by Lester Ford

and Ray Fulkerson [46] and David Gale [51], and partially ordered sets by Dantzig

and Hoffman [31]. This work was carried out in an incredibly active span of years

in the mid-1950s. A nice overview of the activity can be seen in the volume Linear

Inequalities and Related Systems, edited in 1956 by Kuhn and Tucker [96]. Leaf-

ing through the pages of the book, it is striking how many household names appear

among the authors. The volume also contains a bibliography of 289 books and pa-

pers covering research on systems of linear inequalities, with the majority written

after 1950.

An important general concept that came out of this body of work is the notion

of totally unimodularity, introduced by Hoffman and Joseph Kruskal [77]. A matrix

is called totally unimodular if each of its subdeteriminants is 0, 1, or −1. The well-

known Hoffman-Kruskal result states that an integral matrix A is totally unimodular

if and only if for each integral vector b the set {x : Ax 6 b,x > 0} is an integer

polyhedron.

The following illustration of this concept is adopted from Hoffman’s short survey

paper “Linear programming” in Applied Mechanics Reviews, 1956 [75]. Consider

a bipartite graph G = (V,E). By definition, V can be written as the disjoint union

of sets U and W such that each e ∈ E has one end in U and one end in W . An

inductive proof shows that the edge-vertex incidence matrix A of such a graph is

totally unimodular. It follows that both sides of the LP-duality equation

max(1T x : Ax 6 1, x > 0) = min(yT 1 : yT A > 1T , y > 0)

are attained by integer solutions, x̄ and ȳ, assuming that the optima exist. Note that

x̄ is the incidence vector of a stable set of G, while ȳ is the incidence vector of

a set of edges F such that each vertex in V meets at least one edge in F , that is,



398 William Cook

Fig. 12.4 Esther and Alan Hoffman, Washington D.C., 1951. Photograph courtesy of Alan Hoff-
man.

Fig. 12.5 Alan Hoffman, 2000. Photograph by Sue Clites.



12 Fifty-Plus Years of Combinatorial Integer Programming 399

F is an edge cover. Also, the optimality condition is satisfied as long as G has

no isolated vertices. We conclude that for such a graph, the maximum cardinality

of a stable set is equal to the minimum cardinality of an edge cover. Perhaps not

“ostentatiously useless”, but a pretty min-max result nonetheless. Hoffman [114]

writes the following concerning his joint work with Kruskal.

In this paper the concept (not the name) of total unimodularity was shown to be a neat ex-
planation (via Cramer’s rule) of the fact that some linear programming problems have all
their vertices integral. I do not think this paper would have been accepted for publication if
we had not fancied it up with a supçon of generalization: the main idea is too obvious and
folklorish. And we also thought that we introduced a new class of matrices with the “uni-
modular property”, but Jack Edmonds later found that our new class wasn’t really new after
all. It is nevertheless true that totally unimodular matrices (as Berge christened them), and
unimodular matrices generally, are key to understanding how linear programming duality
underlies a wide variety of extremal combinatorial analysis.

Indeed, total unimodularity provides a unifying theme for combinatorial min-max

theorems, and it remains a fundamental tool in polyhedral combinatorics.

12.4 Cutting-plane computation

Returning to the cutting-plane method, the publication of the 1954 TSP paper did

not begin an immediate revolution in the practical solution of integer-programming

problems. Within the RAND Corporation, however, the cutting-plane strategy was

explored as a computational tool in the years following the Dantzig-Fulkerson-

Johnson success.

Markowitz and Manne

An important contribution in this effort is documented in the paper “On the solu-

tion of discrete programming problems” by Harry Markowitz and Alan Manne [111],

first published as a RAND research paper in 1956 [110]. Markowitz and Manne for-

mulate a general mixed-integer-programming model and describe, in abstract terms,

how it can be solved with a variant of the cutting-plane method. They introduce their

procedure as follows [111].

We do not present an automatic algorithm. We present, rather, a general approach suscepti-
ble to a number of variations depending on the problem and the judgment of the user. The
approach is of little or no purely mathematical interest. Its only recommendation consists
of a few empirical observations: When applied to very small discrete problems (with a few
thousand a priori possibilities) it has produced and confirmed the answer almost immedi-
ately. Its application to two moderate-size problems is described subsequently. There is a
danger, of course, in generalizing from so few observations. They provide encouragement,
rather than proof.

Our procedure for handling discrete problems was suggested by that employed in the solu-
tion of the ‘traveling-salesman’ problem by Dantzig, Fulkerson, and Johnson.



400 William Cook

Fig. 12.6 Harry Markowitz, 2000. Photograph by Sue Clites.

Despite these modest words, the Markowitz-Manne approach is an interesting vari-

ation of the method used in the TSP work. The new ideas are to (1) allow cuts that

possibly remove integer solutions that are known to have objective value no bet-

ter than a previously computed solution, (2) use linear constraints to partition the

feasible region, allowing the cutting-plane method to be applied independently to

each of the subregions, and (3) allow the simplex algorithm to compute optimal LP

solutions to the relaxations, rather than carrying out single simplex pivots, thus ob-

taining bounds to measure the quality of previously computed solutions. The second

point is a clear precursor to the modern branch-and-cut version of the branch-and-

bound algorithm, and the third point is the adoption of the now common “dual”

cutting-plane method.

Markowitz and Manne begin their presentation with a description of the primal

cutting-plane approach of Dantzig et al. and then lay out a general step of the par-

tition+relaxation strategy. Details of a possible implementation of the abstract ideas

are provided through two examples, one in production scheduling and one in air

transportation. The step-by-step elaboration of the technique on these problems pro-

vides great insight into the practical application of LP arguments in integer program-

ming.

The following simple remark concludes the Markowitz-Manne paper [111].

The solutions to the two examples presented here, along with those to the traveling-salesman
problem, suggest that the human being with simple aids can frequently produce solutions
with near-optimum payoffs.

It is interesting to see these famous researchers (Markowitz was awarded a Noble

Prize in 1990) getting their hands dirty with detailed integer-programming calcula-

tions. One must imagine that the members of the RAND Corporation were a driven

group of problem solvers, using the focus of real computations to guide their re-

search.



12 Fifty-Plus Years of Combinatorial Integer Programming 401

Dantzig in 1957

Foremost among these IP problem solvers is undoubtedly George Dantzig. He

returns to the cutting-plane method in a 1957 paper [27], summarizing some of his

work following the TSP study. Here Dantzig also describes the “dual” cutting-plane

approach, considering cuts that remove fractional optimal LP solutions.

The linear programming approach consists in putting such additional linear-inequality con-
straints on the system that the fractional extreme points of C where the total value of z is
maximized will be excluded, while the set of extreme points of the convex hull C∗ of ad-
missible solutions will be unaltered. The procedure would be straightforward except that
the rules for generating the complete set of additional constraints is not known. For practi-
cal problems, however, rules for generating a partial set of constraints is often sufficient to
yield the required solution.

This methodology is applied to an example of the knapsack problem, that is, an IP

model where the feasible region is determined by a single inequality constraint and

all variables are restricted to take on 0 or 1 values. In the knapsack metaphor, the

coefficients in the inequality are the weights of the objects and the right-hand-side is

the knapsack’s capacity. To run his cutting-plane approach, Dantzig considers what

are now known as cover inequalities, expressing that the sum of k variables can be

no more than k−1 if the weight of the corresponding k objects exceeds the capacity

of the knapsack. In the following quote from [27], condition “(14)” refers to such a

cutting plane, form “(11)” refers to the objective function, and condition “(9)” refers

to the single knapsack constraint.

Form (11) is maximized under conditions (9) and 0 6 x j 6 1, but with the constraint (14)
added. Again a new fractional extreme point may turn up for the new convex C, and it will
be necessary again to seek a condition that will exclude it. For the most part the conditions
added will be other partial sums of the x j similar to (14). However, at times more subtle
relations will be required until an extreme point is obtained that is admissible.

Since the discovery of these more subtle relations is more an art than a science, the reader
may dismiss the whole approach as worthless. However, experiments with many problems
by the author and others indicate that very often a practical problem can be solved using
only such obvious supplementary conditions as (14).

The use of the phrase “many problems” suggests that the cutting-plane method was

indeed in use, at least at the RAND Corporation.

Gomory’s IP algorithm

A common thread in the discussions of Dantzig, Fulkerson, and Johnson [29],

Markowitz and Manne [111], and Dantzig [27] is the need for creativity in the dis-

covery of inequalities to add as cutting planes, with appeals to Irving Glicksberg,

to a “human being”, and to “more of an art than a science”, respectively. Such cre-

ativity would limit the automation of the procedure on the class of digital computers

that was becoming available. This subject was addressed by Princeton researcher

Ralph Gomory, with the publication of his stunning four-page paper [54] in 1958.



402 William Cook

Fig. 12.7 George Dantzig, Ralph Gomory, and Ellis Johnson, 1982. Photograph by Sue Clites.

Fig. 12.8 Ralph Gomory as a TSP tour. Image by Robert Bosch, December 2007.

It is the purpose of this note to outline a finite algorithm for obtaining integer solutions to
linear programs. The algorithm has been programmed successfully on an E101 computer
and used to run off the integer solution to small (seven or less variables) linear programs
completely automatically.

The algorithm closely resembles the procedures already used by Dantzig, Fulkerson, and
Johnson, and Markowitz and Manne to obtain solutions to discrete variable programming
problems. Their procedure is essentially this. Given the linear program, first maximize the
objective function using the simplex method, then examine the solution. If the solution is
not in integers, ingenuity is used to formulate a new constraint that can be shown to be
satisfied by the still unknown integer solution but not by the noninteger solution already at-
tained. This additional constraint is added to the original ones, the solution already attained
becomes nonfeasible, and a new maximum satisfying the new constraint is sought. This



12 Fifty-Plus Years of Combinatorial Integer Programming 403

process is repeated until an integer maximum is obtained, or until some argument shows
that a nearby integer point is optimal. What has been needed to transform this procedure
into an algorithm is a systematic method for generating the new constraints. A proof that
the method will give the integer solution in a finite number of steps is also important. This
note will describe an automatic method of generating new constraints. The proof of the
finiteness of the process will be given separately.

Fig. 12.9 Magazine advertisement for the Burroughs E101 computer, 1959.

The great importance of Gomory’s algorithm is covered in detail in other parts of

this volume; we focus here only on its connections to developments in combinatorial

integer programming.

In one direction, the connection to combinatorial IP is not as strong as one might

guess. Indeed, in his 1991 paper “Early integer programming” [56], Gomory de-

scribes how he became aware of the existing cutting-plane research only after the

main details of his procedure had been worked out. Nonetheless, the history of suc-

cess with the cutting-plane method in combinatorial integer programming likely

played a major role in the acceptance of Gomory’s algorithm as a viable technique

for solving general IP problems.

In the other direction, an initial wave of combinatorial projects took the direct

approach of formulating IP models and turning Gomory loose on small instances.

Representative papers at this kind are those by Lambert [97] and Miller, Tucker,

and Zemlin [116], where IP formulations of the TSP are presented together with

reports of solutions to instances having five cities and four cities, respectively. Rapid



404 William Cook

growth in the size of the IP formulations in these studies limits the applicability of

the methodology.

An interesting hybrid approach was explored several years later by Glenn Martin,

described in an unpublished manuscript from 1966 [112]. Martin considers the TSP,

but he begins with a simple LP relaxation consisting of the degree equations and a

subtour constraint for the ends of the cheapest edge incident to each city. He applies

Gomory’s algorithm to obtain an integer optimal solution x∗ to the relaxation. If

x∗ is a tour, then it is an optimal solution to the TSP; otherwise he adds, by hand,

subtour inequalities violated by x∗ and applies Gomory again. Using three rounds of

the procedure, Martin repeated the Dantzig-Fulkerson-Johnson feat of solving the

49-city USA instance. This effective approach is considered in further studies by

Takis Miliotis [115] in the mid-1970s.

12.5 Jack Edmonds, polynomial-time algorithms, and

polyhedral combinatorics

The work of Gomory centers on the automation of the cutting-plane procedure,

making it suitable for implementation on a digital computer. In 1960, a branch-and-

bound alternative was proposed by Ailsa Land and Alison Doig [98], working at the

London School of Economics. In the following quote, these two authors comment

on their IP algorithm.

Until recently there was no general automatic routine for solving such problems, as opposed
to procedures for proving the optimality of conjectured solutions, and the work here is
intended to fill the gap.

Fig. 12.10 Ailsa Land, Banff, 1977. Photograph courtesy of Ailsa Land.



12 Fifty-Plus Years of Combinatorial Integer Programming 405

Fig. 12.11 Alison Doig, The Sun, October 21, 1965. Courtesy of Alison (Doig) Harcourt.

Variations of their approach became the dominant practical method for the solu-

tion of IP instances. Concerning this, Ailsa Land and Susan Powell [99] make the

following remark in a 2007 paper.

While branch and bound began to be built into computer codes, the cutting plane approach
was obviously more elegant, and we spent a great deal of time experimenting with it. . . .
Work was done, but it was not published because as a method to solve problems branch and
bound resoundingly won.

They go on to write: “It is gratifying that the combination, ‘branch and cut’, is now

often successful in dealing with real problems.”

The importance of the automatic nature of the Gomory and Land-Doig algo-

rithms cannot be disputed, but a critical theoretical question remained. The algo-

rithms were shown to be finite, but this in itself is not a substantial issue for the

problem class. Consider, for example, the TSP, where it is obvious that one can

simply list all possible tours. That this approach is not an acceptable solution is

suggested already by Karl Menger [113], in his initial description of the problem.

This problem can naturally be solved using a finite number of trials. Rules which reduce the
number of trials below the number of permutations of the given point set are not known.

What is sought is an algorithm that is efficient, not just finite.

A search for a better-than-finite algorithm for the assignment problem was a

focus of early mathematical-programming research in the United States, starting

with a 1951 lecture of John von Neumann at Princeton. Two years later, an effi-

cient solution method was famously developed by Harold Kuhn [92], armed with a

copy of Jenő Egerváry’s 1931 paper [44] and a large Hungarian-English dictionary.



406 William Cook

Kuhn’s [93] personal account of the events leading up to this work is delightful

to read, as is Schrijver’s [135] thorough description of the history of assignment-

problem computation and algorithms.

An analysis of Kuhn’s Hungarian algorithm appeared in a 1957 paper of James

Munkres [117], showing that it can be implemented to run in time polynomial in n,

the number of vertices. This notion of polynomial time did not immediately become

a standard means for evaluating algorithms, however. In particular, the criterion was

not used in the discussions of the finite algorithms for integer programming.

Jack Edmonds took charge of this issue, several years later, dramatically bringing

the notion of polynomial-time algorithms and good characterizations into the hearts

and minds of the research community. His efforts of persuasion began at a work-

shop in the summer of 1961, held at the RAND Corporation. Edmonds, working

at the National Bureau of Standards in Washington, D.C., joined a group of young

researchers invited to take part in the workshop together with leading figures in the

field, including Dantzig, Fulkerson, Hoffman and others. His RAND lecture, and a

1963 research paper [33, 35], concerned the problem of finding optimal matchings

in a general graph. Edmonds [35] writes the following.

I am claiming, as a mathematical result, the existence of a good algorithm for finding a
maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially
with the size of the graph. It is by no means obvious whether or not there exists an algorithm
whose difficulty increases only algebraically with the size of the graph.

Not only did this paper of Edmonds establish the basis for complexity theory,

the technique he employed opened up the world of polyhedral combinatorics be-

yond unimodularity. The linear constraints present in the natural formulation of the

matching problem do not define an integer polyhedron. Edmonds nonetheless pro-

vides a simple description of a full set of inequalities defining the convex hull of the

integer points in the relaxation.

A paper of Gomory [55] has a fascinating section covering the discussion that

took place after Gomory’s TSP lecture at the IBM Scientific Computing Symposium

on Combinatorial Problems, March 16–18, 1964. This record includes the following

remarks of Edmonds, in response to a comment of Harold Kuhn.

The algorithm I had in mind is one I introduced in a paper submitted to the Canadian Jour-
nal of Mathematics. This algorithm depends crucially on what amounts to knowing all the
bounding inequalities of the associated convex polyhedron—and, as I said, there are many
of them. The point is that the inequalities are known by an easily verifiable characterization
rather than by an exhausting listing—so their number is not important.

This sort of thing should be expected for a class of extremum problems with combinato-
rially special structure. For the traveling salesman problem, the vertices of the associated
polyhedron have a simple characterization despite their number—so might the bounding in-
equalities have a simple characterization despite their number. At least we should hope they
have, because finding a really good traveling salesman algorithm is undoubtedly equivalent
to finding such a characterization.

The thesis of Edmonds was clear: the existence of polynomial-time algorithms goes

hand-in-hand with polyhedral characterizations.



12 Fifty-Plus Years of Combinatorial Integer Programming 407

Fig. 12.12 Jack Edmonds, 2009. Photograph by Marc Uetz.

The application of Edmonds’ thesis to matching problems begins, for a graph

G = (V,E), with the simple inequalities

∑(xe : e meets vertex v) 6 1 for all vertices v ∈V , (12.8)

xe > 0 for all edges e ∈ E.

The polyhedron P defined by this system has as vertices each incidence vector of a

matching of G, but it may have non-integer vertices as well. Consider, for example,

three edges f , g, and h that form a triangle in G. Setting x̄ f = x̄g = x̄h = 1/2 and

x̄e = 0 for all other edges e gives a vertex x̄ of P. Such half-integer vertices can be

cut off from P by the addition of inequalities

∑(xe : e has both ends in S) 6 (|S|−1)/2

for each set S ⊆ V of odd cardinality. Edmonds calls these constraints blossom

inequalities. His remarkable theorem is that adding these inequalities to (12.8)

gives a defining system for the convex hull of matchings. Edmonds’ proof is via

a polynomial-time algorithm that constructs a matching and a corresponding dual

solution that together satisfy the LP-duality equation.



408 William Cook

The Chvátal closure

The method of Edmonds considers the full set of blossom inequalities in a single

stroke, rather than introducing them one at a time in a cutting-plane implementa-

tion. An exquisite theory considering waves of inequalities was developed by Vašek

Chvátal [17], summarized by the famous slogan

combinatorics = number theory + linear programming

from his paper “Edmonds polytopes and a hierarchy of combinatorial problems”,

published in 1973. The waves considered by Chvátal are the following. Given a

Fig. 12.13 Vašek Chvátal. Photograph by Adrian Bondy. All rights reserved.

polyhedron P and an inequality cT x 6 δ , with c integral, satisfied by each of its

members, each integer vector in P also satisfies cT x 6 ⌊δ⌋, where ⌊δ⌋ denotes δ
rounded down to the nearest integer. Let P′ denote the members of P that satisfy all

such inequalities. Chvátal called P′ the “elementary closure” of P; nowadays it is

referred to as the Chvátal closure. The main result of [17] is that for any bounded

polyhedron P, a finite number of applications of the closure operation results in the

convex hull of the integer points in P. Thus combinatorial theorems can be proved by

repeatedly rounding down inequalities obtained as linear combinations of previously

derived inequalities. This theory can be interpreted either in terms of cutting-plane

proofs [20, 21] or geometrically as the Chvátal rank of polyhedra [133]; it provides

an important connection between the polyhedral methods of Edmonds and the IP

algorithm of Gomory.



12 Fifty-Plus Years of Combinatorial Integer Programming 409

Polyhedral combinatorics in the 1970s

Edmonds himself followed the matching breakthrough with a series of results,

applying his polyhedral methods to spanning trees [39], branchings [37], matroid

intersection [40], submodular functions [38], and, together with Ellis Johnson, the

Chinese postman problem [36, 42, 43]. His leadership and amazing research moved

polyhedral combinatorics into high gear. Highlights of the maturing field in the

1970s include the following projects.

Fig. 12.14 Bernhard Korte and László Lovász, 1982. Photograph courtesy of the Research Institute
for Discrete Mathematics, University of Bonn.

• Ray Fulkerson [48, 49] develops his theory of blocking and anti-blocking poly-

hedra.

• László Lovász [105, 106] proves the weak perfect-graph conjecture.

• Egon Balas and Manfred Padberg [4, 5] study set-covering problems.

• Manfred Padberg [122], George Nemhauser and Leslie Trotter [118, 119], Vašek

Chvátal [19], and Laurence Wolsey [143] study the stable-set polytope.

• Jack Edmonds and Rick Giles [41] and Alan Hoffman [76] show that total dual

integrality implies primal integrality, that is, if Ax 6 b is TDI and b is integer,

then P = {x : Ax 6 b} is an integer polyhedron. Further properties of TDI sys-

tems are investigated by Rick Giles and William Pulleyblank [52] and Alexander

Schrijver [134].

• William Pulleyblank and Jack Edmonds [130, 129] describe the facet-defining

inequalities of the matching polytope.

• Paul Seymour [138] provides a deep characterization of a certain combinatorial

class of integer polyhedra and TDI systems, receiving a Fulkerson Prize in 1979.



410 William Cook

• Jack Edmonds and Rick Giles [41] propose a general LP framework that includes

a min-max theorem for directed cuts in graphs proved by Cláudio Lucchesi and

Daniel Younger [109]. Other LP-based min-max frameworks are described by

András Frank [47] and Alan Hoffman and Donald Schwartz [80]

• William Cunningham and Alfred Marsh, III [26] show that the blossom sys-

tem for matchings is TDI. Further studies of the blossom system are made by

Alan Hoffman and Rosa Oppenheim [79] and Alexander Schrijver and Paul Sey-

mour [137].

• Paul Seymour’s [139] decomposition theorem for regular matroids yields a

polynomial-time algorithm to test if a matrix is totally unimodular.

This period was a golden era for polyhedral combinatorics, attracting great talent to

the field and establishing a standard of quality and elegance.

Fig. 12.15 James Ho, Ellis Johnson, George Nemhauser, Jack Edmonds, and George Dantzig,
1985. Photograph courtesy of George Nemhauser.

12.6 Progress in the solution of the TSP

On the computational side, the TSP continued to lead the way in studies of com-

binatorial IP methods. TSP research in the 1960s and 1970s was dominated first by

the work of Michael Held and Richard Karp, and later by the return of the cutting-

plane method.



12 Fifty-Plus Years of Combinatorial Integer Programming 411

Dynamic programming

The straightforward enumeration algorithm for the TSP, listing all tours and

choosing the cheapest, solves an n-city instance in time proportional to n!. Anal-

ysis of the cutting-plane method has not improved this result—the number of cuts

needed in a worst-case example cannot be easily estimated. A breakthrough oc-

curred in 1962, however, using an alternative algorithmic technique called dynamic

programming. This method was shown by Held and Karp [69] to solve any instance

of the TSP in time proportional to n22n.

The general approach was layed out in Richard Bellman’s book Dynamic Pro-

gramming, published by Princeton University Press in 1957 [7]. Bellman was an-

other prominent member of the mathematical-programming group at the RAND

Corporation, where he introduced the dynamic-programming technique in a 1953

technical report [6]. The subject goes well beyond its application to IP problems,

encompassing general models in multistage decision making.

At roughly the same time as the Held and Karp study, dynamic programming for

the TSP was also proposed by Bellman [8, 9] and R. H. Gonzales [57]. The idea

used in all three projects is to build a TSP tour by computing optimal paths visiting

subsets of cities, gradually increasing the number of cities covered in each path. The

n22n worst-case bound for the method is significantly better than n!, although it is

still far from a practical result for instances of the size tackled by Dantzig et al. with

cutting planes.

The Held and Karp paper [69] includes a computational study, giving very fast

solutions for examples having 13 or fewer cities, and good approximate solutions

for larger problems. An IBM press release from January 2, 1964, describes the avail-

ability of the TSP code as follows.

IBM mathematicians (left to right) Michael Held, Richard Shareshian and Richard M. Karp
review the manual describing a new computer program which provides business and indus-
try with a practical scientific method for handling a wide variety of complex scheduling
tasks. The program, available to users of the IBM 7090 and 7094 data processing systems,
consists of a set of 4,500 instructions which tell the computer what to do with data fed into
it. It grew out of the trio’s efforts to find solutions for a classic mathematical problem—the
“Traveling Salesman” problem—which has long defied solution by man, or by the fastest
computers he uses.

The accompanying photograph of Held, Karp, and Shareshian is shown in Fig-

ure 12.16.

An effective branch-and-bound algorithm

Held and Karp’s n22n result is to this day the best known bound for general TSP

algorithms. The dynamic-programming approach does not, however, extend to a

practical method for large-scale instances, and the 49-city USA solution remained a

computational record throughout the 1960s. At the end of the decade Held and Karp

struck again, this time with a branch-and-bound method that succeeded in pushing



412 William Cook

Fig. 12.16 Michael Held, Richard Shareshian, and Richard Karp, 1964. Photograph courtesy of
IBM Corporate Archives.

the limits of TSP computation. Richard Karp made the following remarks on this

joint work in his 1985 Turing Award Lecture [86].

After a long series of unsuccessful experiments, Held and I stumbled upon a powerful
method of computing lower bounds. This bounding technique allowed us to prune the search
severely, so that we were able to solve problems with as many as 65 cities. I don’t think any
of my theoretical results have provided as great a thrill as the sight of the numbers pouring
out of the computer on the night Held and I first tested our bounding method.

The Held-Karp bounding technique relies on an iterative approach for obtaining

a good approximation to the value of the LP relaxation consisting of the degree

equations and all subtour constraints, avoiding the simplex method and the cutting-

plane approach. Each step of the bounding algorithm computes an optimal spanning

tree for a problem obtained by deleting a single city; the value of the tree plus the

cost of the cheapest two edges meeting the deleted city is a lower bound on the cost

of any tour. The edge costs are adjusted after each step, according to the shape of the

resulting tree. The form of the cost adjustment is to add or subtract, for each city v,

a fixed value δv from the cost of each edge meeting v. This adjustment does not

alter the TSP, but it can change the spanning tree and the implied lower bound. The

spanning-tree polyhedron result of Edmonds [39] connects the subtour constraints



12 Fifty-Plus Years of Combinatorial Integer Programming 413

with the tree computations, and the edge-cost adjustment accounts for dual variables

on the degree equations, in a technique known as Lagrangian relaxation.

The tenacity of Held and Karp set a new standard in TSP computation. Using

a computer implementation written together with Linda Ibrahim, their branch-and-

bound algorithm solved a set of instances having up to 64 cities [71].

Implementing the cutting-plane method

Despite the great early success of the cutting-plane method, the approach was not

really pursued as a TSP tool after the solution of the 49-city problem. Except for the

publication of a RAND report by John Robacker in 1955, describing a set of tests on

nine-city TSP instances, no further computations were reported with the Dantzig-

Fulkerson-Johnson technique in the decade following their published result. This

point is brought up in a 1964 lecture by Gomory [55].

I do not see why this particular approach stopped where it did. It should be possible to use
the same approach today, but it an algorithmic manner. We no longer have to be artistic
about generating the separating hyperplanes or cuts, since this is now done automatically
in integer programming. It seems likely that one can get over the difficulties of maintaining
the basis as well. So it should be possible to do the whole thing now systematically. This is
an approach one might not expect to work, but we already know that it does.

Saman Hong, supervised by Mandell Bellmore, responded to this call in his Ph.D.

work at The Johns Hopkins University. His thesis A Linear Programming Approach

for the Traveling Salesman Problem appeared in 1972, and reports the first fully

automatic version of the cutting-plane method for the TSP.

Fig. 12.17 Saman Hong, 1971. Photograph courtesy of Saman Hong.

Hong’s work uses subtour constraints together with a version of Edmonds’ blos-

som inequalities, embedded in a combined branch-and-bound and cutting-plane ap-



414 William Cook

proach, now called branch-and-cut. His computational results are modest, solving

instances with up to 25 cities, but he opened the way for a renewed attack with TSP

cuts.

Following Hong, the team of Martin Grötschel and Manfred Padberg took up the

study of TSP cutting planes, combining to push all aspects of the technology. The

pair started their effort in 1974, working at Bernhard Korte’s Institut für Ökonome-

trie und Operations Research at the University of Bonn. They focused on the study

of structural properties of the TSP polytope, including an important proof that a

generalization of the comb inequalities, introduced by Vašek Chvátal [18], are facet

defining.

Their work set the stage for a big push in TSP computation, beginning with a

study by Grötschel using an instance consisting of 120 cities from West Germany.

Grötschel [59] describes his method as follows.

After every LP-run we represented the optimal solution graphically by hand on a map. In
the beginning a plotter was used, but as the number of different fractional components of
the solutions increased there were not enough symbols to distinguish them and the plottings
became too cluttered. Using the graphical representation of the optimal solution we looked
for subtour elimination constraints and comb inequalities to cut off the present solution and
added them to the present constraint system. Drawing and searching took from 30 man-
minutes in the beginning up to 3 man-hours after the last runs.

After thirteen rounds of the procedure, an optimal solution to the 120-city TSP was

found. This work was carried out in 1975, and it is first described in Grötschel’s

1977 Ph.D. thesis [58].

Manfred Padberg commented on this successful computation in his 2007 pa-

per [123], and notes that a study together with Hong was begun hot on the heels of

Grötschel’s project.

To my pleasant surprise, Martin included numerical experiments in his dissertation; he
solved a 120-city traveling salesman problem to optimality which was a world record. In
early 1975 I met Saman Hong, a Korean 1972 Johns Hopkins’ Ph.D., in New York. We
started a project to solve symmetric TSPs, by implementing an exact arithmetic, primal
simplex algorithm using Don Goldfarb’s “steepest edge” criteria for pivot column selection
with automatic constraint generation.

The joint work of Padberg and Hong [124] was a computational success, automat-

ing the primal cutting-plane algorithm, solving instances with up to 75 cities, and

computing good lower bounds on other instances. The largest example treated

in the study is a 318-city instance considered earlier by Shen Lin and Brian

Kernighan [103]. This instance arose in an application to guide a drilling machine

through a set of holes; it is treated as a Hamiltonian-path problem, asking for a

single path joining specified starting and ending points and covering all other cities.

Padberg was not satisfied with the good approximations for the large instances,

and several years after the completion of his study with Hong he continued his

pursuit for a solution to the Lin-Kernighan example. Padberg [123] comments on

this effort in the following passage.

Some day in early 1979 I approached Harlan Crowder of IBM Research with a proposal
to push the exact solvability of TSPs up a notch, just like he had done earlier with Mike



12 Fifty-Plus Years of Combinatorial Integer Programming 415

Held and Phil Wolfe. He was all for it and we sat down to discuss what had to be done. It
seemed feasible and so we did it. It took maybe a couple of months to string it all together.
Harlan had other duties as well and I was back teaching at NYU. One evening we had it all
together and submitted a computer run for the 318-city symmetric TSP. We figured it would
take hours to solve and went to the “Side Door”, a restaurant not far from IBM Research, to
have dinner. On the way back we discussed all kinds of “bells and whistles” we might want
to add to the program in case of a failure. When we got to IBM Research and checked the
Computer Room for output it was there. The program proclaimed optimality of the solution
it had found in under 6 minutes of computation time!

Fig. 12.18 Ellis Johnson, Tito Ciriani, Manfred Padberg, Mario Lucertini, Harlan Crowder (sit-
ting), 1982. Photograph courtesy of Manfred Padberg.

The Crowder-Padberg study [25] concluded with the solution to the 318-city in-

stance and a large collection of smaller examples. This was a triumph of the cutting-

plane method and the long-term research efforts of Grötschel and Padberg.

12.7 Widening the field of application in the 1980s

In the twenty-five years following Dantzig-Fulkerson-Johnson, the few computa-

tional studies with the cutting-plane method focused on efforts at solving instances

of the TSP. The landscape changed dramatically, however, in the 1980s. By the end

of the decade the technique was in wide use, covering numerous fundamental mod-

els as well as applied problems from business and industry.

The transition away from the confines of the TSP was led by a focused effort

of Martin Grötschel, Michael Jünger, and Gerhard Reinelt, with their study of the

linear-ordering problem [61, 62, 63, 84, 131]. Over a period of four years, the team

managed to duplicate the scope of research that had evolved for the TSP over the

previous two and half decades. In a single project, Grötschel et al. formulated an



416 William Cook

LP relaxation, carried out a polyhedral study, developed a class of potential cut-

ting planes, created efficient separation algorithms to produce cuts, implemented

a branch-and-cut framework, gathered problem data, and carried out a large-scale

computational test. This work set a standard for future studies and demonstrated that

the algorithmic success with the TSP was not an isolated event.

Fig. 12.19 Ph.D. theses of Michael Jünger and Gerhard Reinelt, 1985.

Fig. 12.20 Michael Jünger, Martin Grötschel, Jeff Edmonds, Yoshiko Wakabayashi, Mario Saku-
moto, and Gerhard Reinelt, providing input to order a selection of beers, 1984. Photograph courtesy
of Gerhard Reinelt.



12 Fifty-Plus Years of Combinatorial Integer Programming 417

The linear-ordering problem

Fresh from theoretical and computational work with the TSP, Grötschel began a

study with Ph.D. students Jünger and Reinelt, aiming to apply the TSP lessons to

a new problem area. The team began their work in 1981 at the University of Bonn,

moving in 1983 to the University of Augsburg. The linear-ordering problem they

consider is defined as follows. Let D = (V,E) be a complete directed graph with

weights (we : e ∈ E) on the edges. The problem is to find an ordering of the vertices

v1,v2, . . . ,vn that maximizes the sum of the weights of the edges that are directed

consistent with the ordering, that is, from a vertex lower in the order to a vertex

higher in the order. The ordering can be thought of as a ranking of the vertices, with

the weight we, for directed edge e = (u,v), giving the payoff for ranking u before v.

The problem was formulated by Bernhard Korte and Walter Oberhofer [89, 90] in

the late 1960s; applications are described in Jan Karel Lenstra’s 1977 thesis [101].

The Grötschel et al. study provides a complete package of tools for solving real-

world instances arising in a variety of settings.

In the years following the linear-ordering project, cutting-plane research entered

a period of rapid growth, with studies covering a wide range of models. A 1994

survey paper by Jünger, Reinelt, and Stephan Thienel [85] lists twenty-one cutting-

plane projects carried out by various research teams.

The breadth of this cutting-plane work was aided by the development of high

quality of LP solvers such as Robert Bixby’s CPLEX code, making it much easier

to experiment with combinatorial IP techniques. Bixby [13] describes this point as

follows.

What was needed was a numerically robust code that was also flexible enough to be em-
bedded in these integer programming applications. It had to be a code that made it easy
to handle the kinds of operations that arose in a context in which it was natural to begin
with a model instantiated in one form followed by a sequence of problem modifications
(such as row and column additions and deletions and variable fixings) interspersed with
resolves. These needs were among the fundamental motivations behind the development of
the callable-library version of the CPLEX code.

The growth and availability of such flexible LP codes went hand-in-hand with the

expansion of the cutting-plane method.

Advancing the TSP

During these expansion years, the TSP was certainly not left behind. Indeed,

two large-scale computational projects were initiated by Padberg and Giovanni Ri-

naldi [126, 127, 128] and by Grötschel and Olaf Holland [82, 60]. The important

goal of these studies was to assess whether the performance of the cutting-plane

method could be substantially enhanced by digging deeper into the polyhedral struc-

ture of problem classes and by considering more sophisticated computational tools

available in branch-and-cut implementations. The spectacular success of the two

studies demonstrates that this is indeed the case. Among the computational achieve-



418 William Cook

ments were the solution of a 666-city world TSP instance by Grötschel and Holland

and the solution of a 2,392-city circuit-board drilling problem by Padberg and Ri-

naldi. The term “branch-and-cut” was first used in the Padberg-Rinaldi study, and

their work introduced important components that continue to be used in modern

implementations of the solution scheme.

Fig. 12.21 Giovanni Rinaldi, Michele Conforti, Monique Laurent, M.R. Rao, and Manfred Pad-
berg, 1985. Photograph courtesy of Monique Laurent.

12.8 Optimization ≡ Separation

The most widely circulated news event in the history of mathematical program-

ming occurred in the summer of 1979, when Leonid Khachiyan [88] published

a polynomial-time algorithm for solving linear-programming problems. The story

was covered on the front page of the New York Times and in newspapers around

the world. Khachiyan’s work made use of the ellipsoid method for convex program-

ming developed by David Yudin and Arkadi Nemirovski [144], and the papers [88]

and [144] were jointly awarded a Fulkerson Prize in 1982.

In the introduction to the current paper, we took care to state that LP duality is

used to obtain bounds on combinatorial problems, rather than assuming one could

actually solve a given relaxation. With Khachiyan’s result this is no longer an issue

in theoretical work, since the ellipsoid method can deliver the required optimal LP

value. The real power of the result goes well beyond this, however, as discovered by

Martin Grötschel, László Lovász, and Alexander Schrijver [64], Richard Karp and

Christos Papadimitriou [87], and Manfred Padberg and M. R. Rao [125]. Each of

these teams showed that subject to some modest technical conditions, the ellipsoid



12 Fifty-Plus Years of Combinatorial Integer Programming 419

Fig. 12.22 Padberg and Rinaldi’s 2,392-city TSP.

method can be used to prove that the problem of optimizing a linear function over a

rational polyhedron P is polynomial-time equivalent to the separation problem for P,

that is, given a vector x̄, either show that x̄ ∈ P or find a linear inequality cT x 6 β
that is satisfied by all points in P but violated by x̄. A particularly sharp version of

this equivalence is derived in the Grötschel et al. paper [64], and it too was awarded

a Fulkerson Prize in 1982.

The optimization ≡ separation result has wide-reaching applications in combi-

natorial integer programming, giving a precise algorithmic realization of Jack Ed-

monds’ appeal for linking polynomial-time algorithms and polyhedral descriptions.

Recall the quote of Edmonds concerning a characterization of the TSP polytope:

“finding a really good traveling salesman algorithm is undoubtedly equivalent to

finding such a characterization.” As with many other aspects of combinatorial op-

timization, Edmonds’ insight was right on the money. The ellipsoid method tells

us that what is needed to solve the TSP is a polyhedral characterization yielding

a polynomial-time separation algorithm. The study of separation algorithms for

classes of combinatorial problems, and for particular classes of inequalities, is now

a standard part of the field, in both practical and theoretical research.

The optimization ≡ separation paradigm is the central theme of a beautiful

monograph Geometric Algorithms and Combinatorial Optimization by Grötschel

et al. [66], published in 1988. This work intertwines combinatorics, polyhedra, and

the geometry of numbers, to produce polynomial-time algorithms and deep insights



420 William Cook

into a host of combinatorial optimization problems. The monograph is on a very

short list of must-read books for any student of integer programming.

Fig. 12.23 Alexander Schrijver, László Lovász, and Martin Grötschel, Amsterdam, 1991. Photo-
graph courtesy of Martin Grötschel.

The discovery and elaboration of optimization≡separation is a crowning achieve-

ment in combinatorial integer programming and it might well be viewed as marking

the end of the initial development phase of the field.

12.9 State of the art

The applied and theoretical work of the 1980s brought to fruition the early visions

of Dantzig-Fulkerson-Johnson, Edmonds, Gomory, Hoffman, Kuhn, and others. The

accomplishments of that decade set the stage for the now mature field of combinato-

rial integer programming, where deep theoretical questions and ever more complex

practical computations drive the growth of the discipline.

At this point in the narrative we cannot hope to do justice to the wide range of

activities being carried out by the research community, and we refer the reader to

state-of-the-art surveys included in this volume. We limit our discussion to several

highlights that are representative of the overall advancement of the field.



12 Fifty-Plus Years of Combinatorial Integer Programming 421

Balanced matrices and perfect graphs

Claude Berge, a pioneer in both graph theory and optimization, was the catalyst

for two major results in the late 1990s and early 2000s. Both studies concern the

integrality of polyhedra and are thus central to the theme of combinatorial integer

programming.

The first of the two results is the 1999 publication of an algorithm for decom-

posing and recognizing balanced matrices by Michele Conforti, Gérard Cornuéjols,

and M. R. Rao [22]. Berge [11, 12] introduced this class of 0/1 matrices in the early

1970s, generalizing the notion of a bipartite graph. Matrix A is called balanced if it

does not contain a square submatrix of odd order having exactly two ones in every

row and exactly two ones in every column. If A is balanced, then both Ax 6 1,x > 0

and Ax > 1,x > 0 are totally dual integral systems [50]. The definition of the class

tells us which matrices are not balanced. The achievement of Conforti et al. was

to answer the other natural question, showing which matrices are in fact balanced.

Their study was awarded a Fulkerson Prize in 2000.

Fig. 12.24 W. Cunningham, A. Schrijver, M. Laurent, B. Gamble, F. B. Shepherd, D. Williamson,
A. Hoffman, C. De Simone, D. Shmoys, J. Geelen, J. Kleinberg, S. Fekete, M. Goemans, M.
Conforti, G. Cornuéjols, and A. Gerards. Bellairs Research Institute, March 1995. Photograph
courtesy of David Williamson.

The second major result was the proof of Berge’s [10] strong perfect-graph con-

jecture by Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas

[16]. Perfection is defined in terms of the stable sets and cliques of a graph. A clique

in G = (V,E) is a set C ⊆V such that each pair of vertices in C is joined by an edge

in E; the clique-covering number of G is the minimum number of cliques covering

all vertices, that is, each v ∈ V is a member of a least one of the cliques. If G has a

stable set of cardinality k, then the clique-covering number of G must be at least k.



422 William Cook

Graph G if called perfect if for every induced subgraph H of G the clique-covering

number of H is equal to the cardinality of its largest stable set. It follows that if we

let A denote the clique-vertex incidence matrix of G, then G is perfect if and only if

for each 0/1 vector w = (wv : v ∈V ) the optimal values in the LP duality equation

max(wT x : Ax 6 1,x > 0) = min(yT 1 : yT A > wT ,y > 0)

are attained by 0/1 vectors. This is just a reinterpretation of the definition, but it

hints at the result that G is perfect if and only if {x : Ax 6 1,x > 0} is an integer

polyhedron [49, 105, 19]. This close connection with integer programming is one

of the drivers of the great interest in the study of perfection.

The strong perfect-graph conjecture states that a graph is perfect if and only if

neither it or its complement contains as an induced subgraph an odd circuit having at

least five edges. The simplicity of this possible characterization drew considerable

attention in the forty years after Berge proposed the problem in 1960, leading to a

great body of work in the literature. This research culminated in the Chudnovsky et

al. proof, announced in May 2002, just one month before Berge passed away. Their

published version runs 179 pages in the Annals of Mathematics and it is one of the

great achievements in graph theory and polyhedral combinatorics. An interesting

account of the steps and missteps along the way to the final proof can be found in

Seymour [140].

Fig. 12.25 Robin Thomas, Paul Seymour, Neil Robertson and Maria Chudnovsky signing copies
of their proof of the strong perfect graph conjecture, November 1, 2002. Photograph courtesy of
the American Institute of Mathematics.

With the conjecture now a theorem, the characterization was used to obtain a

polynomial-time recognition algorithm for perfect graphs [15]. Thus three important



12 Fifty-Plus Years of Combinatorial Integer Programming 423

classes of matrices, totally unimodular, balanced, and perfect, all are recognizable

in polynomial time.

This area of polyhedral combinatorics is well-developed, but many interesting

open questions remain. A nice treatment can be found in the book of Cornuéjols [23],

including offers of cash rewards of $5,000 for each of eighteen conjectures. Of this

potential $90,000, the teams Chudnovsky-Seymour and Chudnovsky-Robertson-

Seymour-Thomas have thus far collected $25,000, leaving plenty of money on the

table for future work.

Semidefinite programming

One of the important applications of the ellipsoid method in the Grötschel

et al. [64, 65, 66] study is the development of a polynomial-time algorithm to

find a maximum-weight stable set in a perfect graph. Building on earlier work of

Lovász [107] concerning the Shannon capacity of graphs, Grötschel et al. consider

a convex relaxation of the stable-set problem involving a matrix of variables that

must be symmetric and positive semidefinite. The optimization ≡ separation theory

provides a polynomial-time algorithm to optimize over this non-polyhedral set, and

in the case of perfect graphs the relaxation coincides with the stable-set polytope.

The semidefinite-relaxation idea was further developed by Lovász and Schri-

jver [108] in a hierarchy of relaxations for 0/1 integer-programming problems. This

framework was shown to have particularly interesting consequences for the study of

stable-set polytopes beyond the class of perfect graphs.

The Lovász-Schrijver study, in turn, generated interest in the model of semidef-

inite programming (SDP). Here linear programming is extended by replacing the

standard vector of variables by a symmetric and positive semidefinite matrix.

The interest in SDP models was heightened by two additional developments in

the early 1990s. First, Farid Alizadeh [1] and Yurii Nesterov and Arkadi Ne-

mirovski [120, 121] showed that LP interior-point methods could be extended to

semidefinite programming, providing an efficient practical tool for solving these

models. A nice description of this work can be found in Todd [141]. Second, Michel

Goemans and David Williamson [53] utilized SDP relaxations in their breakthrough

result on the max-cut problem in graphs, yielding a strong new approximation algo-

rithm; their result was awarded a Fulkerson Prize in 2000.

With these applications and algorithms in place, the past decade has seen the SDP

area grow by leaps and bounds. Henry Wolkowicz [142] lists 1,060 references in an

online SDP bibliography; IP-related SDP work is covered in surveys by Christoph

Helmberg [73] and Monique Laurent and Franz Rendl [100]. SDP methods are now

an exciting tool in the study of approximation algorithms and in the study of lower

bounds for combinatorial optimization problems.



424 William Cook

Schrijver’s Meisterwerk

A milestone in combinatorial integer programming was reached in 2003 with the

publication of Alexander Schrijver’s three-volume monograph Combinatorial Opti-

mization: Polyhedra and Efficiency [135]. The breadth and depth of coverage in the

monograph is breathtaking, as are Schrijver’s historical treatments. The volumes to-

tal 1,881 pages and include over 4,000 references. The importance of this work can

hardly be overstated. Schrijver’s beautiful scholarly writing has defined the field,

giving combinatorial optimization an equal footing with much older, more estab-

lished areas of applied mathematics. His monograph received the 2004 Lanchester

Prize.

The following quote from Schrijver’s preface emphasizes the role of polyhedral

methods in the broad study of combinatorial optimization.

Pioneered by the work of Jack Edmonds, polyhedral combinatorics has proved to be a most
powerful, coherent, and unifying tool throughout combinatorial optimization. Not only has
it led to efficient (that is, polynomial-time) algorithms, but also, conversely, efficient algo-
rithms often imply polyhedral characterizations and related min-max theorems. It makes
the two sides closely intertwined.

This connection will undoubtedly continue, advancing both combinatorial optimiza-

tion and general integer programming.

Fig. 12.26 Alexander Schrijver, 2007. Photograph copyright Wim Klerkx, Hollandse Hoogte.



12 Fifty-Plus Years of Combinatorial Integer Programming 425

References

1. F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-

natorial optimization, SIAM Journal on Optimization 5 (1995) 13–51.
2. American Mathematical Society, The Sixth Symposium in Applied Mathematics, Bulletin of

the American Mathematical Society 59 (1953) 513–514.
3. American Mathematical Society, The Summer Meeting in Kingston, Bulletin of the Ameri-

can Mathematical Society 59 (1953) 515–568.
4. E. Balas and M.W. Padberg, On the set-covering problem, Operations Research 20 (1972)

1152–1161.
5. E. Balas and M.W. Padberg, On the set-covering problem: II. An algorithm for set partition-

ing, Operations Research 23 (1975) 74–90.
6. R. Bellman, An introduction to the theory of dynamic programming, Research Report R-245,

RAND Corporation, Santa Monica, California, USA, 1953.
7. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New Jersey,

USA, 1957.
8. R. Bellman, Combinatorial processes and dynamic programming, Combinatorial Analysis

(R. Bellman and M. Hall, Jr., eds.), American Mathematical Society, Providence, Rhode
Island, USA, 1960, pp. 217–249.

9. R. Bellman, Dynamic programming treatment of the travelling salesman problem, Journal of
the Association for Computing Machinery 9 (1962) 61–63.

10. C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind

(Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10
(1961) 114–115.

11. C. Berge, Sur certains hypergraphes généralisant les graphes bipartis, Combinatorial Theory
and its Applications I (P. Erdős, A. Re̋nyi, and V. Sós, eds.), Colloq. Math. Soc. János Bolyai
4 (1970) 119–133.

12. C. Berge, Balanced matrices, Mathematical Programming 2 (1972) 19–31.
13. R.E. Bixby, Solving real-world linear programs: A decade and more of progress, Operations

Research 50 (2002) 3–15.
14. F. Bock, An algorithm for solving “traveling-salesman” and related network optimization

problems, Research Report, Armour Research Foundation, Presented at the Operations Re-
search Society of America Fourteenth National Meeting, St. Louis, October 24, 1958.

15. M. Chudnovsky, G. Cornuéjols, X. Liu, P.D. Seymour, and K. Vus̆ković, Recognizing Berge

graphs, Combinatorica 25 (2005) 143–186.
16. M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theo-

rem, Annals of Mathematics 164 (2006) 51–229.
17. V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathe-

matics 4 (1973) 305–337.
18. V. Chvátal, Edmonds polytopes and weakly hamiltonian graphs, Mathematical Programming

5 (1973) 29–40.
19. V. Chvátal, On certain polyhedra associated with graphs, Journal of Combinatorial Theory

B 18 (1975) 138–154.
20. V. Chvátal, Cutting planes in combinatorics, European Journal of Combinatorics 6 (1985)

217–226.
21. V. Chvátal, W. Cook, and M. Hartmann, On cutting-plane proofs in combinatorial optimiza-

tion, Linear Algebra and Its Applications 114/115 (1989) 455–499.
22. M. Conforti, G. Cornuéjols, and M.R. Rao, Decomposition of balanced matrices, Journal of

Combinatorial Theory, Series B 77 (1999) 292–406.
23. G. Cornuéjols, Combinatorial Optimization: Packing and Covering, SIAM, Philadelphia,

USA,2001.
24. G.A. Croes, A method for solving traveling-salesman problems, Operations Research 6

(1958) 791–812.



426 William Cook

25. H. Crowder and M.W. Padberg, Solving large-scale symmetric travelling salesman problems

to optimality, Management Science 26 (1980) 495–509.
26. W.H. Cunningham and A.B. Marsh, III, A primal algorithm for optimum matching, Mathe-

matical Programming Study 8 (1978) 50–72.
27. G.B. Dantzig, Discrete-variable extremum problems, Operations Research 5 (1957) 266–277.
28. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large scale traveling sales-

man problem, Technical Report P-510, RAND Corporation, Santa Monica, California, USA,
1954.

29. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large-scale traveling-

salesman problem, Operations Research 2 (1954) 393–410.
30. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, On a linear-programming, combinatorial

approach to the traveling-salesman problem, Operations Research 7 (1959) 58–66.
31. G.B. Dantzig and A.J. Hoffman, Dilworth’s theorem on partially ordered sets, Linear In-

equalities and Related Systems (H.W. Kuhn and A.W. Tucker, eds.), Princeton University
Press, Princeton, New Jersey, USA, 1956, pp. 207–214.

32. W.L. Eastman, Linear Programming with Pattern Constraints, Ph.D. Thesis, Department of
Economics, Harvard University, Cambridge, Massachusetts, USA, 1958.

33. J. Edmonds, Paths, trees, and flowers, Working paper, National Bureau of Standards and
Princeton University, February 1963.

34. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, Journal of Research of
the National Bureau of Standards 69B (1965) 125–130.

35. J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965) 449–467.
36. J. Edmonds, The Chinese postman’s problem, Bulletin of the Operations Research Society

of America 13 (1965) B-73.
37. J. Edmonds, Optimum branchings, Journal of Research National Bureau of Standards 71B

(1967) 233–240.
38. J. Edmonds, Submodular functions, matroids, and certain polyhedra, Combinatorial Struc-

tures and Their Applications (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), Gordon
and Breach, New York, USA, 1970, pp. 69–87.

39. J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1 (1971) 127–
136.

40. J. Edmonds, Matroid intersection, Discrete Optimization I (P.L. Hammer, E.L. Johnson, and
B.H. Korte, eds.), North-Holland, 1979, pp. 39–49.

41. J. Edmonds and R. Giles, A min-max relation for submodular functions on a graph, Studies in
Integer Programming (P.L. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nemhauser, eds.),
Annals of Discrete Mathematics 1 (1977) 185–204.

42. J. Edmonds and E.L. Johnson, Matching, a well-solved class of integer linear programs,
Combinatorial Structures and Their Applications (R. Guy, H. Hanani, N. Sauer, and
J. Schönheim, eds.), Gordon and Breach, New York, USA, 1970, pp. 89–92.

43. J. Edmonds and E.L. Johnson, Matching, Euler tours, and the Chinese postman, Mathemati-
cal Programming 5 (1973) 88–124.

44. J. Egerváry, Matrixok kombinatorius tulajonságairól, Matematikai és Fizikai Lapok 38
(1931) 16–28.

45. M.M. Flood, Merrill Flood (with Albert Tucker), Interview of Merrill Flood in San Francisco
on 14 May 1984, The Princeton Mathematics Community in the 1930s, Transcript Number
11 (PMC11), Princeton University. (1984).

46. L.R. Ford, Jr. and D.R. Fulkerson, Maximal flow through a network, Canadian Journal of
Mathematics 8 (1956) 399–404.

47. A. Frank, Kernel systems of directed graphs, Acta Scientiarum Mathematicarum [Szeged] 41
(1979) 63–76.

48. D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Mathematical Programming
1 (1971) 168–194.

49. D.R. Fulkerson, Anti-blocking polyhedra, Journal of Combinatorial Theory, Series B 12
(1972) 50–71.



12 Fifty-Plus Years of Combinatorial Integer Programming 427

50. D.R. Fulkerson, A.J. Hoffman, and R. Oppenheim, On balanced matrices, Mathematical
Programming Study 1 (1974) 120–132.

51. D. Gale, A theorem on flows in networks, Pacific Journal of Mathematics 7 (1957) 1073–
1082.

52. F.R. Giles and W.R. Pulleyblank, Total dual integrality and integer polyhedra, Linear Algebra
and Its Applications 25 (1979) 191–196.

53. M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and

satisfiability problems, Journal of the Association of Computing Machinery 42 (1995) 1115–
1145.

54. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of
the American Mathematical Society 64 (1958) 275–278.

55. R.E. Gomory, The traveling salesman problem, Proceedings of the IBM Scientific Comput-
ing Symposium on Combinatorial Problems, IBM, White Plains, New York, USA, 1966, pp.
93–121.

56. R.E. Gomory, Early integer programming, History of Mathematical Programming—A Col-
lection of Personal Reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver,
eds.), North-Holland, 1991, pp. 55–61.

57. R.H. Gonzales, Solution to the traveling salesman problem by dynamic programming on

the hypercube, Technical Report Number 18, Operations Research Center, Massachusetts
Institute of Technology, Cambridge, Massachusetts, USA, 1962.

58. M. Grötschel, Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme,
Anton Hain Verlag, Meisenheim/Glan, Germany, 1977.

59. M. Grötschel, On the symmetric travelling salesman problem: Solution of a 120-city problem,
Mathematical Programming Study 12 (1980) 61–77.

60. M. Grötschel and O. Holland, Solution of large-scale symmetric travelling salesman prob-

lems, Mathematical Programming 51 (1991) 141–202.
61. M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering

problem, Operations Research 32 (1984) 1195–1220.
62. M. Grötschel, M. Jünger, and G. Reinelt, On the acyclic subgraph polytope, Mathematical

Programming 33 (1985) 28–42.
63. M. Grötschel, M. Jünger, and G. Reinelt, Facets of the linear ordering polytope, Mathemati-

cal Programming 33 (1985) 43–60.
64. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica 1 (1981) 169–197.
65. M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs, Topics

on Perfect Graphs (C. Berge and V. Chvátal, eds.), Annals of Discrete Mathematics 21 (1984)
325–356.

66. M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-

mization, Springer. (1988).
67. M. Grötschel and G.L. Nemhauser, George Dantzig’s contributions to integer programming,

Discrete Optimization 5 (2008) 168–173.
68. M. Grötschel and W.R. Pulleyblank, Clique tree inequalities and the symmetric travelling

salesman problem, Mathematics of Operations Research 11 (1986) 537–569.
69. M. Held and R.M. Karp, A dynamic programming approach to sequencing problems, Journal

of the Society of Industrial and Applied Mathematics 10 (1962) 196–210.
70. M. Held and R.M. Karp, The traveling-salesman problem and minimum spanning trees, Op-

erations Research 18 (1970) 1138–1162.
71. M. Held and R.M. Karp, The traveling-salesman problem and minimum spanning trees: Part

II, Mathematical Programming 1 (1971) 6–25.
72. I. Heller, On the problem of the shortest path between points, I. Abstract 664t, Bulletin of the

American Mathematical Society 59 (1953) 551.
73. C. Helmberg, Semidefinite Programming for Combinatorial Optimization, Habilitations-

schrift, TU Berlin, ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin, 2000.
74. A.J. Hoffman, Generalization of a theorem of König, Journal of the Washington Academy of

Sciences 46 (1956) 211–212.



428 William Cook

75. A.J. Hoffman, Linear programming, Applied Mechanics Reviews 9 (1956) 185–187.
76. A.J. Hoffman, A generalization of max flow-min cut, Mathematical Programming 6 (1974)

352–359.
77. A.J. Hoffman and J.B. Kruskal, Integral boundary points of convex polyhedra, Linear In-

equalities and Related Systems (H.W. Kuhn and A.W. Tucker, eds.), Princeton University
Press, Princeton, New Jersey, USA, 1956, pp. 223–246.

78. A.J. Hoffman and H.W. Kuhn, Systems of distinct representatives and linear programming,
The American Mathematical Monthly 63 (1956) 455–460.

79. A.J. Hoffman and R. Oppenheim, Local unimodularity in the matching polytope, Algorith-
mic Aspects of Combinatorics (B.R. Alspach, P. Hell, and D.J. Miller, eds.), North-Holland,
1978, pp. 201–209.

80. A.J. Hoffman and D.E. Schwartz, On lattice polyhedra, Combinatorics Volume I (A. Hajnal
and V.T. Sós, eds.), North-Holland, 1978, pp. 593–598.

81. A.J. Hoffman and P. Wolfe, History, The Traveling Salesman Problem (E.L. Lawler,
J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds.), John Wiley & Sons, Chichester,
UK, 1985, pp. 1–15.

82. O.A. Holland, Schnittebenenverfahren für Travelling-Salesman und verwandte Probleme,
Ph.D. Thesis, Universität Bonn, Bonn, Germany, 1987.

83. S. Hong, A Linear Programming Approach for the Traveling Salesman Problem, Ph.D. The-
sis, Johns Hopkins University, Baltimore, Maryland, USA, 1972.

84. M. Jünger, Polyhedral Combinatorics and the Acyclic Subdigraph Problem, Heldermann Ver-
lag, Berlin, Germany, 1985.

85. M. Jünger, G. Reinelt, and S. Thienel, Practical problem solving with cutting plane algo-

rithms, Combinatorial Optimization (W. Cook, L. Lovász, and P. Seymour, eds.), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 20, American Mathemat-
ical Society, Providence, Rhode Island, USA, 1995, pp. 111–152.

86. R.M. Karp, Combinatorics, complexity, and randomness, Communications of the ACM 29
(1986) 98–109.

87. R.M. Karp and C.H. Papadimitriou, On linear characterization of combinatorial optimiza-

tion problems, SIAM Journal on Computing 11 (1982) 620–632.
88. L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Dok-

lady 20 (1979) 191–194.
89. B. Korte and W. Oberhofer, Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeprob-

lems, Mathematical Methods of Operations Research 12 (1968) 217–231.
90. B. Korte and W. Oberhofer, Zur Triangulation von Input-Output-Matrizen, Jahrbücher für

Nationalökonomie und Statistik 182 (1969) 398–433.
91. H.W. Kuhn, On certain convex polyhedra, Abstract 799t, Bulletin of the American Mathe-

matical Society 61 (1955) 557–558.
92. H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics

Quarterly 2 (1955) 83–97.
93. H.W. Kuhn, On the origin of the Hungarian method, History of Mathematical Program-

ming—A Collection of Personal Reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan, and
A. Schrijver, eds.), North-Holland, 1991, pp. 77–81.

94. H.W. Kuhn, 57 years of close encounters with George, George Dantzig Memorial Site, IN-
FORMS, 2008, available at http://www2.informs.org/History/dantzig/articles kuhn.html.

95. H.W. Kuhn, Email letter sent on December 15, 2008.
96. H.W. Kuhn and A.W. Tucker, eds. Linear Inequalities and Related Systems, Princeton Uni-

versity Press, Princeton, New Jersey, USA, 1956.
97. F. Lambert, The traveling-salesman problem, Cahiers du Centre de Recherche Opérationelle

2 (1960) 180–191.
98. A.H. Land and A.G. Doig, An automatic method of solving discrete programming problems,

Econometrica 28 (1960) 497–520.
99. A.H. Land and S. Powell, A survey of the operational use of ILP models, History of In-

teger Programming: Distinguished Personal Notes and Reminiscences (K. Spielberg and
M. Guignard-Spielberg, eds.), Annals of Operations Research 149 (2007) 147–156.



12 Fifty-Plus Years of Combinatorial Integer Programming 429

100. M. Laurent and F. Rendl, Semidefinite programming and integer programming, Handbook
on Discrete Optimization (K. Aardal, G.L. Nemhauser, and R. Weismantel, eds.), Elsevier,
2005, pp. 393–514.

101. J.K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tracts 69, Mathe-
matisch Centrum, Amsterdam, 1977.

102. A.N. Letchford and A. Lodi, Primal cutting plane algorithms revisited, Mathematical Meth-
ods of Operations Research 56 (2002) 67–81.

103. S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman prob-

lem, Operations Research 21 (1973) 498–516.
104. J.D. Little, K.G. Murty, D.W. Sweeney, and C. Karel, An algorithm for the traveling salesman

problem, Operations Research 11 (1963) 972–989.
105. L. Lovász, A characterization of perfect graphs, Journal of Combinatorial Theory, Series B

13 (1972) 95–98.
106. L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics 2

(1972) 253–267.
107. L. Lovász, On the Shannon capacity of graphs, IEEE Transactions on Information Theory

25 (1979) 1–7.
108. L. Lovász and A. Schrijver, Cones of matrices and set-functions, and 0-1 optimization, SIAM

Journal on Optimization 1 (1991) 166–190.
109. C.L. Lucchesi and D.H. Younger, A minimax theorem for directed graphs, The Journal of the

London Mathematical Society 17 (1978) 369–374.
110. A.S. Manne and H.M. Markowitz, On the solution of discrete programming problems, Tech-

nical Report P-711, RAND Corporation, Santa Monica, California, USA, 1956.
111. H.M. Markowitz and A.S. Manne, On the solution of discrete programming problems, Econo-

metrica 25 (1957) 84–110.
112. G.T. Martin, Solving the traveling salesman problem by integer linear programming, Tech-

nical Report, C-E-I-R, New York, USA, 1966.
113. K. Menger, Bericht über ein mathematisches Kolloquium, Monatshefte für Mathematik und

Physik 38 (1931) 17–38.
114. C.A. Micchelli, Selected Papers of Alan Hoffman with Commentary, World Scientific Pub-

lishing Company, 2003.
115. P. Miliotis, Using cutting planes to solve the symmetric travelling salesman problem, Math-

ematical Programming 15 (1978) 177–188.
116. C.E. Miller, A.W. Tucker, and R.A. Zemlin, Integer programming formulation of traveling

salesman problems, Journal of the Association for Computing Machinery 7 (1960) 326–329.
117. J. Munkres, Algorithms for the assignment and transportation problems, Journal of the So-

ciety for Industrial and Applied Mathematics 5 (1957) 32–33.
118. G.L. Nemhauser and L.E. Trotter, Jr., Properties of vertex packing and independence system

polyhedra, Mathematical Programming 6 (1974) 48–61.
119. G.L. Nemhauser and L.E. Trotter, Jr., Vertex packings: Structural properties and algorithms,

Mathematical Programming 8 (1975) 232–248.
120. Y. Nesterov and A. Nemirovski, Conic formulation of a convex programming problem and

duality, Optimization Methods and Software 1 (1992) 95–115.
121. Y. Nesterov and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Program-

ming, SIAM, Philadelphia, USA, 1994.
122. M.W. Padberg, On the facial structure of set packing polyhedra, Mathematical Programming

5 (1973) 199–215.
123. M.W. Padberg, Mixed-integer programming — 1968 and thereafter, History of Integer

Programming: Distinguished Personal Notes and Reminiscences (K. Spielberg and M.
Guignard-Spielberg, eds.), Annals of Operations Research 149 (2007) 147–156.

124. M.W. Padberg and S. Hong, On the symmetric travelling salesman problem: A computational

study, Mathematical Programming Study 12 (1980) 78–107.
125. M.W. Padberg and M.R. Rao, The Russian method for linear programming III: Bounded

integer programming, Research Report 81-39, New York University, Graduate School of
Business Administration, 1981.



430 William Cook

126. M.W. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman prob-

lem by branch and cut, Operations Research Letters 6 (1987) 1–7.
127. M.W. Padberg and G. Rinaldi, Facet identification for the symmetric traveling salesman poly-

tope, Mathematical Programming 47 (1990) 219–257.
128. M.W. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems, SIAM Review 33 (1991) 60–100.
129. W.R. Pulleyblank, Faces of Matching Polyhedra, Ph.D. Thesis, Department of Combinatorics

and Optimization, University of Waterloo, Waterloo, Ontario, Canada, 1973.
130. W.R. Pulleyblank and J. Edmonds, Facets of 1-matching polyhedra, Hypergraph Seminar

(C. Berge and D. Ray-Chaudhuri, eds.), Springer, 1974, pp. 214–242.
131. G. Reinelt, The Linear Ordering Problem: Algorithms and Applications, Heldermann Verlag,

Berlin, Germany, 1985.
132. J. Robinson, On the Hamiltonian game (a traveling salesman problem), Research Memoran-

dum RM-303, RAND Corporation, Santa Monica, California, USA, 1949.
133. A. Schrijver, On cutting planes, Combinatorics 79 Part II (M. Deza and I.G. Rosenberg, eds.),

Annals of Discrete Mathematics 9, North-Holland, 1980, pp. 291–296.
134. A. Schrijver, On total dual integrality, Linear Algebra and Its Applications 38 (1981) 27–32.
135. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, Ger-

many, 2003.
136. A. Schrijver, On the history of combinatorial optimization (till 1960), Handbook of Discrete

Optimization (K. Aardal, G.L. Nemhauser, and R. Weismantel, eds.), Elsevier, 2005, pp.
1–68.

137. A. Schrijver and P.D. Seymour, A proof of total dual integrality of matching polyhedra, Re-
port ZN 79/77, Stichting Mathematisch Centrum, Amsterdam, 1977.

138. P.D. Seymour, The matroids with the max-flow min-cut property, Journal of Combinatorial
Theory, Series B 23 (1977) 289–295.

139. P.D. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory, Series
B 28 (1980) 305–359.

140. P.D. Seymour, How the proof of the strong perfect graph conjecture was found, Gazette des
Mathematiciens 109 (2006) 69–83.

141. M. Todd, Semidefinite optimization, Acta Numerica 10 (2001) 515–560.
142. H. Wolkowicz, Semidefinite and cone programming bibliography/comments/abstracts, 2008,

see http://orion.uwaterloo.ca/˜hwolkowi/henry/book/fronthandbk.d/handbooksdp.html.
143. L.A. Wolsey, Further facet generating procedures for vertex packing polytopes, Mathemati-

cal Programming 11 (1976) 158–163.
144. D.B. Yudin and A S. Nemirovski, Evaluation of the informational complexity of mathemati-

cal programming problems, Ékonomica i Matematicheskie Metody 12 (1976) 128–142.



Chapter 13

Reformulation and Decomposition of Integer
Programs

François Vanderbeck and Laurence A. Wolsey

Abstract We examine ways to reformulate integer and mixed integer programs.

Typically, but not exclusively, one reformulates so as to obtain stronger linear pro-

gramming relaxations, and hence better bounds for use in a branch-and-bound

based algorithm. First we cover reformulations based on decomposition, such as

Lagrangean relaxation, the Dantzig-Wolfe reformulation and the resulting column

generation and branch-and-price algorithms. This is followed by an examination of

Benders’ type algorithms based on projection. Finally we discuss extended formu-

lations involving additional variables that are based on problem structure. These

can often be used to provide strengthened a priori formulations. Reformulations ob-

tained by adding cutting planes in the original variables are not treated here.

13.1 Introduction

Integer linear programs (IPs) and mixed integer linear programs (MIPs) are of-

ten difficult to solve, even though the state-of-the-art mixed integer programming

solvers are in many cases remarkably effective, and have improved radically in the

last ten years. These solvers typically use branch-and-cut involving cutting planes

to obtain improved linear programming bounds and branching to carry out implicit

enumeration of the solutions. However these systems essentially ignore problem

structure.

The goal in this chapter is to show the numerous ways in which, given an ini-

tial formulation of an IP, problem structure can be used to obtain improved prob-

François Vanderbeck
Institut de Mathématiques de Bordeaux (IMB) and INRIA, Université de Bordeaux, France
e-mail: fv@math.u-bordeaux1.fr

Laurence A. Wolsey
Center for Operations Research and Econometrics, Université Catholique de Louvain, Belgium
e-mail: laurence.wolsey@uclouvain.be

431
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_13, © Springer-Verlag Berlin Heidelberg 2010 



432 François Vanderbeck and Laurence A. Wolsey

lem formulations and more effective algorithms that take the structure into account.

One common way to obtain reformulations is by adding valid inequalities (cutting

planes) in the original variables. This topic is treated in considerable detail in Chap-

ter 11. Here we consider other possibilities. The general motivation is to obtain a

reformulation for which the optimal value of the linear programming relaxation is

closer to the optimal value of the IP than that of the original formulation and that is

computationally tractable.

One approach is to introduce new variables so as to better model the structure

of the problem—the resulting extended formulations will be studied in detail. Intro-

ducing new variables typically permits one to model some combinatorial structure

more precisely and to induce integrality through tighter linear constraints linking the

variables. One such extended formulation is provided by the classical Minkowski

representation of a polyhedron in terms of its extreme points and extreme rays. An

alternative is to develop reformulations based on projection onto a subset of the

variables, based on Farkas’ lemma and/or Fourier-Motzkin elimination. Projection

allows one to reduce the number of variables so that calculations are typically faster:

thus for a mixed integer program one might project onto the integer variables, and

for an extended formulation giving an improved bound one might project so as to

obtain the tightened bound while working in the space of the original variables.

There are also other reasons leading us to look at alternative formulations. One

might be to treat or eliminate symmetry among solutions (see Chapter 17), another

might be to obtain variables that are more effective as branching variables, or vari-

ables for which one can develop effective valid inequalities.

Reformulations often rely on a decomposition of the problem. Given a hard inte-

ger program (IP) in the form

min{cx : x ∈ X} where X = {x ∈ Zn
+ : Ax > a},

one typical way to obtain a set with structure is to decompose X into two (or more)

sets X = Y ∩ Z, where one or both of the sets Y,Z has structure and is a candi-

date for reformulation. In addition reformulations often require specific solution

methods: the reformulation may involve a very large number of variables and/or

constraints, in which case it becomes necessary to develop algorithms that treat the

corresponding columns or rows implicitly, Dantzig-Wolfe decomposition and Ben-

ders’ decomposition being the two classical examples.

The contents of this chapter are as follows. In Section 13.2 we introduce the

different concepts used later. We give definitions and simple examples of polyhedra,

formulations, extended formulations and reformulations obtained by projection. We

discuss how decomposition can be used to obtain simpler sets, and what we mean

by a set with structure.

In Section 13.3 we consider reformulations that are appropriate when the opti-

mization problem over a “simpler” set Z, obtained by dropping some “hard” con-

straints, is relatively easy to solve. In particular we consider the Lagrangean dual

approach to obtain tight bounds and related algorithms, and the Dantzig-Wolfe re-

formulation whose linear programming relaxation gives an identical bound. The ba-



13 Reformulation and Decomposition of Integer Programs 433

sic column generation algorithm to solve the linear programming relaxation of the

Dantzig-Wolfe reformulation is presented, as well as its integration into a branch-

and-bound algorithm to solve the integer problem. In Section 13.4 we consider for-

mulations and algorithms based on projection, in particular Benders’ reformulation.

Projection typically leads to formulations with a very large number of constraints,

so here the algorithms rely on cut generation.

The reformulations in Sections 13.3 and 13.4 are generic. In Section 13.5 we con-

sider sets with more structure for which it is possible to obtain interesting extended

formulations. In many cases optimization over the sets is polynomially solvable.

We show extended formulations a) based on variable splitting such as the multi-

commodity reformulation of single source fixed charge network flow problems, b)

for sets over which one can optimize by dynamic programming, c) for sets in the

form of disjunctions, and d) for a variety of other sets with structure.

In Section 13.6 we discuss hybrid reformulations and algorithms; for example

if X = Y ∩Z and both sets have some special structure, we might wish to combine

a (large) extended formulation for Y with a (large) cutting plane description for

Z. Section 13.7 consists of historical notes as well as a few references concerning

recent theoretical and computational developments.

13.2 Polyhedra, reformulation and decomposition

13.2.1 Introduction

Given a problem that has been formulated as a linear integer program, we are

interested in finding reformulations (alternative problem descriptions) that are more

effective in one way or another. We present some basic results about polyhedra,

and give definitions of formulations and extended formulations, with a couple of

examples to show how reformulations arise. Finally we discuss how decomposition

leads one to simpler subsets, and indicate how their structure can be exploited to

provide reformulations and possibly specialized algorithms.

Throughout we assume that our objective is to solve the integer program

(IP) min{cx : x ∈ X}

where X ⊆ Zn is a discrete solution set that can be modeled as the set of integer

points satisfying a set of linear inequalities

X = P∩Zn with P = {x ∈ Rn
+ : Ax > a},

or the mixed integer program

(MIP) min{cx+hy : (x,y) ∈ XM}



434 François Vanderbeck and Laurence A. Wolsey

where XM ⊆ Zn ×Rp is given in the form

XM = PM ∩ (Zn ×Rp) with PM = {(x,y) ∈ Rn
+ ×Rp

+ : Gx+Hy > b}.

P and PM will be referred to as the initial formulations of X and XM respectively.

For simplicity, results are presented for the integer set X , unless the presence of

continuous variables y is important.

13.2.2 Polyhedra and reformulation

Here we study the feasible solutions sets X and XM arising in IP and MIP re-

spectively. Throughout we will use the term reformulation informally to mean any

alternative description of problems IP or MIP.

Definition 13.1. A polyhedron P ⊆ Rn is the intersection of a finite number of half-

spaces. In other words there exists A ∈ Rm×n and a ∈ Rm such that P = {x ∈ Rn :

Ax > a}.

Definition 13.2. A polyhedron P is a formulation for X if X = P∩Zn.

Sets such as X have many formulations. If P1,P2 are two formulations for X with

P1 ⊂ P2, we say that P1 is a stronger formulation than P2 because

z(c) = min{cx : x ∈ X} > min{cx : x ∈ P1} > min{cx : x ∈ P2} ∀c ∈ Rn

and thus the lower bound on z(c) provided by the linear programming relaxation

with formulation P1 is always greater than or equal to that provided by P2.

Definition 13.3. Given X ⊆Rn, the convex hull of X , denoted conv(X), is the small-

est closed convex set containing X .

The convex hull of an integer set X (or a mixed integer set XM defined by ra-

tional data) is a polyhedron. Thus the strongest possible formulation is provided by

conv(X) because z(c) = min{cx : x ∈ conv(X)}.

Given an initial formulation P of X , one classical way to obtain a stronger for-

mulation is to add valid inequalities (cutting planes) in the x variables so as to ob-

tain a better approximation to conv(X). This is discussed in Chapter 11. The main

concepts presented in this chapter, extended formulations and projection, are now

defined.

Definition 13.4. An extended formulation for a polyhedron P ⊆ Rn is a polyhedron

Q = {(x,w) ∈ Rn+p : Gx+Hw > d} such that P = projx(Q).

Definition 13.5. Given a set U ⊆ Rn ×Rp, the projection of U on the first n vari-

ables, x = (x1, . . . ,xn), is the set

projx(U) = {x ∈ Rn : ∃ w ∈ Rp with (x,w) ∈U}.



13 Reformulation and Decomposition of Integer Programs 435

Minkowski’s representation of a polyhedron in terms of its extreme points and

extreme rays gives an extended formulation that can be useful for both linear and

integer programs.

Definition 13.6. Given a non-empty polyhedron P ⊆ Rn,

i) x ∈ P is an extreme point of P if x = λx1 + (1− λ )x2, 0 < λ < 1, x1,x2 ∈ P

implies that x = x1 = x2.

ii) r is a ray of P if r 6= 0 and x ∈ P implies x+ µr ∈ P for all µ ∈ R1
+.

iii) r is an extreme ray of P if r is a ray of P and r = µ1r1 + µ2r2, µi > 0 (i = 1,2),
r1,r2 rays of P implies r1 = αr2 for some α > 0.

From now on we assume that rank(A) = n which is necessary for P to have

extreme points.

Theorem 13.1 (Minkowski). Every polyhedron P = {x ∈ Rn : Ax > a} can be rep-

resented in the form

P = {x ∈ Rn : x = ∑
g∈G

λgxg + ∑
r∈R

µrv
r, ∑

g∈G

λg = 1,λ ∈ R|G|
+ ,µ ∈ R|R|

+ }

where {xg}g∈G are the extreme points of P and {vr}r∈R the extreme rays of P.

Example 1 The polyhedron

P = {x ∈ R2
+ : 4x1 +12x2 > 33,3x1 − x2 > −1,x1 −4x2 > −23}

has the extended formulation

Q = {(x,λ ,µ) ∈ R2 ×R3
+ ×R2

+ :

x =

(
33
4

0

)
λ1 +

(
21
40

103
40

)
λ2 +

(
19
11
68
11

)
λ3 +

(
1

0

)
µ1 +

(
4

1

)
µ2,

λ1 +λ2 +λ3 = 1},

see Figure 13.1.

The concept of extended formulation for a polyhedron generalizes to sets X of

integer points, and in particular one can apply Definition 13.4 to conv(X).

Definition 13.7. An extended formulation for an IP set X ⊆ Zn is a polyhedron

Q ⊆ Rn+p such that X = projx(Q)∩Zn.

Minkowski’s Theorem (Theorem 13.1) obviously provides an extended formula-

tion for X . Specifically take

Q = {(x,λ ,µ) ∈ Rn ×R|G|
+ ×R|R|

+ : x = ∑
g∈G

λgxg + ∑
r∈R

µrv
r, ∑

g∈G

λg = 1}

where {xg}g∈G are the extreme points and {vr}r∈R the extreme rays of conv(X).



436 François Vanderbeck and Laurence A. Wolsey

0 5

5

1

2

3

4

6

7

1 2 3 4 6 7 8 9

(9,0)

(3,2)

(1,3) 

(1,4)

(2,6)

(5,7)

(2,5)

(6,1)

(33/4,0)

(21/40,103/40)

(19/11,68/11)

Fig. 13.1 Extreme Points and Rays of P and conv(P∩Zn)

Definition 13.8. An extended formulation Q ⊆ Rn+p for an IP set X ⊆ Zn is tight if

projx(Q) = conv(X).
An extended formulation Q ⊆ Rn+p for an IP set X = P∩Zn is compact if the

length of the description of Q is polynomial in the length of the description of X

(i.e., the length of the description of the initial formulation P of X).

In general the number of extreme points and extreme rays of conv(X) is not polyno-

mial in the length of the description of X , so the extended formulation provided by

Minkowski’s Theorem is not compact. Similarly the number of inequalities in the x

variables required to describe conv(X) is usually not polynomial in the length of the

description of X .

In the framework of integer programs one also encounters more general reformu-

lations in which some of the additional variables are required to be integer, replacing

the integrality constraints on some of the original variables. It may then be possible

to drop the original variables.

Definition 13.9. An extended IP-formulation for an IP set X ⊆ Zn is a set QI =
{(x,w1,w2) ∈ Rn ×Zp1 ×Rp2 : Gx+H1w1 +H2w2 > b} such that X = projx QI .

There is a somewhat similar result to Minkowski’s theorem concerning an ex-

tended IP-formulation. Again we assume rationality of the data in the case of mixed

integer sets.

Theorem 13.2. Every IP set X = {x ∈ Zn : Ax > a} can be represented in the form

X = projx(QI), where



13 Reformulation and Decomposition of Integer Programs 437

QI = {(x,λ ,µ) ∈ Rn ×Z|G|
+ ×Z|R|

+ : x = ∑
g∈G

λgxg + ∑
r∈R

µrv
r, ∑

g∈G

λg = 1},

{xg}g∈G is a finite set of integer points in X, and {vr}r∈R are the extreme rays (scaled

to be integer) of conv(X).

Note that when X is bounded, all the points of X must be included in the set {xg}g∈G

and R = /0. When X is unbounded, the set {xg}g∈G includes all of the extreme points

of conv(X) and typically other points, see Example 2 below.

Theorem 13.2 provides an example of a common situation with extended IP-

formulations in which there is a linear transformation x = Tw linking all (or some)

of the original x variables and the additional variables w. In such cases IP can be

reformulated in terms of the additional variables in the form

min{cTw : ATw > a,w ∈W},

where the set W provides an appropriate representation of the integrality of the orig-

inal x variables.

Example 2 The set of integer points X = P∩Z2 where

P = {x ∈ R2
+ : 4x1 +12x2 > 33,3x1 − x2 > −1,x1 −4x2 > −23}

has an extended IP-formulation, based on Theorem 13.2:

Q = {(x,λ ,µ) ∈ R2 ×Z6
+ ×Z2

+ : x =

(
9

0

)
λ1 +

(
3

2

)
λ2 +

(
1

3

)
λ3 +

(
1

4

)
λ4+

(
2

6

)
λ5 +

(
5

7

)
λ6 +

(
2

5

)
λ7 +

(
6

1

)
λ8 +

(
1

0

)
µ1 +

(
4

1

)
µ2,

6

∑
p=1

λp = 1}.

Here the points (2,5)T and (6,1)T are not extreme points of conv(X). However they

cannot be obtained as an integer combination of the extreme points and rays of

conv(X), so they are necessary for this description. See Figure 13.1.

Given an IP set X or a MIP set XM , an alternative is to concentrate on a subset

of the more important variables (for instance the integer variables in an MIP). Here

projection is the natural operation and the lemma of Farkas a basic tool. From now

on, we typically assume that all the variables x or (x,y) encountered in IP or MIP

are non-negative.

Lemma 13.1 (Farkas [36]). Given A ∈Rm×n and a ∈Rm, the polyhedron {x ∈Rn
+ :

Ax > a} 6= /0 if and only if va 6 0 for all v ∈ Rm
+ such that vA 6 0.

This immediately gives a characterization of the projection of a polyhedron.

Specifically if Q = {(x,w) ∈ Rn
+ ×Rp

+ : Gx + Hw > d}, it follows from the defini-

tion that x ∈ projx(Q) if and only if Q(x) = {w ∈ Rp
+ : Hw > d −Gx} is nonempty.

Now Farkas’ Lemma, with A = H and a = d −Gx, gives:



438 François Vanderbeck and Laurence A. Wolsey

Theorem 13.3 (Projection). Let Q = {(x,w) ∈ Rn ×Rp
+ : Gx+Hw > d}. Then

projx(Q) = {x ∈ Rn : v(d −Gx) 6 0 ∀ v ∈V}

= {x ∈ Rn : v j(d −Gx) 6 0 for j = 1, . . . ,J}

where V = {v ∈ Rm
+ : vH 6 0} and {v j}J

j=1 are the extreme rays of V .

Example 3 Given the polyhedron Q = {(x,y) ∈ R2
+ ×R3

+ :

−2x1 − 3x2 − 4y1 + y2 − 4y3 > −9

−7x1 − 5x2 − 12y1 − 2y2 + 4y3 > −11},

we have that V = {v ∈ R2
+ : −4v1 − 12v2 6 0,v1 − 2v2 6 0,−4v1 + 4v2 6 0}. The

extreme rays are v1 = (1,1)T and v2 = (2,1)T . From Theorem 13.3, one obtains

projx(Q) = {x ∈ R2
+ : 9x1 +8x2 6 20,11x1 +11x2 6 29}.

The classical application of this approach is to reformulate mixed integer programs.

Now we illustrate by example the sort of reformulations that can arise using

additional variables and projection for a problem with special structure.

Example 4 Formulations of the Directed Steiner Tree Problem

Given a digraph D = (V,A) with costs c∈R|A|
+ , a root r ∈V and a set T ⊆V \{r}

of terminals, the problem is to find a minimum cost subgraph containing a directed

path from r to each node in T .

One way to formulate this problem is to construct a subgraph in which one re-

quires |T | units to flow out from node r and one unit to flow into every node of T .

This leads one to introduce the variables:

xi j = 1 if arc (i, j) forms part of the subgraph and xi j = 0 otherwise, and yi j is the

flow in arc (i, j). The resulting MIP formulation is

min ∑
(i, j)∈A

ci jxi j

− ∑
j∈V+(r)

yr j = −|T | (13.1)

− ∑
j∈V+(i)

yi j + ∑
j∈V−(i)

y ji = 1 for i ∈ T (13.2)

− ∑
j∈V+(i)

yi j + ∑
j∈V−(i)

y ji = 0 for i ∈V \ (T ∪{r}) (13.3)

yi j 6 |T |xi j for (i, j) ∈ A (13.4)

y ∈ R|A|
+ , x ∈ {0,1}|A|,

where V +(i) = { j : (i, j) ∈ A} and V−(i) = { j : ( j, i) ∈ A}, (13.1) indicates that |T |

units flow out from node r, (13.2) that a net flow of one unit arrives at each node

i ∈ T , (13.3) that there is conservation of flow at the remaining nodes and (13.4)

that the flow on each arc does not exceed |T | and is only positive if the arc has been

installed.



13 Reformulation and Decomposition of Integer Programs 439

This problem has special network structure that we now exploit.

Multicommodity flow variables

To obtain an extended formulation, consider the flow directed towards node k as

a separate commodity for each node k ∈ T . Then wk
i j denotes the flow in arc (i, j) of

commodity k with destination k ∈ T . The resulting extended formulation is:

min ∑
(i, j)∈A

ci jxi j

− ∑
j∈V+(r)

wk
r j = −1 for k ∈ T (13.5)

− ∑
j∈V+(i)

wk
i j + ∑

j∈V−(i)

wk
ji = 0 for i ∈V \{r,k}, k ∈ T (13.6)

− ∑
j∈V+(k)

wk
k j + ∑

j∈V−(k)

wk
jk = 1 for k ∈ T (13.7)

wk
i j 6 xi j for (i, j) ∈ A, k ∈ T (13.8)

w ∈ R|T |×|A|
+ , x ∈ [0,1]|A|.

Constraints (13.5)–(13.7) are flow conservation constraints and (13.8) variable up-

per bound constraints for each commodity. The constraints yi j = ∑k∈T wk
i j (i, j)∈ A

provide the link between the original flow variables y and the new multi-commodity

flow variables w, but the y variables are unnecessary as there are no costs on the

flows.

The main interest of such an extended formulation is that the value of its linear

programming relaxation is considerably stronger than that of the original formu-

lation because the relationship between the flow variables yi j or wk
i j and the arc

selection variables xi j is more accurately represented by (13.8) than by (13.4).

Projection onto the binary arc variables

It is well-known (from the max flow/min cut theorem) that one can send flow of

one unit from r to k in a network (V,A) with capacities if and only if the capacity

of each cut separating r and k is at least one. Considering the arc capacities to

be xi j, this immediately validates the following formulation in the arc variables x.

Equivalently one can apply Theorem 13.3 to the extended formulation Q = {(x,w)∈

[0,1]|A|×R|T |×|A|
+ satisfying (13.5)–(13.8)} and project out the w variables. In both

cases one obtains the formulation:



440 François Vanderbeck and Laurence A. Wolsey

min ∑
(i, j)∈A

ci jxi j

∑
(i, j)∈δ+(U)

xi j > 1 for U ⊆V with r ∈U, T \U 6= /0

x ∈ {0,1}|A|,

where δ+(U) = {(i, j) ∈ A : i ∈ U, j /∈ U} is the directed cut set consisting of arcs

with their tails in U and their heads in V \U.

The potential interest of this reformulation is that the number of variables re-

quired is as small as possible and the value of the linear programming relaxation is

the same as that of the multi-commodity extended formulation. In Section 13.5 we

will consider the more general problem in which there are also costs on the flow

variables yi j.

13.2.3 Decomposition

When optimizing over the feasible set X of IP is too difficult, we need to address

the question of how to “decompose” X so as to arrive at one or more sets with

structure, and also indicate what we mean by “structure”.

We first present three ways of decomposing.

1. Intersections. X = Y ∩ Z. Now if the set Z has structure, we can consider re-

formulations for the set Z. More generally, one might have X = X1 ∩ ·· · ∩XK

where several of the sets Xk have structure. Another important variant is that

in which X = Y ∩ Z and Z itself decomposes into sets Zk each with distinct

variables, namely Z = Z1 ×·· ·×ZK .

2. Unions (or Disjunctions). X = Y ∪Z where Z has structure. Again one might

have X = X1 ∪·· ·∪XK where several of the sets Xk have structure.

3. Variable Fixing. Suppose that X ⊂ Zn ×Rp. For fixed values x̄, let Z(x̄) =
{(x,y) ∈ X : x = x̄}. This is of interest if Z(x̄) has structure for all relevant

values of x̄. Again an important case is that in which Z(x̄) decomposes into sets

with distinct variables, i.e., Z(x̄) = Z1(x̄1)× ·· ·×ZK(x̄K) and each set Zk(x̄k)
just involves the variables yk, where y = (y1, . . . ,yK).

Now we indicate in what circumstances we say that the set Z obtained above has

structure.

i) Either there is a polynomial algorithm for the optimization problem min{cx : x∈

Z}, denoted OPT(Z,c), or OPT(Z,c) can be solved rapidly in practice. Based

on decomposition by intersection, ways to reformulate and exploit such sets are

the subject of the next section.

ii) There is a polynomial algorithm for the separation problem, SEP(Z,x∗), defined

as follows:

Given the set Z ⊆Rn and x∗ ∈Rn, is x∗ ∈ conv(Z)? If not, find a valid inequality



13 Reformulation and Decomposition of Integer Programs 441

πx > π0 for Z cutting off x∗ (i.e., πx > π0 for all x ∈ Z and πx∗ < π0). More

generally there is a polyhedron P′ (often P′ = conv(Z′) where Z ⊆ Z′) for which

there is a separation algorithm (exact or heuristic) that can be solved rapidly in

practice.

Such sets are amenable to reformulation by the addition of cutting planes. A

special case of this type, treated in Section 13.4, is that in which the set Z(x̄),
obtained by variable fixing, has structure of type i). Combined with projection,

this leads to reformulations and algorithms in the space of the x variables.

iii) Set Z has specific structure that can be exploited by introducing new variables

that better describe the integrality of the variables. Examples of sets with inter-

esting extended formulations include network design problems with 0-1 vari-

ables to indicate which arcs are open, such as the Steiner tree problem in Ex-

ample 4, and scheduling problems in which it is useful to model start times in

detail. Problems that can be solved by dynamic programming and problems of

optimizing over sets defined by disjunctions are also candidates for reformu-

lation through the introduction of new variables. Extended formulations for a

wide variety of such problems are presented in Section 13.5.

13.3 Price or constraint decomposition

Consider a (minimization) problem of the form

(IP) z = min{cx : x ∈ X}

that is difficult, but with the property that a subset of the constraints of X defines a

set Z (X ⊂ Z) over which optimization is “relatively easy”. More specifically,

(IP) z = min{cx : Dx > d,Bx > b,x ∈ Zn
+︸ ︷︷ ︸

x∈X

} (13.9)

where the constraints Dx > d represent “complicating constraints” that define the

integer set Y = {x ∈ Zn
+ : Dx > d}, while the constraints Bx > b define a set Z =

{x ∈ Zn
+ : Bx > b} that is “tractable”, meaning that min{cx : x ∈ Z} can be solved

rapidly in practice.

Here we examine how one’s ability to optimize over the simpler set Z can be

exploited to produce dual bounds by relaxing the complicating constraints and pe-

nalizing their violation in the objective function (a procedure called Lagrangean

relaxation). The prices associated to each constraint placed in the objective function

are called Lagrange multipliers or dual variables, and the aim is to choose the prices

to try to enforce satisfaction of the complicating constraints Dx > d. An alternative

is to view the problem of optimizing over X as that of selecting a solution from

the set Z that also satisfies the constraints defining Y . This leads to the so-called

Dantzig-Wolfe reformulation in which variables are associated to the points of the



442 François Vanderbeck and Laurence A. Wolsey

set Z as specified in Theorems 13.1 or 13.2. The LP solution to this reformulation

provides a dual bound that is typically tighter than that of the LP relaxation of the

original formulation of X and is equal to the best bound that can be derived by

Lagrangean relaxation of the constraints Dx > d. This will be demonstrated below.

In many applications of interest Bx > b has block diagonal structure: i.e., Z =
Z1 ×·· ·×ZK in which case the integer program takes the form

(IPBD) min{
K

∑
k=1

ckxk : (x1, . . . ,xK) ∈ Y, xk ∈ Zk for k = 1, . . . ,K}

and can be written explicitly as:

(IPBD) min c1x1 + c2 x2 + · · · + cK xK

D1 x1 + D2 x2 + · · · + DK xK > d

B1 x1 > b1

B2 x2 > b2

. . . >
...

BK xK > bK

x1 ∈ Zn1
+ , x2 ∈ Zn2

+ , . . . ,xK ∈ ZnK
+ .

Here relaxing the constraints ∑K
k=1 Dkxk ≥ d allow one to decompose the problem

into K smaller size optimization problems: min{ckxk : xk ∈ Zk}.

Another important special case is the identical sub-problem case in which Dk =
D, Bk = B, ck = c, Zk = Z∗ for all k. In this case the “complicating” constraints only

depend on the aggregate variables

y =
K

∑
k=1

xk , (13.10)

so the complicating constraints correspond to a set of the form Y = {y ∈ Zn
+ : Dy >

d}. The problem can now be written as:

(IPIS) min{cy : Dy > d,y =
K

∑
k=1

xk, xk ∈ Z∗ for k = 1, . . . ,K} . (13.11)

Example 5 (The bin packing problem)

Given an unlimited supply of bins of capacity 1 and a set of items indexed by i =
1, . . . ,n of size si ∈ (0,1], the problem is to find the minimum number of bins that

are needed in order to pack all the items. Let K be an upper bound on the number

of bins that are needed (K = n, or K is the value of any feasible solution). A direct

IP formulation is



13 Reformulation and Decomposition of Integer Programs 443

min
K

∑
k=1

uk (13.12)

K

∑
k=1

xik = 1 for i = 1, . . . ,n (13.13)

∑
i

sixik 6 uk for k = 1, . . . ,K (13.14)

x ∈ {0,1}nK (13.15)

u ∈ {0,1}K (13.16)

where uk = 1 if bin k is used and xik = 1 if the item of size i is placed in bin k. This

is a natural candidate for price decomposition. Without the constraints (13.13), the

problem that remains decomposes into K identical knapsack problems.

In this section,

i) we review the Lagrangean relaxation and Dantzig-Wolfe reformulation approa-

ches, showing the links between them and the fact that both provide the same

dual bound;

ii) we then discuss algorithms to compute this dual bound: sub-gradient methods

and the column generation procedure, as well as stabilization techniques that

are used to improve convergence, and

iii) we consider the combination of column generation with branch-and-bound to

solve problems to integer optimality: deriving branching schemes when using a

Dantzig-Wolfe reformulation can be nontrivial in the case of a block diagonal

structure with identical sub-problems.

For simplicity, most of these developments are presented for the case of a sin-

gle subsystem involving only bounded integer variables. However the develop-

ments easily extend to the case of a mixed integer or unbounded subsystem Z,

or to a subsystem with block diagonal structure. The case where these blocks

are identical will be discussed separately. The economic interpretation of the

algorithms reviewed here will justify the use of the terminology “price decom-

position”.

13.3.1 Lagrangean relaxation and the Lagrangean dual

The Lagrangean relaxation approach to a problem IP with the structure outlined

above consists of turning the “difficult” constraints Dx > d into constraints that can

be violated at a price π , while keeping the remaining constraints describing the set

Z = {x ∈ Zn
+ : Bx > b}. This gives rise to the so-called Lagrangean sub-problem:

L(π) = min
x
{cx+π(d −Dx) : Bx > b,x ∈ Zn

+} (13.17)



444 François Vanderbeck and Laurence A. Wolsey

that by assumption is relatively tractable. For any non-negative penalty vector π > 0,

the dual function L(π) defines a dual (lower) bound on the optimal value z of IP:

indeed the optimal solution x∗ of IP satisfies cx∗ > cx∗+π(d−Dx∗) > L(π) (the first

inequality results from x∗ being feasible for IP and π > 0 and the second because

x∗ is feasible in (13.17)). The problem of maximizing this bound over the set of

admissible dual vectors is known as the Lagrangean dual:

(LD) zLD = max
π>0

L(π) = max
π>0

min
x∈Z

{cx+π(d −Dx)}. (13.18)

We now reformulate the Lagrangean dual as a linear program, assuming that the

constraint set Z is non-empty and bounded. The Lagrangean sub-problem achieves

its optimum at an extreme point xt of conv(Z), so one can write

zLD = max
π>0

min
t=1,...,T

{cxt +π(d −Dxt)} , (13.19)

where {xt}t=1,...,T is the set of extreme points of conv(Z), or alternatively {xt}t=1,...,T

is the set of all points of Z. Introducing an additional variable σ representing a lower

bound on the (c−πD)xt values, we can now rewrite LD as the linear program:

zLD = max πd +σ (13.20)

πDxt +σ 6 cxt for t = 1, . . . ,T (13.21)

π > 0,σ ∈ R1. (13.22)

Taking its linear programming dual gives:

zLD = min
T

∑
t=1

(cxt)λt (13.23)

T

∑
t=1

(Dxt)λt > d (13.24)

T

∑
t=1

λt = 1 (13.25)

λ ∈ RT
+. (13.26)

From formulation (13.23)–(13.26), one easily derives the following result.

Theorem 13.4 (Lagrangean duality).

zLD = min{cx : Dx > d,x ∈ conv(Z)}. (13.27)

Indeed, by definition of the set of points {xt}T
t=1, conv(Z) = {x = ∑T

t=1 xtλt :

∑T
t=1 λt = 1, λt > 0 t = 1, . . . ,T}. Thus, the value of the Lagrangean dual is equal to

the value of the linear program obtained by minimizing cx over the intersection of

the “complicating” constraints Dx > d with the convex hull of the “tractable” set Z.



13 Reformulation and Decomposition of Integer Programs 445

Example 6 (Lagrangean relaxation for the bin packing problem).

Continuing Example 5, consider an instance of the bin packing problem with n = 5

items and size vector s = ( 1
6 , 2

6 , 2
6 , 3

6 , 4
6 ). Dualizing the constraints (13.13), the La-

grangean subproblem (13.17) takes the form: min{∑K
k=1 uk −∑n

i=1 πi(1−∑K
k=1 xik) :

(13.14)− (13.16}. Arbitrarily taking dual variables π = ( 1
3 , 1

3 , 1
3 , 1

2 , 1
2 ) and using

the fact that this problem splits up into an identical knapsack problem for each k,

the Lagrangean sub-problem becomes:

L(π) =
5

∑
i=1

πi +K min(u−
1

3
x1 −

1

3
x2 −

1

3
x3 −

1

2
x4 −

1

2
x5)

1

6
x1 +

2

6
x2 +

2

6
x3 +

3

6
x4 +

4

6
x5 6 u

x ∈ {0,1}5, u ∈ {0,1}.

The optimal solution is x = (1,1,0,1,0),u = 1. For K = n (a trivial solution is to

put each item in a separate bin), the resulting lower bound is 12
6 − 5

6 = 7
6 . The best

Lagrangean dual bound zLD = 2 is attained for π = (0,0,0,1,1), x = (0,0,0,0,1)
and u = 1.

13.3.2 Dantzig-Wolfe reformulations

Here we consider two closely related extended formulations for problem IP:

min{cx : Dx > d,x∈ Z}, and then we consider the values of the corresponding linear

programming relaxations.

We continue to assume that Z is bounded. The Dantzig-Wolfe reformulation re-

sulting from Theorem 13.1 (called the convexification approach) takes the form:

(DWc) zDWc = min ∑
g∈Gc

(cxg)λg (13.28)

∑
g∈Gc

(Dxg)λg > d (13.29)

∑
g∈Gc

λg = 1 (13.30)

x = ∑
g∈Gc

xgλg ∈ Zn (13.31)

λ ∈ R|Gc|
+ (13.32)

where {xg}g∈Gc are the extreme points of conv(Z).
The Dantzig-Wolfe reformulation resulting from Theorem 13.2 (called the dis-

cretization approach) is



446 François Vanderbeck and Laurence A. Wolsey

(DWd) zDWd = min ∑
g∈Gd

(cxg)λg (13.33)

∑
g∈Gd

(Dxg)λg > d (13.34)

∑
g∈Gd

λg = 1 (13.35)

λ ∈ {0,1}|G
d | (13.36)

where {xg}g∈Gd are all the points of Z.

As pointed out above, the extreme points of conv(Z) are in general a strict subset

of the points of Z (Gc ⊆ Gd). Note however that the distinction between the two

approaches disappears when considering the LP relaxations of the Dantzig-Wolfe

reformulations: both sets allow one to model conv(Z) and they provide a dual bound

that is equal to the value of the Lagrangean dual.

Observation 1

i) The linear program (13.23)–(13.26) is precisely the linear programming relax-

ation of DWc.

ii) It is identical to the linear programming relaxations of DWd (any point of Z can

be obtained as a convex combination of extreme points of conv(Z)). Hence

zDWc
LP = zDWd

LP = min{cx : Dx > d,x ∈ conv(Z)} = zLD,

where zDWc
LP and zDWd

LP denote the values of the LP relaxations of DWc and DWd

respectively.

In addition there is no difference between DWc and DWd when Z ⊂ {0,1}n as

every point x ∈ Z is an extreme point of conv(Z). In other words

x = ∑
g∈GC

xgλg ∈ {0,1}n in DWc if and only if λ ∈ {0,1}|G
d | in DWd.

To terminate this subsection we examine the form DWd takes when there is block

diagonal structure. Specifically the multi-block Dantzig-Wolfe reformulation is:

min

{
K

∑
k=1

∑
g∈Gd

k

(cxg)λkg :
K

∑
k=1

∑
g∈Gd

k

(Dxg)λkg > d, (13.37)

∑
g∈Gd

k

λkg = 1 for k = 1, . . . ,K, λ ∈ {0,1}∑k |G
d
k
|

}
.

where Zk = {xg}
g∈Gd

k
for all k and xk = ∑g∈Gd

k
xg λkg ∈ Zk.



13 Reformulation and Decomposition of Integer Programs 447

Identical subproblems

When the subproblems are identical for k = 1, . . . ,K, the above model admits

many different representations of the same solution: any permutation of the k indices

defines a symmetric solution. To avoid this symmetry, it is normal to introduce the

aggregate variables νg = ∑K
k=1 λkg. Defining Z∗ = Z1 = · · ·= ZK and Z∗ = {xg}g∈G∗ ,

one obtains the reformulation:

(DWad) min ∑
g∈G∗

(cxg)νg (13.38)

∑
g∈G∗

(Dxg)νg > d (13.39)

∑
g∈G∗

νg = K (13.40)

ν ∈ Z|G∗|
+ , (13.41)

where νg ∈ Z+ is the number of copies of xg used in the solution. The projection

of reformulation solution ν into the original variable space will only provide the

aggregate variables y defined in (13.10):

y = ∑
g∈G∗

xgνg . (13.42)

Example 7 (The cutting stock problem)

An unlimited number of strips of length L are available. Given d ∈ Zn
+ and s ∈ Rn

+,

the problem is to obtain di strips of length si for i = 1, . . . ,n by cutting up the smallest

possible number of strips of length L.

Here Z∗ = {x ∈ Zn
+ : ∑n

i=1 sixi 6 L}, each point xg of Z∗ corresponds to a cutting

pattern, D = I and c = 1, so one obtains directly the formulation

min

{
∑

g∈G∗

νg : ∑
g∈G∗

(xg)νg > d,ν ∈ Z
|G∗|
+

}

in the form DWad, without the cardinality constraint (13.40). The bin packing prob-

lem is the special case in which di = 1 for all i and each cutting pattern contains

each strip length at most once.

To complete the picture we describe how to solve the linear programming relax-

ation of the Dantzig-Wolfe reformulation in the next subsection and how to use this

reformulation in a branch-and-bound approach to find an optimal integer solution

(subsection 13.3.5).



448 François Vanderbeck and Laurence A. Wolsey

13.3.3 Solving the Dantzig-Wolfe relaxation by column generation

Here we consider how to compute the dual bound provided by the “Dantzig-

Wolfe relaxation” using column generation. Alternative ways to compute this dual

bound are then discussed in the next subsection.

Consider the linear relaxation of DWc given in (13.28)–(13.32) or DWd given in

(13.33)–(13.36) which are equivalent as noted in Observation 1. This LP is tradition-

ally called the (Dantzig-Wolfe) master problem (MLP). It has a very large number

of variables that will be introduced dynamically in the course of the optimization by

the revised simplex method. We assume that Z is a bounded integer set. Let {xg}g∈G

be either the extreme points of conv(Z) or all the points of Z. Suppose that, at iter-

ation t of the simplex algorithm, only a subset of points {xg}g∈Gt with Gt ⊂ G are

known. They give rise to the restricted master linear program:

(RMLP) zRMLP = min ∑
g∈Gt

(cxg)λg (13.43)

∑
g∈Gt

(Dxg)λg > d (13.44)

∑
g∈Gt

λg = 1 (13.45)

λ ∈ R|Gt |
+ .

The dual of RMLP takes the form:

max πd +σ (13.46)

πDxg +σ 6 cxg for g ∈ Gt (13.47)

π > 0, σ ∈ R1. (13.48)

Let λ ′ and (π ′,σ ′) represent the primal and the dual solutions of the restricted mas-

ter program RMLP respectively.

The column generation algorithm follows directly from the following simple ob-

servations exploiting both primal and dual representations of the master problem.

Observation 2

i) Given a current dual solution (π ′,σ ′), the reduced cost of the column associated

to solution xg is cxg −π ′Dxg −σ ′.

ii) ζ = ming∈G(cxg −π ′Dxg) = minx∈Z(c−π ′D)x. Thus, instead of examining the

reduced costs of the huge number of columns, pricing can be carried out im-

plicitly by solving a single integer program over the set Z.

iii) The solution value of the restricted Master problem zRMLP = ∑g∈Gt (cxg)λ ′
g =

π ′d + σ ′ gives an upper bound on zMLP. MLP is solved when ζ −σ ′ = 0, i.e.,

when there is no column with negative reduced cost.

iv) The pricing problem defined in ii) is equivalent to the Lagrangean sub-problem

given in (13.17); hence, each pricing step provides a Lagrangean dual bound.



13 Reformulation and Decomposition of Integer Programs 449

v) For another view point on iv), note that the dual solution π ′ of RMLP, completed

by ζ , forms a feasible solution (π ′,ζ ) for the dual of MLP:

{maxπd +σ : πDxg +σ 6 cxg for g ∈ G; π > 0, σ ∈ R1},

and therefore π ′d +ζ gives a lower bound on zMLP.

vi) If the solution λ ′ to RMLP is integer, the corresponding value of zRMLP provides

a valid primal (upper) bound for problem IP.

Point ii) is crucial as our motivation for the Dantzig-Wolfe reformulation was

the assumption that solving an optimization problem over Z is relatively tractable.

Point vi) highlights a strong point of the column generation approach: it may pro-

duce primal integer solutions in the course of the solution of MLP.

Column Generation Algorithm for a master program of the form (13.23)–(13.26):

i) Initialize primal and dual bounds PB = +∞, DB = −∞. Generate a subset of

points xg so that RMLP is feasible. (Master feasibility can be achieved using ar-

tificial columns. It is standard to combine Phases 1 and 2 of the simplex method

to eliminate these artificial columns from the LP solution).

ii) Iteration t:

a) Solve RMLP over the current set of columns {xg}g∈Gt ; record the primal

solution λ t and the dual solution (π t ,σ t).
b) Check whether λ t defines an integer solution of IP; if so update PB. If PB =

DB, stop.

c) Solve the pricing problem

(SPt) ζ t = min{(c−π tD)x : x ∈ Z}.

Let xt be an optimal solution.

If ζ t −σ t = 0, set DB = zRMLP and stop; the Dantzig-Wolfe master problem

MLP is solved.

Otherwise, add xt to Gt and include the associated column in RMLP

(its reduced cost is ζ t −σ t < 0).

d) Compute the dual bound: L(π t) = π td +ζ t ; update DB = max{DB,L(π t)}.

If PB = DB, stop.

iii) Increment t and return to ii).

When problem IP has a block diagonal structure with the kth subproblem hav-

ing optimal value ζ k, the corresponding upper bounds on the unrestricted master

LP value zMLP are of the form π ′d + ∑K
k=1 σ ′

k and the lower bounds of the form

π ′d + ∑K
k=1 ζ k. When the K subsystems are identical these bounds take the form

π ′d +Kσ ′ and π ′d +Kζ respectively. The typical behavior of these upper and lower

bounds in the course of the column generation algorithm is illustrated in Figure 13.2.

Example 8 demonstrates the column generation procedure on an instance of the bin

packing problem.



450 François Vanderbeck and Laurence A. Wolsey

844

0 100 200 300 400 500 600 700 800 900 1000

0

84

169

253

338

422

506

591

675

760

Fig. 13.2 Convergence of the column generation algorithm

Example 8 (Column generation for the bin packing problem)

Consider the same instance as in Example 6 with n = 5 items and size vector

s = ( 1
6 , 2

6 , 2
6 , 3

6 , 4
6 ). Initialize the restricted master RMLP with the trivial packings

in which each item is in a separate bin. The initial restricted master then takes the

form:

minν1 +ν2 +ν3 +ν4 +ν5




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1







ν1

ν2

ν3

ν4

ν5




>




1

1

1

1

1




,ν ∈ R5
+

Its optimal value is Z = 5 with dual solution π = (1,1,1,1,1). The column genera-

tion sub-problem is

ζ = 1−max{x1 +x2 +x3 +x4 +x5 : x1 +2 x2 +2 x3 +3 x4 +4 x5 6 6, x ∈ {0,1}5}.

The optimal solution of the knapsack problem is x6 = (1,1,1,0,0) with value 3,

which gives the lower bound L(π) = ∑i πi + K (1− 3) = −5 (with K = 5). x6 is

added to the restricted master with associated variable ν6. The successive iterations

give



13 Reformulation and Decomposition of Integer Programs 451

t Zt master sol. π t L(π t) PB xt

5 5 ν1 = ν2 = ν3 = ν4 = ν5 = 1 (1,1,1,1,1) −5 5 (1,1,1,0,0)
6 3 ν4 = ν5 = ν6 = 1, (0,0,1,1,1) −2 3 (0,0,1,1,0)
7 3 ν1 = ν4 = ν5 = 1 (0,1,0,1,1) −2 3 (0,1,0,1,0)
8 3 ν1 = ν6 = ν7 = ν8 = 1

2 ,ν5 = 1 (1,0,0,1,1) −2 3 (1,0,0,0,1)
9 2.5 ν6 = ν7 = ν8 = 1

2 ,ν9 = 1 (0, 1
2 , 1

2 , 1
2 ,1) 0 3 (0,1,0,0,1)

10 2.33 ν6 = ν8 = ν10 = 1
3 ,ν7 = ν9 = 2

3 ( 1
3 , 1

3 , 1
3 , 2

3 , 2
3 ) 2

3 3 (1,1,0,1,0)
11 2.25 ν6 = ν11 = 1

4 ,ν9 = ν10 = 1
2 ,ν7 = 3

4 ( 1
4 , 1

4 , 1
2 , 1

2 , 3
4 ) 4

3 3 (0,0,1,0,1)
12 2 ν11 = ν12 = 1 (0,0,0,1,1) 2 2 (0,0,0,0,1)

In this example, the master problem has an optimal solution that is integer, so this

is an optimal solution of the bin packing problem (the column generation procedure

ends with PB = DB).

The column generation algorithm has an appealing economic interpretation, de-

rived directly from linear programming duality. Dantzig-Wolfe decomposition can

be viewed as a procedure for decentralizing the decision-making process. The mas-

ter problem plays the role of the coordinator setting prices that serve as incentives

to meet the global constraints ∑k Dxk > d. These prices are submitted to the subdi-

visions. Each independent subdivision uses these prices to evaluate the profitability

of its activities (xk ∈ Zk) and returns an interesting business proposal (with nega-

tive reduced cost). The procedure iterates until no more improving proposals can be

generated, and the given prices are optimal.

13.3.4 Alternative methods for solving the Lagrangean dual

By Observation 1, the above column generation algorithm solves the Lagrangean

dual zLD = maxπ>0 L(π). Alternatives to the column generation approach to solving

the Lagrangean dual can be related to the different formulations of the problem: its

max-min form (13.19) or the dual linear program (13.20)–(13.22). The dual point

of view is particularly important in the analysis of the convergence of methods for

solving the Lagrangean dual: convergence is driven by the successive dual solutions,

even for the column generation procedure. Dual analysis has inspired enhanced col-

umn generation algorithms making use of so-called stabilization techniques. A bet-

ter theoretical convergence rate can only be achieved by using non-linear program-

ming techniques such as the bundle method. On the other hand, simpler methods

(such as the sub-gradient algorithm), whose convergence in practice is worse than

that of the standard column generation approach, remain useful because of their

easy implementation and their ability to cope with large size problems.

Here we review some of the classical alternative approaches to solving the La-

grangean dual arising from the different formulations given in Section 13.3.1.

Note that L(π) = ming∈G(c− πD)xg + πd is a piecewise affine concave func-

tion of π , as illustrated in Figure 13.3. Solving the Lagrangean dual requires the



452 François Vanderbeck and Laurence A. Wolsey

Fig. 13.3 The Lagrangean dual function L(π) seen as a piecewise affine concave function; we
assume π ∈ R1 in this representation; each segment/hyperplane is defined by a vector xt .

maximization of this non-differentiable concave function. A simple method for this

is:

The sub-gradient algorithm (for solving the Lagrangean dual in its form (13.19)):

i) Initialize π0 = 0, t = 1.

ii) Iteration t,

a) Solve the Lagrangean subproblem (13.17) to obtain the dual bound L(π t) =
min{cx+π t(d −Dx)} and an optimal solution xt .

b) Compute the violation (d −Dxt) of the dualized constraints; this provides

a “sub-gradient” that can be used as a “potential direction of ascent” to

modify the dual variables.

c) Update the dual solution by making a small step in the direction of the sub-

gradient

π t+1 = max{0,π t + εt(d −Dxt)}

where εt is an appropriately chosen step-size.

iii) If t < τ , increment t and return to ii).

Central to this approach is the simple dual price updating rule of step ii.c). The

rule leads to an increase in the prices associated with violated constraints and a

decrease for non-tight constraints. Observe, however, that it ignores all previously

generated points xg for g = 1, . . . ,t − 1 when updating π . Not surprisingly this can

result in poor performance. Moreover, the convergence of the algorithm is quite

sensitive to the selection of the step size (choosing εt too large leads to oscillations

and possible divergence, choosing it too small leads to slow convergence or conver-

gence to a non-optimal point). It is usual to use a normalized step size: εt = αt

‖d−Dxt‖
.

Standard choices are:



13 Reformulation and Decomposition of Integer Programs 453

i) αt =C(PB−L(π t)) with C ∈ (0,2), where the primal bound PB acts as an over-

estimate of the unknown Lagrangean dual value zLD, so the step size reduces as

one gets closer to the optimal value zLD;

ii) the αt form a geometric series: αt = Cρ t with ρ ∈ (0,1) and C > 0;

iii) the αt form a divergent series: α t → 0 and ∑t α t → ∞; for instance, take αt = 1
t
.

Convergence is guaranteed for i) if PB is replaced by a lower bound on zLD and

for ii) if C and ρ are sufficiently large. Step size iii) is always convergent, but conver-

gence is very slow because of the divergent sequence. Parameter τ in step iii) of the

algorithm allows one to limit the number of iterations. Another standard heuristic

termination rule is to stop when the dual bound DB = maxt L(π t) has not improved

for several iterations.

The sub-gradient approach can be used as a heuristic to produce a candidate

solution for the primal problem (13.27). However it is not guaranteed to satisfy

constraints Dx > d while the primal solution of (13.23)–(13.26) does. The candidate,

denoted x̂, is obtained as a convex combination of previously generated points xg for

g = 1, . . . ,t. Possible choices of updating rules are:

i) x̂ = ∑t
g=1 xgλg where λg =

αg

∑t
g=1 αg

, or

ii) x̂ = α x̂+(1−α)xt with α ∈ (0,1).

The latter rule is of interest because it puts more weight on the points xt gen-

erated most recently. Using step size iii), the theory predicts the convergence of x̂

towards an optimal solution to (13.27). In practice however, one would first check

whether x̂ verifies Dx > d and if so record the associated value as an upper bound on

zLD that can be helpful in monitoring convergence (although there is no monotonic

convergence of these upper bounds as in Figure 13.2). If furthermore x̂ verifies the

integrality conditions, then it defines a primal bound PB.

The volume algorithm is a variant of the sub-gradient method in which one uses

the information of all the previously generated Lagrangean subproblem solutions

to estimate both primal and dual solutions to (13.23)–(13.26), thus providing better

stopping criteria. At each iteration,

i) the estimate of a primal solution is updated using: x̂ = η x̂ + (1−η)xt with a

suitable η ∈ (0,1);
ii) the dual solution estimate π̂ is defined by the price vector that has generated the

best dual bound so far: π̂ = argmaxg=1,...,tL(πg);
iii) the “direction of ascent” is defined by the violation (d−Dx̂) of the dualized con-

straint by the primal solution estimate x̂ instead of using the latest Lagrangean

sub-problem solution xt ;

iv) the dual price updating rule consists in taking a step from π̂ instead of π t : π t+1 =
max{0, π̂ + εt(d −Dx̂)}.

The method is inspired by the conjugate gradient method. It is equivalent to mak-

ing a suitable correction vt in the dual price updating direction π t+1 = max{0,π t +
εt(d −Dxt)+ vt}. The name volume refers to the underlying theory saying that the

weight (1−η)ηg−1 of the gth solution xg in the primal solution estimate x̂ approx-

imates the volume under the hyperplane πDxt + σ = cxg in the dual polyhedron of



454 François Vanderbeck and Laurence A. Wolsey

Figure 13.3 augmented by the constraint σ > π̂d. The algorithm stops when primal

feasibility is almost reached: ‖(d −Dx̂)‖ 6 ε and the duality gap is small enough:

‖cx̂− π̂d‖ 6 ε . The implementation of the method is as simple as that of the sub-

gradient algorithm, while its convergence performance is typically better.

The linear programming representation (13.20)–(13.22) of the Lagrangean dual

suggests the use of a cutting plane procedure to dynamically introduce the con-

straints associated with the different points xg. This procedure is a standard non-

linear programming approach to maximize a concave non-differentiable function,

known as Kelley’s cutting plane algorithm. It is identical to the above column gen-

eration procedure but seen in the dual space: point xg defines a violated cut for

(13.20)–(13.22) if and only if it defines a negative reduced cost column for (13.23)–

(13.26).

The convergence of the basic column generation algorithm (or its dual counter-

part) suffers several drawbacks, as illustrated in Figure 13.2: i) during the initial

stages, when few points xg are available, primal and dual bounds are very weak and

ineffective, ii) convergence can be slow with very little progress made in improving

the bounds, iii) the dual bounds can behave erratically as π jumps from one extreme

point solution to another at successive iterations, and iv) the upper bounds zRMLP

can remain stuck at the same value due to degeneracy (iterating between alternative

solutions of the same value).

Efforts have been made to construct more sophisticated and robust algorithms.

They combine several mechanisms:

i) proper initialization (warm start): what is essential is to have meaningful dual

solutions π from the outset (using a dual heuristic or a rich initial set of

points xg, produced for instance by the sub-gradient method);

ii) stabilization techniques that penalize deviations of the dual solutions from a

stability center π̂ , defined as the dual solution providing the best dual bound so

far: the dual problem becomes

max
π>0

{L(π)+S(π − π̂)},

where S is a penalty function that increases as π moves away from π̂;

iii) smoothing techniques that moderate the current dual solution based on previous

iterates: the price vector sent to the subproblem is

π t = απ t−1 +(1−α)π t ,

where π t is the current dual solution of RMLP, α ∈ (0,1) is a smoothing pa-

rameter, and π t−1 is the smoothed price of the previous iterate.

iv) an interior point approach providing dual solutions corresponding to points in

the center of the face of optimal solutions of RMLP as opposed to the extreme

points generated by simplex-based algorithms;

v) reformulation strategies to avoid degeneracy or symmetries. For instance, when

the MLP is a set covering problem, a dynamic row aggregation and disaggre-

gation procedure allows one to control degeneracy and to reduce the number



13 Reformulation and Decomposition of Integer Programs 455

of iterations. Another approach consists in adding valid dual cuts in (13.20)–

(13.22) to break dual symmetries. These mechanisms can be combined into

hybrid methods. For instance, combining ii) and iii) by smoothing around a

stability center:

π t = απ̂ +(1−α)π t . (13.49)

Stabilization techniques differ essentially in the choice of the penalty function.

Several typical penalty functions are pictured in Figure 13.4 for a 1-dimensional

vector π . When S is a piecewise linear function, the modified dual problem can still

be formulated as a linear program (with artificial variables). For instance, to model a

boxstep penalty function S(πi) = 0 if π ∈ [0,π i] and −∞ otherwise (for π i = 2∗ π̂i),

the master program (13.23)–(13.26) is augmented with artificial columns ρi for i =
1, . . .m, whose costs are defined by the upper bounds π i on the the dual prices. The

resulting primal-dual pair of augmented formulations of the master are:

min
T

∑
t=1

(cxt)λt +∑
i

π iρi max ∑
i

πidi +σ

T

∑
t=1

(Dix
t)λt +ρi > di for all i ∑

i

πiDix
t +σ 6 cxt for all t

T

∑
t=1

λt = 1 πi 6 π i for all i

λ ∈ RT
+, ρ ∈ Rm

+ π > 0, σ ∈ R1.

(13.50)

Properly setting the parameters that define this stabilization function may require

difficult experimental tuning.

In theory the convergence rates of all the LP-based methods (with or with-

out piece-wise linear penalty functions) are the same (although LP stabilization

helps in practice). However using a quadratic penalty allows one to benefit from

the quadratic convergence rate of Newton’s method to get an improved theoreti-

cal convergence rate. The bundle method consists in choosing the penalty function

S = ‖π−π̂‖2

η where η is a parameter that is dynamically adjusted to help convergence.

(In the case of equality constraints Dx = d, the bundle method has an intuitive in-

terpretation in the primal space: solving the penalized dual is equivalent to solving

the augmented Lagrangean subproblem: min{cx + π̂(d −Dx) + η‖d −Dx‖2 : x ∈

conv(Z)}.) The method calls for the solution of a quadratic program at each iter-

ation (the dual restricted master involves the maximization of a concave objective

under linear constraints). Experimentally use of the bundle method leads to a dras-

tic reduction in the number of iterations for some applications. The extra computing

time in solving the quadratic master is often minor.

Interior-point based solution approaches such as the Analytic Center Method

(ACCPM) can also be shown theoretically to have a better rate of convergence. Even

smoothing techniques can benefit from theoretical analysis: using rule (13.49), one

can show that at each iteration either the dual bound is strictly improved, or the col-

umn generated based on the smoothed prices π t has a strictly negative reduced cost

for the original prices π t .



456 François Vanderbeck and Laurence A. Wolsey

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π
π̂

S(π − π̂)

π

Fig. 13.4 Examples of penalty functions: the boxstep; three piece-wice linear penalty functions;
the quadratic penalty of the bundle method.

In practice, each of the above enhancement techniques has been shown to signifi-

cantly reduce the number of iterations in certain applications. However there may be

overheads that make each iteration slightly more time consuming. Another factor in

assessing the impact of the enhanced techniques is the time required by the pricing

subproblem solver: it has been observed that stabilized, smoothed or centered dual

prices π can make the pricing problem harder to solve in practice. Thus the benefits

from using stabilization techniques are context dependent.

13.3.5 Optimal integer solutions: branch-and-price

To solve problem IP based on its Dantzig-Wolfe reformulation, one must com-

bine column generation with branch-and-bound; the resulting algorithm is known as

branch-and-price or IP column generation. The issues are how to select branching

constraints and how to carry out pricing (solve the resulting subproblem(s)) after

adding these constraints. Note that a standard branching scheme consisting in im-

posing a disjunctive constraint on a variable λg of the Dantzig-Wolfe reformulation

that is currently fractional is not advisable. First, it induces an unbalanced enumera-

tion tree: rounding down a λg variable is weakly constraining, while rounding it up

is considerably more constraining, especially when the corresponding bounds are

0 and 1 respectively. Second, on the down branch it is difficult to impose an upper

bound on a λg variable: the associated column is likely to be returned as the solu-

tion of the pricing problem unless one specifically excludes it from the sub-problem



13 Reformulation and Decomposition of Integer Programs 457

solution set (essentially adding the constraint x 6= xg in the sub-problem which de-

stroys its structure), or one computes the next best column. The alternative is to

attempt to express branching restrictions in terms of the variables of the original

formulation. In general, deriving an appropriate branching scheme in a column gen-

eration context can be non-trivial, especially when tackling problems with identical

subsystems.

Below we start by considering the case of a single subsystem. The branching

schemes developed for this case already indicate some of the issues and extend

directly to the case with multiple but distinct subsystems. We will then consider the

case of a set partitioning master program with multiple identical subsystems in 0-1

variables. In this case, a classical approach is the Ryan and Foster branching scheme.

We place it in the context of alternative schemes. From this discussion, we indicate

the basic ideas for dealing with the general case. In particular, we outline a general

branching and pricing scheme that is guaranteed to produce a finite branching tree

and to maintain the structure of the pricing problem when the set Z is bounded.

13.3.5.1 Branch-and-price with a single or multiple distinct subsystems

We describe the algorithm for a single subsystem, which extends to the case of

distinct subsystems. We suppose that λ ∗ is an optimal solution of the Dantzig-Wolfe

linear programming relaxation.

i) Integrality Test. If λ ∗ is integer, or more generally if x∗ = ∑g∈G xgλ ∗
g ∈ Zn,

stop. x∗ is an optimal solution of IP.

ii) Branching. Select a variable x j for which x∗j = ∑g∈G x
g
jλ

∗
g /∈ Z. Separate into

two subproblems with feasible regions X ∩{x : x j 6 ⌊x∗j⌋} and X ∩{x : x j >

⌈x∗j⌉}.

Let us consider just the up-branch (U); the down-branch is treated similarly.

The new IP for which we wish to derive a lower bound is the problem:

zU = min{cx : Dx > d,x ∈ Z,x j > ⌈x∗j⌉}.

There are now two options, depending whether the new constraint is treated as

a complicating constraint, or becomes part of the “tractable” subproblem.

Option 1. The branching constraint is dualized as a “difficult” constraint: YU
1 = {x∈

Zn : Dx > d,x j > ⌈x∗j⌉} and ZU
1 = Z.



458 François Vanderbeck and Laurence A. Wolsey

iii) Solving the new MLP: The resulting linear program is

(MLP1) zMLP1 = min ∑
g∈G

(cxg)λg

∑
g∈G

(Dxg)λg > d

∑
g∈G

x
g
jλg > ⌈x∗j⌉

∑
g∈G

λg = 1

λ ∈ R|G|
+ ,

where {xg}g∈G is the set of points of Z.

iv) Solving the new subproblem. Suppose that an optimal dual solution after iter-

ation t is (π t ,µ t ,σ t) ∈ Rm
+ ×R1

+ ×R1. The subproblem now takes the form:

(SPt
1) ζ t

1 = min{(c−π tD)x−µ tx j : x ∈ Z}.

Option 2. The branching constraint is enforced in the sub-problem: YU
2 = Y and

ZU
2 = Z ∩{x j > ⌈x∗j⌉}.

iii) Solving the new MLP: The resulting linear program is

(MLP2) zMLP2 = min ∑
g∈GU

2

(cxg)λg

∑
g∈GU

2

(Dxg)λg > d

∑
g∈GU

2

λg = 1

λ ∈ R
|GU

2 |
+ ,

where {xg}g∈GU
2

is the set of points of ZU
2 .

iv) Solving the new subproblem. Suppose that an optimal dual solution after iter-

ation t is (π t ,σ t) ∈ Rm
+ ×R1. The subproblem now takes the form:

(SPt
2) ζ t

2 = min{(c−π tD)x : x ∈ Z ∩{x : x j > ⌈x∗j⌉}}.

Note that, with Option 2, branching on x j > ⌈x∗j⌉ on the up-branch can be

viewed as partitioning the set Z into two sets Z \ZU
2 and ZU

2 : adding the constraint

∑g∈GU
2

λg = 1 is equivalent to adding ∑g∈G\GU
2

λg = 0 and thus the columns of Z\ZU
2

are removed from the master.



13 Reformulation and Decomposition of Integer Programs 459

Both Options 1 and 2 have certain advantages and disadvantages:

• Strength of the linear programming bound

zMLP1 = min{cx : Dx > d,x ∈ conv(Z),x j > ⌈x∗j⌉}

6 zMLP2 = min{cx : Dx > d,x ∈ conv(Z ∩{x : x j > ⌈x∗j⌉})},

so Option 2 potentially leads to better bounds.

• Complexity of the subproblem

For Option 1 the subproblem is unchanged, whereas for Option 2 the subproblem

may remain tractable, or it may become more complicated if the addition of

bounds on the variables makes it harder to solve.

• Getting Integer Solutions

If an optimal solution x∗ of IP is not an extreme point of conv(Z), there is no

chance that x∗ will ever be obtained as an optimal solution of the subproblem

under Option 1. Under Option 2, because of the addition of the bound constraints,

one can eventually generate a column xg = x∗ in the interior of conv(Z).

The above pros and cons suggest that Option 2 may be preferable if the modified

subproblem remains tractable.

In the above we only consider branching at the root node and the modifications

to the column generation procedure after adding a single branching constraint. The

two options can be used throughout the branch-and-price tree, adding a new lower

or upper bound on a variable on each branch. Both schemes also extend to mixed

integer programs in which case branching is carried out only on the integer variables.

13.3.5.2 Branch-and-price with identical subsystems

In the case of identical subsystems the Dantzig-Wolfe reformulation is given

by DWad (13.38)–(13.41). Here the model variables result from an aggregation:

νg = ∑K
k=1 λkg with ∑g∈G νg = K. Hence, there is no direct mapping back to the

original distinct subsystem variables (x1, . . . ,xK). The projection (13.42) of refor-

mulation solution ν into the original variable space will only provide the aggregate

variables y defined in (13.10). The “Integrality Test” needs to be adapted. More-

over, branching on a single component of y is typically not enough to eliminate a

fractional solution. In particular, the Option 1 scheme typically does not suffice be-

cause one may have y∗j = ∑g∈G x
g
jλ

∗
g ∈ Z for all j even though the current master

solution does not provide an optimal integer solution to the original problem. The

extension consists in defining branching entities involving more than one variable

x j of the original formulation. This can be interpreted as defining auxiliary variables

on which to branch. The branching constraint can then either go in the master (as in

Option 1) or be enforced in the pricing problem (as in Option 2), which amounts to

branching on appropriately chosen subsets Ẑ ⊂ Z.

First, we provide an “Integrality Test” although its definition is not unique.



460 François Vanderbeck and Laurence A. Wolsey

Integrality Test. Sort the columns xg with ν∗
g > 0 in lexicographic order. Disaggre-

gate ν into λ variables using the recursive rule:

λ ∗
kg = min{1,νg −

k−1

∑
κ=1

λ ∗
κg,(k− ∑

γ≺g

ν∗
g )+} for g ∈ G, k = 1, . . . ,K, (13.51)

where g1 ≺ g2 if g1 precedes g2 in the lexicographic order. For all k, let (xk)∗ =

∑g∈Gc xgλ ∗
kg. If x∗ ∈ ZKn, stop. x∗ is a feasible solution of IP.

Note that if ν∗ is integer, the point x∗ obtained by the above mapping will be in-

teger. In general x∗ can be integer even when ν∗ is not. However, when Z ⊂ {0,1}n,

ν∗ is integer if and only if x∗ is integer.

Let us now discuss Branching. We first treat the special case of (13.11) in which

the master problem is a set partitioning problem. Then we present briefly possible

extensions applicable to the general case.

The Set Partitioning Case

For many applications with identical binary subsystems, one has Z ⊆ {0,1}n,

D = I,d = (1, . . . ,1), and the master takes the form of:

min{∑
g

(c xg)νg : ∑
g

x
g
j νg = 1 ∀ j, ∑

g

νg = K, νg ∈ {0,1}|G|}. (13.52)

One example is the bin packing problem of Example 8 in which Z is the set of

solutions of a 0-1 knapsack problem. Another is the graph (vertex) coloring problem

in which columns correspond to node subsets that can receive the same color and Z

is the set of stable sets of the graph.

Assume that the solution to the master LP is fractional with ν∗ 6∈ {0,1}|G|.

Branching on a single component y j is not an option. Indeed, if Ĝ = {g : x
g
j = 1},

y∗j = ∑g∈G x
g
jν

∗
g = ∑g∈Ĝ ν∗

g = 1 for any master LP solution. However there must

exist a pair of coordinates i and j such that

w∗
i j = ∑

g:x
g
i =1,x

g
j=1

ν∗
g = α with 0 < α < 1,

so that one can branch on the disjunctive constraint:

(wi j = ∑
g:x

g
i =1,x

g
j=1

νg = 0) or (wi j = ∑
g:x

g
i =1,x

g
j=1

νg = 1),

where wi j = ∑k xk
i xk

j is interpreted as an auxiliary variable indicating whether or not

components i and j are in the same subset of the partition.

We present three ways to handle the branching constraint, numbered 3, 4 and

5 to distinguish them from the Options 1 and 2 above. They are illustrated on the

up-branch wi j = ∑g:x
g
i =1,x

g
j=1 νg = 1.

Option 3. The branching constraint is dualized as a “difficult” constraint: YU
3 =

{x ∈ Zn : Dx > d,wi j > 1} and ZU
3 = Z. Then the master includes the constraint



13 Reformulation and Decomposition of Integer Programs 461

∑g:x
g
i =1,x

g
j=1 νg > 1 with associated dual variable µ and the pricing subproblem

needs to be amended to correctly model the reduced costs of a column; it takes

the form:

ζ3 = min{(c−πD)x−µwi j : x ∈ Z,wi j 6 xi,wi j 6 x j,wi j ∈ {0,1}}.

If one wishes to enforce branching directly in the pricing subproblem, note that

one cannot simply set wi j = 1 in the subproblem because this branching constraint

must only be satisfied by one of the K subproblem solutions. Instead one must re-

strict the subproblem to Ẑ in such a way that any linear combination of its solutions

x ∈ Ẑ satisfies wi j = ∑g∈Ĝ:x
g
i =1,x

g
j=1 νg = 1. This can be done through options 4 or 5:

Option 4. Let YU
4 = {x ∈ Zn : Dx > d} and Ẑ = ZU

4 = Z ∩ {xi = x j}. The com-

bination of this restriction on the solution set with the set partitioning constraints

∑g∈Ĝ:x
g
i =1 νg = 1 and ∑g∈Ĝ:x

g
j=1 νg = 1 results in the output: ∑g∈Ĝ:x

g
i =1,x

g
j=1 νg = 1.

With this option the master is unchanged, while the pricing subproblem is:

ζ4 = min{(c−πD)x : x ∈ Z,xi = x j}.

Option 5. Here on the up branch one works with two different subproblems: one

whose solutions have wi j = 1 and the other whose solutions have wi j = 0. Let YU
5 =

{x ∈ Zn : Dx > d} and Ẑ = ZU
5A ∪ ZU

5B with ZU
5A = Z ∩ {xi = x j = 0} and ZU

5B =
Z ∩{xi = x j = 1}. Then, in the master program the convexity constraint ∑g∈G νg =
K is replaced by ∑g∈GU

5A
νg = K − 1 and ∑g∈GU

5B
νg = 1, and there are two pricing

subproblems, one over set ZU
5A and one over set ZU

5B:

ζ5A = min{(c−πD)x : x ∈ Z,xi = x j = 0}

and

ζ5B = min{(c−πD)x : x ∈ Z,xi = x j = 1}.

Option 3 can be seen as an extension of Option 1. Option 4 is known in the

literature as the Ryan and Foster branching scheme. Option 5 can be seen as an

extension of Option 2. The analysis of the advantages and disadvantages of Options

3, 4 and 5 provides a slightly different picture from the comparison of Options 1

and 2:

• Strength of the linear programming bound

zMLP3 = min{cx : Dx > d,x ∈ conv(Z)K ,wi j > 1}

6 zMLP4 = min{cx : Dx > d,x ∈ conv(ZU
2 )K},

6 zMLP5 = min{cx : Dx > d,x ∈ (conv(ZU
5A)K−1 × conv(ZU

5B))},

• Complexity of the subproblem

The three options assume a change of structure in the subproblem (even Op-

tion 3). The Option 5 modifications of fixing some of the subproblem variables

are the least significant.



462 François Vanderbeck and Laurence A. Wolsey

• Getting Integer Solutions

Both Option 4 and 5 allow one to generate a column xg = x∗ in the interior of

conv(Z), but Option 5 is better in this regard.

The down-branch can be treated similarly: Y D
3 = {x ∈ Zn : Dx > d,wi j = 0},

ZD
4 = Z ∩{xi + x j 6 1}, ZD

5A = Z ∩{xi = 0} and ZD
5B = Z ∩{xi = 1,x j = 0}.

Note that the pricing problem modifications are easy to handle in some appli-

cation while they make the pricing problem harder in others. The Option 3 modi-

fications affect the cost structure in a way that is not amenable to standard pricing

problem solvers in both of our examples: bin packing and vertex coloring. The Op-

tion 4 modifications do not affect the structure of the stable set sub-problem for the

vertex coloring problem: addition of the inequality xi + x j 6 1 on the down-branch

amounts to adding an edge in the graph, while adding xi = x j in the up-branch

amounts to aggregating the two nodes—contracting an edge. However, for the bin

packing application, a constraint of the form xi +x j 6 1 in the down-branch destroys

the knapsack problem structure, so that a standard special purpose knapsack solver

can no longer be used, while the up-branch can be handled by the aggregation of

items. The Option 5 modifications are easily handled by preprocessing for both the

bin packing and vertex coloring problems.

The General Case with Identical Subsystems

For the general case, such as the cutting stock problem of Example 7, the Master

LP relaxation is

min{∑
g∈G

(cxg)νg : ∑
g∈G

(Dxg)νg > d, ∑
g∈G

νg = K,ν ∈ R|G|
+ }.

If its solution ν does not pass the “Integrality Test”, one must apply an ad-hoc

branching scheme. The possible choices can be understood as extensions of the

schemes discussed in Options 1 to 5.

Option 1. Branching on the aggregate variables y does not guarantee the elimination

of all fractional solutions. As we have seen in the set partitioning case, no fractional

solutions can be eliminated in this way. However for the general case, in some (if

not all) fractional solutions, there exists a coordinate i for which yi = ∑g∈G x
g
i νg =

α /∈ Z. Then one can create two branches

∑
g∈G

x
g
i νg 6 ⌊α⌋ and ∑

g∈G

x
g
i νg > ⌈α⌉.

This additional constraint in the master does not change the structure of the pricing

problem that becomes

ζ = min{(c−πD)x−µixi : x ∈ Z}

where µi (resp. −µi ) is the dual variable associated to up-branch (resp. down-

branch) constraint.



13 Reformulation and Decomposition of Integer Programs 463

Options 3 and 4. If the original variables do not offer a large enough spectrum of

branching objects (i.e., if the integrality of the aggregate yi value does not yield an

integer solution x to the original problem), one can call on an extended formulation,

introducing auxiliary integer variables. Then one can branch on the auxiliary vari-

ables, either by dualizing the branching constraint in the master (Option 3) or, when

possible, by enforcing it in the subproblem (Option 4). A natural approach is to ex-

ploit the extended formulation that is implicit to the solution of the pricing problem.

For example, in the vehicle routing problem, solutions are the incidence vectors of

the nodes in a route, whereas the edges defining the routes implicitly define the costs

of the route; branching on the aggregated edge variables summed over all the vehi-

cles allows one to eliminate all fractional solutions. For the cutting stock problem,

solving the knapsack subproblem by dynamic programming amounts to searching

for a longest path in a pseudo-polynomial size network whose nodes represent ca-

pacity consumption levels (see Section 13.5.4). Branching on the associated edge

flows in this network permits one to eliminate all fractional solutions.

Options 2 and 5. For a general integer problem, a generalization of the Option 2

approach is to look for a pair consisting of an index j and an integer bound l j for

which ∑g:x
g
j>l j

νg = α 6∈ Z, and then create the two branches:

∑
g∈Ĝ

νg > ⌈α⌉ or ∑
g∈G\Ĝ

νg > K −⌊α⌋ (13.53)

where Ẑ = Z∩{x j > l j} = {xg}g∈Ĝ. Then pricing is carried out independently over

the two sets Ẑ and Z \ Ẑ = Z ∩{x j 6 l j − 1} on both branches. As in the set parti-

tioning special case, one may have to consider sets Ẑ defined by more than a single

component bound. It is easy to show that if a solution ν does not pass the “Integral-

ity Test” there must exists a branching set Ẑ = Z∩{sx > l}, where l ∈ Zn is a vector

of bounds and s ∈ {−1,1}n defines the sign of each component bound, such that

∑g:xg∈Ẑ νg = α 6∈ Z. Then, branching takes a form generalizing (13.53) and pricing

is carried out independently for Ẑ and its complementary sets: the technicalities are

beyond the scope of this chapter (see the references provided in Section 13.7); in

particular, to avoid the proliferation of the number of cases to consider when pric-

ing, it is important to chose a branching set Ẑ that is either a subset of a previously

defined branching set or lies in the complement of all previously defined branching

sets.

Option 1 can always be tried as a first attempt to eliminate a fractional solution.

Although easy to implement, the resulting branching can be weak (low improvement

in the dual bound). Options 3 and 4 are application specific schemes (whether the

branching constraint can be enforced in the subproblem and whether this modifies

its structure are very much dependent on the application). By comparison Option 5 is

a generic scheme that can be applied to all applications for which adding bounds on

the subproblem variables does not impair its solution (i.e., it works if Z is bounded).

Typically it provides the strongest dual bound improvement.



464 François Vanderbeck and Laurence A. Wolsey

13.3.6 Practical aspects

In developing a branch-and-price algorithm, there are many practical issues such

as a proper initialization of the restricted master program, stabilization of the col-

umn generation procedure (as discussed in Section 13.3.4), early termination of the

master LPs, adapting primal heuristics and preprocessing techniques to a column

generation context, combining column and cut generation, and branching strategies.

Note that the branching schemes of Section 13.3.5 must be understood as default

schemes that are called upon after using possible branching on constraint strategies

that can yield a more balanced search tree.

Initialization is traditionally carried out by running a primal heuristic and using

the heuristic solutions as an initial set of columns. Another classical option is to

run a sub-gradient or a volume algorithm to obtain an initial bundle of columns

before going into the more computationally intensive LP based column generation

procedure. An alternative is to run a dual heuristic to estimate the dual prices. These

estimates are then used to define the cost of the artificial columns associated with

each of the master constraints as presented in (13.50).

The column generation approach is often used in primal heuristics. A branch-

and-price algorithm can be turned into a heuristic by solving the pricing problem

heuristically and carrying out partial branching. A classical heuristic consists in

solving the integer master program restricted to the columns generated at the root

node using a standard MIP solver (hoping that this integer program is feasible).

Another common approach is to apply iterative rounding of the master LP solution,

which corresponds to plunging depth-first into the branch-and-price tree (partial

backtracking yields diversification in this primal search). The branching scheme

underlying such a rounding procedure is simpler than for exact branch-and-price

(for instance one can branch directly on the master variables as only one branch is

explored).

13.4 Resource or variable decomposition

The “classical” problem tackled by resource decomposition is the mixed integer

program

(MIP) zMIP = mincx+hy

Gx+Hy > d

x ∈ Zn, y ∈ Rp
+

where the integer variables x are seen as the “important” decision variables (possibly

representing the main investment decisions). One approach is then to decompose the

optimization in two stages: first choosing x and then computing the associated opti-

mal y. A feedback loop allowing one to adjust the x solution after obtaining pricing



13 Reformulation and Decomposition of Integer Programs 465

information from the optimization of y makes the Benders’ approach different from

simple hierarchical optimization.

In this section we first derive the Benders’ reformulation in the space of the x

variables and show how it can be solved using branch-and-cut. We then consider the

case in which the y variables are integer variables, as well as the case with block

diagonal structure in which the subproblem obtained when the x variables are fixed

decomposes, and finally we discuss one computational aspect.

13.4.1 Benders’ reformulation

The approach here is to rewrite MIP as a linear integer program just in the space

of the integer variables x. First we rewrite the problem as

zMIP = min{cx+φ(x) : x ∈ projx(Q)∩Zn}

where

Q = {(x,y) ∈ Rn ×Rp
+ : Gx+Hy > d}

and

φ(x) = min{hy : Hy > d −Gx,y ∈ Rp
+}

is the second stage problem that remains once the important variables have been

fixed in the first stage. This can in turn be written as

zMIP = min{cx+σ : x ∈ projx(Q)∩Zn,(σ ,x) ∈ Pφ}

where Pφ = {(σ ,x) : σ > φ(x)}. Note that when x yields a feasible second stage

problem, i.e., x ∈ projx(Q), Pφ can be described by linear inequalities. By LP du-

ality, φ(x) = max{u(d − Gx) : uH 6 h,u ∈ Rm
+} = maxt=1,...,T ut(d − Gx) where

{ut}T
t=1 are the extreme points of U = {u ∈ Rm

+ : uH 6 h}. In addition a polyhedral

description of projx(Q) is given by Theorem 13.3. Thus we obtain the reformulation:

(RMIP) zMIP = mincx+σ

ut(d −Gx) ≤ σ for t = 1, . . . ,T

vr(d −Gx) 6 0 for r = 1, . . . ,R

x ∈ Zn, σ ∈ R1,

where {ut}T
t=1 and {vr}R

r=1 are the extreme points and extreme rays of U respec-

tively.

RMIP is a linear integer program with a very large (typically exponential) num-

ber of constraints. With modern mixed integer programming software, the natural

way to solve such a problem is by branch-and-cut.

Specifically at each node of the enumeration tree, a linear programming relax-

ation is solved starting with a subset of the constraints of RMIP. If this linear pro-



466 François Vanderbeck and Laurence A. Wolsey

gram is infeasible, RMIP at that node is infeasible, and the node can be pruned. Oth-

erwise if (σ∗,x∗) is the current linear programming solution, violated constraints are

found by solving the linear programming separation problem

φ(x∗) = min{hy : Hy > d −Gx∗,y ∈ Rp
+}, (13.54)

or its dual max{u(d −Gx∗) : uH 6 h,u ∈ Rm
+}. There are three possibilities:

i) The linear programming separation problem (13.54) is infeasible and one ob-

tains a new extreme ray vr with vr(d −Gx∗) > 0. (An extreme ray is obtained

as the dual solution on termination of the simplex algorithm). The violated con-

straint vr(d −Gx) 6 0, called a feasibility cut, is added, and one iterates.

ii) ii) The linear programming separation subproblem is feasible, and one obtains

a new dual extreme point ut with φ(x∗) = ut(d −Gx∗) > σ∗. The violated con-

straint σ > ut(d −Gx), called an optimality cut, is added, and one iterates.

iii) The linear programming separation subproblem is feasible with optimal value

φ(x∗) = σ∗. Then (x∗,σ∗) is a solution to the linear programming relaxation of

RMIP and the node is solved.

Example 9 Consider the mixed integer program

min −4x1 − 7x2 − 2y1 − 0.25y2 + 0.5y3

−2x1 − 3x2 − 4y1 + y2 − 4y3 > −9

−7x1 − 5x2 − 12y1 − 2y2 + 4y3 > −11

x 6 3, x ∈ Z2
+, y ∈ R3

+

where the feasible region is similar to that of Example 3.

The extreme rays v1 = (1,1)T ,v2 = (2,1)T of the feasible region of the dual U =
{u∈R2

+ :−4u1−12u2 6−2,u1−2u2 6−0.25,−4u1 +4u2 6 0.5} were calculated

in Example 3. The extreme points are u1 = (1/32,5/32),u2 = (1/20,3/10), so the

resulting complete reformulation RMIP is:

min σ − 4x1 − 7x2

−9x1 − 8x2 > −20

−11x1 − 11x2 > −29

σ − 1.15625x1 − 0.875x2 > −2

σ − 1.15x1 − 0.9x2 > −2.1
x 6 3, x ∈ Z2

+, σ ∈ R1.

Now we assume that the extreme points and rays of U are not known, and the prob-

lem is to be solved by branch-and-cut. One starts at the initial node 0 with only the

bound constraints 0 6 x 6 3 and dynamically adds Benders’ cuts during branch-

and-cut. We further assume that a lower bound of -100 on the optimal value of φ(x)
is given.



13 Reformulation and Decomposition of Integer Programs 467

Node 0. Iteration 1. Solve the Master linear program:

ζ = minσ −4x1 −7x2

σ > −100

x1 6 3, x2 6 3, x ∈ R2
+, σ ∈ R1.

Solution of the LP Master ζ = −133,x = (3,3),σ = −100.

Solve the separation linear program

min −2y1 − 0.25y2 + 0.5y3

−4y1 + y2 − 4y3 > −9+15

−12y1 − 2y2 + 4y3 > −11+36

y ∈ R3
+.

The ray v = (1,1) shows that the separation LP is infeasible. The corresponding

feasibility cut −9x1 −8x2 > −20 is added to the Master LP.

Node 0. Iteration 2.

Solution of the LP Master: ζ = −117.5,x = (0,2.5),σ = −100.

Solution of the Separation LP: φ(x) = 3/16 > σ . u = (1/32,5/32). The correspond-

ing optimality cut σ −1.15625x1 −0.875x2 > −2 is added to the Master LP.

Node 0. Iteration 3.

Solution of the LP Master: ζ = −17 5
16 ,x = (0,2.5),σ = 3

16 .

Solution of the Separation LP: φ(x) = σ . The LP at node 0 is solved.

Create node 1 by branching on x2 6 2 and node 2 by branching on x2 > 3, see

Figure 13.5.

Node 1. Iteration 1

The constraint x2 6 2 is added to the Master LP of Node 0, Iteration 3.

Solution of the LP Master: ζ = −15.514,x = (4/9,2),σ = 0.264.

Solution of the Separation LP: φ(x) = σ . The LP at node 1 is solved.

Create node 3 by branching on x1 6 0 and node 4 by branching on x1 > 1.

Node 3. Iteration 1

The constraint x1 6 0 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master: ζ = −14.25,x = (0,2),σ = −0.25.

Solution of the Separation LP: φ(x) = σ . The LP at node 3 is solved. The solution is

integer. The value −14.25 and the solution x = (0,2),y = (0.25,0,0.5) are stored.

The node is pruned by optimality.

Node 4. Iteration 1

The constraint x1 > 1 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master: ζ = −13.26. The node is pruned by bound.

Node 2. Iteration 1

The constraint x2 > 3 is added to the Master LP of Node 0, Iteration 3.



468 François Vanderbeck and Laurence A. Wolsey

The LP Master is infeasible. The node is pruned by infeasibility.

All nodes have been pruned. The search is complete. The optimal solution is x =
(0,2),y = (0.25,0,0.5) with value −14.25. The branch-and-cut tree is shown in

Figure 13.5.

0

1 2

3 4

x2<=2  x2>=3

x1<=0   x1>=1

LP infeasible
x=(0.444,2)

ζ= -15.514

x=(0,2) 

ζ= -14.25  ζ= -13.26

   x=(0,2.5) 

   ζ= -17.3125

Fig. 13.5 Branch-and-Cut Tree for Benders’ Approach

13.4.2 Benders with integer subproblems

The Benders’ approach has also been found useful in tackling integer program-

ming models of the form

min{cx+hy : Gx+Hy > d, x ∈ {0,1}n, y ∈ Y ⊆ Zp},

where the x variables are 0-1 and represent the “strategic decisions”, and the y vari-

ables are also integer. Once the x variables are fixed, there remains a difficult com-

binatorial problem to find the best corresponding y in the second stage. Typical ex-

amples are vehicle routing (or multi-machine scheduling) in which the x variables

may be an assignment of clients to vehicles (or jobs to machines) and the y vari-

ables describe the feasible tours of each vehicle (or the sequence of jobs on each

machine).

As before one can design a Benders’ reformulation and branch-and-cut algorithm

in the (σ ,x) variables:

zMIP = min{cx+σ ,σ > φ(x),x ∈ Zn, σ ∈ R1},

where φ(x) = ∞ when x 6∈ projx(Q). However the separation subproblem is no longer

a linear program, but the integer program:



13 Reformulation and Decomposition of Integer Programs 469

φ(x) = min{hy : Hy > d −Gx,y ∈ Y}. (13.55)

Now one cannot easily derive a polyhedral description of the projection into the x-

space as in the continuous subproblem case. The combinatorial subproblem (13.55)

must be solved repeatedly at each branch-and-bound node. It is often tackled by con-

straint programming techniques, especially when it reduces to a feasibility problem

(in many applications h = 0).

A naive variant of the algorithm presented in Section 13.4.1 is to solve the mas-

ter problem to integer optimality before calling the second stage problem: one only

calls the separation algorithm when RMIP has an integer solution x∗ ∈ {0,1}n. The

separation is typically easier to solve in this case. This approach is often used when

the subproblem is handled by constraint programming. There are three possible out-

comes:

i) The separation subproblem is infeasible for the point x∗ ∈ {0,1}n, and one can

add the infeasibility cut

∑
j:x∗j=0

x j + ∑
j:x∗j=1

(1− x j) > 1 (13.56)

that cuts off the point x∗.

ii) The separation subproblem is feasible for x∗, but φ(x∗) > σ∗. One can add the

optimality cut

σ > φ(x∗)− (φ(x∗)−M)
(

∑
j:x∗j=0

x j + ∑
j:x∗j=1

(1− x j)
)

that cuts off the point (σ∗,x∗), where M is a lower bound on φ .

iii) The separation subproblem is feasible for x∗, and φ(x∗) = σ∗ = hy∗. Now

(x∗,y∗) is a feasible solution with value cx∗ + φ(x∗). The node can be pruned

by optimality.

This naive version has to be improved to have any chance of working in practice (for

instance, in some applications one can add certain valid inequalities in the x vari-

ables a priori). In particular it is important to find inequalities that cut off more than

just the point x∗. One case in which a slightly stronger inequality can be generated

is that in which x∗ ∈ {0,1} infeasible implies x infeasible whenever x > x∗. In this

case one searches for a minimal infeasible solution x̃ 6 x∗ and the infeasibility cut

(13.56) is replaced by the inequality:

∑
j:x̃ j=1

(1− x j) > 1

stating that in any feasible solution at least one variable with x̃ j = 1 must be set to

zero.

Finally note that one can also work with a relaxation of (13.55) as any feasibility

cut or optimality cut that is valid for the relaxation is valid for (13.55).



470 François Vanderbeck and Laurence A. Wolsey

13.4.3 Block diagonal structure

In many applications MIP has block diagonal structure of the form

min cx + h1y1 + h2y2 + · · · +hKyK

G1 x + H1 y1 > d1

G2 x + H2 y2 > d2

. . .
. . . >

...

GK x + HK yK > dK

x ∈ X , yk ∈ Zk for k = 1, . . . ,K

Here the second stage subproblem breaks up into K subproblems

ζ k = min{hkyk : Hkyk > dk −Gkx,yk ∈ Zk} for k = 1, . . . ,K.

One important and well-known case is that of two-stage stochastic linear and inte-

ger programming, where x represent the first stage decisions (discrete or otherwise).

Then depending on a discrete probability distribution, one observes the random vari-

ables involving one or more elements of (Gk,Hk,hk,dk) with probability pk before

taking an optimal second stage decision yk. Note that all the subproblems will have

a similar structure in the relatively common situation in which the matrices Hk,Gk

are independent of k.

We now consider an example in which all the costs are restricted to the x vari-

ables, but the subproblems are hard combinatorial problems.

Example 10 (Multi-Machine Job Assignment Problem)

There are K machines and n jobs. Each job j has a release date r j and a due date

d j. The processing time of job j on machine k is pk
j and the associated processing

cost is ck
j . The problem is to assign each job to one machine so that the jobs on each

machine can be scheduled without preemption while respecting the release and due

dates, and the sum of the assignment costs are minimized.

Letting xk
j = 1 if job j is assigned to machine k, the problem can be written as

zMIP = min
{ K

∑
k=1

n

∑
j=1

ck
jx

k
j :

K

∑
k=1

xk
j = 1 for j = 1, . . . ,n, xk ∈ Zk for k = 1, . . . ,K

}
,

where xk ∈ Zk if and only if the set Sk = { j : xk
j = 1} of jobs can be scheduled

on machine k. The set Zk can be represented as a linear integer program, but the

feasibility problem for each machine is well-solved in practice by the“Cumulative

Constraint” from Constraint Programming. Given a proposed assignment x∗, one

calls the Cumulative Constraint in turn for each of the K subproblems. Either x∗ is

a feasible assignment, or one or more infeasibility cuts

∑
j∈Sk

xk
j 6 |Sk|−1,



13 Reformulation and Decomposition of Integer Programs 471

are added (involving as small as possible a set Sk of infeasible jobs). Note that as

the costs are limited to the x variables, there are no optimality cuts for this problem.

Results are also significantly improved by the a priori addition of valid inequalities

in the xk
i variables.

13.4.4 Computational aspects

Much recent research has shown the importance of normalization in generating

cutting planes, and Benders’ algorithm is no exception. Returning to the algorithm

outlined in Subsection 13.4.1, given (x∗,σ∗), a violated feasibility or optimality cut

is generated if and only if there is no feasible point (x∗,y∗) attaining the present

lower bound cx∗ +σ∗, or equivalently the set

{y ∈ Rp
+ : Hy > d −Gx∗,hy 6 σ∗} = /0.

By Farkas’ Lemma this holds if and only if

{(u,u0) ∈ Rm
+ ×R1

+ : u(d −Gx∗)−u0σ∗ > 0,uH −u0h 6 0} 6= /0.

Taking the normalization ∑m
i=1 ui + u0 = 1 motivated by the aim of generating a

minimal infeasible subsystem of inequalities and also the fact that this normalization

has been effective for other problems, the earlier separation problem (13.54) can be

replaced by the linear program:

ζ = max u(d −Gx∗)−u0σ∗

uH −u0h 6 0
m

∑
i=1

ui +u0 = 1

u ∈ Rm
+,u0 ∈ R1

+.

Now if ζ > 0, the inequality u(d −Gx) 6 u0σ is violated by ζ . Note that this is a

feasibility cut when u0 = 0 and an optimality cut when u0 > 0. A recent computa-

tional study has shown that Benders’ algorithm is significantly more effective and

requires far fewer iterations when this normalized separation problem is used.

13.5 Extended formulations: problem specific approaches

We now consider the use and derivation of extended formulations based on ex-

plicit problem structure in more detail.

Typically we again have a decomposition X = Y ∩Z of the feasible region, and

Z has some specific structure that we wish to exploit. In nearly all such cases a



472 François Vanderbeck and Laurence A. Wolsey

minimal inequality description of conv(Z) in the original space of variables requires

a very large number of constraints. However there is the possibility that one can find

a compact extended formulation that is tight or at least considerably stronger than

the initial formulation for Z. This section is mainly about such reformulations.

First it is natural to ask when there is hope of finding such a compact and tight

extended formulation for Z. An important indication is given by the “Polynomial

Equivalence of Optimization and Separation”. Informally it states that, subject to

certain technical conditions:

A family of problems min{cx : x ∈ Z ⊆ Zn} is polynomially solvable if and only

if for all instances Z there is a polynomial separation algorithm for conv(Z).

Assuming P 6= NP, this tells us that a tight and compact extended formulation

can only exist for a problem for which the optimization/separation problem is in P.

However it gives no guarantee of the existence of such a formulation.

Below we briefly discuss ways in which “relatively compact” extended formu-

lations can be used. Then we look at different ways to derive extended formula-

tions. We have attempted to classify them according to the method of derivation. In

particular we consider extended formulations based on variable splitting, dynamic

programming algorithms, unions of polyhedra, explicit convex hull descriptions or

the associated separation problem, and finally a couple of miscellaneous extended

IP-formulations are presented.

13.5.1 Using compact extended formulations

Here we consider briefly different ways to make use of extended formulations

that are compact or of “reasonable size”.

Intersection

Given an initial formulation P of X , the decomposition X =Y ∩Z and an extended

formulation Q for Z, then Q′ = P∩Q is an extended formulation for X . Assuming

that Q is compact, one simple option is to feed the reformulated problem

max{cx+0w : (x,w) ∈ Q′, x ∈ Zn}

to an MIP solver. Alternatively one might also try to improve the formulation of Y

and combine this with the extended formulation Q so as to produce an even stronger

reformulation, see Section 13.6.



13 Reformulation and Decomposition of Integer Programs 473

Projection

Again given the decomposition X = Y ∩Z and an extended formulation Q for Z,

one may wish to avoid explicit introduction of the new variables w ∈ Rp. One pos-

sibility is to use linear programming to provide a separation algorithm for projx(Q).
Separation Algorithm

Given Q = {(x,w) ∈ Rn
+ ×Rp

+ : Gx+Hw > d} and x∗ ∈ Rn
+,

i) check whether Q(x∗) = {w ∈ Rp : Hw > d −Gx∗} 6= /0. This can be tested by

linear programming.

ii) If Q(x∗) 6= /0, then x∗ ∈ projx(Q). Stop.

iii) If Q(x∗) = /0, then by Farkas’ lemma there exists v∗ ∈ V = {v ∈ Rm
+ : vH 6 0}

with v∗(d −Gx∗) > 0 (v∗ is obtained as a dual solution of the linear program

used in i)). Then v∗Gx > v∗d is a valid inequality for projx(Q) cutting off x∗.

Note that the Minkowski non-compact extended formulation of Z (see Sec-

tion 13.2) can be used in a similar manner to provide a separation algorithm for

conv(Z). However in this case a column generation approach (or some alternative)

must be used, and the resulting column generation subproblem is the optimization

problem over Z.

Inequality representation of projx(Q)

One can sometimes obtain an explicit polyhedral description of projx(Q) by way

of linear inequalities. In the simple cases the projection can be obtained directly

from inspection of Q. Otherwise given Q = {(x,w)∈Rn
+×Rp

+ : Gx+Hw > d}, one

may be able to describe all the extreme rays {v1, . . . ,vT} of V = {v ∈ Rm
+ : vH 6

0}. This immediately gives the polyhedral description {x ∈ Rn
+ : vtGx > vtd, t =

1, . . . ,T} of projx(Q). Alternatively, a systematic method of projecting out variables

one at a time, known as “Fourier-Motzkin elimination”, can be used to eliminate the

w variables in certain cases.

13.5.2 Variable splitting I: multi-commodity extended formulations

Using a multi-commodity extended formulation of the flows as for the directed

Steiner tree problem presented in Example 4 is an example of variable splitting.

Here we consider a more general fixed charge network flow problem, and present

two further applications to the asymmetric traveling salesman problem and a lot-

sizing problem.



474 François Vanderbeck and Laurence A. Wolsey

Single-source fixed charge network flows

Given a directed graph or network D = (V,A), a root r ∈ V , a vector b ∈ R|V |

of demands with br < 0, bv ≥ 0 for all v ∈ V \ {r}, unit flow costs c ∈ R|A| and

fixed costs q ∈ R|A|
+ for the use of an arc, the problem is to find a feasible flow that

minimizes the sum of all the flow and fixed costs. This can be formulated as the

mixed integer program:

min ∑
(u,v)∈A

(quvxuv + cuvyuv)

∑
u∈δ−(v)

yuv − ∑
u∈δ+(v)

yvu = bv for v ∈V

yuv ≤ |br|xuv for (u,v) ∈ A

y ∈ R|A|
+ , x ∈ [0,1]|A|.

The linear programming relaxation of this model does not provide good bounds

because, when yuv > 0 for some arc (u,v), one typically has yuv ≪ |br|. Thus

xuv = yuv

|br |
≪ 1, which means that the fixed cost term quvxuv seriously underesti-

mates the correct fixed cost quv. One way to improve the formulation is to use a

multi-commodity reformulation.

Let T = {v ∈V \{r} : bv > 0} be the set of terminals, or commodities. We now

treat flow with destination t ∈ T as a distinct commodity and define the variable wt
uv

to be the flow in arc (u,v) with destination t ∈ T . The resulting reformulation is

min{qx+ cy : (x,y,w) ∈ Q, x ∈ Z|A|},

where Q is the polyhedron

∑
j

wt
jr −∑

j

wt
r j = −bt for t ∈ T

∑
j

wt
jv −∑

j

wt
v j = 0 for v ∈V \{r, t}, t ∈ T

∑
j

wt
jt −∑

j

wt
t j = bt for t ∈ T

wt
i j ≤ btxi j for (i, j) ∈ A, t ∈ T

yi j = ∑
t∈T

wt
i j for (i, j) ∈ A (13.57)

y ∈ R|A|
+ , w ∈ R|A|·|T |

+ , x ∈ [0,1]|A|.

Note that now the bound on the flow on the decision variable xi j is xi j >

maxt∈T

wt
i j

bt
. Again considering the linear programming relaxation, it is often the

case that wt
i j = bt for some commodity t, and this forces xi j = 1, so that in this case

the evaluation of the fixed cost for the arc (i, j) is exact.



13 Reformulation and Decomposition of Integer Programs 475

For the special case of the directed Steiner tree problem introduced in Sec-

tion 13.2.2, we noted that projection of the above formulation leads us to the re-

formulation min{qx : x ∈ P′, x ∈ Zn} where P′ is the polyhedron

{x ∈ [0,1]|A| : ∑
i∈U, j∈V\U

xi j ≥ 1, for U ⊆V with r ∈U, t ∈ T ∩ (V \U)}.

As P′ has an exponential number of constraints, one can use the max-flow/min-cut

theorem to provide a polynomial separation algorithm for the polyhedron P′. Note

that this is exactly the Benders’ separation problem. For this special case, the linear

programming relaxation has an optimal solution that solves the original problem in

certain cases, in particular when the network is Series Parallel, or when T = V \{r}

(minimum weight spanning tree) or |T | = 2 (shortest path).

More generally network design problems, in which the first stage variables are

the choice of open arcs (or the multiples of capacity installed) and the second stage

variables are the resulting flows, are often treated by Benders’ approach.

TSP and sub-tour polytope: a three-index flow reformulation

It is well known and follows directly from the last reformulation that the asym-

metric traveling salesman problem (AT SP) can be written as the integer program:

min ∑ci jxi j (13.58)

∑
j

xi j = 1 for i ∈V (13.59)

∑
i

xi j = 1 for j ∈V (13.60)

∑
i∈U

∑
j∈V\U

xi j ≥ 1 for U ⊂V with φ ⊂U (13.61)

x ∈ {0,1}|A|, (13.62)

where xi j = 1 if arc (i, j) lies on the tour. Let Z = {x ∈ Z|A| satisfying (13.61)

and (13.62)}. To model these connectivity constraints one can again use multi-

commodity flows to ensure that one unit can flow from some root node r ∈ V to

every other node. This leads to the extended formulation Q for conv(Z):

∑
j

wt
r j −∑

j

wt
jr = 1 for t ∈V \{r}

∑
j

wt
i j −∑

j

wt
ji = 0 for i ∈V \{r, t}, t ∈V \{r}

wt
i j ≤ xi j for (i, j) ∈ A, t ∈V \{r}

x ∈ [0,1]|A|, w ∈ [0,1]|A|(|V |−1)



476 François Vanderbeck and Laurence A. Wolsey

where wt
i j is the flow in (i, j) from node r to node t. Here Q is a tight and compact

extended formulation for Z.

For the symmetric traveling salesman problem on an undirected graph G =
(V,E), one can also make use of this reformulation by setting ye = xi j + x ji, and

adding wt
i j + wt ′

ji ≤ ye for all (i, j) ∈ E, t, t ′ ∈ T . Conversely it can be shown that

projection onto the edge variables y gives back the well-known sub-tour elimination

constraints ∑e∈E(S) ye 6 |S|−1, where E(S) = {e = (i, j) ∈ E : i, j ∈ S}.

Uncapacitated lot-sizing

The uncapacitated lot-sizing problem involves time periods t = 1, . . . ,n, demands

dt in period t, production costs pt , a set-up or fixed production cost qt and a unit

(end-of-period) storage cost ht .

Letting xt ,st be the production and end-stock in period t, and yt ∈ {0,1} indicate

if there is a set-up or not, a natural formulation as an MIP is given by:

min
n

∑
t=1

ptxt +
n

∑
t=0

htst +
n

∑
t=1

qtyt

st−1 + xt = dt + st for t = 1, . . . ,n (13.63)

xt ≤ Myt for t = 1, . . . ,n (13.64)

x ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0,1}n (13.65)

with feasible region XLS-U. We also use the notation dut ≡ ∑t
j=u d j

For this problem various polynomial algorithms are known, as well as a complete

description of the convex hull of solutions given by an exponential number of facet-

defining inequalities.

As this problem can be viewed as a special case of the fixed charge network

flow problem, it is easy to add an additional subscript to the production and stock

variables indicating the period t in which the units will be used to satisfy the demand.

Rescaling the resulting production variable, one can define new variables wut to

be the fraction of the demand in period t satisfied by production in period u. This

leads immediately to the following extended formulation QLS-U for XLS-U

t

∑
u=1

wut = 1 for t = 1, . . . ,n (13.66)

wut ≤ yu for 1 ≤ u ≤ t ≤ n with dut > 0 (13.67)

w ∈ R(n−1)n/2
+ , y ∈ [0,1]n (13.68)

xu =
n

∑
t=u

dtwut for u = 1, . . . ,n (13.69)

st = ∑
u≤t

∑
t<ℓ

dℓwuℓ for t = 1, . . . ,n. (13.70)



13 Reformulation and Decomposition of Integer Programs 477

It can be shown that projx,s,y(Q) = conv(XLS-U). It follows that the linear program

min{px+hs+qy,(x,s,y,w) ∈ QLS-U}

has an optimal solution that solves the lot-sizing problem. Note that this formu-

lation can also be obtained from the complete multi-commodity reformulation by

elimination of the multi-commodity stock variables.

13.5.3 Variable splitting II

Here we present other reformulations obtained by variable splitting. Given an

integer variable x with 0 6 x 6 C, it is possible to model it with binary variables,

either with a so-called unary expansion:

x =
C

∑
q=0

qzq,
C

∑
q=0

zq = 1,z ∈ {0,1}C+1,

or with a binary expansion

x =
P

∑
p=0

2pwp 6 C, w ∈ {0,1}P+1,

where P = log2⌊C⌋.

Time-indexed formulation

Machine scheduling problems are traditionally modeled using variables repre-

senting the starting time (or completion time) of the jobs. However, when using

these variables, sequencing constraints (enforcing that a machine can only process

one job at a time) are not easily modeled as linear mixed integer programs. Con-

sider a single machine scheduling problem, in which there are n jobs with process-

ing times p j, release dates r j and deadlines d j for job j. Let the variable y j ∈ R1
+

represent the start-time of job j, with r j 6 y j 6 d j − p j for all j. These variables

must satisfy the disjunctive constraints

y j > yi + pi, or yi > y j + p j for i 6= j

which are often modeled in mixed integer programming by the introduction of so-

called big M constraints of the form y j > yi + pi−M(1−δi j), where the 0-1 variable

δi j = 1 if job i precedes j.

Time-indexed variables, based on the unary decomposition of the y variables, al-

low one to build a linear IP-reformulation avoiding the big M constraints. Assuming



478 François Vanderbeck and Laurence A. Wolsey

integer processing times p j, one can discretize the time horizon into T periods. One

can then introduce new variables w
j
t where w

j
t = 1 if job j starts at the beginning of

the interval [t −1, t], and w
j
t = 0 otherwise. Then one obtains the IP-reformulation

T

∑
t=1

w
j
t = 1 for j = 1, . . . ,n

n

∑
j=1

t

∑
u=t−p j+1

w j
u 6 1 for t = 1, . . . ,T − p j +1, j = 1, . . . ,n

w
j
t ∈ {0,1} for t = r j, . . . ,d j − p j +1, j = 1, . . . ,n

where the first constraint ensures that each job j is started once, the second that at

most one job is on the machine in each period, the range of definition of the variables

handles the release and due dates, and the original variables are obtained by setting

y j = ∑t(t −1)w j
t .

Many different objective functions and constraints, such as precedence con-

straints, are easily handled using such time-indexed variables. Though pseudo-

polynomial in size, the linear programming relaxation of this extended IP-formu-

lation typically provides a much stronger bound than that of a big-M formulation in

the (y,δ ) variables.

Capacity-indexed variables

In capacitated vehicle routing problems with integral demands di and a vehicle

capacity C, it has been proposed to apply variable splitting to the arc indicator vari-

ables. Specifically if xa = 1 indicates that an arc a forms part of a vehicle route,

wa
q = 1 indicates that a = (i, j) forms part of the route and the total load of the vehi-

cle while traversing arc a is q. Now as a quantity di is delivered to client i, one must

have

∑
a∈δ−(i)

wa
q = ∑

a∈δ+(i)

wa
q−di

for di 6 q 6 C

and flow conservation becomes:

C

∑
q=0

∑
a∈δ−(i)

qwa
q −

C

∑
q=0

∑
a∈δ+(i)

qwa
q = di for i ∈V.

Summing over S ⊂ V and defining aggregate variables y−q (S) = ∑a∈δ−(S) wa
q and

y+
q (S) = ∑a∈δ+(S) wa

q, one obtains integer knapsack sets

C

∑
q=0

qy−q (S)−
C

∑
q=0

qy+
q (S) = ∑

i∈S

di, y−q (S), y+
q (S) ∈ ZC+1

+



13 Reformulation and Decomposition of Integer Programs 479

for which a variety of cutting planes can be generated. Here xa = ∑q wa
q provides the

link to the original arc variables.

Fractionality-indexed variables and network dual MIPs

A network dual set is a mixed integer set in which all the constraints have two

non-zero entries of +1 and −1 respectively. Thus we consider the set

XND = {x ∈ Rn : xi − x j > bi j for i, j ∈ N, xi ∈ Z1 for i ∈ I ⊂ N}

where N = {1, . . . ,n}. Such sets have been studied recently motivated by research

on lot-sizing problems.

For the presentation here, we assume that each right-hand side value bi j is a

multiple of 1
K

, so we can write bi j = ⌊bi j⌋+
hi j

K
with hi j ∈Z1

+ and hi j ∈ {0,1, . . . ,K−

1}. As a consequence of this assumption, one can assume that Kxi ∈ Z1 for all i.

Following the idea of a unary expansion, we can write

Kxi = K⌊xi⌋+
K−1

∑
h=0

hzh,
K−1

∑
h=0

zh = 1, z ∈ ZK
+.

This in turn can be rewritten as

Kxi = ⌊xi⌋+(⌊xi⌋+ zK−1)+(⌊xi⌋+ zK−2 + zK−1)+ · · ·+(⌊xi⌋+ z1 + · · ·+ zK−1)

=
K−1

∑
h=0

(⌊xi⌋+
K−1

∑
j=K−h

z j)

=
K−1

∑
h=0

wh
i

where wh
i = ⌊xi⌋ if xi −⌊xi⌋ < K−h

K
and wh

i = ⌈xi⌉ if xi −⌊xi⌋ > K−h
K

.

With these variables, one obtains the extended formulation

xi =
1

K

K−1

∑
h=0

wh
i i ∈ N (13.71)

wt
i −w

f (t)
j > ⌊bi j⌋ for t = 0, . . . ,K −hi j −1, i, j ∈ N (13.72)

wt
i −w

f (t)
j > ⌊bi j⌋+1 for t = K −hi j, . . . ,K −1, i, j ∈ N (13.73)

xi = wh
i for h = 0, . . . ,K −1, i ∈ I, (13.74)

where f (t) = t + hi j (mod K). For the integer variables xi with i ∈ I, one can use

(13.74) to eliminate the corresponding w variables. The important observation is that

this reformulation again has network dual structure, but with an integer right hand



480 François Vanderbeck and Laurence A. Wolsey

side. Thus the corresponding matrix is totally unimodular and the extremal solutions

are integer. So it provides a tight and compact extended formulation for XND.

We now indicate briefly how network dual sets arise in lot-sizing problems.

Example 11 Consider the set

sk−1 +
t

∑
u=k

Cyu + rt >
t

∑
u=k

du for 1 6 k 6 t 6 n (13.75)

s ∈ Rn+1
+ ,r ∈ Rn

+,y ∈ [0,1]n, (13.76)

known as the constant capacity Wagner-Whitin relaxation with backlogging, where

st ,yt are the same stock and set-up variables introduced earlier for the lot-sizing

problem, and rt represents the backlog/shortage at the end of period t.

Introducing new variables: zt = ∑t
u=1 yu, σk−1 = −(sk−1 −Czk−1 + ∑k−1

u=1 du)/C

and ρt = (rt +Czt −∑t
u=1 du)/C, constraint (13.75) after division by C can be writ-

ten as ρt −σt−1 > 0, 1
C

sk−1 > 0 becomes zk−1 −σk−1 > (∑k−1
u=1 du)/C, 1

C
rt > 0 be-

comes ρt − zt > −(∑t
u=1 du)/C, and 0 6 yt 6 1 becomes 0 6 zt − zt−1 6 1.

Thus one obtains the reformulation:

ρt −σk−1 > 0 for 1 6 k 6 t 6 n

zk−1 −σk−1 >

(k−1

∑
u=1

du

)
/C for k = 1, . . . ,n

ρt − zt > −
( t

∑
u=1

du

)
/C for t = 1, . . . ,n

−zt + zt−1 > −1 for t = 1, . . . ,n

zt − zt−1 > 0 for t = 1, . . . ,n

ρ,σ ∈ Rn,z ∈ Zn,

which is precisely a network dual MIP.

More generally when the bt take arbitrary values, the extended formulation

(13.71)–(13.74) can always be reduced to a size that is polynomial in F , the number

of distinct fractional values taken by the continuous variables in the extreme point

solutions. For the lot-sizing set (13.75)–(13.76), F is Θ(n2), corresponding to the

values 0 and ∑t
u=k du/C (mod 1), so that the extended formulation is both tight and

compact.

13.5.4 Reformulations based on dynamic programming

In many cases, solving a problem by dynamic programming can be interpreted as

transforming it to a shortest or longest path problem (in an appropriate network of

possibly very large size). It is then natural to look for a reformulation as a network



13 Reformulation and Decomposition of Integer Programs 481

flow problem. More generally, a dynamic programming recursion can often be writ-

ten as a linear program, and the dual of this linear program provides an extended

formulation in which the variables indicate which terms are tight in the dynamic

programming recursion. We demonstrate this with two examples, the first of which

illustrates the simple case in which the dynamic program corresponds to a longest

path algorithm.

The integer knapsack problem

Consider the integer knapsack problem:

z = max{
n

∑
j=1

c jx j :
n

∑
j=1

a jx j = b,x ∈ Zn
+}

with {a j}
n
j=1, b positive integers. (The standard inequality knapsack problem is ob-

tained by taking an = 1 and cn = 0). It is well-known that the dynamic programming

recursion:

G(t) = max
j=1,...,n:t−a j>0

{c j +G(t −a j)}

with G(0) = 0, can be used to find z = G(b) and then the corresponding optimal

solution. One can convert the recursion into a linear program in which the values

G(t) for t = 0, . . . ,b are the variables:

min G(b)

G(t)−G(t −a j) > c j for t = a j, . . . ,b, j = 1, . . . ,n

G(0) = 0.

Defining dual variables w j,t−a j
for all t, j with t − a j > 0, the linear programming

dual is

max
n

∑
j=1

b−a j

∑
t=0

c jw jt

∑
j

w jt = +1 for t = 0

−∑
j

w j,t−a j
+∑

j

w jt = 0 for t = 1, . . . ,b−1 (13.77)

−∑
j

w j,t−a j
= −1 for t = b

w jt > 0 for t = 0,1, . . . ,b−a j, j = 1, . . . ,n.

The resulting problem can be viewed as a longest path problem in a network D =
(V,A) with nodes V = {0,1, . . . ,b} and arcs (t, t +a j)∈A for all t ∈{0,1, . . . ,b−a j}



482 François Vanderbeck and Laurence A. Wolsey

with weight c j for all j. Any path from 0 to b corresponds to a feasible solution of

the knapsack problem. Adding the equations x j = ∑
b−a j

t=0 w jt that count the num-

ber of times j-type arcs are used, one has that the polyhedron is a tight extended

formulation for Z = {x ∈ Zn
+ : ∑n

j=1 a jx j = b}.

An instance of the network corresponding to this extended formulation is shown

in Figure 13.5.4.

0 1 2 3 4 5 6 7

5 5 5 5 5 5

7 7 7 7 7 7

0 0 0 0 0 0 0

Fig. 13.6 Knapsack Longest Path: a = (2,3,1),b = 7,c = (5,7,0)

For this instance, the optimal linear programming solution x1 = 7
2 ,x2 = x3 = 0

is not integral and provides an upper bound on z of 17.5. The linear programming

relaxation of the extended formulation has an optimal solution w1
0 = w1

2 = w2
4 = 1,

w
j
t = 0 otherwise, giving the optimal solution x1 = 2,x2 = 1 of value 17.

Optimal cardinality constrained subtrees of a tree

The second example involves a somewhat different dynamic program. One is

given a rooted directed tree T = (V,A) with node weights c ∈ R|V |. Node 1 is the

root. The problem is to find an optimal rooted subtree with 1 as the root containing

at most K nodes. A natural IP formulation is given by

max

{
∑
v∈V

cvxv : xp(v) > xv for v ∈V, ∑
v∈V

xv 6 K,x ∈ {0,1}|V |

}
,

where xv = 1 if v forms part of the subtree, p(v) is the predecessor of v on the path

from v to the root and xp(1) = 1 by definition. For simplicity, we suppose that it

is a binary tree and the left and right sons of node v are the nodes 2v and 2v + 1

respectively.

Let H(v,k) denote the maximum weight subtree with at most k nodes rooted at v.

The dynamic programming recursion is:

H(v,k) = max{H(v,k−1),cv + max
t=0,...,k−1

[H(2v, t)+H(2v+1,k−1− t)]},

where the first term in the maximization can be dropped for v 6= 1. Replacing the

max by appropriate inequalities and taking the optimal value H(1,K) as the objec-

tive function leads to the linear program:



13 Reformulation and Decomposition of Integer Programs 483

min H(1,K)

H(1,k)−H(1,k−1) > 0 for k = 1, . . . ,K

H(v,k)−H(2v, t)−H(2v+1,k−1− t) > cv for v ∈V, 0 6 t < k 6 K

H(v,k) > 0 for v ∈V, k = 0, . . . ,K.

Taking y1,k and wv,k,t,k−1−t as dual variables, we obtain

max ∑
v∈V

cv

K

∑
k=1

k−1

∑
t=0

wv,k,t,k−1−t

∑
t

w1,K,t,K−1−t + y1,K 6 1

∑
t

w1,k,t,K−1−t + y1,k − y1,k+1 6 1 for k = 1, . . . ,K −1

k−1

∑
t=0

wv,k,t,k−1−t − ∑
κ>k

wp(v),κ,k,κ−1−k 6 0 for v > 1 even, k = 1, . . . ,K

k−1

∑
t=0

wv,k,t,k−1−t − ∑
κ>k

wp(v),κ,κ−1−k,k 6 0 for v > 1 odd, k = 1, . . . ,K

w,y > 0.

where p(v) = ⌊ k
2⌋. Here wv,k,t,k−1−t = 1 means that the optimal tree contains a sub-

tree rooted at v containing k nodes with t (resp k−1−t) nodes in the subtrees rooted

in its left (resp. right) successors, and y1k = 1 indicates that H(1,k) = H(1,k− 1).
Setting xv = ∑K

k=1 ∑k−1
t=0 wv,k,t,k−1−t allows us to complete the extended formulation.

13.5.5 The union of polyhedra

One of the very basic polyhedral results of relevance to integer programming

concerns the union of polyhedra. Assume P = conv(P1 ∪·· ·∪PK) where Pk = {x ∈

Rn : Akx ≤ bk} and Ck = {x ∈ Rn : Akx ≤ 0} is the recession cone of Pk for all k.

Theorem 13.5 (Balas). If Pk 6= φ and C = Ck for k = 1, . . . ,K, then

conv(∪K
k=1Pk) = projx{(x,w,δ ) ∈ Rn ×RnK ×RK

+ : x = ∑K
k=1 wk,

Akwk ≤ bkδ k for k = 1, . . . ,K, ∑K
k=1 δ k = 1}.

Disjunctions arise frequently in integer programming. Given a 0-1 set X = P∩Zn

where P = {x ∈ Rn : Ax ≤ b, 0 6 x 6 1} it is natural to select some variable j and

consider the disjunction

P = P0
j ∪P1

j where Pi
j = {x ∈ P : x j = i} for i = 0,1.



484 François Vanderbeck and Laurence A. Wolsey

One use of extended formulations is to give tightened formulations that are then

projected back into the original space. One example using the above disjunction is

the lift-and-project approach presented in Chapter 11. Here we consider situations

in which a problem becomes easy when the value of one variable is fixed. Then, if

one can describe the convex hull of solutions when this variable is fixed, an extended

formulation is obtained for the original set by taking the convex hull of the union of

the convex hulls.

1− k configurations

A 1− k configuration is a special 0-1 knapsack set of the form

Y =
{
(x0,x) ∈ {0,1}n+1 : kx0 +

n

∑
j=1

x j 6 n
}
.

To describe its convex hull O(nk) valid inequalities are needed. Now observe that

Y = Y 0 ∪Y 1 where Y 0 = {x ∈ {0,1}n+1 : x0 = 0} and Y 1 = {x ∈ {0,1}n+1 : x0 =
1,∑n

j=1 x j 6 n− k}. To obtain the convex hulls of Y 0 and Y 1, it suffices to drop

the integrality constraints in their initial descriptions. Theorem 13.5 then gives the

extended formulation Q:

x j = x j0 + x j1 for j = 0, . . . ,n

x00 = 0, 0 6 x j0 6 δ0 for j = 1, . . . ,n

x01 = δ1, 0 6 x j1 6 δ1 for j = 1, . . . ,n
n

∑
j=1

x j1 6 (n− k)δ1

δ0 +δ1 = 1, δ ∈ R2
+.

After renaming x j1 as w j, and replacing δ1 by x0 and x j0 by x j −w j for j = 1, . . . ,n,

the resulting tight extended formulation is:

0 6 x j −w j 6 1− x0 for j = 1, . . . ,n

0 6 w j 6 x0 for j = 1, . . . ,n
n

∑
j=1

w j 6 (n− k)x0

x ∈ [0,1]n+1, w ∈ [0,1]n.



13 Reformulation and Decomposition of Integer Programs 485

Circular ones matrices

Consider the set X = {x ∈ {0,1}n : Ax 6 b} where A is a circular ones matrix,

i.e, each row is either of the form

0 0 0 1 1 1 1 0 0

with 0’s followed by 1’s followed by 0’s, or of the form

1 1 0 0 1 1 1 1 1

with 1’s followed by 0’s followed by 1’s.

Let Pk = {x ∈ [0,1]n : Ax 6 b,∑n
j=1 x j = k} for k = 0, . . . ,n. Observe first that

subtracting a row of the second type from a row of all 1’s gives a row of the first

type. Secondly a 0-1 matrix with only rows of the first type is known as a consecutive

1’s matrix, and is known to be totally unimodular. It follows that Pk = conv(Pk∩Zn)
and

conv(X) = conv(∪n
k=0Pk),

so a tight extended formulation is obtained immediately from Theorem 13.5.

13.5.6 From polyhedra and separation to extended formulations

Given the set X ⊆ Zn, suppose that a family of valid inequalities for X is known.

This family explicitly or implicitly describes a polyhedron P containing the feasible

region X . A first possibility is that the inequalities directly suggest an extended

formulation.

Uncapacitated lot-sizing

Let XLS-U be as described in (13.63)–(13.65). It has been shown that every non-

trivial facet-defining inequality for conv(XLS-U) is of the form

∑
j∈S

x j + ∑
j∈L\S

d jly j > d1l (13.78)

where L = {1, . . . , l}, S ⊆ L, l = 1, . . . ,n and dut ≡ ∑t
j=u d j.

Let µ jl = min{x j,d jly j} for 1 6 j 6 l 6 n. One sees that (13.78) is satisfied for

all S if and only if ∑l
j=1 min{x j,d jly j}> d1l . It follows immediately that a tight and

compact extended formulation is given by the polyhedron consisting of the original

constraints (13.63)–(13.65) less the integrality constraints, plus the constraints

l

∑
j=1

µ jl > d1l for l = 1, . . . ,n

µ jl 6 x j for 1 ≤ j ≤ l ≤ n

µ jl 6 d jly j for 1 ≤ j ≤ l ≤ n.



486 François Vanderbeck and Laurence A. Wolsey

A second possibility is that the separation problem for P can be formulated as an

optimization problem that can be reduced to a linear program. Specifically suppose

that P = {x ∈ Rn : π tx > π t
0, t = 1, . . . ,T}. Now x∗ ∈ P if and only if ζ > 0 where

ζ = mint=1,...,T (π tx∗ − π t
0). Suppose now that the latter can be reformulated as a

linear program:

ζ = min
w

{gx∗ +hw−d0 : Gx∗ +Hw > d,w ∈ Rp
+}.

By LP duality, ζ > 0 if and only if there exists a dual feasible solution with a non-

negative value, namely

{u ∈ Rp : ud −uGx∗ > d0 −gx∗,uH 6 h,u ∈ Rm
+} 6= /0.

Finally letting x vary, this gives us an extended formulation

Q = {(x,u) ∈ Rn ×Rp : ud −uGx > d0 −gx,uH 6 h,u ∈ Rm
+}

for which P = projx(Q).

Subtour elimination constraints

Consider the relaxation of the set of forests or symmetric traveling salesman tours

consisting of the set Y defined by the exponential family of subtour elimination

constraints. Specially set Z = ∩K
k=1Zk where Zk = Pk

Z ∩Z|E| and

Pk
Z =

{
x ∈ [0,1]|E| : ∑

e∈E(S)

xe 6 |S|−1 for S ⊆V with k ∈ S
}
.

Now consider the separation problem for x∗ ∈ [0,1]|E|. One sees that x∗ ∈ Pk
Z if and

only if

max
S:k∈S⊆V

{
∑

e∈E(S)

x∗e −|S\{k}|
}

6 0.

Letting v j = 1 if j ∈ S and ue = 1 if e = (i, j) ∈ E(S), this optimization problem

can be formulated as the IP

ζ = max ∑
e∈E

x∗eue − ∑
j∈V\{k}

v j (13.79)

ue 6 vi,ue 6 v j for e = (i, j) ∈ E (13.80)

ue > vi + v j −1 for e = (i, j) ∈ E (13.81)

u ∈ {0,1}|E|, v ∈ {0,1}|V |, vk = 1. (13.82)

It can then easily be shown that the constraints (13.81) can be dropped, and in addi-

tion that the integrality and bounds can be relaxed. It follows that ζ 6 0 if and only

if η 6 0 where



13 Reformulation and Decomposition of Integer Programs 487

η = max ∑
e∈E

x∗eue − ∑
j∈V\{k}

v j

ue 6 vi,ue 6 v j for e = (i, j) ∈ E

u ∈ R|E|, v ∈ R|V |
+ .

In this last linear program, either η = 0 or it is unbounded, so the dual of this linear

program is feasible if and only if η 6 0. In other words x∗ ∈ [0,1]|E| is in Pk
Z if and

only if Qk(x∗) 6= /0, where Qk(x) is the polyhedron

wi jk +w jik = xe for e = (i, j) ∈ E

∑
j: j<i

w jik + ∑
j: j>i

wi jk 6 1 for i 6= k

∑
j: j<i

w jik + ∑
j: j>i

wi jk 6 0 for i = k

x ∈ R|E|,wi jk, w jik > 0 for e = (i, j) ∈ E.

13.5.7 Miscellaneous reformulations

There are several other reasons that might lead one to try an alterative formula-

tion. An important one, already discussed in Section 13.3, is the problem of symme-

try. A second is to find good branching directions for use in the context of branch-

and-bound and branch-and-cut, and a third as before is to derive stronger linear

programming bounds.

Symmetry-breaking in vertex coloring

Given a graph G = (V,E) with |V |= n and |E|= m, the textbook formulation for

vertex coloring is based on the variables:

yk = 1 if color k is used

xik = 1 if vertex i receives color k, where k = 1, . . . ,K are the permissible colors.

This leads to the formulation:

min ∑
k

yk

∑
k

xik = 1 for i ∈V

xik + x jk 6 yk for (i, j) ∈ E, k = 1, . . . ,K

xik 6 yk for i ∈V, k = 1, . . . ,K

x ∈ {0,1}|V |×K , y ∈ {0,1}K .



488 François Vanderbeck and Laurence A. Wolsey

Clearly given any coloring, any permutation of the colors leads to essentially the

same solution independently of the structure of the graph. To avoid this symmetry

and also to tighten the formulation, it suffices to observe that, given any feasible

coloring, each stable set can be assigned the color of its node of minimum index.

Hence one can eliminate all variables xik with k > i, and also eliminate yk by set-

ting yk = xkk. Note that a similar approach applies for the bin packing problem of

Example 5.

Boolean reformulation: 0-1 knapsack

Given two 0-1 knapsack sets of the form

X i =
{

x ∈ {0,1}n :
n

∑
j=1

ai
jx j 6 ai

0

}
for i = 1,2

with {ai
j} positive integers, it is natural to ask when X1 = X2, or the two sets are

equal. In particular one might be interested in finding the set of integer coefficients

for which the right-hand side value ai
0 or the sum of the weights ∑n

j=1 ai
j is minimum.

It also seems likely that the corresponding formulation PX i is typically tighter when

the coefficients are smaller.

Example 12 Consider the knapsack set

X = P1 ∩Zn where P1 = {x ∈ [0,1]5 : 97x1 +65x2 +47x3 +46x4 +25x5 6 136}.

It can be verified that X can also be expressed as

X = P2 ∩Zn where P2 = {x ∈ [0,1]5 : 5x1 +3x2 +3x3 +2x4 +1x5 6 6}

and this is the reformulation with integer coefficients with the minimum possible

right hand-side value.

In addition it is easy to check that the extreme points of P2 all lie in P1 and thus

P2 ⊂ P1.

Improved branching variables for an equality integer program

Consider the set

X = {x ∈ Zn
+ : Ax = b}

with A ∈ Zm×n and b ∈ Zm. “Integer programming in a fixed number of variables is

polynomially solvable” is one of the most fundamental results in integer program-

ming. Lattice reformulations and the calculation of a reduced basis of a lattice play

an important role in the proof of this result. Here we indicate briefly how a lattice

reformulation can be used as a heuristic to look for effective branching variables.

See the references cited in Section 13.7 for the appropriate lattice definitions.



13 Reformulation and Decomposition of Integer Programs 489

Suppose that x0 ∈ Zn with Ax0 = b, then X can be rewritten as X = {x ∈ Zn
+ : x =

y + x0,Ay = 0}. Now given a matrix T ∈ Zn×(n−m) such that {y ∈ Zn : Ay = 0} =
{y ∈ Zn : y = Tw,w ∈ Zn−m}, then X = projx(W ) where

W = {(x,w) ∈ Rn
+ ×Zn−m : x = x0 +Tw}.

Here the extended IP-formulation does not provide tighter bounds. However it is

possible to find an appropriate matrix T in polynomial time using a “reduced basis”

algorithm, and for certain instances the new integer variables w are much more

effective variables for branching than the original variables x.

Example 13 Consider the set X = {x ∈ Z5
+ : ax = b} where

a = (11737,7263,9086,32560,20823), b = 639253.

This has the extended formulation




x1

x2

x3

x4

x5




=




28

51

−40

17

−12




+




−1 −1 7 239

0 0 −11 616

−1 0 −10 −445

0 1 4 33

1 −1 −2 −207




w, x ∈ R5
+, w ∈ Z4.

Here branching on w4, it is easily verified that X = /0, whereas this is very hard

to detect when branching on the x variables. In fact that the best MIP solvers all

require millions of nodes to prove infeasibility for this tiny instance when using the

original formulation.

13.5.8 Existence of polynomial size extended formulations

Yannakakis has shown that for the perfect matching polytope there is no extended

formulation that is “symmetric” in a very general sense. This includes formulations

in which one chooses a root, such as the extended formulation for the subtour poly-

tope in Subsection 13.5.2. Thus it appears very unlikely that every family of IPs:

min{cx : x ∈ X} that is polynomially solvable has a polynomial size extended for-

mulation whose projection in the original variables provides conv(X). It remains a

major challenge to discover necessary and/or sufficient conditions for the existence

of polynomial size extended formulations for such problems.

On the other hand it has very recently been shown that for the 0-1 knapsack

problem z = min{cx : ax > b,x∈ {0,1}n}, given any ε > 0, there exists a polynomial

size extended formulation based on disjunctions for which the value zLP of the linear

programming relaxation is such that z 6 (1+ ε)zLP.



490 François Vanderbeck and Laurence A. Wolsey

13.6 Hybrid algorithms and stronger dual bounds

Here we consider ways to obtain stronger dual bounds for the problem z =
min{cx : x ∈ Y ∩Z} by using properties of both the sets Y and Z. Thus we assume

as before that optimizing over Z is relatively easy, and now we assume also that we

can either optimize over Y relatively easily, or that we have a cut generation routine

for Y or some polyhedron PY containing conv(Y ).

13.6.1 Lagrangean decomposition or price-and-price

Here we assume that we can optimize efficiently over the set Z and also over the

set Y . We reformulate IP by duplicating the x variables giving the new formulation:

mincy

y− z = 0

y ∈ Y

z ∈ Z.

Applying Lagrangean relaxation, the subproblem with dual variables u ∈ Rn gives

two subproblems min{(c−u)y : y ∈ Y} and min{uz : z ∈ Z}, and by Theorem 13.4

the value of the resulting Lagrangean dual is min{cx : x ∈ conv(Y )∩conv(Z)}. This

model can be solved either by dual methods such as a basic subgradient approach,

or by a column generation approach (called Price-and-Price in this context).

In the latter case, the restricted master problem at iteration t is constructed from

a set {yi}i∈It−1 of extreme points of conv(Y ) and a set {(z j)} j∈Jt−1 of extreme points

of conv(Z) giving the linear program:

(RMPP) min cx

x− ∑
i∈It−1

λiy
i = 0

∑
i∈It−1

λi = 1

x− ∑
j∈Jt−1

β jz
j = 0

∑
j∈Jt−1

β j = 1

λ ∈ RIt−1

+ , β ∈ RJt−1

+ ,

where the x variables can be easily eliminated. If (π,π0,µ ,µ0) are optimal dual

variables, one can solve the two pricing subproblems



13 Reformulation and Decomposition of Integer Programs 491

ζ 1 = min{πx−π0, x ∈ Y}

and

ζ 2 = min{µx−µ0,x ∈ Z}.

If ζ 1 < 0 or ζ 2 < 0, then the corresponding optimal solution provides a new column

to be added, and one updates RMPP. If ζ 1 = ζ 2 = 0, the algorithm terminates. In

practice, convergence (and dual instability) require an even more careful treatment

in price-and-price than in branch-and-price.

13.6.2 Cut-and-price

Here we assume that we can optimize efficiently over the set Z = {x ∈ Zn
+ : Bx >

b} and that there is a cut generation algorithm for Y = {x ∈ Zn
+ : Dx > d}, or more

realistically for some polyhedron PY containing conv(Y ).

The restricted master problem at iteration t.

This problem is constructed from a set {xi}i∈It−1 of extreme points of conv(Z) and

a set {(α j,α j
0)} j∈Jt−1 of valid inequalities for PY (or Y ), including the constraints

Dx > d, giving the linear program:

(RMCP) min cx

x− ∑
i∈It−1

λix
i = 0

∑
i∈It−1

λi = 1

∑
j∈Jt−1

α jx > α j
0 for j ∈ Jt−1

λ ∈ RIt−1

+ ,

Let (x,λ ) be a primal optimal solution and (π,π0,µ) ∈ Rn ×R1 ×R|Jt−1|
+ a dual

optimal solution. Here again, one can eliminate the x variables, observing that π =
c−∑ j∈Jt−1 µ t

jα
j from dual feasibility.

The order in which the two subproblems are solved below is arbitrary. We have

chosen to give priority to column generation.

The Optimization Subproblem – Adding Columns.

Solve ζ t = min{πx−π0 : x ∈ Z} with solution xt .

If ζ t < 0, the column corresponding to xt has negative reduced cost. Set It = It−1 ∪

{t}, set t ← t +1, and reoptimize RMCP.

Otherwise go to the (Constraint) Separation Subproblem.



492 François Vanderbeck and Laurence A. Wolsey

The Separation Subproblem – Adding Constraints.

Solve the separation problem to see if the point x = ∑i∈It−1
λix

i can be cut off.

If a cut (α t ,α t
0) is generated, set Jt = Jt−1∪{t}, set t ← t +1, and reoptimize RMCP.

Otherwise stop.

On termination x = ∑i∈It−1 λix
i ∈ PY ∩ conv(Z). If the separation routine is exact

for conv(Y ), the optimal value on termination is min{cx : x ∈ conv(Y )∩ conv(Z)}
as with the other hybrid approaches.

Example 14 (The Vehicle Routing Problem)

Given a fleet of K identical vehicles of capacity C, and clients with demands di for

i = 1, . . . ,n, the problem is to determine a delivery route for each vehicle starting

and ending at the depot, so that the demand of each client is satisfied by exactly one

vehicle, the total amount delivered by a vehicle does not exceed its capacity and the

total travel costs are minimized. Consider a complete graph H = (V,E), where the

nodes V = {0, . . . ,n + 1} correspond to departure from the depot (node 0), the n

customers and arrival at the depot (node n+1). The travel cost on edge e is ce.

One possibility is to formulate the problem with K distinct vehicles based on the

variables xk
e such that xk

e = 1 if edge e is traversed by vehicle k. However as the

vehicles are identical, one can attempt to build a formulation using the variables xe

specifying the number of vehicles traversing edge e. Note that xe ∈ {0,1} for all e.

This leads to a standard formulation

min ∑
e∈E

ce xe (13.83)

∑
e∈δ (i)

xe = 2 for i ∈V \{0,n+1} (13.84)

∑
e∈δ (i)

xe = K for i ∈ {0,n+1} (13.85)

∑
e∈δ (S)

xe > 2 B(S) for S ⊆V \{0,n+1} (13.86)

x ∈ {0,1}|E|, (13.87)

where B(S) denotes the minimum number of vehicles required to visit the set S of

clients. The value of B(S) is in fact the solution of a bin-packing problem, but a valid

formulation is obtained if one ensures that the number of vehicles traveling through

S is sufficient to satisfy the sum of the demands, i.e., ∑e∈δ (S) xe > 2 (∑i∈S di)/C.

On the other hand the price decomposition approach leads to an extended for-

mulation in which one must select K feasible routes in such a way that each client

is visited exactly once, leading to the master problem

min {∑
g∈G

(∑
e

cexg
e)λg : ∑

g∈G

( ∑
e∈δ (i)

xg
e)λg = 2 for i ∈V \{0,n+1}, (13.88)

∑
g∈G

λg = K, λ ∈ {0,1}|G|}



13 Reformulation and Decomposition of Integer Programs 493

where Z = {xg}g∈G is the set of edge incidence vectors of feasible routes.

Unfortunately optimizing over this set Z is a hard problem that is not tractable

in practice. This suggests using a relaxation of the set Z in which feasible routes are

replaced by “q-routes”, where a q-route is a walk beginning at node 0 and ending at

node n+1 (possibly visiting some client nodes more than once) for which the sum of

the demands at the nodes visited does not exceed the capacity. It is easily seen that

if the union of K q-routes satisfies the degree constraints (13.84)–(13.85), then one

has K feasible routes. However, in the LP relaxation of (13.88), inequalities (13.86)

are useful cuts. Thus, a hybrid cut-and-price approach can be implemented where

the master is

min ∑
e∈E

ce xe

x satisfies (13.84)(13.86)

xe = ∑
p∈P

qp
e λp for e ∈ E

∑
p∈P

λp = K,

x ∈ R|E|, λ ∈ {0,1}P

in a form ready to be tackled by a cut-and-price algorithm. The degree constraints

are kept throughout, the constraints (13.86) are generated by cutting planes, and the

q-routes are generated by column generation. Branching is dealt with by branching

on the original xe variables.

In practice one may choose to eliminate the original xe variables by substitution,

the cut generation problem is tackled using a heuristic because the calculation of the

exact bin-packing value B(S) is hard. Cuts of the form (13.86) can be generated by

identifying small sets S that require more than one vehicle, or else inequalities are

generated in which B(S) is replaced by a lower bound (∑i∈S di)/C or ⌈(∑i∈S di)/C⌉.

The separation problem for the inequalities with right hand side (∑i∈S di)/C is solv-

able by maximum flow algorithms. For the column generation problem, a dynamic

programming algorithm is used to find q-routes of minimum reduced cost.

13.7 Notes

Here we present notes providing some basic historical references, some refer-

ences for results or applications mentioned in the chapter, and a few recent refer-

ences concerning interesting extensions or examples of the ideas presented in the

different sections.



494 François Vanderbeck and Laurence A. Wolsey

13.7.1 Polyhedra

The result (Theorem 13.1) that every polyhedron is finitely generated by extreme

points and extreme rays is due to Minkowski [73] and its converse, Theorem 13.3, to

Weyl [95]. Meyer [72] showed that for integer programs and mixed integer programs

with rational data the convex hull of solutions is a polyhedron. Theorem 13.2 on the

representation of integer sets is proved in Giles and Pulleyblank [47]. For Farkas’

lemma, see [36], and the earlier work of Fourier [40, 41].

13.7.2 Dantzig-Wolfe and price decomposition

The first use of an optimization subproblem to price out an exponential num-

ber of non-basic variables can be found in a paper of Ford and Fulkerson [39] on

multi-commodity flows. Specifically they used a path-flow formulation, and then

using the LP dual variables on the arcs, they solved shortest path problems for each

commodity to find a path with negative reduced cost to enter the basis. This was

closely followed by the Dantzig-Wolfe decomposition algorithm [22]. The first ap-

plications to discrete problems were the two papers on the cutting stock problem of

Gilmore and Gomory [48, 49], introduced in Example 7, in which the subproblem

was a knapsack problem. Eisenbrand and Shmonin [30] have recently shown that an

optimal solution of the cutting stock problem is of polynomial size. Another early

application was the model of Dzielinski and Gomory [28] on multi-item lot-sizing

in which the subproblem was a single item lot-sizing problem.

Lagrangean relaxation

Early work showing the effectiveness of Lagrange multipliers in optimization

can be found in Everett [35]. The first demonstration of the effectiveness of La-

grangean relaxation were the seminal papers of Held and Karp [54, 55] on the

symmetric traveling salesman problem, based on the 1-tree relaxation that can be

solved by a greedy algorithm. The survey of Geoffrion [45] clarified the properties

of Lagrangean relaxation as applied to integer programs, including the integrality

property, and Fisher [38] was one of several researchers to popularize the approach.

See also Lemaréchal [65]

Later dual heuristics, or approximate algorithms for the Lagrangean dual, were

proposed by numerous authors, including Bilde and Krarup [12] and Erlenkot-

ter [33] for uncapacitated facility location, Wong [97] for directed Steiner trees

and Balakrishnan, Magnanti and Wong [2] for multicommodity uncapacitated fixed

charge network flows.



13 Reformulation and Decomposition of Integer Programs 495

Solving the Lagrangean dual

The subgradient algorithm was proposed in Uzawa [86], Ermolev [34] and

Polyak [78]. For early applications to integer programming, see Held and Karp

[54, 55] and Held et al. [56]. Its variant, the volume algorithm, is due to Barahona

and Anbil [5]. The cutting plane algorithm applied to the LP form of the Lagrangean

dual is known as the method of Kelley [60] or Cheney-Goldstein [18]. It is the equiv-

alent of the column generation approach but carried out in the dual space. The piece-

wise linear stabilization of column generation is studied in du Merle et al. [27] and

Ben Amor et al. [8]. Stabilization based on smoothing dual prices was introduced

by Neame [74] (using a convex combination of the current master dual solution and

that of the previous iterate) and Wenges [94] (using a convex combination of the

current dual solution and the dual solution that yielded the best Lagrangean bound).

Recently Pessoa et al [76] have proved that at each iteration either the column gen-

erated with the smoothed prices has a strictly negative reduced cost for the restricted

master, or one gets a strictly improving dual bound and a new associated stability

center. Rousseau et al. [82] consider interior point stabilization.

The Bundle method, in which a quadratic term is introduced in the restricted

master dual problem to penalize the deviation from a stability center, was developed

by Lemaréchal [63], see also [64, 61]. There has been a large amount of research

on such methods in the last few years. In many cases, and particular for very large

problems in which the column generation approach is much too slow, the proximal

bundle method has been effective. See Borndorfer et al. [13, 14] for applications to

vehicle and duty scheduling in public transport and airline crew scheduling. Bun-

dle’s numerical performance is compared to LP based column generation in [16],

and many references can be found in the thesis of Weider [93].

The analytic center cutting plane method (ACCPM) is due to Goffin and Vial [50].

Branching and column generation

For some of the first successful applications of integer programming column gen-

eration to routing problems, see Desrochers, Soumis et al. [26, 24] and Desrochers

and Soumis [25]. See Soumis [84] for an annotated bibliography. The branching

rule of Ryan and Foster appears in [83]. Vanderbeck and Wolsey [91, 89] discuss

different branching strategies (extending the scheme of Ryan and Foster to cases

where the master is not a set partitioning problem) and their inherent difficulties. Vil-

leneuve et al. [92] suggest that one can always proceed by using standard branching

in an “original” formulation and re-apply Dantzig-Wolfe reformulation to the prob-

lem augmented with branching constraints, but this leads to problems of symmetry

in the case of multiple identical subproblems. Examples of branching on auxiliary

variables, implicitly using an extended formulation as presented in Options 3 and

4 can be found in Belov et al. [7], Campêlo et al. [17] and Carvalho [23]. Elhal-

laoui et al. [31] consider the dynamic aggregation of set partitioning constraints.

The scheme presented in Option 2 and its extension presented in Option 5 has been



496 François Vanderbeck and Laurence A. Wolsey

proposed as a generic all-purpose scheme by Vanderbeck [90] (although it normally

assumes a bounded subproblem, it is can also be used in some application specific

contexts in which the subproblem is unbounded).

13.7.3 Resource decomposition

The resource decomposition approach that became known as Benders’ algorithm

was proposed by Benders [9]. Geoffrion [43] produced the first important surveys

on different ways to create decomposition algorithms, as well as an extension to

nonlinear programs [44]. Geoffrion and Graves [46] reported a successful appli-

cation of Benders’ algorithm to a large distribution problem. Magnanti and Wong

[68] studied ways to obtain strong Benders cuts. Since branch-and-cut algorithms

became a practical possibility, this allows one to solve the Benders’ reformulation

directly by solving LP subproblems to generate cuts at the nodes rather than having

to solve an integer program at each iteration, as proposed originally. Applications of

Benders’ algorithm to two stage stochastic programs are numerous, see for example

Van Slyke and Wets [87]. The case with integer variables at both stages was treated

by Laporte and Louveaux [62] among others. The multi-machine job assignment

problem was first treated by Jain and Grossman [57]. The importance of normaliza-

tion and the computational effectiveness of using a modified linear program to solve

the separation problem is demonstrated in Fischetti et al. [37].

13.7.4 Extended formulations

Apart from Minkowski’s representation of a polyhedron, extended formulations

were not considered systematically as a tool for modeling integer programs until the

70’s.

Grötschel, Lovasz and Schrijver’s paper on the equivalence of optimization and

separation [52] implies that, unless P = NP, one can only hope to find tight and

compact extended formulations for integer programs if the corresponding optimiza-

tion problem is polynomially solvable. Balas and Pulleyblank [4] gave an extended

formulation for the perfectly matchable subgraph polytope of a bipartite graph and

extended formulations have been proposed for a variety of combinatorial optimiza-

tion problems in the last twenty years.

Variable splitting I: multi-commodity extended formulations

Rardin and Choe [81] explored the effectiveness of multi-commodity reformu-

lations, and Wong [96] showed that the multi-commodity reformulation gives the

spanning tree polytope. For the Steiner problem on series parallel graphs, see Prodon



13 Reformulation and Decomposition of Integer Programs 497

et al. [80]. Bilde and Krarup [11] showed that the extended facility location refor-

mulation for uncapacitated lot-sizing was integral, and later Eppen and Martin [32]

proposed an alternative formulation. The book of Pochet and Wolsey [77] contains

numerous reformulations for different single and multi-item lot-sizing problems.

Variable splitting II

Pritsker et al. [79] contains one of the first uses of a time-indexed formulation for

a scheduling problem. Gouveia [51] demonstrates the use of capacity indexed vari-

ables. The reformulation of network dual MIPs was studied in Conforti et al. [19],

and the specific formulation proposed here is from Conforti et al. [21]. The first

compact extended formulation for the constant capacity Wagner-Whitin relaxation

with backlogging is due to Van Vyve [88].

Extended formulations based on dynamic programming

Martin [69] and Eppen and Martin [32] show how dynamic programs can be

used to derive extended formulations. The longest/shortest path formulations for

knapsack problems were known in the early 70’s and probably date from the work

of Gilmore and Gomory [48] on knapsack functions or Gomory on group problems.

For dynamic programs that are not of the shortest path type, see Martin et al. [71].

The cardinality constrained problem is a natural generalization of the problem of

finding an optimal subtree of a tree.

The union of polyhedra

The characterization of the convex hull of the union of polyhedra is due to

Balas [3]. Recently Conforti and Wolsey [20] show how the union of polyhedra can

be used to develop compact and tight extended formulations for several problems

whose complexity was not previously known.

1 − k configurations are studied by Padberg [75]. Circular ones matrices are

treated in Bartholdi et al. [6], see also Eisenbrand et al. [29].

From polyhedra and separation to extended formulations

Martin [70] demonstrates how LP separation algorithms can lead to extended

formulations.



498 François Vanderbeck and Laurence A. Wolsey

Miscellaneous

Equivalent knapsack problems are studied in Bradley et al. [15]. The polynomi-

ality of IP with a fixed number of variables is due to H.W. Lenstra, Jr., [67] and

the lattice reformulation demonstrated in the example was proposed by Aardal and

A.K. Lenstra [1]. See Lenstra, Lenstra and Lovász [66] for properties of reduced

bases and a polynomial algorithm to compute a reduced basis.

Existence of polynomial size extended formulations

Yannakakis [98] presents lower bounds on the size of an extended formulation

for a given class of problems, and shows that even though weighted matching is

polynomially solvable, it is most unlikely that there is a tight and compact extended

formulation. The existence of polynomial size extended formulations approximating

the convex hull of the 0-1 knapsack polytope is from Bienstock and McClosky [10].

13.7.5 Hybrid algorithms and stronger dual bounds

For Lagrangean decomposition, see Jornsten and Nasberg [59] and Guignard and

Kim [53]. For cut-and-price, recent papers include Fukasawa et al. [42] on vehicle

routing and Ochoa et al. [85] on capacitated spanning trees. In the latter paper use

was also made of the capacity-indexed variables from subsection 13.5.3. Jans and

Degraeve [58] combine an extended formulation and column generation for a multi-

item lot-sizing problem.

References

1. K. Aardal and A.K. Lenstra, Hard equality constrained integer knapsacks, Erratum: Mathe-
matics of Operations Research 31, 2006, page 846, Mathematics of Operations Research 29
(2004) 724–738.

2. A. Balakrishnan, T.L. Magnanti, and R.T. Wong, A dual ascent procedure for large-scale

uncapacitated network design, Operations Research 37 (1989) 716–740.
3. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, origi-

nally as GSIA Management Science Research Report MSRR 348, Carnegie Mellon Univer-
sity,1974, Discrete Applied Mathematics 89 (1998) 1–44.

4. E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of a bipartite

graph, Networks 13 (1983) 495–516.
5. F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions with a subgra-

dient method, Mathematical Programming 87 (2000) 385–399.
6. J.J. Bartholdi, J.B. Orlin, and H. Ratliff, Cyclic scheduling via integer programs with circular

ones, Mathematical Programming 28 (1980) 1074–1085.
7. G. Belov, A.N. Letchford, and E. Uchoa, A node-flow model for the 1D stock cutting: robust

branch-cut-and-price, Tech. report, University of Lancaster, 2005.



13 Reformulation and Decomposition of Integer Programs 499

8. H. Ben Amor, J. Desrosiers, and A. Frangioni, On the choice of explicit stabilizing terms in

column generation, Discrete Applied Mathematics 157 (2009) 1167–1184.
9. J.F. Benders, Partitioning procedures for solving mixed variables programming problems, Nu-

merische Mathematik 4 (1962) 238–252.
10. D. Bienstock and B. McClosky, Tightening simple mixed-integer sets with guaranteed bounds,

Tech. report, Columbia University, New York, July 2008.
11. O. Bilde and J. Krarup, Plant location, set covering and economic lot sizes: An O(mn) al-

gorithm for structured problems, Optimierung bei Graphentheoretischen und Ganzzahligen
Probleme (L. Collatz et al., ed.), Birkhauser Verlag, Basel, 1977, pp. 155–180.

12. O. Bilde and J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant

location problem, Annals of Discrete Mathematics 1 (1977) 79–97.
13. R. Borndörfer, A. Löbel, and S. Weider, A bundle method for integrated multi-depot vehicle

and duty scheduling in public transit, ZIB Report 04-14, Konrad-Zuse Zentrum, Berlin, 2004.
14. R. Borndörfer, U. Schelten, T. Schlechter, and S. Weider, A column generation approach to

airline crew scheduling, ZIB Report 05-37, Konrad-Zuse Zentrum, Berlin, 2005.
15. G.H. Bradley, P.L. Hammer, and L.A. Wolsey, Coefficent reduction for inequalities in 0-1

variables, Mathematical Programming 7 (1974) 263–282.
16. O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck, Com-

parison of bundle and classical column generation, Mathematical Programming 113 (2008)
299–344.

17. M. Campêlo, V. Campos, and R. Corréa, On the asymmetric representatives formulation for

the vertex coloring problem, Notes in Discrete Mathematics 19 (2005) 337–343.
18. E. Cheney and A. Goldstein, Newton’s method for convex programming and Tchebycheff ap-

proximations, Numerische Mathematik 1 (1959) 253–268.
19. M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey, Network formulations of mixed

integer programs, Mathematics of Operations Research 34 (2009) 194–209.
20. M. Conforti and L.A. Wolsey, Compact formulations as a union of polyhedra, Mathematical

Programming 114 (2008) 277–289.
21. M. Conforti, L.A. Wolsey, and G. Zambelli, Projecting an extended formulation for mixed

integer covers on bipartite graphs, Tech. report, University of Padua, November 2008.
22. G.B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations Research

8 (1960) 101–111.
23. J.V. de Carvalho, Exact solution of bin packing problems using column generation and branch-

and-bound, Annals of Opererations Research 86 (1999) 629–659.
24. J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis, Time constrained routing and

scheduling, Network Routing (C.L. Monma M.O. Ball, T.L. Magnanti and G.L. Nemhauser,
eds.), Handbooks in Operations Research and Management Science, Vol. 8, Elsevier, 1995.

25. J. Desrosiers and F. Soumis, A column generation approach to the urban transit crew schedul-

ing problem, Transportation Science 23 (1989) 1–13.
26. J. Desrosiers, F. Soumis, and M. Desrochers, Routing with time windows by column genera-

tion, Networks 14 (1984) 545–565.
27. O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, Stabilized column generation, Dis-

crete Mathematics 194 (1999) 229–237.
28. B. Dzielinski and R. Gomory, Optimal programming of lot-sizes, inventories and labor allo-

cations, Management Science 11 (1965) 874–890.
29. F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura, Circular ones matrices and the stable set

polytope of quasi-line graphs, Integer Programming and Combinatorial Optimization, IPCO
2005 (M. Jünger and V. Kaibel, eds.), Lecture Notes in Computer Science 3509, Springer,
2005, pp. 291–305.

30. F. Eisenbrand and G. Shmonin, Carathéodory bounds for integer cones, Operations Research
Letters 34 (2006) 564–568.

31. I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers, Dynamic aggregation of set-

partitioning constraints in column generation, Operations Research 53 (2005) 632–645.
32. G.D. Eppen and R.K. Martin, Solving multi-item capacitated lot-sizing problems using vari-

able definition, Operations Research 35 (1987) 832–848.



500 François Vanderbeck and Laurence A. Wolsey

33. D. Erlenkotter, A dual-based procedure for uncapacitated facility location, Operations Re-
search 26 (1978) 992–1009.

34. Y.M. Ermol’ev, Methods of solution of nonlinear extremal problems, Kibernetica 2 (1966) 1–
17.

35. H. Everett III, Generalized lagrange multiplier method for solving problems of optimal allo-

cation of resources, Operations Research 11 (1963) 399–417.
36. Gy. Farkas, On the applications of the mechanical principle of Fourier, Mathematikai és

Természettudományi Értesotö 12 (1894) 457–472.
37. M. Fischetti, D. Salvagnin, and A. Zanette, Minimal infeasible subsystems and Benders’ cuts,

Mathematical Programming to appear (2009).
38. M.L. Fisher, The lagrangean relaxation method for solving integer programming problems,

Management Science 27 (1981) 1–18.
39. L.R. Ford, Jr. and D.R. Fulkerson, A suggested computation for maximal multi-commodity

network flows, Management Science 5 (1958) 97–101.
40. J.B.J. Fourier, Solution d’une question particulière du calcul des inégalités, Nouveau Bulletin

des Sciences par la Société Philomatique de Paris (1826) 317–319.
41. J.B.J. Fourier, from 1824, republished as Second extrait in oeuvres de fourier, tome ii (G. Dar-

boux, ed.), Gauthier-Villars, Paris, 1890, see D.A. Kohler, Translation of a report by Fourier
on his work on linear inequalities, Opsearch 10 (1973) 38–42.

42. R. Fukosawa, H. Longo, J. Lysgaard, M. Reis, E. Uchoa, and R.F. Werneck, Robust branch-

and-cut-and-price for the capacitated vehicle routing problem, Mathematical Programming
106 (2006) 491–511.

43. A.M. Geoffrion, Elements of large scale mathematical programming I and II, Management
Science 16 (1970) 652–691.

44. A.M. Geoffrion, Generalized Benders’ decomposition, Journal of Optimization Theory and
Applications 10 (1972) 237–260.

45. A.M. Geoffrion, Lagrangean relaxation for integer programming, Mathematical Program-
ming Study 2 (1974) 82–114.

46. A.M. Geoffrion and G.W. Graves, Multicommodity distribution design by Benders’ decompo-

sition, Management Science 20 (1974) 822–844.
47. R. Giles and W.R. Pulleyblank, Total dual integrality and integral polyhedra, Linear algebra

and its applications 25 (1979) 191–196.
48. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem,

Operations Research 9 (1961) 849–859.
49. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem:

Part ii, Operations Research 11 (1963) 863–888.
50. J.-L. Goffin and J.-P. Vial, Convex non-differentiable optimization: a survey focused on the

analytic center cutting plane method, Optimization Methods and Software 17 (2002) 805–
867.

51. L. Gouveia, A 2n constraint formulation for the capacitated minimal spanning tree problem,
Operations Research 43 (1995) 130–141.

52. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica 1 (1981) 169–197.
53. M. Guignard and S. Kim, Lagrangean decomposition for integer programming: Theory and

applications, RAIRO 21 (1987) 307–323.
54. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees, Oper-

ations Research 18 (1970) 1138–1162.
55. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees: Part

II, Mathematical Programming 1 (1971) 6–25.
56. M. Held, P. Wolfe, and H.P. Crowder, Validation of subgradient optimization, Mathematical

Programming 6 (1974) 62–88.
57. V. Jain and I.E. Grossman, Algorithms for hybrid milp/clp models for a class of optimization

problems, INFORMS J. Computing 13 (2001) 258–276.
58. R. Jans and Z. Degraeve, Improved lower bounds for the capacitated lot sizing problem with

set-up times, Operations Research Letters 32 (2004) 185–195.



13 Reformulation and Decomposition of Integer Programs 501

59. K. Jornsten and M. Nasberg, A new Lagrangian relaxation approach to the generalized as-

signment problem, European Journal of Operational Research 27 (1986) 313–323.
60. J.E. Kelley, The cutting plane method for solving convex programs, SIAM Journal 8 (1960)

703–712.
61. K.C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathe-

matical Programming 27 (1983) 320–341.
62. G. Laporte and F.V. Louveaux, The integer L-shaped method for stochastic integer programs

with complete recourse, Operations Research Letters 13 (1993) 133–142.
63. C. Lemaréchal, An algorithm for minimizing convex functions, Information Processing ’74

(J.L. Rosenfeld, ed.), North Holland, 1974, pp. 552–556.
64. C. Lemaréchal, Nonsmooth optimization and descent methods, Tech. report, IIASA, 1978.
65. C. Lemaréchal, Lagrangean relaxation, Computational Combinatorial Optimization (M.

Jünger and D. Naddef, eds.), Lecture Notes in Computer Science 2241, Springer, 2001, pp.
112–156.

66. A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coeffi-

cients, Mathematische Annalen 261 (1982) 515–534.
67. H.W. Lenstra, Jr., Integer programming with a fixed number of variables, Mathematics of

Operations Research 8 (1983) 538–547.
68. T.L. Magnanti and R.T. Wong, Accelerated Benders’ decomposition: Algorithmic enhance-

ment and model selection criteria, Operations Research 29 (1981) 464–484.
69. R.K. Martin, Generating alternative mixed integer programming models using variable defi-

nition, Operations Research 35 (1987) 820–831.
70. R.K. Martin, Using separation algorithms to generate mixed integer model reformulations,

Operations Research Letters 10 (1991) 119–128.
71. R.K. Martin, R.L. Rardin, and B.A. Campbell, Polyhedral characterization of discrete dy-

namic programming, Operations Research 38 (1990) 127–138.
72. R.R. Meyer, On the existence of optimal solutions to integer and mixed integer programming

problems, Mathematical Programming 7 (1974) 223–235.
73. H. Minkowski, Geometrie der Zahlen (erste Lieferung), Teubner, Leipzig, 1986.
74. P.J. Neame, Nonsmooth dual methods in integer programing, Ph.D. thesis, Depart. of Math.

and Statistics, The University of Melbourne, 1999.
75. M.W. Padberg, (1,k)-configurations and facets for packing problems, Mathematical Program-

ming 18 (1980) 94–99.
76. A. Pessoa, E. Uchoa, M. Poggi de Aragao, and R. Rodrigues, Algorithms over arc-time in-

dexed formulations for single and parallel machine scheduling problems, Tech. report, Rio de
Janeiro, 2009.

77. Y. Pochet and L.A. Wolsey, Production planning by mixed-integer programming, Springer
Series in Operations Research and Financial Engineering, Springer, New York, 2006.

78. B.T. Polyak, A general method for solving extremum problems, Soviet Mathematic Doklady 8
(1967) 593–597.

79. A.A.B. Pritsker, L.J. Watters, and P.J. Wolfe, Multiproject scheduling with limited resources:

a zero-one programming approach, Management Science 16 (1969) 93–108.
80. A. Prodon, T.M. Liebling, and H. Gröflin, Steiner’s problem on 2-trees, Tech. Report RO

850351, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1985.
81. R.L. Rardin and U. Choe, Tighter relaxations of fixed charge network flow problems, Tech.

Report report J-79-18, School of Industrial and Systems Engineering, Georgia Institute of
Technology, 1979.

82. L.-M. Rousseau, M. Gendreau, and D. Feillet, Interior point stabilization for column genera-

tion, Tech. report, University de Montreal, 2003.
83. D.M. Ryan and B.A. Foster, An integer programming approach to scheduling, Computer

Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling (A. Wren,
ed.), North-Holland, Amsterdam, 1981, pp. 269–280.

84. F. Soumis, Decomposition and column generation, Annotated Bibliographies in Combinato-
rial Optimization (F. Maffioli M. Dell’Amico and S. Martello, eds.), Wiley, Chichester, 1997,
pp. 115–126.



502 François Vanderbeck and Laurence A. Wolsey

85. E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M.P. Aragao, and D. Andrade, Robust branch-

and-cut-and-price for the capacitated minimum spanning tree problem over an extended for-

mulation, Mathematical Programming 112 (2008) 443–472.
86. H. Uzawa, Iterative methods for concave programming, Studies in Linear and Nonlinear Pro-

gramming (K. Arrow, L. Hurwicz, and H. Uzawa, eds.), Stanford University Press, 1959.
87. R.M. Van Slyke and R. Wets, L-shaped linear programs with applications to optimal control

and stochastic programming, SIAM J. of Applied Mathematics 17 (1969) 638–663.
88. M. Van Vyve, Linear programming extended formulations for the single-item lot-sizing prob-

lem with backlogging and constant capacity, Mathematical Programming 108 (2006) 53–78.
89. F. Vanderbeck, On Dantzig-Wolfe decomposition in integer programming and ways to perform

branching in a branch-and-price algorithm, Operations Research 48 (2000) 111–128.
90. F. Vanderbeck, Branching in branch-and-price: a generic scheme, Research Report Inria-

00311274, University Bordeaux I and INRIA, 2006, revised 2008.
91. F. Vanderbeck and L.A. Wolsey, An exact algorithm for IP column generation, Operations

Research Letters 19 (1996) 151–159.
92. D. Villeneuve, J. Desrosiers, M.E. Lübbecke, and F. Soumis, On compact formulations for

integer programs solved by column generation, Annals of Operations Research 139 (2006)
375–388.

93. S. Weider, Integration of vehicle and duty scheduling in public transport, Ph.D. thesis, Faculty
of Mathematics and Sciences, The Technical University, Berlin, 2007.

94. P. Wentges, Weighted dantzig-wolfe decomposition for linear mixed-integer programming, In-
ternational Transactions on Operational Research 4 (1997) 151–162.

95. H. Weyl, The elementary theory of convex polyhedra, Contributions to the Theory of Games I
(H.W. Kuhn and A.W. Tucker, eds.), Princeton University Press, Princton N.J, translated from
1935 original in German, 1950, pp. 3–18.

96. R.T. Wong, Integer programming formulations of the traveling salesman problem, Proceed-
ings of IEEE International Conference on Circuits and Computers, 1980, pp. 149–152.

97. R.T. Wong, Dual ascent approach for Steiner tree problems on directed graphs, Mathematical
Programming 28 (1984) 271–287.

98. M. Yannakakis, Expressing combinatorial optimization problems by linear programs, Journal
of Computer and System Sciences 43 (1991) 441–466.



Part III

Current Topics



Six survey talks on current hot topics were given at the 12th Combinatorial Op-

timization Workshop, Aussois, France, 7–11 January 2008, in the days follow-

ing the celebration of 50 Years of Integer Programming 1958–2008. The speakers

were Fritz Eisenbrand, Andrea Lodi, François Margot, Franz Rendl, Jean-Philippe

P. Richard, and Robert Weismantel. For the written versions, Robert Weismantel has

been joined by the co-authors Raymond Hemmecke, Matthias Köppe, and Jon Lee,

and Jean-Philippe P. Richard has been joind by the co-author Santanu S. Dey.



Chapter 14

Integer Programming and Algorithmic
Geometry of Numbers

A tutorial

Friedrich Eisenbrand

Abstract This chapter surveys a selection of results from the interplay of integer

programming and the geometry of numbers. Apart from being a survey, the text is

also intended as an entry point into the field. I therefore added exercises at the end

of each section to invite the reader to delve deeper into the presented material.

14.1 Lattices, integer programming and the geometry of

numbers

The central objects of study of the geometry of numbers are lattices. A lattice is

a set Λ = {y ∈ Rn : y = Ax, x ∈ Zn}, where A ∈ Rn×n is a nonsingular matrix. We

say that the lattice is generated by A and write Λ = Λ(A). The matrix A is called a

basis of the lattice Λ . If A is a rational matrix, i.e., A ∈ Qn×n, then Λ is a rational

lattice.

A very important problem, which has also received a lot of attention in computer

science and optimization, is the shortest vector problem with respect to the ℓp-norm

for some p ∈ N+ ∪{∞}. It is as follows.

Given a rational lattice-basis A ∈ Qn×n, compute a nonzero vector v ∈ Λ(A) with minimal
norm ‖v‖p.

If the norm is not specified, we implicitly assume the ℓ2-norm and denote the length

of a shortest vector w.r.t. the ℓ2-norm as SV (Λ). The shortest vector problem can

(in fixed dimension) be solved efficiently with lattice basis reduction. In varying

dimension the shortest vector problem is NP-hard under randomized reductions [2].

Still, the fastest algorithms [43, 3] for this problem rely on basis reduction.

Friedrich Eisenbrand
Department of Mathematics, EPFL, Lausanne, Switzerland
e-mail: friedrich.eisenbrand@epfl.ch

505
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_14, © Springer-Verlag Berlin Heidelberg 2010 



506 Friedrich Eisenbrand

(2,0)

(3,2)

Fig. 14.1 The lattice generated by (2,0) and (3,2).

Lenstra [56] has shown that integer programming can be solved in polynomial

time, if the dimension is fixed. His algorithm is based on lattice basis reduction.

Why do lattices and the algorithmic geometry of numbers come into play in integer

programming?

The greatest common divisor of two integers a0,a1 ∈ Z where not both a0 and

a1 are zero, is the largest integer that divides both a0 and a1. It is denoted by

gcd(a0,a1). The greatest common divisor can be efficiently computed with the Eu-

clidean algorithm, see, e.g., [51, 1]. It computes the remainder sequence a0,a1, . . . ,
ak−1,ak ∈N+, where ai, i > 2 is given by ai−2 = ai−1qi−1 +ai, qi ∈N, 0 < ai < ai−1,

and ak divides ak−1 exactly. Then ak = gcd(a0,a1). The Euclidean algorithm can be

interpreted as a reduction algorithm and we will see that the 2-dimensional basis

reduction algorithm of Lagrange (see Section 14.2) works along the same lines.

Now, the connection between integer linear programming with algorithmic num-

ber theory reveals itself already in the following theorem, which is proved at the

beginning of every course on elementary number theory, see, e.g., [65].

Theorem 14.1. Let a,b ∈ Z be integers that are not both equal to zero. The greatest

common divisor gcd(a,b) is the smallest integer in the set

{ax+by : x,y ∈ Z, ax+by > 1}. (14.1)

The problem to find the minimum in (14.1) can be modeled as an integer program

in two variables and one constraint.

min ax+by

ax+by > 1

x,y ∈ Z.

This already explains why efficient methods for integer programming with a fixed

number of variables incorporate reduction techniques, which in a basic form appear

already in the Euclidean algorithm. Such reduction techniques are in the focus of

this chapter.



14 Integer Programming and Algorithmic Geometry of Numbers 507

14.2 Informal introduction to basis reduction

Informally, lattice basis reduction is about transforming a lattice basis B into

a lattice basis B′ that generates the same lattice, Λ(B) = Λ(B′) and from which

a shortest vector can (in fixed dimension) be easily determined. Before we make

this more precise, we have to understand what valid transformations are, i.e., when

Λ(B) = Λ(B′) holds. Recall that an integer matrix U ∈ Zn×n is called unimodular

if det(U) = ±1. Thus U ∈ Zn×n is unimodular if and only if U is non-singular and

U−1 is a matrix with integer entries, see exercise 1.

Lemma 14.1. Let B,B′ ∈ Rn×n be two rational non-singular matrices. One has

Λ(B) = Λ(B′) if and only if there exists a unimodular matrix U ∈ Zn×n with

B′ = B ·U.

Proof. Suppose Λ(B) = Λ(B′). Then, every column of B is in Λ(B′) which implies

that there exists an integral matrix U ∈ Zn×n with B = B′ ·U . Similarly, there exists

an integral matrix V ∈ Zn×n with B′ = B ·V . From this it follows that B = B ·V ·U

and since B is non-singular, this implies that V ·U = In, where In is the n×n identity

matrix. This implies that U is unimodular since 1 = det(V ·U) = det(V ) · det(U)
and since both det(V ) and det(U) are integers, one has det(U) = ±1. On the other

hand, if B′ = B ·U with an integral U , then Λ(B′) ⊆ Λ(B). If U is unimodular, then

B = B′ ·U−1 and U−1 is integral, which implies Λ(B) ⊆ Λ(B′). ⊓⊔

(2,0)

(3,2)

(2,0)

(1,2)

Fig. 14.2 A lattice, two different bases and the lattice determinant, which is depicted as the volume
of the parallelepipeds defined by the bases respectively.

Lemma 14.1 implies that the absolute value |det(B)| of the determinant of a ba-

sis B of Λ is an invariant of Λ . This value is called the determinant of Λ . The

set Π(B) = {Bλ : λ ∈ Rn, 0 6 λ < 1} is called the parallelepiped spanned by the

columns of B. The volume of this parallelepiped is the absolute value of the deter-

minant of B. Thus the lattice determinant is the volume of the parallelepiped defined

by the basis elements of any basis, see Figure 14.2.



508 Friedrich Eisenbrand

The result of the multiplication of B by a unimodular matrix U can also be ob-

tained by a sequence of elementary column operations on B:

i) Swap of two columns.

ii) Multiplication of a column with −1.

iii) Addition of an integral multiple of one column to another column.

Now that we know which operations to apply, let us consider an example of

lattice basis reduction. Suppose that we want to determine the shortest vector in the

lattice which is generated by the following two column-vectors v1 and v2.

v2v1

It is difficult to guess what the shortest vector of this lattice could be. We subtract v1

from v2 and replace v2 with the outcome of this operation. The result is a new basis.

v2

v1

Still, it is not easy to determine the shortest vector. Next we subtract 3-times v2 from

v1 and replace v1 with the outcome of this operation.

v2

v1

Now the shortest vector reveals itself easily. Since the obtained basis of our lattice

consists of two orthogonal vectors, the shortest vector of the lattice is the shortest

vector of the basis itself. In fact, we have traced above the reduction algorithm of

Lagrange which was also described by Gauß [29].

Intuitively it seems clear that the shortest vector problem should still be easy, if

the basis is almost orthogonal. We will deliver a precise definition of this in Sec-

tion 14.5, where we describe the LLL-algorithm.

Exercises

1) Prove that U ∈ Zn×n is unimodular if and only if U is non-singular and U−1 is a

matrix with integer entries.

2) Let B∈Qn×n be a lattice basis that consists of pairwise orthogonal vectors. Prove

that the shortest vector of Λ(B) is the shortest column vector of B.



14 Integer Programming and Algorithmic Geometry of Numbers 509

3) Let Λ ,Λ ′ ⊆ Zn be lattices and suppose that Λ ⊇ Λ ′. Show that det(Λ) divides

det(Λ ′).
4) Consider three points v1,v2,v3 ∈ Z2 that are not co-linear, i.e., there is no line

containing all three points. Show that the triangle spanned by v1,v2 and v3 does

not contain an integer point apart from v1,v2 and v3 itself, if and only if the

matrix (v2 − v1,v3 − v2) is unimodular.

A similar statement cannot be made in R3. Provide an example of linearly inde-

pendent integer vectors v1,v2,v3 ∈ Z3 such that the simplex conv{0,v1,v2,v3}

does not contain an integer point apart from 0,v1,v2 and v3 and det(v1,v2,v3) 6=
±1.

5) (Picks formula) The convex hull P = conv{v1, . . . ,vn} of integer points vi ∈ Z2,

i = 1, . . . ,n is a convex lattice polygon. Let A, I and B be the area, number of

integer points in the interior and boundary of P respectively. Prove Picks formula

A = I +B/2−1.

Hint: Exercise 4).

14.3 The Hermite normal form

The section is devoted to the algorithmic solution of the following problem

Given a rational matrix A ∈ Qm×n of full row-rank and a rational vector b ∈ Qm, decide
whether there exists an integral vector x ∈ Zn with Ax = b.

This problem is solved with the Hermite normal form of a rational matrix which is

central to this chapter. We will also see that the set {Ax : x ∈ Zn} is also a lattice,

namely the lattice that is generated by the Hermite normal form of A.

We motivate the Hermite normal form first via certificates of unsolvability of

rational linear equations. Suppose we are given a system Ax = b of linear equations

over the reals. How can one certify that this system does not have a solution? The

following well known theorem from linear algebra provides a certificate.

Theorem 14.2. Let A∈Rm×n be a matrix and b∈Rm be a vector. The system Ax = b

does not have a solution x ∈ Rn if and only if there exists a λ ∈ Rm with λ T A = 0

and λ T b 6= 0.

Proof. If x is a solution to the system, then λ T A = 0 implies λ T b = λ T Ax = 0T x = 0.

On the other hand, if Ax = b does not have a solution then b is not in the vector

space

Z = {z ∈ Rm : z = Ax, x ∈ Rn}.

The vector space Z is the kernel of a matrix C ∈ Rk×m,

Z = {z ∈ Rm : C z = 0}.



510 Friedrich Eisenbrand

We have C A = 0 and C b 6= 0. We can choose a y with yTCb 6= 0. We then have

yTCA = 0, so λ = yTC serves our purpose. ⊓⊔

Now let A ∈ Qm×n be a rational matrix and let b ∈ Qm be a rational vector. What

happens if we ask, whether a system Ax = b has an integer solution x ∈ Zn ?

Clearly Ax = b has an integer solution if and only if (α ·A)x = α ·b has an integer

solution for α ∈ R−{0}. This means that we can multiply A and b with the least

common multiple of the denominators of their entries and obtain an integral matrix

and an integral vector.

The simplest nontrivial system of rational equations over the integers is one equa-

tion and two variables. This case was already considered by Gauß [29], who men-

tions the following theorem. Recall the notation u | v which stands for u divides v

for integers u and v.

Theorem 14.3. Let a,b and c be integers where a or b are nonzero. The system

ax+by = c (14.2)

has a solution with integers x and y if and only if gcd(a,b) | c.

Proof. Let d be a common divisor of a and b, i.e., d · a′ = a and d · b′ = b with

integers a′ and b′. If ax+by = c, then

d(a′x+b′y) = c

which implies that d | c. Thus if (14.2) has an integral solution, then gcd(a,b) | c.

On the other hand let gcd(a,b) · k = c for some integer k. Recall that there exist

integers x′ and y′ with ax′ + by′ = gcd(a,b). An integral solution of (14.2) is then

x = kx′ and y = ky′. ⊓⊔

In other words, (14.2) does not have an integral solution, if and only if there

exists an α ∈ R such that α · (a,b) ∈ Z2 and α · c /∈ Z. It turns out that this simple

observation can be generalized.

Theorem 14.4. Let A ∈ Qm×n and b ∈ Qm. The system

Ax = b (14.3)

does not have an integral solution, if and only if there exists a λ ∈Rm with λ T A∈Zn

and λ T b /∈ Z.

To prove this theorem, we now introduce the Hermite normal form. A rational

matrix A∈Qm×n of full row rank is said to be in Hermite normal form (HNF) if it has

the form [B | 0], where B is a nonsingular, lower triangular matrix with non-negative

entries, in which each row has a unique maximal entry, located on the diagonal. The

following is an example of a matrix in HNF

(
2 0 0

1 3 0

)



14 Integer Programming and Algorithmic Geometry of Numbers 511

Theorem 14.5. Each rational matrix A ∈Qm×n of full row-rank can be brought into

Hermite normal form by a finite series of elementary column operations.

Proof. By scaling all entries of A with a positive common multiple α of the denomi-

nators, we obtain an integral matrix A′. If [H ′ | 0] is a HNF of A′, then (1/α)[H ′ | 0] is

an HNF of A. Therefore we can assume without loss of generality that A is integral.

Algorithm 14.1 computes the Hermite normal form and a corresponding uni-

modular matrix of an integral matrix with full row rank with the use of the extended

Euclidean algorithm. Here the term “update columns i and j” with a 2× 2-matrix(
a b
c d

)
means that the new columns ci and c j result from their old values by multi-

plying (ci,c j) with
(

a b
c d

)
, i.e., (ci,c j) := (ci,c j)

(
a b
c d

)
.

The function exggT(a,b) implements the extended Euclidean algorithm, which

computes the triple (g,x,y), where g = gcd(a,b) and x and y are integers with g =

xa+ yb, see, e.g., [51]. Since the matrix
(

x −b/g

y −a/g

)
is unimodular, the updating step

in the algorithm corresponds to a sequence of elementary column operations.

Algorithm 14.1 HNF of A

Input: A ∈ Zm×n full row rank
Return: [H | 0] ∈ Zm×n HNF of A, unimodular matrix U ∈ Zn×n with A ·U = [H | 0]

H ← A

U ← In

for i = 1 to m do

for j = i+1 to n do

if Hi, j 6= 0 then

(g,x,y) = exggT(Hi,i,Hi, j)

update columns i and j of H and U with
(

x −Hi, j/g

y Hi,i/g

)

end if

end for

for j = 1 to i−1 do

Hi, j = q ·Hi,i + r (division with remainder, r non-negative)

update columns j and i of H and U with
(

1 0
−q 1

)
{reduce entries to the left of diagonal

element Hi,i}
end for

end for

⊓⊔

It is an easy exercise to show that the following invariant holds after each ”update

columns” operation of Algorithm 14.1

A ·U = H.

Let us trace the algorithm, when it is executed on the matrix
(

2 3 4
2 4 6

)
. The greatest

common divisor of (2,3) is 1 = (−1) ·2+1 ·3. Thus we update column 1 and 2 with

the matrix
(
−1 −3
1 2

)
, obtaining

(
1 0 4
2 2 6

)
. The transforming matrix U yields

(
−1 −3 0
1 2 0
0 0 1

)
.

Eliminating 4 yields H =
(

1 0 0
2 2 −2

)
and U =

(
−1 −3 4
1 2 −4
0 0 1

)
.



512 Friedrich Eisenbrand

Eliminating −2 yields H =
(

1 0 0
2 2 0

)
, U =

(
−1 −4 1
1 4 −2
0 −1 1

)

Now reducing 2 in the lower left corner yields the Hermite normal form H =
(

1 0 0
0 2 0

)

and the unimodular matrix transformation matrix U =
(

3 −4 1
−3 4 −2
1 −1 1

)
with A ·U = H.

Proof (of Theorem 14.4). Suppose Ax = b has an integral solution x ∈Zn. Then with

λ T A ∈ Zn one has λ T b = λ T Ax ∈ Z.

Suppose now that Ax = b does not have an integral solution. If Ax = b is not

solvable in Rn, then there exists a λ ∈ Rm with λ T A = 0 and λ T b 6= 0 and thus a λ
with λ T A = 0 and λ T b = 1/2. Thus we can assume that Ax = b has a solution in Rn

and therefore we can assume that A has full row-rank.

There exists a unimodular matrix U ∈ Zn×n such that A ·U = [B | 0] is in HNF.

Thus B−1A is an integral matrix. We claim that B−1b is not an integral vector and

thus that there exists a row λ T of B−1 with λ T A ∈ Zn and λ T b /∈ Z.

If B−1b is integral, then

A ·U
(

B−1b
0

)
= [B | 0]

(
B−1b

0

)
= b

shows that x =U ·
(

B−1b
0

)
is an integral solution of Ax = b, which is a contradiction.

⊓⊔

The next theorem shows that the HNF is unique. For this we extend the notation

Λ(A) = {Ax : x ∈ Zn} also for the case where A ∈ Qm×n is a rational matrix of

full row-rank which is not necessarily a basis. Such a set is also a lattice, since

Λ(A) = Λ(B), where [B | 0] is the HNF of A and B is nonsingular.

Theorem 14.6. Let A and A′ be integral matrices of full row-rank, with HNF [B | 0]
and [B′ | 0] respectively. Then Λ(A) = Λ(A′) if and only if B = B′.

Proof. If B = B′, the clearly Λ(A) = Λ(A′).
It remains to prove that if B and B′ are different, then Λ(B) 6= Λ(B′). So as-

sume that B and B′ nevertheless generate the same lattice Λ . Let i be the smallest

row-index such that row i of B differs from row i of B′. Without loss of generality

assume that Bi, j > B′
i, j holds for some 1 6 j < i. Observe that the i-th components

of elements of Λ whose first i− 1 components are 0, are integral multiples of Bi,i.

Notice that the first i−1 components of the vector β = B( j)−B′( j)
∈Λ are 0, where

B( j) and B′( j)
denote the j-th column of B and B′ respectively. But the i-th compo-

nent of β is strictly between 0 and Bi,i. This is a contradiction. ⊓⊔

Corollary 14.1. The Hermite normal form of a rational matrix with full row-rank is

unique.

Clearly, Algorithm 14.1 requires O(m ·n) extended gcd-computations and O(m2 ·

n) arithmetic operations. But is it a polynomial algorithm? This cannot be argued,

since the binary encoding length of the numbers could grow exponentially. The size

of an integer z is the number of bits which are required to encode z. We define



14 Integer Programming and Algorithmic Geometry of Numbers 513

size(z) = 1+⌈log2(|z|+1)⌉. Likewise, the size of a matrix A ∈ Zm×n is the number

of bits needed to encode A, i.e., size(A) = mn+∑i, j size(ai j), see [75, p. 29]. In fact

Fang and Havas [23] provide examples of pivoting schemes, where the size of the

numbers in the intermediate steps of the HNF-algorithm above grows exponentially.

Nevertheless, it can be shown that the HNF of a rational matrix can be computed

in polynomial time, see [47, 75]. The key to Schrijver’s method [75] is the following

lemma.

Lemma 14.2. Let A ∈ Zm×n be a matrix of full row rank and let d = det(Λ(A)) be

the lattice determinant of Λ(A) and let D be a multiple of d. Then

Λ(A) = Λ([A | D · Im]).

Proof. Clearly Λ(A)⊆Λ([A | D · Im]). Let Λ denote Λ(A). For the reverse inclusion

we simply have to show that D · ei ∈ Λ for each unit vector ei, i = 1, . . . ,m. Let

B ∈ Zm×m be a basis of Λ and let B̃ ∈ Zm×m be the adjoint of B. All column vectors

of B · B̃ are elements of Λ . But Cramers rule says B−1 = (1/det(B))B̃. Therefore

B · B̃ = det(B) · Im. Since d = |det(B)| we see that d · ei ∈ Λ , for each unit vector

ei, i = 1, . . . ,n. Since d | D we also have that D · ei ∈ Λ . ⊓⊔

Corollary 14.2. Let [H | 0] be the HNF of A ∈ Zm×n, where A has full row-rank and

let d = det(Λ(A)) be the determinant of Λ(A). Let [H ′ | 0] be the HNF of [A | d · Im]∈
Zm×(n+m). Then H ′ = H.

Theorem 14.7. There exists a polynomial time algorithm which computes the HNF

of a rational matrix of full row-rank.

Proof. Since we can scale A with the product of the denominators of A we can as-

sume without loss of generality that A is an integral matrix. We start by identifying

m linearly independent columns of A and by computing D = |det(A)|. This can be

done with Gaussian elimination in polynomial time [17]. The fact that the encod-

ing length of D is polynomial follows from the Hadamard bound (14.9) which we

discuss later. Exercise 14.2.3) shows that D | det(Λ(A)).
We compute the HNF of [A | D · Im] as in Algorithm 14.1, but keeping numbers

in a row reduced modulo D until we eliminate D in this row stemming from D · Im.

The important observation is this. The first i rows of H remain unchanged after

the i-th run through the first for loop. The remaining rows of H can be kept reduced

modulo D, since the last m− i columns of H are of the form
(

0
d·Im−i

)
. This pro-

cedure requires a polynomial amount of extended-gcd computations and arithmetic

operations on numbers of size at most size(D). ⊓⊔

Theorem 14.8. There exists a polynomial algorithm which computes the HNF [H |

0] of a rational matrix A ∈ Qm×n and the corresponding unimodular matrix U ∈

Zn×n with A ·U = [H | 0].

Proof. Select m linearly independent columns of A using Gaussian elimination.

Assume without loss of generality that those are the first m columns. The ma-

trix [H | 0] is the HNF of A if and only if the HNF of A′ =

[
A

0 | In−m

]
is of the



514 Friedrich Eisenbrand

form H ′ =

[
H | 0

B

]
with some matrix B. Compute H ′ with the polynomial modifi-

cation of Algorithm 14.1. We have A′ ·U = H ′ and since A′ is nonsingular we have

U = H ′ ·A′−1
. Clearly A ·U = [H | 0]. ⊓⊔

The proof of the next theorem is left as an excise.

Theorem 14.9. There exists a polynomial algorithm for the following problem

Given an integral matrix A∈Zm×n and an integral vector b∈Zm, compute a solution x̂∈Zn

of Ax = b or establish that no such x̂ exists.

Notes

Showing that Gaussian elimination is in fact a polynomial-time algorithm is not

trivial. Edmonds [17] has shown that, if one keeps the numerators and denominators

in the intermediate steps of the algorithm gcd-free, then the size of the numbers

remains polynomial. Von zur Gathen and Sieveking [81] showed that systems of

rational equations over the integers can be solved in polynomial time.

In fact, there is an arsenal of ways to do linear algebra in polynomial time, one of

them being a modular method again. If one wants to compute the determinant of an

integral matrix A ∈ Zn×n for example, one could apply the Hadamard bound (14.9)

to compute a D∈Z with 2 · |det(A)|< D. If we now know a number x∈Z, 0 6 x < D

with x ≡ det(A) (mod D), then we can retrieve det(A) from x. In fact, if x 6 D/2,

then det(A) = x and if x > D/2, then det(A) = x−D. One computes with the sieve

of Erathostenes the first k prime numbers p1, . . . , pk such that p1 · · · pk > D holds.

The prime-number theorem guarantees that the value of pk is polynomial in the

encoding length of D. One can then compute the value det(A) (mod pi) for each

pi with Gaussian elimination in the field Zpi
and reconstruct x with the Chinese

remainder theorem, see, e.g.,, [80].

Exercises

1) Compute by hand the HNF of
(

3 5 7 2
2 4 9 3

)
.

2) Write a computer program which implements Algorithm 14.1.

3) Prove Theorem 14.9.

4) Let D∈N+ be an integer which is not necessarily prime and let A∈Zm×n and b∈

Zm be an integer matrix and vector respectively. Show that there is a polynomial

algorithm which computes a solution to the system

Ax = b (mod D), x ∈ Zn

or asserts that the system does not have a solution.

5) Describe a unimodular matrix G such that the step ”update columns” j and i of

H and U with
(

1 0
−q 1

)
in Algorithm 14.1 corresponds to the multiplication of H

and U with G from the right.



14 Integer Programming and Algorithmic Geometry of Numbers 515

6) Modify Algorithm 14.1 such that it detects on the fly whether A has full row-rank

and possibly determines a row which is in the span of the other rows.

14.4 Minkowski’s theorem

At the end of the 19-th century, Minkowski opened the stage for the geometry of

numbers with his famous book Geometrie der Zahlen [61]. One of his main results

is described in this section. He used geometric methods to prove upper bounds on

numbers which are representable by positive definite quadratic forms. In the setting

of lattices his result means that a lattice Λ ⊆ Rn contains a nonzero lattice point

whose norm is bounded roughly by
√

2
π e

ndet(Λ)1/n. The simplicity and elegance

of his approach is stunning. His result was preceded by a sequence of bounds which

we briefly discuss. Lagrange and Gauß [29] proved that a 2-dimensional lattice has

a nonzero lattice point whose norm is bounded by
√

4/3 det(Λ)1/2. In his Disqui-

sitiones Arithmeticae [29] Gauß proved that a 3-dimensional lattice has a nonzero

lattice vector of norm bounded by
√

4/3 det(Λ)1/3. Hermite [37] generalized this

result to arbitrary dimension and provided the upper bound (4/3)(n−1)/4 det(Λ)1/n.

All these results were algorithmic, in the sense that they provided algorithms com-

puting nonzero lattice vectors achieving these bounds. It is remarkable that these

algorithms run in polynomial time, if the dimension is fixed. The bound obtained by

Minkowski is much stronger than the one of Hermite. It is however not known how

to compute a nonzero lattice vector satisfying this bound in polynomial time, if the

dimension is not fixed.

A convex body is a compact and full-dimensional convex set K ⊆ Rn. In its sim-

plest form, Minkowski’s theorem is as follows.

Theorem 14.10. Let K ⊆Rn be a convex body which is symmetric around the origin

(x ∈ K implies −x ∈ K). If vol(K) > 2n, then K contains a nonzero integral vector

v ∈ Zn \{0}.

Proof. We first argue that it suffices to assume that vol(K) > 2n holds. If vol(K) =
2n, then, since K is compact, there exists an ε > 0 such that the distance to K of each

integer point that is not contained in K is at least ε . This means that there exists a

constant δ > 0 such that the sets (1+δ ) ·K and K contain the same integer points.

The volume of (1+δ ) ·K however is strictly larger than 2n.

Suppose now that the theorem does not hold. Consider the set S = 1/2 ·K and

the translates of S with integer vectors

S + v, v ∈ Zn.

If S + v1 ∩ S + v2 6= /0 for some integral vectors v1 6= v2, then there exist k1,k2 ∈ K

such that

0 6= v1 − v2 = 1/2(k2 − k1).



516 Friedrich Eisenbrand

Fig. 14.3 An illustration of the proof of Minkowski’s theorem, where the dark rectangle stands for
K and the light rectangles for the sets S + v. The inner square represents the points x ∈ R2 with
‖x‖∞ 6 M and the outer square represents the set (14.5), being the points x ∈ R2 with ‖x‖∞ 6

M +D.

Due to the symmetry of K around the origin we have −k1 ∈ K and due to the con-

vexity of K we have 1/2(k2−k1)∈ K, which is a nonzero integral point. This shows

that the translates S + v, v ∈ Zn do not intersect.

Now we consider the volume

VM = vol




⋃

v∈Zn

‖v‖∞6M

S + v




for some M ∈ N. Since the S + v do not intersect we have

VM = ∑
v∈Zn,‖v‖∞6M

vol(S)

= (2 ·M +1)n ·vol(S).
(14.4)

Since S is bounded, S has finite diameter D ∈ R. This means that the union



14 Integer Programming and Algorithmic Geometry of Numbers 517

⋃

v∈Zn

‖v‖∞6M

S + v

is a subset of

{x ∈ Rn : ‖x‖∞ 6 M +D}. (14.5)

The volume of the set in (14.5) is 2n · (M +D)n. Therefore the inequality

2n · (M +D)n > (2 ·M +1)n ·vol(S)

must hold. As M tends to infinity, the expression

(2 ·M +2 ·D)n

(2 ·M +1)n

tends to one. This is a contradiction, since vol(S) > 1. ⊓⊔

Minkowski’s theorem has also a version for general lattices. Let Λ(B) ⊆ Rn

be a lattice and K ⊆ Rn be a convex set which is symmetric around the origin

with vol(K) > 2n det(Λ). The mapping φ(x) = B−1x maps Λ to Zn and φ(K)
is a convex body which is symmetric around the origin. The volume of φ(K) is

vol(φ(K)) = (1/det(B))vol(K) and thus vol(φ(K)) > 2n. Theorem 14.10 implies

that φ(K) contains a nonzero integer vector or equivalently K contains a nonzero

lattice vector from Λ .

Theorem 14.11 (Minkowski’s convex body theorem [61]). Let Λ ⊆Rn be a lattice

and let K ⊆ Rn be a convex body of volume vol(K) > 2n det(Λ) that is symmetric

about the origin. Then K contains a nonzero lattice point.

As announced in the introduction of this section, Minkowski’s theorem can be

used to derive an upper bound on the length of a shortest vector of a lattice Λ in

terms of the determinant of Λ . Let Vn be the volume of the n-dimensional unit ball.

By scaling the unit ball with α ∈ R+ one obtains a ball of volume αn ·Vn. This

is greater or equal to 2n det(Λ) for α > 2 · n
√

det(Λ)/Vn. This has the following

consequence.

Theorem 14.12. A lattice Λ ⊆ Rn has a nonzero lattice point of length less than or

equal to 2 · n
√

det(Λ)/Vn.

The formula for Vn is

Vn =
π⌊n/2⌋2⌈n/2⌉

∏062i6n(n−2i)
.

Using Stirling’s formula (n! ≈
√

2π n
(

n
e

)n
) one sees that this is roughly

(
2πe

n

)n/2
.

The bound of Theorem 14.12 is thus roughly
√

2
π e

ndet(Λ)1/n.



518 Friedrich Eisenbrand

Exercises

1) Show that a lattice Λ has a nonzero lattice point v with ‖v‖∞ 6 n
√

det(Λ).
2) Show that Minkowski’s theorem holds also for convex sets that are full-dimen-

sional and closed, i.e., the boundedness condition is not really necessary.

3) Let K ⊆ Rn be a convex body of volume vol(K) > k · 2n. Show that K contains

at least 2 · k nonzero integer points.

4) (Two squares theorem) In this exercise you will prove that a prime number p with

p ≡ 1 (mod 4) can be written as the sum of two square numbers p = a2 +b2 for

a,b ∈ N.

a) Show that the equation q2 ≡−1 (mod p) has a solution.

b) Consider the lattice Λ generated by
(

1 0
q p

)
and the disk of radius

√
p ·2− ε

around 0 for a small ε > 0.

i) Show that ‖v‖2 is divisible by p for each v ∈ Λ .

ii) Show that there exists a v ∈ Λ \{0} with ‖v‖2 = p.

iii) Conclude that p is the sum of two squares.

Hints: Wilson’s theorem, see, e.g., [65] states (p− 1)! ≡ −1 (mod p). If q2 ≡ −1 does not

have a solution, then Z∗
p can be paired (perfectly matched) into (p− 1)/2 pairs, where the

product of each pair is congruent to −1. But (p− 1)/2 is even (p ≡ 1 (mod 4)), implying

(p−1)! ≡ 1 (mod p), contradicting Wilson’s theorem.

14.5 The LLL algorithm

Recall the intuition from the introductory section on basis reduction. We want

to transform a lattice basis into an equivalent one that is almost orthogonal. The

hope is that a shortest vector can be determined from such a basis more easily. For

a clear understanding of what almost orthogonal should mean we first recall the

Gram-Schmidt procedure.

Let U ⊆ Rn be a subspace of Rn and let v ∈ Rn. The projection of v onto the

orthogonal complement of U is a vector v∗ = v−h, where h ∈U and 〈v−h,u〉 = 0

for each u ∈U . If U = <x1, . . . ,xk> is the subspace generated by x1, . . . ,xk, then v−h

is also called the projection of v onto the orthogonal complement of x1, . . . ,xk.

The Gram-Schmidt procedure computes a set of vectors b∗1, . . . ,b
∗
n such that the

following conditions hold.

i) The vectors b1, . . . ,bk span the same subspace as b∗1, . . . ,b
∗
k for each k = 1, . . . ,n.

ii) The vectors b∗1, . . . ,b
∗
n are pairwise orthogonal.

The procedure is described below. It is easy to see that i) and ii) hold for B∗.

The Gram-Schmidt orthogonalization procedure decomposes the matrix B =
(b1, . . . ,bn) into

B = B∗ ·R (14.6)



14 Integer Programming and Algorithmic Geometry of Numbers 519

Fig. 14.4 The projection b∗2 of b2 onto to the orthogonal complement of the subspace generated by
b1.

b1

b2b∗2

Algorithm 14.2 Gram-Schmidt orthogonalization

Input: B = (b1, . . . ,bn) ∈ Rn×n nonsingular
Return: B∗ = (b∗1, . . . ,b

∗
n) ∈ Rn×n satisfying conditions i) and ii)

b∗1 ← b1

for j = 2, . . . ,k do

b∗j ← b j −∑
j−1
i=1 µ jib

∗
i , where µ ji = 〈b j,b

∗
i 〉/‖b∗i ‖

2

end for

where B∗ is a matrix with pairwise orthogonal columns b∗1, . . . ,b
∗
n and

R =




1 µ
. . .

0 1




is an upper triangular matrix with diagonal elements 1. The decomposition (14.6) is

the Gram-Schmidt orthogonalization (GSO) of B.

From the Gram-Schmidt orthogonalization procedure, we can also deduce the

so-called Hadamard bound. Notice that

det(B) = det(B∗ ·R) = det(B∗). (14.7)

Since det(B∗ ·B∗T ) = ‖b∗1‖
2 · · ·‖b∗n‖

2 and since det(B∗ ·B∗T ) = det(B∗)2 we con-

clude that

|det(B)| =
n

∏
i=1

‖b∗i ‖. (14.8)

Since we have ‖bi‖ > ‖b∗i ‖ for i = 1, . . . ,n we obtain the Hadamard bound

|det(B)| 6
n

∏
i=1

‖bi‖. (14.9)

We can use equation (14.9) now to measure how far a lattice basis B deviates

from being orthogonal. The orthogonality defect of the lattice basis B is the number

γ such that



520 Friedrich Eisenbrand

γ · |det(B)| =
n

∏
i=1

‖bi‖ (14.10)

holds. The columns of B are pairwise orthogonal if and only if γ = 1. With the

next theorem, we connect the computation of a shortest vector to this orthogonality

defect. It implies that a shortest vector can be found among (2 · γ +1)n candidates.

Theorem 14.13. Let B ∈ Qn×n be a lattice basis with orthogonality defect γ . A

shortest non-zero vector v ∈ Λ(B) is of the form

v =
n

∑
i=1

xi ·bi, with xi ∈ Z, −γ 6 xi 6 γ. (14.11)

Proof. Since ‖b j‖ > ‖b∗j‖ for j = 1, . . . ,n and since

‖b1‖· · ·‖bn‖ = γ · ‖b∗1‖· · ·‖b∗n‖,

we can conclude that

‖bn‖ 6 γ · ‖b∗n‖ (14.12)

holds. Consider now v = B · x in (14.11). Since B · x = B∗ ·R · x, where B∗ is the

Gram-Schmidt orthogonalization of B, and since the last component of R ·x is equal

to xn, we conclude that

‖B · x‖ > |xn| · ‖b∗n‖ > (|xn|/γ)‖bn‖. (14.13)

From this we can conclude that, if v is a shortest vector, then xn satisfies −γ 6 xn 6 γ .

The orthogonality defect is invariant under the permutation of columns of B.

Therefore each vector in the basis can play the role of being the last vector in the

above argument. This implies that each component xi in (14.11) satisfies −γ 6 xi 6 γ
which implies the assertion. ⊓⊔

This implies that the shortest vector problem can be solved in fixed dimension,

if we can compute a lattice basis B′ of Λ(B) whose orthogonality defect is bounded

by a constant, depending on the dimension only. Therefore we call a lattice basis

B ∈ Qn×n reduced if its orthogonality defect is bounded by a constant γn, depending

only on the dimension n.

The LLL-algorithm[55] is an algorithm which reduces a lattice basis in polyno-

mial time. The orthogonality defect of an LLL-reduced basis can be bounded by

2n(n−1)/4. Consequently, the shortest vector problem can be solved in time 2O(n3)

times a polynomial in the binary encoding length of the input.

Normalization

Let B = B∗ ·R be the GSO of B. If R would be the identity matrix, then B would

be B∗ and thus orthogonal. The first step of the LLL-algorithm is normalization:

One applies elementary column operations to transform the upper triangular matrix



14 Integer Programming and Algorithmic Geometry of Numbers 521

R into a matrix that is as close as possible to the identity matrix. Normalization is in

the literature also sometimes referred to as size reduction.

Let ri j be the j-th entry of the i-th row of R. By subtracting ⌊ri j⌉ times the i-

th column of R from the j-th column, the new entry r′i j at position i j will satisfy

−1/2 < r′i j 6 1/2. Notice that the entries in a row below the i-th row of R remain

unchanged. Thus working our way from the last to the first row, we obtain a basis

B′ = B∗ ·R′ with

−1/2 < r′i j 6 1/2, for 1 6 i < j 6 n. (14.14)

This procedure is called a normalization step.

Swapping

The LLL-algorithm iterates normalization and swapping steps. More precisely

it normalizes the basis and then searches for two consecutive basis elements which

should be swapped. This its continued, until a certain condition holds.

Algorithm 14.3 LLL algorithm

Repeat the following two steps, as long as there exists a j, 1 6 j 6 n−1 with

‖b∗j+1 + µ j+1, j b∗j‖
2 < 3/4‖b∗j‖

2 : (14.15)

Normalize B

Swap b j and b j+1

Notice that the condition (14.15) is invariant under normalization, since B∗ is left

untouched by the normalization procedure. Let us shed some light on the swapping

operation and on this condition (14.15) that has to hold when swapping is applied.

The vector b∗j+1 + µ j+1, j b∗j is the new j-th vector of B∗ after the swap because

b∗j+1 = b j+1 −
j

∑
i=1

µ j+1,ib
∗
i . (14.16)

Thus the vector b∗j+1 + µ j+1 j b∗j is the projection of b j+1 onto the orthogonal com-

plement of b1, . . . ,b j−1.

The condition (14.15) ensures that the norm of this new j-th column has de-

creased by a factor of 3/4 at least. Since the vectors b∗µ for µ 6= j, j + 1 remain the

same (see exercise 14.5.2), the only side effect is an increase of the norm of the

j +1-st column of B∗. The rest of the GSO remains unchanged.

More precisely, if the norm j-th column decreases by a factor of α then the j+1-

st column increases by a factor of 1/α since the product of the norms of the columns

of B∗ is equal to |det(B)| which is left invariant by a swap of columns in B.



522 Friedrich Eisenbrand

Analysis

The above observation allows us now to show that the algorithm runs in polyno-

mial time. The potential of a lattice basis B is defined as

φ(B) = ‖b∗1‖
2n‖b∗2‖

2(n−1)‖b∗3‖
2(n−2) · · ·‖b∗n‖

2. (14.17)

A normalization step does not change the potential, since B∗ remains unchanged.

How does a swap affect the potential? Let B′ be the basis after a swap operation,

where the j-th and j +1-st column are swapped. We have (see exercise 2)

φ(B)

φ(B′)
=

‖b∗j‖
2·(n− j+1)‖b∗j+1‖

2(n− j)

‖b′j
∗
‖2·(n− j+1)‖b′j+1

∗
‖2(n− j)

=
‖b∗j‖

2·(n− j)‖b∗j+1‖
2(n− j)

‖b′j
∗
‖2·(n− j)‖b′j+1

∗
‖2(n− j) ·

‖b∗j‖
2

‖b′j
∗
‖2

=
‖b∗j‖

2

‖b′j
∗
‖2

> 4
3 .

(14.18)

This shows that the potential drops at every iteration by at least 3/4. Next we show

that the potential of a lattice basis B ∈ Zn×n is an integer.

Let Bi be the matrix consisting of the first i columns of B. Then we have

det(BT
i ·Bi) = ‖b∗1‖

2 · · ·‖b∗i ‖
2 ∈ N. (14.19)

Consequently we have

φ(B) =
n

∏
i=1

det(BT
i ·Bi) ∈ N. (14.20)

This shows that the potential is bounded from below by 1 and the algorithm

terminates in O(logφ(B)) steps. Clearly φ(B) 6 det(B)2·n 6 (
√

nM)2·n2
, where M

is an upper bound on the absolute value of an entry in B.

We thus have the following theorem.

Theorem 14.14. The LLL-algorithm terminates in O(n2(logn+s)) iterations, where

s is the largest binary encoding length of a coefficient of B ∈ Zn×n.

In order to conclude that the LLL-algorithm runs in polynomial time, we also

have to bound the binary encoding length of the numbers which occur in the inter-

mediate steps of the algorithm. This is very important but a bit tedious and we don’t

do it here and refer, for example to [55]. We conclude with the following theorem.

Theorem 14.15. The LLL-algorithm runs in polynomial time in the input encoding

length of the initial lattice basis.



14 Integer Programming and Algorithmic Geometry of Numbers 523

Orthogonality defect and approximation of the shortest vector

The next theorem bounds the length of a shortest vector from below by means of

the GSO. Here, SV (Λ) denotes the length of a shortest nonzero vector of Λ .

Theorem 14.16. Let B be a lattice basis and let B∗ = (b∗1, . . . ,b
∗
n) be its Gram-

Schmidt orthogonalization, then SV (Λ(B)) > mini=1,...,n ‖b∗i ‖2.

Proof. Let 0 6= v ∈ Λ , then v = Bx and let k 6 n be the largest index with xk 6= 0.

With B = B∗ ·R we have

v = B∗ ·R · x

= xk b∗k +
k−1

∑
i=1

λi b∗i , for some λi ∈ R.

This implies ‖v‖ > |xk|‖b∗k‖ and the theorem follows. ⊓⊔

With this lower bound, we can show that the first vector of an LLL-reduced basis

is an approximation of the shortest vector, which is exponential in the dimension

only.

Upon termination of the LLL-algorithm we have that each µ2
j+1, j 6 1/4. Since

also ‖b∗j+1 + µ j+1, j b∗j‖
2 > 3/4‖b∗j‖

2 and since ‖b∗j+1 + µ j+1, j b∗j‖
2 = ‖b∗j+1‖

2 +

µ2
j+1, j‖b∗j‖

2 we have

‖b∗j+1‖
2 > 1/2‖b∗j‖

2 (14.21)

for each j = 1, . . . ,n−1. Thus it follows by induction that

‖b∗j‖
2 > 2i− j‖b∗i ‖

2, for 1 6 i < j 6 n. (14.22)

From this we can conclude that

‖b1‖
2 = ‖b∗1‖

2 6 2n−1SV (Λ(B)). (14.23)

Also since

b j = b∗j +
j−1

∑
i=1

µ jib
∗
i (14.24)

and since each µ ji has absolute value less that 1/2 we have

‖b j‖
2 6 ‖b∗j‖

2 +1/4
j−1

∑
i=1

‖b∗i ‖ (14.25)

and by applying (14.22) we obtain

‖b j‖
2 6 ‖b∗j‖

2(1+1/4
j−1

∑
i=1

2 j−i) 6 2 j−1‖b∗j‖
2. (14.26)

This implies the following for the orthogonality defect



524 Friedrich Eisenbrand

‖b1‖· · ·‖bn‖ 6 2n(n−1)/4‖b∗1‖· · ·‖b∗n‖ = 2n(n−1)/4|det(B)|. (14.27)

Together with Theorem 14.13 we thus have the next theorem.

Theorem 14.17. A shortest vector of an integral lattice can be computed in time

2O(n3) times a polynomial in the length of the input encoding.

Notes

The LLL-algorithm requires O(n5 logB) arithmetic operations on rational num-

bers of size O(n + logB). Here B is an upper bound on the norm of the basis vec-

tors. Schnorr [72] presented an floating-point variant of the LLL algorithm which

requires O(n4 logB) arithmetic operations on rationals of size O(n + logB). Im-

provements on the algorithm itself and its analysis were given by Kaltofen [40]

and Storjohann [78] among others. Using naive arithmetic, the analysis of the LLL-

algorithm presented here amounts to a bit-complexity of O(n4 logB(n + logB)2).
Recently, Nguyen and Stehlé [63] have presented a floating-point variant of the

LLL-algorithm which requires O(n5(n + logB) logB) bit-operations. In fixed di-

mension, this matches the bit-complexity of the Euclidean algorithm. The great-

est common divisor of two s-bit integers can be computed with O(M(s) logs) bit-

operations [73], where M(s) is the number of bit-operations, which are required

for the multiplication of two s-bit numbers. For a long time, the fastest method

for integer multiplication was the one by Schönhage and Strassen [74], requiring

O(s logs log logs) bit-operations. Martin Fürer [26] improved this complexity re-

cently to O(s logs · 2O(log∗ s)). It is an interesting open problem, whether a short-

est vector in fixed dimension can be computed with O(M(s) logs) bit-operations.

Eisenbrand and Rote [20] showed that one can compute a shortest vector in fixed di-

mension n using O(M(s) logn−1 s) bit-operations. Recently Gama and Nguyen [27]

proved that using a shortest vector oracle in dimension k, one can compute a

((1+ ε)γk)
(n−k)/(k−1) approximation of the shortest vector, where γk is the so-called

Hermite constant.

Exercises

1. Prove that ‖bi‖ > ‖b∗i ‖ holds for each i = 1, . . . ,n for the GSO of B.

2. Let

B = (b1, . . . ,bi−1,bi,bi+1,bi+2, . . . ,bn)

and

C = (b1, . . . ,bi−1,bi+1,bi,bi+2, . . . ,bn)

be two lattice bases. Notice that C originates from B via swapping the i-th and

i+1-st column. Prove that B∗ and C∗ only differ in the i-th and i+1-st column.

Show further that ‖b∗i ‖ · ‖b∗i+1‖ = ‖c∗i ‖ · ‖c∗i+1‖ holds.



14 Integer Programming and Algorithmic Geometry of Numbers 525

3. Let B ∈ Rn×n be a matrix. Prove that |det(B)| 6 (
√

nM)n, where M is an upper

bound on the absolute values of the entries in B. Hint: Hadamard bound!

4. Estimate the total number of arithmetic operations which are performed by the

LLL-algorithm in terms of φ(B).
5. Let α be a fixed constant and let Λ = Λ(A), A ∈ Qn×n be a rational lattice in

fixed dimension n.

a) Prove that one can enumerate all vectors v ∈ Λ(A) with ‖v‖ 6 α ·SV (Λ) in

polynomial time.

b) Let ‖ · ‖ be any fixed norm. Show that a shortest vector of Λ w.r.t. ‖ · ‖ can

be computed in polynomial time, if ‖v‖ can be evaluated in polynomial time

in the binary input encoding of v for any v ∈ Λ .

14.6 Kannan’s shortest vector algorithm

As we have mentioned above, one can compute a shortest vector of a lattice that

is represented by a LLL-reduced basis b1, . . . ,bn in 2O(n3) steps via enumerating

the candidates ∑n
j=1 λ j b j, where |λ j| 6 2n(n−1)/4 and choosing the shortest nonzero

vector from this set.

Kannan [42, 43] provided an algorithm for the shortest vector problem, whose

dependence on the dimension is 2O(n logn). Helfrich [36] improved Kannan’s algo-

rithm. Recently, Ajtai, Kumar and Sivakumar [3] presented a randomized algorithm

for the shortest vector problem, with an expected dependence of 2O(n) which is the

subject of the next section. In this section, we describe Kannan’s algorithm.

Korkine-Zolotareff reduction

A lattice basis b1, . . . ,bn is Korkine-Zolotareff reduced, or K-Z reduced for short,

if the following conditions hold.

i) The vector b1 is a shortest vector of the lattice generated by b1, . . . ,bn.

ii) The numbers µ jk in the Gram-Schmidt orthogonalization of b1, . . . ,bn satisfy

|µ jk| 6 1/2.

iii) If b′2, . . . ,b
′
n denote the projections of b2, . . . ,bn onto the orthogonal comple-

ment of the space generated by b1, then b′2, . . . ,b
′
n is Korkine-Zolotareff re-

duced.

A two-dimensional lattice basis that is K-Z reduced is also called Gauß reduced,

see [29]. The algorithm of Kannan computes a Korkine-Zolotareff reduced basis in

dimension n by first computing a partially Korkine-Zolotareff reduced lattice basis,

from which a shortest vector is among 2O(n logn) candidates. The basis is partially

Korkine-Zolotareff reduced with the help of an algorithm for Korkine-Zolotareff

reduction in dimension n−1.



526 Friedrich Eisenbrand

With a shortest vector at hand, one can then compute a fully K-Z reduced basis

by K-Z reducing the projection along the orthogonal complement of this shortest

vector. A lattice basis b1, . . . ,bn is partially Korkine-Zolotareff reduced or partially

K-Z reduced for short, if it satisfies the following properties.

1. If b′2, . . . ,b
′
n denotes the projection of b2, . . . ,bn onto the orthogonal complement

of the space generated by b1, then b′2, . . . ,b
′
n is Korkine-Zolotareff reduced.

2. The numbers µ jk in the Gram-Schmidt orthogonalization of b1, . . . ,bn satisfy

|µ jk| 6 1/2.

3. ‖b′2‖ > 1/2‖b1‖.

Notice that, once Conditions 1 and 3 hold, Condition 2 can be satisfied via a

normalization step. Normalization does not destroy Conditions 1 and 3. Condition 1

can be satisfied by applying Kannan’s algorithm for full K-Z reduction to b′2, . . . ,b
′
n,

and applying the transformation to the original vectors b2, . . . ,bn. Then if Condi-

tion 3 is not satisfied, then Helfrich [36] has proposed to replace b1 and b2 with the

Gauß-reduction of this pair, or equivalently its K-Z reduction. Clearly, if b1,b2 is

Gauß-reduced, which means that ‖b1‖ 6 ‖b2‖ and the angle enclosed by b1 and b2

is at least 60◦ and at most 120◦, then Condition 3 holds.

The following algorithm computes a partially K-Z reduced basis from a given

input basis b1, . . . ,bn. It uses as a subroutine an algorithm to K-Z reduce the lattice

basis b′2, . . . ,b
′
n.

Algorithm 14.4 Partial K-Z reduction

1. Apply the LLL-algorithm to b1, . . . ,bn.
2. K-Z reduce b′2, . . . ,b

′
n and apply the corresponding transformation to b2, . . . ,bn.

3. Perform normalization step on b1, . . . ,bn.
4. If ‖b′2‖ < 1/2‖b1‖, then replace b1,b2 by its Gauß reduction and go to Step 2.

We show in a moment that we can extract a shortest vector from a partially K-

Z reduced basis in 2O(n logn) steps, but before, we analyze the running time of the

algorithm.

Theorem 14.18 ([36]). Step 4 of Algorithm 14.4 is executed at most logn+6 times.

Proof. Let v be a shortest vector and let b1, . . . ,bn be the lattice basis immediately

before Step 4 of Algorithm 14.4 and let b′2, . . . ,b
′
n denote the projection of b2, . . . ,bn

onto the orthogonal complement of b1.

If Step 4 is executed, then v is not equal to b1. Then clearly, the projection of v

onto the orthogonal complement of b1 is nonzero. Since b′2, . . . ,b
′
n is K-Z reduced

it follows that ‖v‖ > ‖b′2‖ holds. Denote the Gauß reduction of b1,b2 by b̃1, b̃2. The

determinant of Λ(b1,b2) is equal to ‖b1‖‖b′2‖. After the Gauß reduction in Step 4,

we have therefore



14 Integer Programming and Algorithmic Geometry of Numbers 527

‖b̃1‖ 6 2
√
‖b1‖‖b′2‖ (14.28)

6 2
√

‖b1‖‖v‖. (14.29)

Dividing this inequality by ‖v‖ gives

‖b̃1‖

‖v‖
6 2

√
‖b1‖

‖v‖
.

Thus, if b
(i)
1 denotes the first basis vector after the i-th execution of Step 4, one has

‖b
(i)
1 ‖

‖v‖
6 4

(
‖b

(0)
1 ‖

‖v‖

)(1/2)i

. (14.30)

Since we start with a LLL-reduced basis, we know that ‖b
(0)
1 ‖/‖v‖6 2(n−1)/2 holds,

and consequently that ‖b
(logn)
1 ‖/‖v‖6 8. Each further Gauß reduction decreases the

length of the first basis vector by at least 3/4. Therefore the number of runs through

Step 4 is bounded by logn+6. ⊓⊔

Extracting a shortest vector

We now argue that with such a partially K-Z reduced basis b1, . . . ,bn at hand, one

only needs to check nO(n) candidates for the shortest vector. Let v = ∑n
j=1 λ jb j be a

shortest vector. After rewriting each b j in terms of the Gram-Schmidt orthogonal-

ization one obtains

v =
n

∑
j=1

j

∑
k=1

(λ jµ jkb∗k)

=
n

∑
k=1

(
n

∑
j=k

λ jµ jk)b
∗
k ,

where the µ jk are as in Algorithm 14.2.

The length of v satisfies

‖v‖2 =
n

∑
k=1

(
n

∑
j=k

(λ jµ jk))
2‖b∗k‖

2. (14.31)

Consider the coefficient cn = |λnµnn| = |λn| of ‖b∗n‖ in (14.31). We can bound

this absolute value by |λn|6 ‖v‖/‖b∗n‖6 ‖b1‖/‖b∗n‖. This leaves us 1+2‖b1‖/‖b∗n‖

possibilities for λn. Suppose now that we picked λn, . . . ,λ j+1 and inspect the coeffi-

cient c j of ‖b∗j‖ in (14.31), which is



528 Friedrich Eisenbrand

c j = |
n

∑
k= j

(λkµk j)|

= |λ j +
n

∑
k= j+1

(λkµk j)|.

Since the inequality c j 6 ‖b1‖/‖b∗j‖ must hold, this leaves only 1 + 2‖b1‖/‖b∗j‖

possibilities to pick λ j. Thus by choosing the coefficients λn, . . . ,λ1 in this order,

one has at most ∏n
j=1(1+2‖b1‖/‖b∗j‖) candidates.

Suppose ‖b∗j‖ > ‖b1‖ for some j. Then b j can never have a nonzero coefficient

λ j in a shortest vector representation v = ∑n
j=1 λ jb j. Because in that case, v has a

nonzero component in its projection to the orthogonal complement of b1R+ . . .+
bi−1R and since b′2, . . . ,b

′
n is K-Z reduced, this implies that ‖v‖ > ‖b∗j‖ > ‖b1‖,

which is impossible. Thus we can assume that ‖b∗j‖6 ‖b1‖ holds for all j = 1, . . . ,n.

Otherwise, b j can be discarded. Therefore the number of candidates N for the tuples

(λ1, . . . ,λn) satisfies

N 6
n

∏
j=1

(1+2‖b1‖/‖b∗j‖)

6
n

∏
j=1

(3‖b1‖/‖b∗j‖)

= 3n ‖b1‖
n/det(Λ).

Next we give an upper bound for ‖b1‖. If b1 is a shortest vector, then Minkowski’s

theorem, (Theorem 14.11) guarantees that ‖b1‖ 6
√

n det(Λ)1/n holds. If b1 is not

a shortest vector, then the shortest vector v has a nonzero projection onto the or-

thogonal complement of b1 R. Since b′2, . . . ,b
′
n is K-Z reduced, this implies that

‖v‖ > ‖b′2‖ > 1/2‖b1‖, since the basis is partially K-Z reduced. In any case we

have ‖b1‖ 6 2
√

n det(Λ)1/n and thus that N 6 6n nn/2.

Now it is clear how to compute a K-Z reduced basis and thus a shortest vector.

With an algorithm for K-Z reduction in dimension n− 1, one uses Algorithm 14.4

to partially K-Z reduce the basis and then one checks all possible candidates for

a shortest vector. Then one performs K-Z reduction on the basis for the projection

onto the orthogonal complement of the shortest vector. Kannan [43] has shown that

this procedure for K-Z reduction requires nO(n) ϕ operations, where ϕ is the binary

encoding length of the initial basis and where the operands during the execution of

the algorithm have at most O(n2ϕ) bits.

Theorem 14.19 ([43]). Let B be a lattice basis of binary encoding length ϕ . There

exists an algorithm which computes a K-Z reduced basis and requires nO(n) · p(ϕ)
arithmetic operations on rationals of size O(n2ϕ), where p(·) is a fixed polynomial.



14 Integer Programming and Algorithmic Geometry of Numbers 529

Notes

Kannan [44] also developed an algorithm for the closest vector problem whose

running time is 2O(n logn) times a polynomial in the encoding length of the input.

Here, one is given a rational vector x ∈ Qn and a lattice Λ ⊆ Qn. The task is to

compute a lattice point v ∈Λ which is closest to x, i.e., minimizing ‖v−x‖. Kannan

also showed that the integer programming feasibility problem can be solved within

this complexity bound. Furthermore he showed that one can compute an approxi-

mate solution of the closest vector problem with a polynomial number of queries

to an oracle which solves the shortest vector problem of an n + 1-dimensional lat-

tice. Blömer [9] showed that there exists an algorithm for the closest vector prob-

lem which runs in time n! times a polynomial in the input encoding length. This

means an exponential improvement over Kannan’s algorithm [44] and its subse-

quent improvement by Helfrich [36]. Hanrot and Stehlé [33] improved this further

to n0.5·n+o(n) and showed that the shortest vector problem can be solved in time

n0.184·n+o(n) times a polynomial in the input length. Stehlé and Pujol [66] improve

the arithmetic complexity of Kannan’s algorithm.

Exercises

1. Prove that a 2-dimensional lattice basis is Gauß reduced if and only if it is LLL-

reduced.

2. Prove that the shortest vector can be extracted in time 2O(n2) out of a LLL-

reduced basis by adapting the arguments given in this section.

14.7 A randomized simply exponential algorithm for shortest

vector

Ajtai, Kumar and Sivakumar [3] described a randomized method which outputs

a shortest vector of a lattice with very high probability and has running time 2O(n)

times a polynomial in the binary input encoding length of the lattice basis. We follow

the description of their algorithm in Oded Regev’s excellent lecture notes [68]. At

first sight, the algorithm is quite different from the shortest-vector algorithms that

are based on reduction and candidate-trial, as Kannan’s algorithm.

Our task is to compute the shortest vector of a lattice Λ(B), for a nonsingular

B ∈ Qn×n. We can assume that 2 6 SV (Λ) < 3 holds, see exercise 14.7.1. The idea

is to sample points in Rn and to translate these samples into lattice points. How is

this translation done? A point x ∈ Rn can be represented as a linear combination of

the basis vectors

x =
n

∑
i=1

λibi, (14.32)



530 Friedrich Eisenbrand

for some λi ∈ R. If we round all λi down, we obtain a lattice point

n

∑
i=1

⌊λi⌋ ·bi ∈ Λ(B). (14.33)

x

(2,0)

(3,2)

remB(x)

Fig. 14.5 The remainder of a point w.r.t. a basis B.

The remainder of x modulo the basis B is the vector

remB(x) =
n

∑
i=1

(λi −⌊λi⌋)bi.

The lattice point in (14.33) is x− remB(x) and we associate it to x. Clearly one has

remB(x) = remB(x+ v) (14.34)

for each v ∈ Λ(B).

Sieving

What we discussed above suggests the following approach. We sample a number

of points x1, . . . ,xk uniformly at random from B2(0), the ball of radius 2 around 0,

and compute their remainders yi = remB(xi). The norms of these remainders are

bounded by R = ∑n
i=1 ‖bi‖.

If we sample enough points (and the next lemma provides a bound on k), then

there will be two such sampled points xi,x j such that their remainders yi and y j

have distance at most R/2. The length of the lattice vector xi − yi − (x j − y j) is then

bounded by R/2+4.

Lemma 14.3 (Sieving Lemma). Let y1, . . . ,yk ∈ Rn be points contained in the ball

BR(0). There is a polynomial algorithm that computes a mapping τ : {1, . . . ,k} →
{1, . . . ,k} with the following properties:



14 Integer Programming and Algorithmic Geometry of Numbers 531

i) The cardinality of the image of τ is bounded by 5n.

ii) For each i = 1, . . . ,k one has ‖yi − yτ(i)‖ 6 R/2.

In other words, we can identify 6 5n centers among the y1, . . . ,yk such that the balls

of radius R/2 around these centers cover all of the remaining yi. The mapping τ
associates the yi to a center of a ball that contains yi.

Proof (of Lemma 14.3). We describe the simple procedure. In the beginning, all

points are colored black. We iterate the following steps until there are no black

points left: Choose any black point yi and define τ( j) = i, for each j such that y j is

black and ‖yi − y j‖ 6 R/2 holds. Color all points at distance at most R/2 from yi

red.

Call the points yi with τ(i) = i centers. The number of centers is the size of the

image of τ . Two centers have distance at least R/2 from each other. This means that

the balls of radius R/4 around the centers do not intersect. On the other hand, these

balls all fit into the ball of radius R + R/4. This implies that the number of centers

is bounded by

vol(B5·R/4(0))/vol((BR/4(0)) = 5n,

and the assertion follows. ⊓⊔

The randomized algorithm for shortest vector

The sieving lemma provides a procedure to generate lattice vectors whose length

is roughly R/2. This idea is now iterated in the random sampling algorithm for

shortest vector.

Algorithm 14.5 Randomized algorithm for shortest vector

1. R0 ← ∑n
i=1 ‖bi‖

Choose N = 28n logR0 points x1, . . . ,xN uniformly at random from B2(0)
Initialize a set of tuples L = {(xi,yi) : yi = remB(xi), i = 1, . . . ,N}

R ← R0

2. While R > 6 do

Apply the sieving algorithm to the vectors yi for each (xi,yi) ∈ L

Remove from L all tuples (xi,yi), where yi is a center of the sieving procedure
Replace each of the remaining (x j,y j) with (x j,y j − (yτ( j) − xτ( j)))
R ← R/2+2.

3. For any two pairs (xi,yi), (x j,y j) in L compute the difference xi − yi − (x j − y j) and output
the shortest nonzero vector among these differences

Lemma 14.4. At the beginning of each iteration of the while loop one has for each

(xi,yi) ∈ L

i) xi − yi ∈ Λ(B)
ii) ‖yi‖ 6 R.



532 Friedrich Eisenbrand

Proof. At the beginning of the first iteration, these invariants hold, as we discussed

above.

We now show that these conditions hold after the instructions of the while-loop

have been executed, if they were true at the beginning of that iteration. We only

need to consider a tuple (x j,y j), where y j is not a center in the sieving procedure.

Let yi be the center of y j, i.e., τ( j) = i. Since x j − y j ∈ Λ(B) and xi − yi ∈ Λ(B) we

conclude that x j − y j − (xi − yi) ∈ Λ(B), which implies condition i).

Since yi is the center of y j we have ‖y j − yi‖ 6 R/2. From this we conclude

‖y j − (yi − xi)‖ 6 ‖y j − yi‖+‖xi‖ 6 R/2+2.

⊓⊔

Lemma 14.4 and Exercise 14.7.4 imply that the algorithm runs in time 2O(n)

times a polynomial in the input encoding of the lattice basis B. Furthermore, at the

end of the algorithm, there are at least

28n logR0 −5n logR0 > 27n logR0 (14.35)

tuples (xi,yi) in L. The lattice vectors xi − yi are short, i.e., ‖xi − yi‖ 6 2 + 6 = 8.

But how can we be sure that they are not all zero? Exercise 3 shows that, even when

L is initialized, roughly half of these lattice vectors could be zero.

It turns out that the following observation that follows from (14.34) is crucial.

Consider a tuple (xi,yi) in L before Step 3 of the algorithm. The algorithm would behave
just the same until this point if xi was replaced by xi + vi after the initialization (Step 1),
where vi ∈ Λ(B) is an arbitrary lattice vector.

When do we have to really know a point xi and not just yi = remB(xi)? The value of

xi is needed only when yi was a center of the sieving procedure and tuples (x j,y j)
are replaced by (x j,y j − (yi − xi)). Now we shed some light on why we sample the

points x1, . . . ,xN from B2(0) and not from a ball of other radius. This is connected

to the fact that 2 6 SV (Λ(B)) < 3 and this crucial observation from above.

Let v ∈ Λ(B) be a shortest vector. Consider the set C1 = B2(0)∩B2(v) and the

set C2 = B2(0)∩B2(−v).

−v v0
C2 C1

Fig. 14.6 The sets C1 and C2.



14 Integer Programming and Algorithmic Geometry of Numbers 533

The mapping

f (x) =





x− v, if x ∈C1

x+ v, if x ∈C2

x, if x ∈ B2(0)\(C1 ∪C2)

(14.36)

is a bijection of B2(0) which maps C1 to C2 and vice-versa. A point x ∈ B2(0) which

is chosen uniformly at random, remains to be chosen uniformly at random after we

toss a fair coin and map x to f (x) in the case that the coin shows heads.

This shows, together with the observation above, that we could, just before we

enter Step 3 of the algorithm, toss a fair coin for each xi with (xi,yi) ∈ L and replace

xi by f (xi) if the coin shows head.

The next theorem implies that a shortest vector of Λ(B) is returned with high

probability.

Theorem 14.20. At the end of Step 2 there exists with high probability a subset

L′ ⊆ L of size 2n which satisfies the following conditions

a) xi − yi = x j − y j for each (xi,yi),(x j,y j) ∈ L′.

b) xi ∈C1 ∪C2 for each (xi,yi) ∈ L′.

Before we prove the theorem we derive the main result of this section.

Theorem 14.21. The random sampling algorithm outputs a shortest vector with

high probability.

Proof. Consider the set L′ from Theorem 14.20. For each (xi,yi)∈ L′, we toss a coin

and replace xi with f (xi) if the coin shows head. If we consider a difference

xi − yi − (x j − y j), where (xi,yi) 6= (x j,y j) ∈ L′

then the probability that this difference becomes ±v is exactly 1/2. (One coin shows

head and coin shows tail). Since the cardinality of L′ is 2n with high probability, the

algorithm will output a shortest vector of Λ(B). ⊓⊔

We now prove Theorem 14.20. Recall that the set L contains at least 27·n tuples at

the end of Step 2. The next lemma shows that the expected amount of these tuples,

whose first component belongs to C1 ∪C2 is at least 25·n+1.

Lemma 14.5. Consider the sets C1 and C2 described above. One has

vol(C1)/vol(B2(0)) = vol(C2)/vol(B2(0)) > 2−2n. (14.37)

Lemma 14.5 shows that the expected number of tuples (xi,yi) with xi ∈ C1 ∩C2

is 26n+1 logR0. The probability that this number of tuples is smaller than 26n logR0

at the end of Step 1 is exponentially small.

Since we delete in each iteration 5n tuples and perform at most logR0 many

iterations, L contains at the end of Step 2, 25n tuples (xi,yi) with xi ∈ C1 ∪C2 with

high probability. Notice that at this point, a difference xi − yi is a vector, whose

length is bounded by 8.



534 Friedrich Eisenbrand

Lemma 14.6.

|Λ(B)∩B8(0)| 6 24n. (14.38)

Lemma 14.6 and the previous discussion show that there exists a lattice vector

w ∈ Λ(B) such that xi − yi = w and xi ∈C1 ∪C2 for at least 2n of these tuples. This

shows Theorem 14.20.

Notes

Ajtai et al. [4] also showed that there is a randomized algorithm to compute

K-Z reduced bases in time 2O(n). Together with the block-reduction algorithm of

Schnorr [72], this implies the existence of a randomized polynomial time approxi-

mation algorithm for shortest vector, with an approximation factor of 2n log logn/ logn.

Schnorr [72] previously showed that one approximate the shortest vector within a

factor of 2n log log2 n/ logn.

We did not mention how the sampling of points in B2(0) is done. A more general

procedure for this task (sampling in convex bodies) was presented by Dyer, Kannan

and Frieze [16]. Here the authors show how to sample points whose statistical dis-

tance to the uniform distribution is exponentially small. This serves the purpose of

algorithm 14.5, see also exercise 7.

Blömer and Naewe [10] modified the sampling procedure described above to

compute shortest vectors which are outside a given subspace. Under some length

conditions on the target vector, they achieve a simply exponential algorithm for

closest vector.

The shortest vector problem is also very interesting from the viewpoint of com-

putational complexity. Van Emde Boas [22] proved that the shortest vector problem

with respect to the ℓ∞ norm is NP-hard, and he conjectured that it is NP-hard with

respect to the Euclidean norm. In the same paper he proved that the closest vector

problem is NP-hard for any ℓp norm. Ajtai [2] proved that the shortest vector prob-

lem with respect to the ℓ2-norm is NP-hard for randomized problem reductions. This

means that the reduction makes use of results of a probabilistic algorithm. Ajtai also

showed that approximating the length of a shortest vector in a given lattice within

a factor 1 + 1/2nc
is NP-hard for some constant c. The non-approximability factor

was improved to (1 + 1/nε) by Cai and Nerurkar [12]. Micciancio [60] improved

this factor substantially by showing that it is NP-hard to approximate the shortest

vector in a given lattice within any constant factor less that
√

2 for randomized prob-

lem reductions, and that the same result holds for deterministic problem reductions

(the “normal” type of reductions used in an NP-hardness proof) under the condition

that a certain number theoretic conjecture holds. Goldreich and Goldwasser [30]

proved that it is not NP-hard to approximate the shortest vector, or the closest vec-

tor, within a factor
√

n unless the polynomial-time hierarchy collapses. Dinur [15]

showed that it is NP-hard to approximate shortest vectors w.r.t. ℓ∞ within almost

polynomial factors. Khot [50] showed that the shortest vector problem w.r.t. the ℓp-

norm is hard to approximate within any constant if p > 1. Using norm-embeddings



14 Integer Programming and Algorithmic Geometry of Numbers 535

and a reduction to the ℓ2 norm, Regev and Rosen [69] showed that this also holds

for p = 1 and p = ∞. The currently strongest inapproximability result for shortest

vector is due to Haviv and Regev [34].

Exercises

1. Justify the assumption 2 6 SV (Λ) 6 3. Hint: Suppose that B ∈ Zn×n and con-

sider the lattices Λ
(
(3/2)i/‖b1‖ ·B

)
.

2. Show that ‖remB(x)‖ is bounded by ∑n
i=1 ‖bi‖.

3. Suppose that x is chosen uniformly at random from B2(0). Show that the prob-

ability that

x− remB(x) = 0 (14.39)

holds, is at most 1/2. For each fixed n, provide a family of lattice bases Bn
k with

2 6 SV (Λ(Bn
k)) < 3 such that the probability for the event (14.39) tends to 1/2

for k → ∞.

4. Prove that the number of iterations through the while loop of algorithm 14.5 is

bounded by logR0 −1.

5. Prove Lemma 14.5.

6. Prove Lemma 14.6. Hint: Packing argument!

7. How many bits does one have to know of each sampled point xi in Algo-

rithm 14.5? Show that the number of bits which are necessary to represent the

numbers in the intermediate steps of Algorithm 14.5 is polynomial in the input

encoding of the lattice basis.

8*. A prominent research question is the one whether there exists a deterministic

algorithm for shortest vector with running time 2O(n) times a polynomial in the

input encoding.

9*. Is there a (randomized) 2O(n)-algorithm which computes a shortest nonnegative

lattice vector, i.e., a v ∈ Λ −{0} with v > 0 and ‖v‖ minimal?

14.8 Integer programming in fixed dimension

In this section, we will describe Lenstra’s algorithm [56] which solves the fol-

lowing integer feasibility problem.

Given A ∈ Zm×n and b ∈ Zm, decide whether there exists an integer point that satisfies the
inequality system Ax 6 b.

The algorithm runs in polynomial time if the dimension n is fixed. The integer fea-

sibility problem is in NP [11]. In other words, if there exists an integer solution of

Ax 6 b, then there exists one, whose size is polynomial in the size of the largest

absolute value of a coefficient of the system Ax 6 b and n, see, e.g., [75].

We start with the flatness theorem, which is the key concept of any polynomial

time algorithm for integer programming in fixed dimension. The flatness theorem



536 Friedrich Eisenbrand

shows that the feasibility problem can be decided with a variant of branch-and-

bound and in particular that the feasibility problem can be solved in polynomial

time, if the dimension n is fixed.

Let K ⊆ Rn be a nonempty closed subset of Rn and let d ∈ Rn be a vector. The

width of K along d is the number

wd(K) = max{dT x : x ∈ K}−min{dT x : x ∈ K}.

If the maximum or minimum does not exist, then wd(K) is defined to be infinity.

Suppose now that K ⊆ Rn is a convex body which does not contain an integer

point. The flatness theorem, attributed to Khinchin 1948, ensures that there exists a

nonzero integer vector d ∈ Zn such that wd(K) is bounded by a constant. The width

of P is defined as

w(P) = min
d∈Zn\{0}

wd(P).

A d ∈ Zn \{0} which minimizes wd(P) is called a flat direction of P.

Theorem 14.22 (Khinchine’s flatness theorem [49]). Let K ⊆ Rn be a convex

body. Either K contains an integer point, or w(K) 6 ω(n), where ω(n) is a con-

stant depending on the dimension only.

d

P

Fig. 14.7 Branching on a flat direction. The vector d 6= 0 is integral and the grey lines represent
the lines dT x = δ where δ ∈ Z and maxx∈P dT x > δ > minx∈P dT x. The feasibility of P can be
checked by checking the feasibility of the five 1-dimensional polytopes which are obtained from
the intersection of P with the gray lines.

If wd(P) > ω(n) for a flat direction d of P, then the flatness theorem guarantees

the existence of an integer point in P. If, on the other hand, wd(P) 6 ω(n), then an



14 Integer Programming and Algorithmic Geometry of Numbers 537

integer point x∗ ∈ P∩Zn must lie on one of the constant number of hyperplanes

cT x = δ , where δ ∈ Z, and min{cT x : x ∈ P} 6 δ 6 max{cT x : x ∈ P}.

Later on in this section, we prove the flatness theorem. If the reader has understood

how the flatness theorem is proved, he can also solve exercises 6 and 7. These exer-

cises ask you to prove that the width and a flat direction of a rational polyhedron in

fixed dimension can be computed in polynomial time.

Algorithm 14.6 Lenstra’s algorithm

Input: A ∈ Zm×n and b ∈ Zm with P = {x ∈ Rn : Ax 6 b} full-dimensional
Return: ”Yes” if P is integer feasible and ”No” otherwise.

Compute w(P) and a flat direction d of P

if w(P) > ω(n) then

return ”Yes”
end if

for δ = ⌈minx∈P dT x⌉, . . . ,⌊maxx∈P dT x⌋ do

Compute C ∈ Zm×(n−1) and f ∈ Zm such that Cx 6 f is integer feasible if and only if Ax 6

b, dT x = δ is integer feasible (See exercise 2)
Recursively solve the integer feasibility problem for Cx 6 f

end for

Exercises 2, 6 and 7 show that Lenstra’s algorithm runs in polynomial time in the

input encoding length.

Theorem 14.23. Lenstra’s algorithm runs in polynomial time in the input encoding

length if the dimension is fixed.

Proving the flatness theorem

Let us first discuss how to compute a flat direction of an ellipsoid. An ellipsoid

is the image f (Bn) of the n-dimensional unit ball Bn = {x ∈ Rn : ‖x‖ 6 1} under an

affine map f (x) = A−1 x+a, where A ∈Rn×n is a non-singular matrix, and a ∈Rn is

a vector. This ellipsoid can also be described as E(A,a) = {x∈Rn : ‖A(x−a) ‖6 1}.

Consider now an ellipsoid E(A,a) and a direction d ∈ Zn \{0}. We first want to

compute the width of E(A,a) along d and the discuss how to find an integral vector

d 6= 0 along which the width is minimal.

Since the width is invariant under translation, we can assume that a = 0 holds.

The width of E(A,0) along d is

max
x1,x2∈E(A,0)

dT (x1 − x2). (14.40)

We have dT x1 − dT x2 = dT A−1(Ax1 −Ax2) and Ax1 and Ax2 are contained in the

unit ball if and only if x1,x2 ∈ E(A,0). Consequently (14.40) is simply 2 · ‖dT A−1‖.



538 Friedrich Eisenbrand

Keep in mind that we want to compute a flat direction of E(A,0) or, in other

words, that we are interested in an integral d such that 2 · ‖dT A−1‖ is as small as

possible. This is a shortest vector problem in the lattice Λ(A−1T
).

The dual lattice Λ ∗ of a lattice Λ ⊆ Rn is defined as

Λ ∗ = {x ∈ Rn : xT y ∈ Z for all y ∈ Λ}.

Exercise 5 shows that Λ ∗(A) = Λ(A−1T
) holds. Our discussion above implies the

following theorem.

Theorem 14.24. A nonzero vector d ∈ Zn is a flat direction of the ellipsoid E(A,a)

if and only if A−1T
d is a shortest nonzero vector of Λ ∗(A). A flat direction of an

ellipsoid can be computed in polynomial time in fixed dimension. If the dimension

is varying, one can compute an integer vector d ∈ Zn \{0} in polynomial time such

that wd(E(A,a)) 6 2n−1w(E(A,a)) holds.

The covering radius µ(Λ) of a lattice Λ ∈ Rn is the smallest number α such

that the balls of radius α centered at the lattice points cover Rn. Alternatively, the

covering radius is the largest distance of a point x ∈ Rn to the lattice Λ .

The packing radius ρ(Λ) of Λ is the largest number β such that the balls of ra-

dius β around the lattice points do not properly intersect. Alternatively, the packing

radius is SV (Λ)/2.

We are now very close to proving the flatness theorem for ellipsoids. What if

E(A,a) does not contain an integer point? Inspecting the definition of E(A,a) =
{x ∈ Rn : ‖A(x−a)‖ 6 1} we see that this is the case if and only if the distance of

Aa to the lattice Λ(A) is larger than 1, i.e., µ(Λ(A)) > 1. If we can now infer from

this that the packing radius of Λ ∗(A) is bounded by a constant, depending only on

the dimension, we are done, since the width of E(A,a) is exactly 2 · SV (Λ ∗(A)) =
4 ·ρ(Λ ∗(A)). This is established in the next theorem via basis reduction.

Theorem 14.25. Let Λ ⊆ Rn be a lattice and Λ ∗ be its dual. One has

µ(Λ) ·ρ(Λ ∗) 6 f (n),

where f (n) is a constant depending only on n which satisfies f (n) 6 n/4 ·2n(n−1)/4.

Proof. Suppose that B = (b1, . . . ,bn) ∈ Qn×n is a basis of the rational lattice Λ(B)
with orthogonality defect γ , i.e., one has

‖b1‖· · ·‖bn‖ = γ · |det(B)|. (14.41)

Assume that the longest basis vector is bn, in other words that ‖bn‖ > ‖b j‖ for

j = 1, . . . ,n−1. This assumption can be made without loss of generality, since the

orthogonality defect is invariant under swapping of columns.

Let u ∈ Rn be a point whose distance to Λ is µ(Λ). Since B is a basis of Rn

we can write u = ∑n
i=1 λibi, with λi ∈ R. The vector v = ∑n

i=1⌊λi⌉bi belongs to the

lattice Λ(B), where ⌊λi⌉ denotes the closest integer to λi. Clearly ‖v−u‖ > µ(Λ).



14 Integer Programming and Algorithmic Geometry of Numbers 539

We also have
‖v−u‖ = ‖∑n

i=1(⌊λi⌉−λi)bi‖

6 ∑n
i=1 ‖(⌊λi⌉−λi)bi‖

6 1
2 ∑n

i=1 ‖bi‖

6 n
2‖bn‖,

(14.42)

where the last inequality in (14.42) follows from the fact that the last basis vector bn

is the longest one in the basis. Since ‖v−u‖ > µ(Λ) we therefore have

‖bn‖ > 2 µ(Λ)/n. (14.43)

Let B = B∗ ·R be the GSO of B. The following facts (see exercise 14.5.1)

‖b1‖· · ·‖bn‖ = γ · ‖b∗1‖· · ·‖b∗n‖

‖b j‖ > ‖b∗j‖, j = 1, . . . ,n.

imply ‖bn‖ 6 γ · ‖b∗n‖, which together with (14.43) implies

‖b∗n‖ > 2 µ(Λ)/(n · γ).

Now b∗n is orthogonal to the vectors b∗j , j = 1, . . . ,n−1. Since R is an upper triangu-

lar matrix with only 1’s on its diagonal, it follows that (b∗n)
T B∗ ·R = (0, . . . ,0,‖b∗n‖

2)
from which we can conclude that

d = b∗n/‖b∗n‖
2 ∈ Λ ∗(B).

The norm of d is the reciprocal of the norm of b∗n and thus satisfies

‖d‖ 6 n · γ/(2 µ(Λ)).

This bounds the length of a shortest vector of Λ ∗(B) and consequently one has

ρ(Λ ∗) 6 n · γ/(4 µ(Λ)) implying

ρ(Λ ∗)µ(Λ) 6 n · γ/4.

By using the LLL-bound (14.27) on γ we obtain

ρ(Λ ∗)µ(Λ) 6 (n/4)2n(n−1)/4.

⊓⊔

Theorem 14.26 (Flatness theorem for ellipsoids). Let E(A,a)⊆Rn be an ellipsoid

which does not contain an integer point, then w(E(A,a)) 6 4 · f (n).

Proof. If E(A,a) does not contain an integer point, then the covering radius of Λ(A)
is at least one. Since µ(Λ(A)) ·ρ(Λ ∗(A)) 6 f (n) it follows thus that ρ(Λ ∗(A)) 6

f (n) and consequently that w(E(A,a)) 6 4 · f (n). ⊓⊔

The flatness theorem 14.22 for general convex bodies K ⊆ Rn follows from the

fact that K can be well approximated by an ellipsoid. John [39] showed that there



540 Friedrich Eisenbrand

1/n ·E

E

K

Fig. 14.8 A John-pair of ellipsoids.

exists an ellipsoid E containing K such that if E is centrally scaled by 1/n, then it is

contained in K. In other words one has

E/n ⊆ K ⊆ E.

This implies the flatness theorem with ω(n) 6 4 ·n · f (n).

Notes

The bound f (n) 6 (n/4)2n(n−1)/4 of Theorem 14.25 is far from optimal. La-

garias, Lenstra and Schnorr [54] proved that f (n) = O(n3/2). Banaszcyk [5] proved

that f (n) = O(n) holds.

Grötschel, Lovász and Schrijver [32] have shown that there exists a polynomial

time algorithm which computes an ellipsoid E such that 1/(n(n + 1)) ·E ⊆ K ⊆ E

holds, if K is a convex body which is equipped with a weak separation oracle.

Nesterov and Nemirovski [62] describe a polynomial algorithm which computes

E such that ((1+ ε)n)−1
E ⊆ P ⊆ E holds, where P ⊆ Rn is a full-dimensional

polytope. Here ε > 0 is a parameter of the algorithm and the algorithm runs in

polynomial time in the binary encoding length of P (rational data) and the binary

encoding length of ε . A faster algorithm was provided by Khachiyan [48].

Finding a maximum volume ellipsoid inscribed in a polyhedron is a convex pro-

gramming problem of LP-type. This means that such an ellipsoid can be computed in

linear time in the RAM-model of computation if the dimension is fixed, see [59]. In

the RAM-model, all numbers have input length one and basic arithmetic operations

take constant time. The binary encoding length of the numbers in the input do not

contribute to the input length. In fact those could even be real numbers. Gärtner [28]

provided a subexponential algorithm for problems of LP-type in varying dimension,

and thus also a subexponential algorithm to compute the maximum volume ellipsoid

of a polytope. His algorithm is a generalization of the linear programming algorithm

of Matoušek, Sharir and Welzl [59].



14 Integer Programming and Algorithmic Geometry of Numbers 541

If the dimension is fixed, then using the algorithms for the largest enclosed el-

lipsoid by Matoušek et al. [59] Lenstra’s algorithm requires O(m · s) arithmetic op-

erations on rational numbers of size O(s), where s is the largest binary encoding

length of a coefficient of Ax 6 b. If the number of constraints m is fixed, then this

matches the running time of the Euclidean algorithm, see, e.g., [51]. If one uses

the floating point variant of the LLL-algorithm of Nguyen and Stehlé [64], then the

bit-complexity for fixed dimension and number of constraints is O(s2) which also

matches the bit-complexity of the Euclidean algorithm.

Exercises

1. Show how to compute a feasible point x ∈ Zn of Ax 6 b if it exists, by using a

polynomial number of calls to an oracle solving an integer feasibility problem

on an input which is of polynomial size in size(A), size(b) and n.

2. Consider a system of inequalities

Ax 6 b, dT x = β , (14.44)

where A ∈ Zm×n, b ∈ Zm, d ∈ Zn and β ∈ Z.

Show how to reduce the feasibility problem of (14.44) to a feasibility prob-

lem in dimension n−1 involving m inequalities. This new system should be of

polynomial size in the size of the system (14.44).

Hint: Hermite normal form

3. Consider the polyhedron P = {x ∈ Rn : Ax 6 b}, where A ∈ Zm×n and b ∈ Zm.

Suppose that P has a flat direction whose first component is nonzero. Formulate

a mixed integer program to compute the width and a flat direction of P. Con-

clude that the encoding length of a flat direction is polynomial in the encoding

length of Ax 6 b.

4. Let d ∈ Rn \{0} and let Bn be the n-dimensional unit ball. Show that wd(B
n) =

2 · ‖d‖.

5. Prove that the dual lattice of Λ(A) is Λ((A−1)T ), i.e., Λ ∗(A) = Λ((AT )−1).
6. Let A ∈ Qn×n be a nonsingular rational matrix and a ∈ Qn be a rational vector.

Show that there exists a polynomial algorithm which outputs either an integer

vector in E(A,a), or a nonzero integer vector d ∈ Zn with wd(E(A,a)) 6 n ·

2n(n−1)/4.

7. Let P = {x ∈ Rn : Ax 6 b} be a rational polyhedron in fixed dimension n. Show

that the width and a flat direction of P can be computed in polynomial time.

Hint: Exercise 5 of Section 14.5.



542 Friedrich Eisenbrand

14.9 The integer linear optimization problem

In this section we want to consider the integer optimization problem in fixed

dimension

max{cT x : Ax 6 b, x ∈ Zn}. (14.45)

In the analysis of the algorithm that follows, we use the parameters m and s, where

m is the number of inequalities of the system Ax 6 b and s is an upper bound on the

binary encoding length of a coefficient of A,b and c.

The greatest common divisor of two integers a and b can be computed with the

Euclidean algorithm with O(s) arithmetic operations, where s is an upper bound on

the binary encoding length of the integers a and b. On the other hand we have the

following well known formula

gcd(a,b) = min{ax1 +bx2 : ax1 +bx2 > 1, x1,x2 ∈ Z}. (14.46)

This implies that the greatest common divisor can be computed with an algorithm

for the integer optimization problem in dimension 2 with one constraint.

The integer optimization problem can be reduced to the integer feasibility prob-

lem with binary search. One has a complexity of O(m+ s) for the integer feasibility

problem in fixed dimension. This follows from an analysis of Lenstra’s algorithm

in combination with an efficient algorithm to compute a Löwner-John ellipsoid, see

[59, 82]. With binary search for an optimal point, one obtains a running time of

O(m · s + s2). If, in addition to the dimension, also the number of constraints is

fixed, this results in an O(s2) algorithm for the integer optimization problem, which

is in contrast to the linear running time of the Euclidean algorithm.

Clarkson [13] has shown that the integer optimization problem with m constraints

can be solved with an expected number of O(m) arithmetic operations and O(logm)
calls to an oracle solving the integer optimization problem on a constant size subset

of the input constraints. Therefore we concentrate now on the integer optimization

problem with a fixed number of constraints. In this section we outline an algorithm

which solves the integer optimization problem in fixed dimension with a fixed num-

ber of constraints with O(s) arithmetic operations on rational numbers of size O(s).
The algorithm relies on the LLL-algorithm.

The first step is to reduce the integer optimization problem over a full-dimensional

polytope with a fixed number of facets to a disjunction of integer optimization prob-

lems over a constant number of two-layer simplices. A two-layer simplex is a full-

dimensional simplex, whose vertices can be partitioned into two sets V and W , such

that the objective function of the elements in each of the sets V and W agree, i.e.,

for all v1,v2 ∈V one has cT v1 = cT v2 and for all w1,w2 ∈W one has cT w1 = cT w2.

How can one reduce the integer optimization problem over a polytope P to a

sequence of integer optimization problems over two-layer simplices? Simply con-

sider the hyperplanes cT x = cT v for each vertex v of P. If the number of constraints

defining P is fixed, then these hyperplanes partition P into a constant number of

polytopes, whose vertices can be grouped into two groups, according to their objec-



14 Integer Programming and Algorithmic Geometry of Numbers 543

tive function value. Thus we can assume that the vertices of P can be partitioned into

two sets V and W , such that the objective function values of the elements in each of

the sets V and W agree. Carathéodory’s theorem, see Schrijver [75, p. 94], implies

that P is covered by the simplices that are spanned by the vertices of P. These sim-

plices are two-layer simplices. Therefore, the integer optimization problem in fixed

dimension with a fixed number of constraints can be reduced to a constant number

of integer optimization problems over a two-layer simplex by applying a constant

number of arithmetic operations.

The key idea is then to let the objective function slide into the two-layer simplex,

until the width of the truncated simplex exceeds the flatness bound. In this way, one

can be sure that the optimum of the integer optimization problem lies in the trunca-

tion, which is still flat. Thereby one has reduced the integer optimization problem

in dimension n to a constant number of integer optimization problems in dimension

n−1 and binary search can be avoided.

How do we determine a parameter π such that the truncated two-layer simplex

Σ ∩ (cT x > π) just exceeds the flatness bound? We explain the idea with the help of

the 3-dimensional example in Figure 14.9.

0
v1

w1

w2

µ w1 µ w2

(1−µ)v1 + µw1

(1−µ)v1 + µw2

0
v1

w1

w2

µ w1 µ w2

(1−µ)v1 + µw1

(1−µ)v1 + µw2

Fig. 14.9 Reduction to the parametric lattice width problem.

Here we have a two-layer simplex Σ in 3-space. The set V consists of the points

0 and v1 and W consists of w1 and w2. The objective is to find a highest point in the

vertical direction. The picture on the left describes a particular point in time, where

the objective function slid into Σ . So we consider the truncation Σ ∩ (cT x > π) for

some π > cT w1. This truncation is the convex hull of the points

0,v1,µw1,µw2,(1−µ)v1 + µw1,(1−µ)v1 + µw2, (14.47)

where µ = π/cT w1. Now consider the simplex ΣV,µW , which is spanned by the

points 0,v1,µw1,µw2. This simplex is depicted on the right in Figure 14.9. If this

simplex is scaled by 2, then it contains the truncation Σ ∩ (cT x > π). This is easy to

see, since the scaled simplex contains the points 2(1− µ)v1, 2 µ w1 and 2 µ w2. So

we have the condition ΣV,µW ⊆ Σ ∩(cT x > π)⊆ 2ΣV,µW . From this we can infer the



544 Friedrich Eisenbrand

important observation

w(ΣV,µW ) 6 w(Σ ∩ (cT x > π)) 6 2w(ΣV,µW ). (14.48)

This means that we essentially determine the correct π by determining a µ > 0,

such that the width of the simplex ΣV,µW just exceeds the flatness bound. The width

of ΣV,µW is roughly (up to a constant factor) the length of the shortest vector of the

lattice L(Aµ) , where Aµ is the matrix

Aµ =




µwT
1

µwT
2

v1


 .

Thus we have to find a parameter µ , such that the shortest vector of L(Aµ) is sand-

wiched between ω(n)+1 and γ · (ω(n)+1) for some constant γ . This problem can

be understood as a parametric shortest vector problem.

To describe this problem let us introduce some notation. We define for an n×n-

matrix A = (ai j)∀i, j, the matrix Aµ,k = (ai j)
µ,k
∀i, j

, as

a
µ,k
i j =

{
µ ·ai j, if i 6 k,

ai j, otherwise.
(14.49)

In other words, the matrix Aµ ,k results from A by scaling the first k rows with µ . The

parametric shortest vector problem is now defined as follows.

Given a nonsingular matrix A ∈ Zn×n and some U ∈ N, find a parameter p ∈ N such that
U 6 SV(L(Ap,k)) 6 2n+1/2 ·U or assert that SV(L) > U .

It turns out that the parametric shortest vector problem can be solved in linear time

when the dimension is fixed with a cascaded LLL-algorithm. From this, it follows

that the integer optimization problem in fixed dimension with a fixed number of

constraints can be solved in linear time. Together with Clarkson’s result we obtain.

Theorem 14.27 ([18]). The integer optimization problem (14.45) can be solved with

an expected number of O(m + s logm) arithmetic operations on rationals of size

O(s).

Notes

A polynomial time algorithm for the two-variable integer programming prob-

lem was presented by Hirschberg and Wong [38] and Kannan [46] for special cases

and by Scarf [70, 71] for the general case. Then, Lenstra [56] proved that integer

programming in arbitrary fixed dimension can be solved in polynomial time. After-

wards, various authors were looking for faster algorithms for the two-dimensional

case [24, 84, 41]. A linear-time algorithm in the arithmetic model was presented by

Eisenbrand and Laue [19].



14 Integer Programming and Algorithmic Geometry of Numbers 545

Exercises1

1*) Can one solve an integer program in fixed dimension with a fixed number of

constraints in quadratic time in the bit-model of complexity ?

Recent results on the bit-complexity of the LLL-algorithm [63] could help an-

swering this question

2*) Is the shortest vector problem solvable in time O(M(s) logs) if the dimension

is fixed?

See also the Notes section of Chapter 14.5.

14.10 Diophantine approximation and strongly polynomial

algorithms

In this section we review a very important appliction of the LLL-algorithm in

optimization, namely the rounding algorithm of Frank and Tardos [25]. The input of

a combinatorial optimization problem usually consists of a combinatorial structure,

like a graph or a subset system and some numbers, which reflect weights on the

edges or costs of subsets or alike. An algorithm is strongly polynomial if

A) it consist only of basic arithmetic operations +,−,∗,/ and comparisons <,>,=;

B) the number of such basic operations which are carried out is polynomial in the

input length, where the numbers in the input have length one;

C) the encoding lengths of the numbers in the intermediate steps of the algorithm

are polynomial in the binary encoding length of the input, where numbers in the

input account with their binary encoding length.

An algorithm is weakly polynomial if it satisfies A) and C) but instead of B)

satisfies the weaker condition that the number of basic operations is bounded in the

binary encoding length of the input.

Algorithms which are based on bit-scaling of the involved numbers usually have

the property to be weakly polynomial only. It is an outstanding open problem,

whether linear programming, which can be solved in weakly polynomial time, can

also be solved in strongly polynomial time.

A 0/1-optimization problem is an integer program, where the integer variables

are restricted to be either 0 or 1. The result that we survey now shows a facet of the

tremendous importance of the LLL-algorithm in the area of algorithms and com-

plexity. In fact it holds in greater generality, see [25, 31]. We treat a less general

version here, to keep the exposition as simple as possible.

Theorem 14.28 ([25]). If a 0/1 optimization problem can be solved in weakly poly-

nomial time, then it can be solved in strongly polynomial time.

1 Those are not really ”exercises” but rather research questions.



546 Friedrich Eisenbrand

The starting point of the method leading to this result is Dirichlet’s theorem.

Suppose that you have an n-dimensional vector α ∈ Rn which is represented by n

real numbers α1, . . . ,αn ∈ R and you are interested in a vector p ∈ Zn with integer

components of small absolute value and which encloses a small angle with α . Such

a p could be a candidate to replace the linear objective function αT x with the linear

objective function pT x, hoping that the optimal 0/1-solutions are the same.

Theorem 14.29 (Dirichlet). Let Q > 1 be a real number and let α1, . . . ,αn ∈ R.

There exists an integer q and integers p1, . . . , pn with

i) 1 6 q 6 Qn and

ii) |q ·αi − pi| 6 1/Q for i = 1, . . . ,n.

Proof. Consider the lattice Λ which is generated by the following matrix




1 α1

1 α2

. . .
...

1 αn
1

Qn+1




. (14.50)

The determinant of Λ is 1/Qn+1. The cube K = {x ∈ Rn+1 : − 1/Q 6 x 6 1/Q is

symmetric around 0 and has volume 2n+1 · 1/Qn+1. Minkowski’s theorem implies

that this set contains a nonzero lattice point 2




−p1 +q ·α1

...

−pn +q ·αn

q/Qn+1


 .

We can assume q to be positive, since the negative of this vector is also contained in

K. The integers pi, i = 1, . . . ,n and q are as it is stated in the theorem. ⊓⊔

If Q in the Dirichlet theorem is a positive integer, then one can replace condition

ii) by the slightly stronger condition

ii’) |q ·αi − pi| < 1/Q for i = 1, . . . ,n,

see exercise 1).

Suppose now that we want to solve a 0/1 optimization problem

max
x∈F

αT x (14.51)

2 Because, if this cube would not contain a nonzero lattice point, then one could scale it with a
factor larger than one and still it would not contain a nonzero lattice point. The volume of this
scaled cube is strictly larger than 2n+1 ·1/Qn+1. This would contradict Minkowski’s theorem.



14 Integer Programming and Algorithmic Geometry of Numbers 547

where F ⊆ {0,1}n. The set F could, for example, be the characteristic vectors of

matchings of a graph G = (V,E) or characteristic vectors of other combinatorial

structures.

Our goal is to replace α by an integer vector v whose binary encoding length is

polynomial in the dimension n such that the optimal points in F w.r.t. the objective

functions αT x and vT x are the same.

To this end, consider an optimal solution x of problem (14.51), i.e., an x with

αT (x− x) > 0 for all x ∈ F .

The points x− x above have components in {0,±1}. Our integer vector v ∈ Zn will

have the following property.

For each y ∈ {0,±1}n one has

αT y > 0 if and only if vT y > 0.

If this holds, then we can safely replace α by v in (14.51).

Let us assume for a moment that Dirichlet’s theorem has an efficient implemen-

tation, i.e., that the q and pi satisfying conditions i) and ii) can be computed in

polynomial time. Assume further that the largest absolute value of a component in

α is one, or in other words that ‖α‖∞ = 1. If this would not hold, then we could

simply scale α by 1/‖α‖∞. Set Q in Dirichlet’s theorem to Q := n and let q and p

be the resulting integer and integer vector respectively.

How large are the absolute values of the components of p? Since 1 6 q 6 nn (i)

and |qαi − pi| < 1/n (ii’) it follows that ‖p‖∞ 6 q‖α‖∞ 6 nn. The binary encoding

length of p is therefore polynomial in n, which is one of the objectives that we want

an approximation of α to satisfy.

How close comes p in terms of being a valid replacement v of α? The next lemma

shows, that this vector comes very close already to what we want. Let sign(x) denote

the sign of a real number x, i.e.,

sign(x) =





1, if x > 0,

−1, if x < 0,

0, if x = 0.

Lemma 14.7. Let y ∈ {0,±1}n be a vector. If sign(pT y) 6= 0, then sign(pT y) =
sign(αT y).

Proof. Suppose that pT y > 0. Since p and y are integer vectors, it follows that pT y >

1 holds. Property ii) of the Dirichlet theorem implies |qαi − pi| < 1/n for each i.

Thus |qαT y− pT y| = |(qα − p)T y| < n/n = 1. In other words, the distance of pT y

to qαT y is less than one, implying that qαT y > 0 and consequently αT y > 0.

The case pT y < 0 is analogous. ⊓⊔

If sign(pT y) = 0, then we cannot infer anything about sign(αT y). The idea is

now to apply recursion. If sign(pT y) = 0, then clearly



548 Friedrich Eisenbrand

sign(αT y) = sign
(
(q ·α − p)T y

)

Since one component of α is 1, say component i, we clearly have pi = q and thus the

vector q ·α − p has at least one more zero component than α . Let v′ be an integer

vector which has been recursively computed and satisfies for each y ∈ {0,±1}n

sign(v′T y) = sign
(
(q ·α − p)T y

)
.

Let M be a large weight. The above discussion shows that

∀y ∈ {0,±1}n : sign(αT y) = sign
(
(M · p+ v′)T y

)
.

Thus we set v := M · p+ v′.

Let us deduce a bound on M. This number M has to be large enough so that

M · pT y dominates the sign of (M · p + v′)T y if pT y 6= 0. This clearly holds if M

is at least as large as the absolute value of v′T y. To this end, let t(n) be an upper

bound on the largest absolute value of a component of v which is constructed by the

above described recursive procedure. The absolute value of v′T y is then bounded by

n · t(n− 1). Thus we set M to this value. How large is ‖v‖∞? For this we have the

recursive formula

t(n) 6 n · t(n−1) ·nn + t(n−1),

which shows a crude bound of t(n) 6 (n+1)n2+n. The binary encoding length of v

is thus O(n2 logn).
What about our assumption from the beginning that Dirichlet’s theorem has an

efficient implementation? In fact, it is an outstanding open problem, whether the q

and the pi as in Dirichlet’s theorem can be found in polynomial time. However, we

have the LLL-algorithm. The proofs of the next two lemmas are left as an exercise.

Lemma 14.8. Let Q > 1 be an integer and α1, . . . ,αn ∈ Q be rational numbers.

There exists a polynomial time algorithm that computes an integer q and integers

p1, . . . , pn with

I) 1 6 q 6
√

n+12(n−1)/2 ·Qn and

II) |q ·αi − pi| <
√

n+12(n−1)/2 ·1/Q for i = 1, . . . ,n.

Lemma 14.9. Let Q > 1 be an integer and α1, . . . ,αn ∈ Q be rationals num-

bers. There exists a polynomial algorithm that computes an integer q and integers

p1, . . . , pn with

a) 1 6 q 6 2n2
Qn and

b) |q ·αi − pi| < 1/Q for i = 1, . . . ,n.

If we replace the guarantees of Dirichlet’s theorem with the ones obtained in

Lemma 14.9, then the binary encoding length of v is still polynomial in n. This

means that we have an algorithm to round an objective function vector α ∈ Qn

to an equivalent integer vector v ∈ Zn. The only trouble is that the LLL-algorithm

is not strongly polynomial and our goal is to develop a strongly polynomial time

algorithm. This is finally achieved by rounding the αi first individually before the

algorithm behind Lemma 14.9 is applied. The rounding operation ⌊·⌋ is not part of



14 Integer Programming and Algorithmic Geometry of Numbers 549

the standard set of operations on which a strongly polynomial time algorithm can

rely. Let β ∈ R be a real number with 0 < β 6 1 and let K > 2 be a positive integer.

In exercise 4, you are asked to compute ⌊K ·β⌋ with a linear (in the binary encoding

length of K) number of elementary operations (+,−,∗,/,<,>,=).

Theorem 14.30. There exists a strongly polynomial algorithm that, given n real

numbers α1, . . . ,αn with ‖α‖∞ = 1, computes integers p1, . . . , pn and q with

|q ·αi − pi| < 1/n, i = 1, . . . ,n, and 1 6 q 6 2n2+nnn.

Proof. For each i compute:

α ′
i =

⌊αi2
n2+n+1nn+1⌋

2n2+n+1nn+1

in strongly polynomial time (see exercise 4) and run the algorithm behind Theo-

rem 14.9 on input α ′ and Q′ = 2 ·n. This algorithm returns q and p.

We now have to show the following claim.

|q ·αi − pi| 6 1/n, i = 1, . . . ,n, and q 6 2n2+nnn. (14.52)

Clearly one has 1 6 q 6 2n2
(2n)n = 2n2+nnn. On the other hand we have

|qαi − pi| 6 |qαi −qα ′
i |+ |qα ′

i − pi|

<
2n2+nnn

2n2+n+1nn+1
+1/(2n)

= 1/n.

which shows the claim. ⊓⊔

If we adapt the argument from before with the new parameters of Theorem 14.30

we obtain the result of Frank and Tardos [25].

Theorem 14.31. There exists a strongly polynomial algorithm that, given α ∈ Rn,

computes a v ∈ Zn whose binary encoding length is polynomial in n such that

sign(vT y) = sign(αT y) for all y ∈ {0,±1}n.

Consequently, a 0/1-optimization problem can be solved in polynomial time if

and only if it can be solved in strongly polynomial time.

Notes

The result of Tardos and Frank [25] is more general than for the case restricted to

0/1-problems described above. If one wants to optimize a linear function over the

convex hull of a set of rational points, then the linear function can be replaced by an

integer linear objective function, whose binary encoding length is polynomial in the



550 Friedrich Eisenbrand

largest binary encoding length of a point in the set, see also [58, 31]. Tardos [79]

has shown that a linear program max{cT x : Ax 6 b} can be solved within a number

of elementary operations bounded by a polynomial in the binary encoding length of

A. This can also be shown with a rounding argument, see [31]. Diophantine approx-

imation is also discussed in a recent survey of Lenstra [57].

Exercises

1. Show that condition ii) can be strengthened to |q ·αi− pi|< 1/Q for i = 1, . . . ,n.

2. Prove Lemma 14.8.

Hint: The shortest vector of the lattice generated by the matrix (14.50) has

ℓ2-norm at most
√

n+1/Q and the LLL-algorithm finds a vector x which is a

2(n−1)/2-approximation of this shortest vector. Bound the ℓ∞-norm of x.

3. Prove Lemma 14.9.

Hint: Set Q′ := ⌈
√

n+1 · 2(n−1)/2 ·Q⌉ and apply Lemma 14.8 using α and Q′.

The bound a) holds for all but a finite number of n. For this fixed number of n

one can afford to find a shortest vector w.r.t. the ℓ∞-norm (see exercise 14.5.5).

4. Let β ∈ R be a real number with 0 < β 6 1 and let K > 2 be a positive integer.

Show how to compute ⌊K ·β⌋ with a linear (in the binary encoding length of K)

number of elementary RAM operations (+,−,∗,/,<,>,=).

5. Show that for a 0/1-optimization problem (14.51) there exists a v ∈ Zn with

‖v‖∞ = 2O(n logn) such that an x ∈ F is optimal w.r.t. αT x if and only if x is

optimal w.r.t. vT x.

Hint: Use linear programming duality and the Hadamard bound.

14.11 Parametric integer programming

The Frobenius problem is as follows. Given n integers a1, . . . ,an whose greatest

common divisor is one, compute the largest t ∈ N which cannot be written as

x1 ·a1 + · · ·+ xn ·an = t, x1, . . . ,xn ∈ N0.

The Frobenius problem is NP-complete [67]. Kannan [45] showed that it can be

solved in polynomial time, if n is fixed. In fact, Kannan showed something more

general. The Frobenius problem can be solved with binary search, if the validity of

the following forall/exist-statement can be decided in polynomial time.

∀y ∈ Z, y > N ∃x1, . . . ,xn ∈ N0 : y = x1 ·a1 + · · ·+ xnan (14.53)



14 Integer Programming and Algorithmic Geometry of Numbers 551

Kannan’s result is a polynomial time procedure to decide forall/exist statements

of the following form, where Q ⊆ Rm is a polyhedron, A ∈ Zm×n is a matrix and

t ∈ N is an integer.

∀b ∈
(
Q∩ (Rm−t ×Zt)

)
Ax 6 b is IP-feasible. (14.54)

More precisely, he showed that such statements can be decided in polynomial

time, if n, t and the affine dimension of Q are fixed.

Theorem 14.32 ([45]). If n, t and the affine dimension of Q are fixed, then ∀∃-

statements can be decided in polynomial time.

In this section we review the basic ideas of his procedure and the generalization

of Eisenbrand and Shmonin [21], which only assumes n and t to be fixed whereas

the dimension of Q can vary.

Theorem 14.33 ([21]). If n, t are fixed, then ∀∃-statements can be decided in poly-

nomial time.

Suppose that the width of a polyhedron P ⊆ Rn is the width along the integer di-

rection c, i.e., w(P) = wc(P) with c∈Zn. Let β = min{cT x : x∈P}. If w(P) > ω(n),
then we can scale and translate P, to obtain a polyhedron P′ which is sandwiched

between the hyperplanes cT x = β and cT x = β +ω(n), see figure 14.10.

Theorem 14.34. If w(P) > ω(n), then there exists an integer point in

P∩
(
β 6 cT x 6 β +ω(n)

)
.

The width of P′ is exactly ω(n) and by the flatness theorem (Theorem 14.22), P′

contains an integer point. From this it follows that there exists an integer point on

one of the constant number of lower dimensional polyhedra

P∩ cT x = ⌈β⌉+ i, for i = 0, . . . ,ω(n). (14.55)

Theorem 14.35 (Strengthening of flatness theorem). Let P ⊆ Rn be a polyhedron

with w(P) = wc(P) for an integer vector c ∈ Zn \ {0}. The polyhedron P contains

an integer point if and only if at least one of the polyhedra

P∩
(
cT x = ⌈β⌉+ i

)
i = 0, . . . ,ω(n)

contains an integer point.

We continue with a description of Kannan’s ideas in dimension 2. Suppose that

A ∈ Zm×2 and Q ⊆ Rm and that we wish to decide the ∀∃-statement (14.54) with

t = 0. We then would have to decide, whether there exists a b ∈ Q such that Ax 6 b

is integer infeasible. We denote the polyhedron {x ∈ R2 : Ax 6 b} by Pb. Let us

make the following simplifying assumptions.

I) The flat direction of Pb is always the first unit vector e1.



552 Friedrich Eisenbrand

cx = β cx = β +ω(n)

P′ P

Fig. 14.10 An illustration of the strengthening of the flatness theorem. There must be an integer
point on one of the dashed lines cT x = ⌈β⌉+ i, i = 1, . . . ,ω(n).

II) The optimum basis of the linear program min{eT
1 x : x ∈ R2, Ax 6 b} is the

same for all b ∈ Q.

It follows from II) that the optimum solution of the linear program min{eT
1 x : x ∈

Pb} is of the form G ·b for a fixed matrix G ∈ R2×2.

aτ(i)x = bτ(i)

e1

Pb

Gb

x1 = ⌈e1Gb⌉ x1 = ⌈e1Gb⌉+ i

Fig. 14.11 Illustration in dimension 2.

The strengthening of the flatness theorem tells that Pb contains an integral point

if and only if there exists an integral point on the lines x1 = ⌈e1Gb⌉ + j for

j = 0, . . . ,ω(2). The intersections of these lines with the polyhedron Pb are 1-



14 Integer Programming and Algorithmic Geometry of Numbers 553

dimensional polyhedra. Some of the constraints ax 6 b of Ax 6 b are “pointing

upwards”, i.e., ae2 < 0, where e2 is the second unit-vector. Let a1x1 + a2x2 6 b

be a constraint pointing upwards such that the intersection point (⌈e1Gb⌉+ j,y) of

a1x1 +a2x2 = β with the line x1 = ⌈e1Gb⌉+ j has the largest second component. The

line x1 = ⌈e1Gb⌉+ j contains an integral point in Pb if and only if (⌈e1Gb⌉+ j,⌈y⌉)
is contained in Pb. This point is illustrated in Figure 14.11. We assume that this

”highest upwards constraint” for the line x1 = z + i is always fixed, lets say it is

the constraint aτ(i)x 6 bτ(i) for a fixed mapping τ : {0, . . . ,ω(2)} → {1, . . . ,m}. We

make this assumption explicit.

III) The highest intersection point of a line a jx = b j with the line x1 = z+ i is the in-

tersection point of the line aτ(i)x = bτ(i), where τ : {0, . . . ,ω(2)} → {1, . . . ,m}

is a fixed mapping.

We now formulate a mixed-integer program from which we can extract the inte-

ger solution of Pb on the line x1 = z+ i, assuming that I-III) holds.

(Gb)1 6 z < (Gb)1 +1

xi
1 = z+ i

y = (bτ(i) −a
τ(i)
1 x1)/a

τ(i)
2

y 6 xi
2 < y+1

xi
1,x

i
2,z ∈ Z.

(14.56)

For a given b ∈ Q, the line x1 = z + i contains an integer point in Pb if and only if

xi = (xi
1,x

i
2) ∈ Pb.

Recall that we want to decide the forall/exist-statement (14.54)) by searching a

b ∈ Q such that Pb does not contain an integer point. In other words, we are looking

for a b ∈ Q for which each of the xi for i = 0, . . . ,ω(2) violates some constraint of

Ax 6 b. To do that, we again fix a mapping µ : {0, . . . ,ω(2)} → {1, . . . ,m}, where

aµ(i)x 6 bµ(i) is supposed to be the constraint of Ax 6 b which is violated by xi. The

number of such mappings µ is mω(2)+1, which is polynomial in m, since ω(2) is a

constant.

We enumerate all these mappings µ and append to each of the ω(2)+ 1 MIP’s

(14.56) the constraint

aµ(i)xi > bµ(i). (14.57)

The conjunction of all these MIP’s is a MIP with a constant number of integer

variables, which can be solved with Lenstra’s algorithm [56] in polynomial time.

This shows that we can decide forall/exist statements, given that the conditions I-

III) hold.

We justify condition I, at the heart of which lies the following theorem.

Theorem 14.36. Let n be fixed and A ∈Zm×n be a matrix of full column rank. There

exist a set D ⊆ Zn \{0} of polynomial (in the encoding length of A) cardinality such

that for each b ∈ Rm there exists a d ∈ D with w(Pb) = wd(Pb). Such a set D can be

computed in polynomial time.



554 Friedrich Eisenbrand

C1

c
C2

c

Pb

FN1
b

FN2
b

Fig. 14.12 The flat direction c and the two cones C1 and C2.

Proof. Suppose that Pb is non-empty and let c ∈ Zn be its width direction. Then

there are two bases N1 and N2 such that

max{cx : Ax 6 b} = cFN1
b and min{cx : Ax 6 b} = cFN2

b (14.58)

and c belongs to the cones C1 and C2 defined by the optimal bases with respect to

max{cT x : x ∈ Pb} and min{cT x : x ∈ Pb}, see Figure 14.12. Here FN1
and FN2

are

the inverses of the basis matrices of N1 and N2 respectively.

In fact, equations (14.58) hold for any vector c in C1 ∩C2. Thus, the lattice width

of Pb is equal to the optimum value of the following optimization problem:

min{c(FN1
−FN2

)b : c ∈C1 ∩C2 ∩Zn \{0}}. (14.59)

The latter can be viewed as an integer programming problem. Indeed, the cones C1

and C2 can be represented by some systems of linear inequalities, say cD1 6 0 and

cD2 6 0, respectively, where D1,D2 ∈ Zn×n. The minimum (14.59) is taken over

all integral vectors c satisfying cD1 6 0 and cD2 6 0, except the origin. Since both

cones C1 and C2 are simplicial, i.e., generated by n linearly independent vectors, the

origin is a vertex of C1 ∩C2 and therefore can be cut off by a single inequality, for

example, cD11 6−1, where 1 denotes the n-dimensional all-one vector. It is impor-

tant that all other integral vectors c in C1 ∩C2 satisfy this inequality and therefore

remain feasible. Thus, the problem (14.59) can be rewritten as

min{c(FN1
−FN2

)b : cD1 6 0, cD2 6 0, cD11 6 −1c ∈ Zn}.

For a given b, this is an integer programming problem. Therefore, the optimum value

of (14.59) is attained at some vertex of the integer hull of the underlying polyhedron

{c : cD1 6 0, cD2 6 0, cD11 6 −1} (14.60)



14 Integer Programming and Algorithmic Geometry of Numbers 555

Shevchenko [76] and Hayes and Larman [35] proved that the number of vertices

of the integer hull of a rational polyhedron is polynomial in fixed dimension. Tight

bounds for this number were presented by Cook et al. [14] and Bárány et al. [6]. ⊓⊔

To justify conditions I,II) and III) one then partitions the parameter polyhedron

Q into a polynomial number of polyhedra such that for those b in one partition, the

width direction is always invariant. Via a unimodular transformation one can assume

that this flat direction is the first unit vector, see exercises 1 and 2) for further details.

Notes

The problem to decide forall/exist statements belongs to the second level of the

polynomial hierarchy and is Π p
2 -complete, see [77, 83]. Barvinok and Woods [7]

extended the counting algorithm of Barvinok [8] such that it computes a short ra-

tional generating function for an integer projection of the set of integer points in a

polytope. The algorithm is based on Kannan’s partitioning lemma. The variant of

the partitioning theorem which we described was used and further refined for in im-

plementation of the algorithm [7] by Köppe et al. [52]. Köppe and Verdoolaege [53]

presented an algorithm which computes a formula for the number of integer points

in a parameterized polyhedron.

Exercises

1. Consider the polyhedra Pb = {x ∈ Rn : Ax 6 b} for b ∈ Q and let d ∈ Zn −{0},

where A ∈ Zm×n has full column rank and n is fixed. Write down a polynomial

number of inequalities which describe those b ∈ Q such the w(Pb) = wd(Pb).
Hint: Associate to each d ∈ D from Theorem 14.36 an ”entering basis” and

”leaving basis”.

2. Write down a linear program which partitions Q further into parameters such

that condition III) holds.

3*. I s there a polynomial algorithm which, given a matrix A ∈ Zm×n, where n is

fixed and a polyhedron Q ⊆ Rm determines a b ∈ Q such that the number of

integer points in Pb is minimal?

Acknowledgments

I am grateful to Damien Stehlé for numerous comments and suggestions which

helped me a lot to improve this manuscript. I also want to thank Johannes Blömer

for several discussions on shortest and closest vectors.



556 Friedrich Eisenbrand

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algorithms,
Addison-Wesley, Reading, 1974.

2. M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions, Proceed-
ings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98) (New York),
ACM Press, 1998, pp. 10–19.

3. M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice vector prob-

lem, Proceedings of the thirty-third annual ACM symposium on Theory of computing, ACM
Press, 2001, pp. 601–610.

4. M. Ajtai, R. Kumar, and D. Sivakumar, Sampling short lattice vectors and the closest lattice

vector problem, Proceedings of the 17th IEEE Annual Conference on Computational Com-
plexity (Montreal, Canada), 2002, pp. 53–67.

5. W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in Rn. II. Appli-

cation of K-convexity, Discrete Comput. Geom. 16 (1996) 305–311.
6. I. Bárány, R. Howe, and L. Lovász, On integer points in polyhedra: A lower bound, Combina-

torica 12 (1992) 135–142.
7. A. Barvinok and K. Woods, Short rational generating functions for lattice point problems,

Journal of the American Mathematical Society 16 (2003) 957–979.
8. A. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the

dimension is fixed, Mathematics of Operations Research 19 (1994) 769–779.
9. J. Blömer, Closest vectors, successive minima, and dual HKZ-bases of lattices, Automata,

Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzer-
land, July 9-15, 2000, Proceedings (U. Montanari, J. D. P. Rolim, and E. Welzl, eds.), Lecture
Notes in Computer Science 1853, Springer, 2000, pp. 248–259.

10. J. Blömer and S. Naewe, Sampling methods for shortest vectors, closest vectors and succes-

sive minima, Proceedings of the 34th International Colloquium on Automata, Languages and
Programming, ICALP 2007 (L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, eds.), Lecture
Notes in Computer Science 4596, Springer, 2007, pp. 65–77.

11. I. Borosh and L.B. Treybig, Bounds on positive integral solutions of linear diophantine equa-

tions, Proceedings of the American Mathematical Society 55 (1976) 299–304.
12. J.-Y. Cai and A.P. Nerurkar, Approximating the svp to within a factor (1+1/dimε ) is NP-hard

under randomized reductions, Proceedings of the 38th IEEE Conference on Computational
Complexity (Pittsburgh), IEEE Computer Society Press, 1998, pp. 46–55.

13. K.L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension

is small, Journal of the Association for Computing Machinery 42 (1995) 488–499.
14. W. Cook, M.E. Hartmann, R. Kannan, and C. McDiarmid, On integer points in polyhedra,

Combinatorica 12 (1992) 27–37.
15. I. Dinur, Approximating SVP∞ to within almost-polynomial factors is NP-hard, Theoretical

Computer Science 285 (2002) 55–71.
16. M. Dyer, A. Frieze, and R. Kannan, A random polynomial-time algorithm for approximating

the volume of convex bodies, Journal of the ACM 38 (1991) 1–17.
17. J. Edmonds, Systems of distinct representatives and linear algebra, Journal of Reseach of the

National Bureau of Standards 71B (1967) 241–245.
18. F. Eisenbrand, Fast integer programming in fixed dimension, Proceedings of the 11th Annual

European Symposium on Algorithms, ESA’ 2003 (G. Di Battista and U. Zwick, eds.), Lecture
Notes in Computer Science 2832, Springer, 2003, pp. 196–207.

19. F. Eisenbrand and S. Laue, A linear algorithm for integer programming in the plane, Mathe-
matical Programming 102 (2005) 249–259.

20. F. Eisenbrand and G. Rote, Fast reduction of ternary quadratic forms, Cryptography and Lat-
tices Conference, CALC 2001 (J. Silverman, ed.), Lecture Notes in Computer Science 2146,
Springer, 2001, pp. 32–44.

21. F. Eisenbrand and G. Shmonin, Parametric integer programming in fixed dimension, Mathe-
matics of Operations Research (2008), to appear.



14 Integer Programming and Algorithmic Geometry of Numbers 557

22. P. van Emde Boas, Another NP-complete partition problem and the complexity of computing

short vectors in a lattice, Technical Report MI-UvA-81-04, Mathematical Institute, University
of Amsterdam, Amsterdam, 1981.

23. X.G. Fang and G. Havas, On the worst-case complexity of integer Gaussian elimination, Pro-
ceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Ki-
hei, HI) (New York), ACM, 1997, pp. 28–31.

24. S.D. Feit, A fast algorithm for the two-variable integer programming problem, Journal of the
Association for Computing Machinery 31 (1984) 99–113.

25. A. Frank and É. Tardos, An application of simultaneous Diophantine approximation in com-

binatorial optimization, Combinatorica 7 (1987) 49–65.
26. M. Fürer, Faster integer multiplication, Proceedings of the 39th Annual ACM Symposium on

Theory of Computing, STOC 2007 (D.S. Johnson and U. Feige, eds.), ACM, 2007, pp. 57–66.
27. N. Gama and P.Q. Nguyen, Finding short lattice vectors within mordell’s inequality, Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, STOC 2008 (R.E. Ladner and C. Dwork, eds.), ACM, 2008, pp. 207–216.

28. B. Gärtner, A subexponential algorithm for abstract optimization problems, SIAM Journal on
Computing 24 (1995) 1018–1035.

29. C.F. Gauß, Disquisitiones arithmeticae, Gerh. Fleischer Iun., 1801.
30. O. Goldreich and S. Goldwasser, On the limits of non-approximability of lattice problems,

Proceedings of the 30th Annual ACM Symposium on Theory of Computing (New York),
ACM Press, 1998, pp. 1–9.

31. M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimiza-

tion, Algorithms and Combinatorics, Vol. 2, Springer, 1988.
32. M. Grötschel, L. Lovász, and A. Schrijver, Geometric methods in combinatorial optimization,

Progress in Combinatorial Optimization (W.R. Pulleyblank, ed.), Academic Press, Toronto,
1984, pp. 167–183.

33. G. Hanrot and D. Stehlé, Improved analysis of Kannan’s shortest lattice vector algorithm (ex-

tended abstract), Advances in cryptology—CRYPTO 2007, Lecture Notes in Comput. Science
4622, Springer, Berlin, 2007, pp. 170–186.

34. I. Haviv and O. Regev, Tensor-based hardness of the shortest vector problem to within almost

polynomial factors, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, ACM, New York, 2007, pp. 469–477.

35. A.C. Hayes and D.G. Larman, The vertices of the knapsack polytope, Discrete Applied Math-
ematics 6 (1983) 135–138.

36. B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced lattice bases,
Theoretical Computer Science 41 (1985) 125–139.

37. C. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie

des nombres, Journal für die reine und angewandte Mathematik 40 (1850).
38. D.S. Hirschberg and C.K. Wong, A polynomial algorithm for the knapsack problem in two

variables, Journal of the Association for Computing Machinery 23 (1976) 147–154.
39. F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays

Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc.,
New York, N. Y., 1948, pp. 187–204.

40. E. Kaltofen, On the complexity of finding short vectors in integer lattices, Computer Algebra:
Proceedings of EUROCAL ’1983 (J. VanHulzen, ed.), Lecture Notes in Computer Science
162, Springer, 1983, pp. 236–244.

41. N. Kanamaru, T. Nishizeki, and T. Asano, Efficient enumeration of grid points in a convex

polygon and its application to integer programming, International Journal of Computational
Geometry & Applications 4 (1994) 69–85.

42. R. Kannan, Improved algorithms for integer programming and related problems, Proceedings
of the 15th Annual ACM Symposium on Theory of Computing (New York), ACM Press,
1983, pp. 193–206.

43. R. Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of Op-
erations Research 12 (1987) 415–440.



558 Friedrich Eisenbrand

44. R. Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of Op-
erations Research 12 (1987) 415–440.

45. R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12
(1992) 161–177.

46. R. Kannan, A polynomial algorithm for the two-variable integer programming problem, Jour-
nal of the Association for Computing Machinery 27 (1980) 118–122.

47. R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite nor-

mal forms of an integer matrix, SIAM Journal on Computing 8 (1979) 499–507.
48. L.G. Khachiyan and M.J. Todd, On the complexity of approximating the maximal inscribed

ellipsoid for a polytope, Mathematical Programming 61 (1993) 137–159.
49. A. Khinchine, A quantitative formulation of Kronecker’s theory of approximation (in russian),

Izvestiya Akademii Nauk SSR Seriya Matematika 12 (1948) 113–122.
50. S. Khot, Hardness of approximating the shortest vector problem in high lp norms, Journal of

Computer and System Sciences 72 (2006) 206–219.
51. D. Knuth, The art of computer programming, Vol. 2, Addison-Wesley, 1969.
52. M. Köppe, S. Verdoolaege, and K. Woods, An implementation of the barvinok–woods integer

projection algorithm, Technical report, Katholieke Universiteit Leuven, 2008.
53. M. Köppe and S. Verdoolaege, Computing parametric rational generating functions with a

primal Barvinok algorithm, Electronic Journal of Combinatorics 15:#R16 (2008).
54. J. Lagarias, H. Lenstra, and C. Schnorr, Korkin-zolotarev bases and successive minima of a

lattice and its reciprocal lattice, Combinatorica 10 (1990) 333–348.
55. A.K. Lenstra, H.W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients,

Mathematische Annalen 261 (1982) 515–534.
56. H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Opera-

tions Research 8 (1983) 538–548.
57. H.W. Lenstra, Jr., Lattices, Algorithmic number theory: lattices, number fields, curves and

cryptography, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2008, pp. 127–
181.

58. L. Lovász, An algorithmic theory of numbers, graphs and convexity, SIAM, 1986.
59. J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear programming, Algo-

rithmica 16 (1996) 498–516.
60. D. Micciancio, The shortest vector in a lattice is hard to approximate to within some con-

stant, Proceedings of the 39th Annual Symposium on Foundations of Computer Science (Los
Alamitos, CA), IEEE Computer Society, 1998, pp. 92–98.

61. H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896.
62. Y.E. Nesterov and A.S. Nemirovski, Self–concordant functions and polynomial–time meth-

ods in convex programming, Technical report, Central Economic and Mathematical Institute,
USSR Academy of Science, Moscow, USSR, 1989.

63. P.Q. Nguyen and D. Stehlé, Floating-point LLL revisited, Proceedings of the 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT 05) (R. Cramer, ed.), Lecture Notes in Computer Science 3494, Springer, 2005,
pp. 215–233.

64. P.Q. Nguyen and D. Stehlé, Floating-point LLL revisited, Advances in cryptology—EURO-
CRYPT 2005, Lecture Notes in Computer Science 3494, Springer, 2005, pp. 215–233.

65. I. Niven, H.S. Zuckerman, and H.L. Montgomery, An introduction to the theory of numbers,

fifth edition, Wiley, 1991.
66. X. Pujol and D. Stehlé, Rigorous and efficient short lattice vectors enumeration, 14th Inter-

national Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT 2008) 2008, pp. 390–405.

67. J.L. Ramı́rez-Alfonsı́n, Complexity of the Frobenius problem, Combinatorica 16 (1996) 143–
147.

68. O. Regev, Lattices in computer science, Lecture notes, Tel Aviv University, 2004, http:
//www.cs.tau.ac.il/˜odedr/teaching/lattices fall 2004/index.html.



14 Integer Programming and Algorithmic Geometry of Numbers 559

69. O. Regev and R. Rosen, Lattice problems and norm embeddings, STOC’06: Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 447–
456.

70. H.E. Scarf, Production sets with indivisibilities. Part I: generalities, Econometrica 49 (1981)
1–32.

71. H.E. Scarf, Production sets with indivisibilities. Part II: The case of two activities, Economet-
rica 49 (1981) 395–423.

72. C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical
Computer Science 53 (1987) 201–224.

73. A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica 1
(1971) 139–144.

74. A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7 (1971)
281–292.

75. A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, 1986.
76. V.N. Shevchenko, On the number of extreme points in integer programming, Kibernetika

(1981) 133–134 (Russian).
77. L.J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science 3 (1976) 1–

22.
78. A. Storjohann, Faster algorithms for integer lattice reduction, Technical Report 249, Depart-

ment of Computer Science, ETH Zürich, 1996.
79. É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Opera-

tions Research 34 (1986) 250–256.
80. J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press,

1999.
81. J. von zur Gathen and M. Sieveking, Weitere zum Erfüllungsproblem polynomial äquiv-

alente kombinatorische Aufgaben, Komplexität von Entscheidungsproblemen: ein Seminar
(E. Specker and V. Strassen, eds.), Lecture Notes in Computer Science 43, Springer, 1976,
pp. 49–71.

82. E. Welzl, Smallest enclosing disks (balls and ellipsoids), New results and new trends in com-
puter science (Graz, 1991), Lecture Notes in Computer Science 555, Springer, Berlin, 1991,
pp. 359–370.

83. C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoretical Computer Science
3 (1976) 23–33.

84. L.Y. Zamanskij and V.D. Cherkasskij, A formula for determining the number of integral points

on a straight line and its application, Ehkon. Mat. Metody 20 (1984) 1132–1138, (in Russian).



Chapter 15

Nonlinear Integer Programming

Raymond Hemmecke, Matthias Köppe, Jon Lee, and Robert Weismantel

Abstract Research efforts of the past fifty years have led to a development of linear

integer programming as a mature discipline of mathematical optimization. Such a

level of maturity has not been reached when one considers nonlinear systems sub-

ject to integrality requirements for the variables. This chapter is dedicated to this

topic. The primary goal is a study of a simple version of general nonlinear integer

problems, where all constraints are still linear. Our focus is on the computational

complexity of the problem, which varies significantly with the type of nonlinear

objective function in combination with the underlying combinatorial structure. Nu-

merous boundary cases of complexity emerge, which sometimes surprisingly lead

even to polynomial time algorithms. We also cover recent successful approaches for

more general classes of problems. Though no positive theoretical efficiency results

are available, nor are they likely to ever be available, these seem to be the cur-

rently most successful and interesting approaches for solving practical problems.

It is our belief that the study of algorithms motivated by theoretical considerations

and those motivated by our desire to solve practical instances should and do inform

one another. So it is with this viewpoint that we present the subject, and it is in this

direction that we hope to spark further research.

Raymond Hemmecke
FMA/IMO, Otto-von-Guericke-Universität Magdeburg, Germany
e-mail: hemmecke@imo.math.uni-magdeburg.de

Matthias Köppe
Department of Mathematics, University of California, Davis, USA
e-mail: mkoeppe@math.ucdavis.edu

Jon Lee
IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
e-mail: jonlee@us.ibm.com

Robert Weismantel
FMA/IMO, Otto-von-Guericke-Universität Magdeburg, Germany
e-mail: weismant@imo.math.uni-magdeburg.de

561
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_15, © Springer-Verlag Berlin Heidelberg 2010 



562 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

15.1 Overview

In the past decade, nonlinear integer programming has gained a lot of mindshare.

Obviously many important applications demand that we be able to handle nonlin-

ear objective functions and constraints. Traditionally, nonlinear mixed-integer pro-

grams have been handled in the context of the field of global optimization, where

the main focus is on numerical algorithms to solve nonlinear continuous optimiza-

tion problems and where integrality constraints were considered as an afterthought,

using branch-and-bound over the integer variables. In the past few years, however,

researchers from the field of integer programming have increasingly studied nonlin-

ear mixed-integer programs from their point of view. Nevertheless, this is generally

considered a very young field, and most of the problems and methods are not as

well-understood or stable as in the case of linear mixed-integer programs.

Any contemporary review of nonlinear mixed-integer programming will there-

fore be relatively short-lived. For this reason, our primary focus is on a classification

of nonlinear mixed-integer problems from the point of view of computational com-

plexity, presenting theory and algorithms for the efficiently solvable cases. The hope

is that at least this part of the chapter will still be valuable in the next few decades.

However, we also cover recent successful approaches for more general classes of

problems. Though no positive theoretical efficiency results are available — nor are

they likely to ever be available, these seem to be the currently most successful and

interesting approaches for solving practical problems. It is our belief that the study

of algorithms motivated by theoretical considerations and those motivated by our

desire to solve practical instances should and do inform one another. So it is with

this viewpoint that we present the subject, and it is in this direction that we hope to

spark further research.

Let us however also remark that the selection of the material that we dis-

cuss in this chapter is subjective. There are topics that some researchers associate

with “nonlinear integer programming” that are not covered here. Among them are

pseudo-Boolean optimization, max-cut and quadratic assignment as well as general

0/1 polynomial programming. There is no doubt that these topics are interesting, but,

in order to keep this chapter focused, we refrain from going into these topics. In-

stead we refer the interested reader to the references [56] on max-cut, [33] for recent

advances in general 0/1 polynomial programming, and the excellent surveys [30] on

pseudo-Boolean optimization and [104, 35] on the quadratic assignment problem.

A general model of mixed-integer programming could be written as

max/min f (x1, . . . ,xn)

s.t. g1(x1, . . . ,xn) 6 0

...

gm(x1, . . . ,xn) 6 0

x ∈ Rn1 ×Zn2 ,

(15.1)



15 Nonlinear Integer Programming 563

where f ,g1, . . . ,gm : Rn → R are arbitrary nonlinear functions. However, in parts

of the chapter, we study a rather restricted model of nonlinear integer program-

ming, where the nonlinearity is confined to the objective function, i.e., the following

model:
max/min f (x1, . . . ,xn)

subject to Ax 6 b

x ∈ Rn1 ×Zn2 ,

(15.2)

where A is a rational matrix and b is a rational vector. It is clear that this model is

still NP-hard, and that it is much more expressive and much harder to solve than

integer linear programs.

We start out with a few fundamental hardness results that help to get a picture of

the complexity situation of the problem.

Even in the pure continuous case, nonlinear optimization is known to be hard.

Theorem 15.1. Pure continuous polynomial optimization over polytopes (n2 = 0)

in varying dimension is NP-hard. Moreover, there does not exist a fully polynomial

time approximation scheme (FPTAS) (unless P = NP).

Indeed the max-cut problem can be modeled as minimizing a quadratic form over

the cube [−1,1]n, and thus inapproximability follows from a result by Håstad [66].

On the other hand, pure continuous polynomial optimization problems over poly-

topes (n2 = 0) can be solved in polynomial time when the dimension n1 is fixed.

This follows from a much more general result on the computational complexity of

approximating the solutions to general algebraic formulae over the real numbers by

Renegar [112].

However, as soon as we add just two integer variables, we get a hard problem

again:

Theorem 15.2. The problem of minimizing a degree-4 polynomial over the lattice

points of a convex polygon is NP-hard.

This is based on the NP-completeness of the problem whether there exists a positive

integer x < c with x2 ≡ a (mod b); see [54, 45].

We also get hardness results that are much worse than just NP-hardness. The neg-

ative solution of Hilbert’s tenth problem by Matiyasevich [96, 97], based on earlier

work by Davis, Putnam, and Robinson, implies that nonlinear integer programming

is incomputable, i.e., there cannot exist any general algorithm. (It is clear that for

cases where finite bounds for all variables are known, an algorithm trivially ex-

ists.) Due to a later strengthening of the negative result by Matiyasevich (published

in [77]), there also cannot exist any such general algorithm for even a small fixed

number of integer variables; see [45].

Theorem 15.3. The problem of minimizing a linear form over polynomial con-

straints in at most 10 integer variables is not computable by a recursive function.

Another consequence, as shown by Jeroslow [76], is that even integer quadratic

programming is incomputable.



564 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Theorem 15.4. The problem of minimizing a linear form over quadratic constraints

in integer variables is not computable by a recursive function.

How do we get positive complexity results and practical methods? One way is

to consider subclasses of the objective functions and constraints. First of all, for

the problem of concave minimization or convex maximization which we study in

Section 15.2, we can make use of the property that optimal solutions can always

be found on the boundary (actually on the set of vertices) of the convex hull of the

feasible solutions. On the other hand, as in the pure continuous case, convex min-

imization, which we address in Section 15.3), is much easier to handle, from both

theoretical and practical viewpoints, than the general case. Next, in Section 15.4, we

study the general case of polynomial optimization, as well as practical approaches

for handling the important case of quadratic functions. Finally, in Section 15.5, we

briefly describe the practical approach of global optimization.

For each of these subclasses covered in Sections 15.2–15.5, we discuss posi-

tive complexity results, such as polynomiality results in fixed dimension, if avail-

able (Sections 15.2.1, 15.3.1, 15.4.1), including some boundary cases of complex-

ity in Sections 15.2.2, 15.3.2, and 15.5.2, and discuss practical algorithms (Sec-

tions 15.2.3, 15.3.3, 15.4.2, 15.4.3, 15.5.1).

We end the chapter with conclusions (Section 15.6), including a table that sum-

marizes the complexity situation of the problem (Table 15.1).

15.2 Convex integer maximization

15.2.1 Fixed dimension

Maximizing a convex function over the integer points in a polytope in fixed di-

mension can be done in polynomial time. To see this, note that the optimal value is

taken on at a vertex of the convex hull of all feasible integer points. But when the

dimension is fixed, there is only a polynomial number of vertices, as Cook et al. [39]

showed.

Theorem 15.5. Let P = {x ∈Rn : Ax 6 b} be a rational polyhedron with A ∈Qm×n

and let φ be the largest binary encoding size of any of the rows of the system Ax 6 b.

Let PI = conv(P∩Zn) be the integer hull of P. Then the number of vertices of PI is

at most 2mn(6n2φ)
n−1

.

Moreover, Hartmann [65] gave an algorithm for enumerating all the vertices, which

runs in polynomial time in fixed dimension.

By using Hartmann’s algorithm, we can therefore compute all the vertices of the

integer hull PI, evaluate the convex objective function on each of them and pick the

best. This simple method already provides a polynomial-time algorithm.



15 Nonlinear Integer Programming 565

15.2.2 Boundary cases of complexity

In the past fifteen years algebraic geometry and commutative algebra tools

have shown their exciting potential to study problems in integer optimization

(see [20, 131] and references therein). The presentation in this section is based on

the papers [47, 102].

The first key lemma, extending results of [102] for combinatorial optimization,

shows that when a suitable geometric condition holds, it is possible to efficiently

reduce the convex integer maximization problem to the solution of polynomially

many linear integer programming counterparts. As we will see, this condition holds

naturally for a broad class of problems in variable dimension. To state this result,

we need the following terminology. A direction of an edge e (i.e., a one-dimensional

face) of a polyhedron P is any nonzero scalar multiple of u− v with u,v any two

distinct points in e. A set of vectors covers all edge-directions of P if it contains a di-

rection of each edge of P. A linear integer programming oracle for matrix A ∈ Zm×n

and vector b ∈ Zm is one that, queried on w ∈ Zn, solves the linear integer program

max{w⊤x : Ax = b, x ∈ Nn}, that is, either returns an optimal solution x ∈ Nn, or

asserts that the program is infeasible, or asserts that the objective function w⊤x is

unbounded.

Lemma 15.1. For any fixed d there is a strongly polynomial oracle-time algorithm

that, given any vectors w1, . . . ,wd ∈ Zn, matrix A ∈ Zm×n and vector b ∈ Zm en-

dowed with a linear integer programming oracle, finite set E ⊂ Zn covering all

edge-directions of the polyhedron conv{x ∈ Nn : Ax = b}, and convex functional

c : Rd −→ R presented by a comparison oracle, solves the convex integer program

max{c(w⊤
1 x, . . . ,w⊤

d x) : Ax = b, x ∈ Nn} .

Here, solving the program means that the algorithm either returns an optimal

solution x ∈ Nn, or asserts the problem is infeasible, or asserts the polyhedron

{x ∈ Rn
+ : Ax = b} is unbounded; and strongly polynomial oracle-time means

that the number of arithmetic operations and calls to the oracles are polynomially

bounded in m and n, and the size of the numbers occurring throughout the algorithm

is polynomially bounded in the size of the input (which is the number of bits in the

binary representation of the entries of w1, . . . ,wd ,A,b,E).

Let us outline the main ideas behind the proof to Lemma 15.1, and let us

point out the difficulties that one has to overcome. Given data for a convex in-

teger maximization problem max{c(w⊤
1 x, . . . ,w⊤

d x) : Ax = b, x ∈ Nn}, consider

the polyhedron P := conv{x ∈ Nn : Ax = b} ⊆ Rn and its linear transformation

Q := {(w⊤
1 x, . . . ,w⊤

d x) : x ∈ P} ⊆Rd . Note that P has typically exponentially many

vertices and is not accessible computationally. Note also that, because c is convex,

there is an optimal solution x whose image (w⊤
1 x, . . . ,w⊤

d x) is a vertex of Q. So an

important ingredient in the solution is to construct the vertices of Q. Unfortunately,

Q may also have exponentially many vertices even though it lives in a space Rd of

fixed dimension. However, it can be shown that, when the number of edge-directions

of P is polynomial, the number of vertices of Q is polynomial. Nonetheless, even in



566 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

this case, it is not possible to construct these vertices directly, because the number

of vertices of P may still be exponential. This difficulty can finally be overcome by

using a suitable zonotope. See [47, 102] for more details.

Let us now apply Lemma 15.1 to a broad (in fact, universal) class of convex

integer maximization problems. Lemma 15.1 implies that these problems can be

solved in polynomial time. Given an (r + s)× t matrix A, let A1 be its r × t sub-

matrix consisting of the first r rows and let A2 be its s× t sub-matrix consisting of

the last s rows. Define the n-fold matrix of A to be the following (r+ns)×nt matrix,

A(n) := (1n ⊗A1)⊕ (In ⊗A2) =




A1 A1 A1 · · · A1

A2 0 0 · · · 0

0 A2 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A2




.

Note that A(n) depends on r and s: these will be indicated by referring to A as an

“(r + s)× t matrix.”

We establish the following theorem, which asserts that convex integer maximiza-

tion over n-fold systems of a fixed matrix A, in variable dimension nt, are solvable

in polynomial time.

Theorem 15.6. For any fixed positive integer d and fixed (r+s)× t integer matrix A

there is a polynomial oracle-time algorithm that, given n, vectors w1, . . . ,wd ∈ Znt

and b ∈ Zr+ns, and convex function c : Rd −→ R presented by a comparison oracle,

solves the convex n-fold integer maximization problem

max{c(w⊤
1 x, . . . ,w⊤

d x) : A(n)x = b, x ∈ Nnt} .

The equations defined by an n-fold matrix have the following, perhaps more illu-

minating, interpretation: splitting the variable vector and the right-hand side vec-

tor into components of suitable sizes, x = (x1, . . . ,xn) and b = (b0,b1, . . . ,bn),
where b0 ∈ Zr and xk ∈ Nt and bk ∈ Zs for k = 1, . . . ,n, the equations become

A1(∑
n
k=1 xk) = b0 and A2xk = bk for k = 1, . . . ,n. Thus, each component xk satis-

fies a system of constraints defined by A2 with its own right-hand side bk, and the

sum ∑n
k=1 xk obeys constraints determined by A1 and b0 restricting the “common

resources shared by all components”.

Theorem 15.6 has various applications, including multiway transportation prob-

lems, packing problems, vector partitioning and clustering. For example, we have

the following corollary providing the first polynomial time solution of convex 3-way

transportation.

Corollary 15.1 (Convex 3-way transportation). For any fixed d, p,q there is a

polynomial oracle-time algorithm that, given n, arrays w1, . . . ,wd ∈ Zp×q×n, u ∈

Zp×q, v ∈ Zp×n, z ∈ Zq×n, and convex c : Rd −→ R presented by comparison ora-

cle, solves the convex integer 3-way transportation problem



15 Nonlinear Integer Programming 567

max{c(w⊤
1 x, . . . ,w⊤

d x) : x∈Np×q×n , ∑
i

xi, j,k = z j,k , ∑
j

xi, j,k = vi,k , ∑
k

xi, j,k = ui, j }.

Note that in contrast, if the dimensions of two sides of the tables are variable,

say, q and n, then already the standard linear integer 3-way transportation problem

over such tables is NP-hard, see [41, 42, 43].

In order to prove Theorem 15.6, we need to recall some definitions. The Graver

basis of an integer matrix A∈Zm×n, introduced in [60], is a canonical finite set G (A)
that can be defined as follows. For each of the 2n orthants O j of Rn let H j denote the

inclusion-minimal Hilbert basis of the pointed rational polyhedral cone ker(A)∩O j.

Then the Graver basis G (A) is defined to be the union G (A) = ∪2n

i=1H j \{0} over all

these 2n Hilbert bases. By this definition, the Graver basis G (A) has a nice repre-

sentation property: every z ∈ ker(A)∩Zn can be written as a sign-compatible non-

negative integer linear combination z = ∑i αigi of Graver basis elements gi ∈ G (A).
This follows from the simple observation that z has to belong to some orthant O j

of Rn and thus it can be represented as a sign-compatible nonnegative integer linear

combination of elements in H j ⊆ G (A). For more details on Graver bases and the

currently fastest procedure for computing them see [125, 68, 1].

Graver bases have another nice property: They contain all edge directions in the

integer hulls within the polytopes Pb = {x : Ax = b, x > 0} as b is varying. We

include a direct proof here.

Lemma 15.2. For every matrix A ∈ Zm×n and every vector b ∈ Nm, the Graver ba-

sis G (A) of A covers all edge-directions of the polyhedron conv{x ∈ Nn : Ax = b}

defined by A and b.

Proof. Consider any edge e of P := conv{x ∈ Nn : Ax = b} and pick two dis-

tinct points u,v ∈ e∩Nn. Then g := u− v is in ker(A)∩Zn \ {0} and hence, by

the representation property of the Graver basis G (A), g can be written as a fi-

nite sign-compatible sum g = ∑gi with gi ∈ G (A) for all i. Now, we claim that

u− gi ∈ P for all i. To see this, note first that gi ∈ G (A) ⊆ ker(A) implies Agi = 0

and hence A(u− gi) = Au = b; and second, note that u− gi > 0: indeed, if gi
j 6 0

then u j −gi
j > u j > 0; and if gi

j > 0 then sign-compatibility implies gi
j 6 g j and

therefore u j −gi
j > u j −g j = v j > 0.

Now let w ∈ Rn be a linear functional uniquely maximized over P at the edge e.

Then for all i, as just proved, u−gi ∈ P and hence w⊤gi > 0. But ∑w⊤gi = w⊤g =
w⊤u−w⊤v = 0, implying that in fact, for all i, we have w⊤gi = 0 and therefore

u− gi ∈ e. This implies that each gi is a direction of the edge e (in fact, moreover,

all gi are the same, so g is a multiple of some Graver basis element).

In Section 15.3.2, we show that for fixed matrix A, the size of the Graver basis

of A(n) increases only polynomially in n implying Theorem 15.14 that states that

certain integer convex n-fold minimization problems can be solved in polynomial

time when the matrix A is kept fixed. As a special case, this implies that the integer

linear n-fold maximization problem can be solved in polynomial time when the

matrix A is kept fixed. Finally, combining these results with Lemmas 15.1 and 15.2,

we can now prove Theorem 15.6.



568 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Proof (of Theorem 15.6). The algorithm underlying Proposition 15.14 provides a

polynomial time realization of a linear integer programming oracle for A(n) and b.

The algorithm underlying Proposition 15.2 allows to compute the Graver basis

G (A(n)) in time polynomial in the input. By Lemma 15.2, this set E := G (A(n))
covers all edge-directions of the polyhedron conv{x ∈ Nnt : A(n)x = b} underlying

the convex integer program. Thus, the hypothesis of Lemma 15.1 is satisfied and

hence the algorithm underlying Lemma 15.1 can be used to solve the convex integer

maximization problem in polynomial time.

15.2.3 Reduction to linear integer programming

In this section it is our goal to develop a basic understanding about when a dis-

crete polynomial programming problem can be tackled with classical linear integer

optimization techniques. We begin to study polyhedra related to polynomial integer

programming. The presented approach applies to problems of the kind

max{ f (x) : Ax = b, x ∈ Zn
+}

with convex polynomial function f , as well as to models such as

max{c⊤x : x ∈ KI}, (15.3)

where KI denotes the set of all integer points of a compact basic-closed semi-

algebraic set K described by a finite number of polynomial inequalities, i. e.,

K = {x ∈ Rn : pi(x) 6 0, i ∈ M, l 6 x 6 u}.

We assume that pi ∈ Z[x] := Z[x1, . . . ,xn], for all i ∈ M = {1, . . . ,m}, and l,u ∈ Zn.

One natural idea is to derive a linear description of the convex hull of KI . Unfor-

tunately, conv(KI) might contain interior integer points that are not elements of K,

see Figure 15.1. On the other hand, if a description of conv(KI) is at hand, then the

mathematical optimization problem of solving (15.3) can be reduced to optimizing

the linear objective function c⊤x over the polyhedron conv(KI). This is our first

topic of interest. In what follows we denote for a set D the projection of D to a set

of variables x by the symbol Dx.

Definition 15.1. For polynomials p1, . . . , pm : Zn → Z we define the polyhedron

associated with the vector p(x) = (p1(x), . . . , pm(x)) of polynomials as

Pp = conv({(x,p(x)) ∈ Rn+m : x ∈ [l,u]∩Zn}).

The significance of the results below is that they allow us to reformulate the non-

linear integer optimization problem max{ f (x) : Ax = b, x∈Zn
+} as the optimization

problem min{π : Ax = b, f (x) 6 π, x ∈ Zn
+}. This in turn has the same objective

function value as the linear integer program: min{π : Ax = b, (x,π) ∈ Pf , x ∈ Zn
+}.



15 Nonlinear Integer Programming 569

x1

5

4

3

2

1

0 1 2 3

x2

Fig. 15.1 Let K = {x ∈ R2 | x1x2 −1 6 0, 0 6 x1 6 3, 0 6 x2 6 5}. The point (1,2) is contained
in conv(KI). But it violates the constraint x1x2 −1 6 0.

In this situation, an H-description or V-description of the polyhedron Pf is sufficient

to reduce the original nonlinear optimization problem to a linear integer problem.

Proposition 15.1. For a vector of polynomials p ∈ Z[x]m, let

KI = {x ∈ Zn : p(x) 6 0, l 6 x 6 u}.

Then,

conv(KI) ⊆
(
Pp ∩{(x,πππ) ∈ Rn+m : πππ 6 0}

)
x
. (15.4)

Proof. It suffices to show that KI ⊆
(
Pp∩{(x,πππ)∈Rn+m : πππ 6 0}

)
x
. Let us consider

x ∈ KI ⊆ [l,u]∩Zn. By definition,
(
x,p(x)

)
∈ Pp. Moreover, we have p(x) 6 0. This

implies
(
x,p(x)

)
∈

(
Pp ∩{(x,πππ) ∈ Rn+m : πππ 6 0}

)
, and thus,

x ∈
(
Pp ∩{(x,πππ) ∈ Rn+m : πππ 6 0}

)
x
.

Note that even in the univariate case, equality in Formula (15.4) of Proposi-

tion 15.1 does not always hold. For instance, if KI = {x ∈ Z : x2 − 5 6 0, −3 6

x 6 5}, then

conv(KI) = [−2,2] 6= [−2.2,2.2] ⊆
(
Px2 ∩ {(x,π) ∈ R2 : π −5 6 0}

)
x
.

Although even in very simple cases the sets conv(KI) and
(
Pp ∩{(x,πππ) : πππ 6 0}

)
x

differ, it is still possible that the integer points in KI and
(
Pp∩{(x,πππ) : πππ 6 0}

)
x

are

equal. In our example with KI = {x ∈ Z : x2 −5 6 0, −3 6 x 6 5}, we then obtain,

KI = {−2,−1,0,1,2} = [−2.2,2.2]∩Z.

Of course, for any p ∈ Z[x]m we have that



570 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

KI = {x ∈ Zn : p(x) 6 0, l 6 x 6 u} ⊆
(
Pp ∩{(x,πππ) : πππ 6 0}

)
x
∩Zn. (15.5)

The key question here is when equality holds in Formula (15.5).

Theorem 15.7. Let p ∈ Z[x]m and KI = {x ∈ Zn : p(x) 6 0, l 6 x 6 u}. Then,

KI =
(
Pp ∩{(x,πππ) : πππ 6 0}

)
x
∩ Zn

holds if every polynomial p′ ∈ {pi : i = 1, . . . ,m} satisfies the condition

p′
(
∑
k

λkk
)
− ∑

k

λk p′(k) < 1, (15.6)

for all λk > 0, k ∈ [l,u]∩Zn, ∑k λk = 1 and ∑k λkk ∈ Zn.

Proof. Using (15.5), we have to show that
(
Pp ∩{(x,πππ) : πππ 6 0}

)
x
∩Zn ⊆ KI if

all pi, i ∈ {1, . . . ,m}, satisfy (15.6). Let x ∈
(
Pp ∩{(x,πππ) ∈ Rm+n : πππ 6 0}

)
x
∩Zn.

Then, there exists a πππ ∈ Rm such that

(x,πππ) ∈ Pp ∩{(x,πππ) ∈ Rn+m : πππ 6 0}.

By definition, πππ 6 0. Furthermore, there must exist nonnegative real numbers

λk > 0, k ∈ [l,u]∩Zn, such that ∑k λk = 1 and (x,πππ) = ∑k λk(k,p(k)). Suppose

that there exists an index i0 such that the inequality pi0(x) 6 0 is violated. The fact

that pi0 ∈ Z[x] and x ∈ Zn, implies that pi0(x) > 1. Thus, we obtain

∑
k

λk pi0(k) = πi0 6 0 < 1 6 pi0(x) = pi0

(
∑
k

λkk
)
,

or equivalently, pi0

(
∑k λkk

)
−∑k λk pi0(k) > 1. Because this is a contradiction to

our assumption, we have that pi(x) 6 0 for all i. Hence, x ∈ KI . This proves the

claim.

The next example illustrates the statement of Theorem 15.7.

Example 15.1. Let p ∈ Z[x], x 7→ p(x) := 3x2
1 + 2x2

2 − 19. We consider the semi-

algebraic set

K = {x ∈ R2 | p(x) 6 0, 0 6 x1 6 3, 0 6 x2 6 3} and KI = K ∩Z2.

It turns out that the convex hull of KI is described by x1 + x2 6 3, 0 6 x1 6 2 and

0 6 x2. Notice that the polynomial p is convex. This condition ensures that p satisfies

Equation (15.6) of Theorem 15.7. We obtain in this case

(
Pp ∩

{
(x,π) ∈ R3 : π 6 0}

)
x

= { x ∈ R2 : 9x1 +6x2 6 29,
3x1 +10x2 6 31,
9x1 +10x2 6 37,
15x1 +2x2 6 37,
15x1 +6x2 6 41,
−x1 6 0, 0 6 x2 6 3

}
.



15 Nonlinear Integer Programming 571

The sets K, conv(KI) and
(
Pp∩{(x,π)∈R3 : π 6 0}

)
x

are illustrated in Figure 15.2.

Note that here KI =
(
Pp ∩{(x,π) : π 6 0}

)
x
∩Z2.

y2

3

2

1

0 1 2 3 y1

conv(K)

φ(y) = 0

projy(P[φ ]∩{(y,π) ∈ R3 | π 6 0})

Fig. 15.2 Illustration of Theorem 15.7 in Example 15.1.

Next we introduce a large class of nonlinear functions for which one can ensure

that equality holds in Formula (15.5).

Definition 15.2 (Integer-Convex Polynomials). A polynomial f ∈ Z[x] is said to

be integer-convex on [l,u]⊆ Rn, if for any finite subset of nonnegative real numbers

{λk}k∈[l,u]∩Zn ⊆ R+ with ∑k∈[l,u]∩Zn λk = 1 and ∑k∈[l,u]∩Zn λkk ∈ [l,u]∩Zn, the

following inequality holds:

f
(

∑
k∈[l,u]∩Zn

λkk
)

6 ∑
k∈[l,u]∩Zn

λk f (k). (15.7)

If (15.7) holds strictly for all {λk}k∈[l,u]∩Zn ⊆ R+, and x ∈ [l,u]∩Zn such that

∑k λk = 1, x = ∑k λkk, and λx < 1, then the polynomial f is called strictly integer-

convex on [l,u].

By definition, a (strictly) convex polynomial is (strictly) integer-convex. Con-

versely, a (strictly) integer-convex polynomial is not necessarily (strictly) convex.

Figure 15.3 gives an example.

Integer convexity is inherited under taking conic combinations and applying a

composition rule.

(a) For any finite number of integer-convex polynomials fs ∈Z[x], s ∈ {1, ...,t}, on

[l,u], and nonnegative integers as ∈Z+, s ∈ {1, . . . ,t}, the polynomial f ∈Z[x],
x 7→ f (x) := ∑t

s=1 as fs(x), is integer-convex on [l,u].
(b) Let l,u ∈ Zn and let h ∈ Z[x], x 7→ h(x) := c⊤x + γ, be a linear function. Set-

ting W =
{

c⊤x+ γ : x ∈ [l,u]
}

, for every integer-convex univariate polynomial

q ∈ Z[w], the function p ∈Z[x], x 7→ p(x) := q(h(x)) is integer-convex on [l,u].



572 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

0 y1 2 3 4

φ(y)

π

Fig. 15.3 The graph of an integer-convex polynomial p on [1,4].

Indeed, integer-convex polynomial functions capture a lot of combinatorial struc-

ture. In particular, we can characterize the set of all vertices in an associated poly-

hedron. Most importantly, if f is integer-convex on [l,u], then this ensures that for

any integer point x ∈ [l,u] the value f (x) is not underestimated by all π ∈ R with

(x,π) ∈ Pf , where Pf is the polytope associated with the graph of the polynomial

f ∈ Z[x].

Theorem 15.8. For a polynomial f ∈ Z[x] and l,u ∈ Zn, l+1 < u, let

Pf = conv({(x, f (x)
)
∈ Zn+1 | x ∈ [l,u]∩Zn}).

Then f to be integer-convex on [l,u] is equivalent to the condition that for all

(x,π) ∈ Pf , x ∈ Zn we have that f (x) 6 π . Moreover, if f is strictly integer-convex

on [l,u], then for every x ∈ [l,u]∩Zn, the point (x, f (x)) is a vertex of Pf .

Proof. First let us assume that f is integer-convex on [l,u]. Let (x,π) ∈ Pf such that

x ∈ Zn. Then, there exist nonnegative real numbers {λk}k∈[l,u]∩Zn ⊆ R+, ∑k λk = 1,
such that (x,π) = ∑k λk (k, f (k)). It follows that

f (x) = f
(
∑
k

λkk
)

6 ∑
k

λk f (k) = π.

Next we assume that f is not integer-convex on [l,u]. Then, there exists a subset

of nonnegative real numbers {λk}k∈[l,u]∩Zn ⊆ R+ with ∑k λk = 1 such that

x := ∑
k

λkk ∈ [l,u]∩Zn and π := ∑
k

λk f (k) < f
(
∑
k

λkk
)

= f (x).

But then, (x,π) = ∑k λk(k, f (k)) ∈ Pf violates the inequality f (x) 6 π. This is a

contradiction to the assumption.



15 Nonlinear Integer Programming 573

If f is strictly integer-convex on [l,u], then for each x ∈ [l,u]∩Zn, we have that

f (x) < ∑
k∈[l,u]∩Zn\{x}

λk f (k),

for all λk ∈ R+, k ∈ [l,u]∩Zn \ {x}, with x = ∑k λkk and ∑k λk = 1. Thus, every

point
(
x, f (x)

)
, x ∈ [l,u]∩Zn, is a vertex of Pf .

15.3 Convex integer minimization

The complexity of the case of convex integer minimization is set apart from the

general case of integer polynomial optimization by the existence of bounding results

for the coordinates of optimal solutions. Once a finite bound can be computed, it is

clear that an algorithm for minimization exists. Thus the fundamental incomputabil-

ity result for integer polynomial optimization (Theorem 15.3) does not apply to the

case of convex integer minimization.

The first bounds for the optimal integer solutions to convex minimization prob-

lems were proved by [79, 126]. We present the sharpened bound that was obtained

by [12, 11] for the more general case of quasi-convex polynomials. This bound is a

consequence of an efficient theory of quantifier elimination over the reals; see [111].

Theorem 15.9. Let f ,g1, . . . ,gm ∈ Z[x1, . . . ,xn] be quasi-convex polynomials of de-

gree at most d > 2, whose coefficients have a binary encoding length of at most ℓ.

Let

F = {x ∈ Rn : gi(x) 6 0 for i = 1, . . . ,m}

be the (continuous) feasible region. If the integer minimization problem min{ f (x) :

x ∈ F ∩Zn } is bounded, there exists a radius R ∈ Z+ of binary encoding length at

most (md)O(n)ℓ such that

min{ f (x) : x ∈ F ∩Zn } = min{ f (x) : x ∈ F ∩Zn, ‖x‖ 6 R}.

15.3.1 Fixed dimension

In fixed dimension, the problem of convex integer minimization can be solved

using variants of Lenstra’s algorithm [88] for integer programming. Indeed, when

the dimension n is fixed, the bound R given by Theorem 15.9 has a binary encoding

size that is bounded polynomially by the input data. Thus, a Lenstra-type algorithm

can be started with a “small” (polynomial-size) initial outer ellipsoid that includes a

bounded part of the feasible region containing an optimal integer solution.

The first algorithm of this kind for convex integer minimization was announced

by Khachiyan [79]. In the following we present the variant of Lenstra’s algorithm



574 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

due to Heinz [67], which seems to yield the best known complexity bound for the

problem. The complexity result is the following.

Theorem 15.10. Let f ,g1, . . . ,gm ∈Z[x1, . . . ,xn] be quasi-convex polynomials of de-

gree at most d > 2, whose coefficients have a binary encoding length of at most ℓ.

There exists an algorithm running in time mℓO(1)dO(n)2O(n3) that computes a mini-

mizer x∗ ∈ Zn of the problem (15.1) or reports that no minimizer exists. If the algo-

rithm outputs a minimizer x∗, its binary encoding size is ℓdO(n).

A complexity result of greater generality was presented by Khachiyan and Porko-

lab [80]. It covers the case of minimization of convex polynomials over the inte-

ger points in convex semialgebraic sets given by arbitrary (not necessarily quasi-

convex) polynomials.

Theorem 15.11. Let Y ⊆ Rk be a convex set given by

Y = {y ∈ Rk : Q1x1 ∈ Rn1 : · · · Qω xω ∈ Rnω : P(y,x1, . . . ,xω)}

with quantifiers Qi ∈ {∃,∀}, where P is a Boolean combination of polynomial in-

equalities

gi(y,x1, . . . ,xω) 6 0, i = 1, . . . ,m

with degrees at most d > 2 and coefficients of binary encoding size at most ℓ.

There exists an algorithm for solving the problem min{yk : y ∈ Y ∩Zk } in time

ℓO(1)(md)O(k4)∏ω
i=1 O(ni).

When the dimension k + ∑ω
i=1 ni is fixed, the algorithm runs in polynomial time.

For the case of convex minimization where the feasible region is described by con-

vex polynomials, the complexity bound of Theorem 15.11, however, translates to

ℓO(1)mO(n2)dO(n4), which is worse than the bound of Theorem 15.10 [67].

In the remainder of this subsection, we describe the ingredients of the variant

of Lenstra’s algorithm due to Heinz. The algorithm starts out by “rounding” the

feasible region, by applying the shallow-cut ellipsoid method to find proportional

inscribed and circumscribed ellipsoids. It is well-known [61] that the shallow-cut el-

lipsoid method only needs an initial circumscribed ellipsoid that is “small enough”

(of polynomial binary encoding size – this follows from Theorem 15.9) and an im-

plementation of a shallow separation oracle, which we describe below.

For a positive-definite matrix A we denote by E (A, x̂) the ellipsoid {x ∈ Rn :

(x− x̂)⊤A(x− x̂) 6 1}.

Lemma 15.3 (Shallow separation oracle). Let g0, . . . ,gm+1 ∈Z[x] be quasi-convex

polynomials of degree at most d, the binary encoding sizes of whose coefficients are

at most r. Let the (continuous) feasible region F = {x∈Rn : gi(x) < 0} be contained

in the ellipsoid E (A, x̂), where A and x̂ have binary encoding size at most ℓ. There

exists an algorithm with running time m(lnr)O(1)dO(n) that outputs

(a) “true” if

E ((n+1)−3A, x̂) ⊆ F ⊆ E (A, x̂); (15.8)



15 Nonlinear Integer Programming 575

(a)

1
n+1.5

1
n+1

ex41

ex4d

ex2d

ex21

ex31ex3d

B4

B1B3

B2

1−1 e0

ex1dex11

(b)

1−1

F

ex21

ex31 ex11

ex41

Fig. 15.4 The implementation of the shallow separation oracle. (a) Test points xi j in the circum-
scribed ball E (1,0). (b) Case I: All test points xi1 are (continuously) feasible; so their convex hull
(a cross-polytope) and its inscribed ball E ((n+1)−3,0) are contained in the (continuous) feasible
region F .

(b) otherwise, a vector c ∈ Qn \{0} of binary encoding length (l + r)(dn)O(1) with

F ⊆ E (A, x̂)∩
{

x ∈ Rn : c⊤(x− x̂) 6 1
n+1 (c⊤Ac)1/2

}
. (15.9)

Proof. We give a simplified sketch of the proof, without hard complexity estimates.

By applying an affine transformation to F ⊆ E (A, x̂), we can assume that F is con-

tained in the unit ball E (I,0). Let us denote as usual by e1, . . . ,en the unit vec-

tors and by en+1, . . . ,e2n their negatives. The algorithm first constructs numbers

λi1, . . . ,λid > 0 with
1

n+ 3
2

< λi1 < · · · < λid <
1

n+1
(15.10)

and the corresponding point sets Bi = {xi j := λi jei : j = 1, . . . ,d }, (Figure 15.4 (a)).

The choice of the bounds (15.10) for λi j will ensure that we either find a large

enough inscribed ball for (a) or a deep enough cut for (b). Then the algorithm deter-

mines the (continuous) feasibility of the center 0 and the 2n innermost points xi,1.

Case I. If xi,1 ∈F , i = 1, . . . ,2n, then the cross-polytope conv{xi,1 : i = 1, . . . ,2n}

is contained in F ; see Figure 15.4 (b). An easy calculation shows that the ball

E ((n+1)−3,0) is contained in the cross-polytope and thus in F ; see Figure 15.4.

Hence the condition in (a) is satisfied and the algorithm outputs “true”.

Case II. We now discuss the case when the center 0 violates a polynomial in-

equality g0(x) < 0 (say). Let F0 = {x∈Rn : g0(x) < 0}⊇F . Due to convexity of F0,

for all i = 1, . . . ,n, one set of each pair Bi∩F0 and Bn+i∩F0 must be empty; see Fig-

ure 15.5 (a). Without loss of generality, let us assume Bn+i ∩F0 = /0 for all i. We can

determine whether an n-variate polynomial function of known maximum degree d

is constant by evaluating it on (d +1)n suitable points (this is a consequence of the

Fundamental Theorem of Algebra). For our case of quasi-convex polynomials, this

can be improved; indeed, it suffices to test whether the gradient ∇g0 vanishes on the

nd points in the set B1 ∪·· ·∪Bn. If it does, we know that g0 is constant, thus F = /0,

and so can we return an arbitrary vector c. Otherwise, there is a point xi j ∈ Bi with

c := ∇g0(xi j) 6= 0; we return this vector as the desired normal vector of a shallow



576 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

(a)

ex1d

B4

B1B3

B2

1−1

F

ex31

e0

ex11ex31ex3d

ex2d

ex21

ex41

ex4d

(b)

ex1d

1−1

F

ex21

ex31

e0

ex41

ex11

Fig. 15.5 The implementation of the shallow separation oracle. (a) Case II: The center 0 violates
a polynomial inequality g0(x) < 0 (say). Due to convexity, for all i = 1, . . . ,n, one set of each pair
Bi ∩F and Bn+i ∩F must be empty. (b) Case III: A test point xk1 is infeasible, as it violates an
inequality g0(x) < 0 (say). However, the center 0 is feasible at least for this inequality.

cut. Due to the choice of λi j as a number smaller than 1
n+1 , the cut is deep enough

into the ellipsoid E (A, x̂), so that (15.9) holds.

Case III. The remaining case to discuss is when 0 ∈ F but there exists a

k ∈ {1, . . . ,2n} with xk,1 /∈ F . Without loss of generality, let k = 1, and let x1,1

violate the polynomial inequality g0(x) < 0, i.e., g0(x1,1) > 0; see Figure 15.5 (b).

We consider the univariate polynomial φ(λ ) = g0(λei). We have φ(0) = g0(0) < 0

and φ(λ1,1) > 0, so φ is not constant. Because φ has degree at most d, its deriva-

tive φ ′ has degree at most d − 1, so φ ′ has at most d − 1 roots. Thus, for at least

one of the d different values λ1,1, . . . ,λ1,d , say λ1, j, we must have φ ′(λ1, j) 6= 0. This

implies that c := ∇g0(x1, j) 6= 0. By convexity, we have x1, j /∈ F , so we can use c as

the normal vector of a shallow cut.

By using this oracle in the shallow-cut ellipsoid method, one obtains the follow-

ing result.

Corollary 15.2. Let g0, . . . ,gm ∈ Z[x] be quasi-convex polynomials of degree at

most d > 2. Let the (continuous) feasible region F = {x ∈ Rn : gi(x) 6 0} be con-

tained in the ellipsoid E (A0,0), given by the positive-definite matrix A0 ∈ Qn×n.

Let ε ∈ Q>0 be given. Let the entries of A0 and the coefficients of all monomials of

g0, . . . ,gm have binary encoding size at most ℓ.

There exists an algorithm with running time m(ℓn)O(1)dO(n) that computes a

positive-definite matrix A ∈ Qn×n and a point x̂ ∈ Qn with

(a) either E ((n+1)−3A, x̂) ⊆ F ⊆ E (A, x̂)
(b) or F ⊆ E (A, x̂) and volE (A, x̂) < ε .

Finally, there is a lower bound for the volume of a continuous feasible region F

that can contain an integer point.

Lemma 15.4. Under the assumptions of Theorem 15.2, if F ∩Zn 6= /0, then there

exists an ε ∈ Q>0 of binary encoding size ℓ(dn)O(1) with volF > ε .



15 Nonlinear Integer Programming 577

On the basis of these results, one obtains a Lenstra-type algorithm for the de-

cision version of the convex integer minimization problem with the desired com-

plexity. By applying binary search, the optimization problem can be solved, which

provides a proof of Theorem 15.10.

15.3.2 Boundary cases of complexity

In this section we present an optimality certificate for problems of the form

min{ f (x) : Ax = b, l 6 x 6 u,x ∈ Zn},

where A ∈ Zd×n, b ∈ Zd , l,u ∈ Zn, and where f : Rn → R is a separable convex

function, that is, f (x) =
n

∑
i=1

fi(xi) with convex functions fi : R → R, i = 1, . . . ,n.

This certificate then immediately leads us to a oracle-polynomial time algorithm to

solve the separable convex integer minimization problem at hand. Applied to sep-

arable convex n-fold integer minimization problems, this gives a polynomial time

algorithm for their solution [70].

For the construction of the optimality certificate, we exploit a nice super-additi-

vity property of separable convex functions.

Lemma 15.5. Let f : Rn → R be a separable convex function and let h1, . . .hk ∈ Rn

belong to a common orthant of Rn, that is, they all have the same sign pattern from

{> 0,6 0}n. Then, for any x ∈ Rn we have

f
(

x+
k

∑
i=1

hi

)
− f (x) >

k

∑
i=1

[ f (x+hi)− f (x)].

Proof. The claim is easy to show for n = 1 by induction. If, w.l.o.g., h2 > h1 > 0

then convexity of f implies [ f (x+h1 +h2)− f (x+h2)]/h1 > [ f (x+h1)− f (x)]/h1,

and thus f (x+h1 +h2)− f (x) > [ f (x+h2)− f (x)]+ [ f (x+h1)− f (x)]. The claim

for general n then follows from the separability of f by adding the superadditivity

relations of each one-parametric convex summand of f .

A crucial role in the following theorem is again played by the Graver basis G (A)
of A. Let us remind the reader that the Graver basis G (A) has a nice representa-

tion property due to its definition: every z ∈ ker(A)∩Zn can be written as a sign-

compatible nonnegative integer linear combination z = ∑i αigi of Graver basis el-

ements gi ∈ G (A). This followed from the simple observation that z has to belong

to some orthant O j of Rn and thus it can be represented as a sign-compatible non-

negative integer linear combination of elements in H j ⊆ G (A) belonging to this

orthant. Note that by the integer Carathéodory property of Hilbert bases, at most

2 ·dim(ker(A))−2 vectors are needed in such a representation [119]. It is precisely

this simple representation property of G (A) combined with the superadditivity of



578 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

the separable convex function f that turns G (A) into an optimality certificate for

min{ f (x) : Ax = b, l 6 x 6 u,x ∈ Zn}.

Theorem 15.12. Let f : Rn → R be a separable convex function given by a com-

parison oracle that when queried on x,y ∈ Zn decides whether f (x) < f (y),
f (x) = f (y), or f (x) > f (y). Then x0 is an optimal feasible solution to min{ f (x) :

Ax = b, l 6 x 6 u,x ∈ Zn} if and only if for all g ∈ G (A) the vector x0 + g is not

feasible or f (x0 +g) > f (x0).

Proof. Assume that x0 is not optimal and let xmin be an optimal solution to the given

problem. Then xmin − x0 ∈ ker(A) and thus it can be written as a sign-compatible

nonnegative integer linear combination xmin−x0 = ∑i αigi of Graver basis elements

gi ∈ G (A). We show that one of the gi must be an improving vector, that is, for

some gi we have that x0 +gi is feasible and f (x0 +gi) < f (x0).
For all i, the vector gi has the same sign-pattern as xmin −x0 and it is now easy to

check that the coordinates of x0 + gi lie between the corresponding coordinates of

x0 and xmin. This implies in particular l 6 x0 +gi 6 u. Because gi ∈ ker(A), we also

have A(x0 + gi) = b for all i. Consequently, for all i the vector x0 + gi would be a

feasible solution. It remains to show that one of these vectors has a strictly smaller

objective value than x0.

Due to the superadditivity from Lemma 15.5, we have

0 > f (xmin)− f (x0) = f
(

x0 +
2n−2

∑
i=1

αigi

)
− f (x0) >

k

∑
i=1

αi[ f (x0 +gi)− f (x0)].

Thus, at least one of the summands f (x0 +gi)− f (x0) must be negative and we have

found an improving vector for z0 in G (A).

We now turn this optimality certificate into a polynomial oracle-time algorithm

to solve the separable convex integer minimization problem min{ f (x) : Ax = b,

l 6 x 6 u,x ∈Zn}. For this, we call αg a greedy Graver improving vector if x0 +αg

is feasible and such that f (x0 + αg) is minimal among all such choices of α ∈ Z+

and g ∈ G (A). Then the following result holds.

Theorem 15.13. Let f : Rn →R be a separable convex function given by a compar-

ison oracle and assume that | f (x)| < M for all x ∈ {x : Ax = b, l 6 x 6 u,x ∈ Zn}.

Then any feasible solution x0 to min{ f (x) : Ax = b, l 6 x 6 u,x ∈ Zn} can be aug-

mented to optimality by a number of greedy Graver augmentation steps that is poly-

nomially bounded in the encoding lengths of A, b, l, u, M, and x0.

Proof. Assume that x0 is not optimal and let xmin be an optimal solution to the given

problem. Then xmin − x0 ∈ ker(A) and thus it can be written as a sign-compatible

nonnegative integer linear combination xmin −x0 = ∑i αigi of at most 2n−2 Graver

basis elements gi ∈ G (A). As in the proof of Theorem 15.12, sign-compatibility im-

plies that for all i the coordinates of x0 +αigi lie between the corresponding coordi-

nates of x0 and xmin. Consequently, we have l 6 x0 +αigi 6 u. Because gi ∈ ker(A),



15 Nonlinear Integer Programming 579

we also have A(x0 + αigi) = b for all i. Consequently, for all i the vector x0 + αigi

would be a feasible solution.

Due to the superadditivity from Lemma 15.5, we have

0 > f (xmin)− f (x0) = f
(

x0 +
2n−2

∑
i=1

αigi

)
− f (x0) >

k

∑
i=1

[ f (x0 +αigi)− f (x0)].

Thus, at least one of the summands f (x0 + αigi)− f (x0) must be smaller than
1

2n−2 [ f (xmin)− f (x0)], giving an improvement that is at least 1
2n−2 times the max-

imal possible improvement f (xmin)− f (x0). Such a geometric improvement, how-

ever, implies that the optimum is reached in a number of greedy augmentation steps

which is polynomial in the encoding lengths of A, b, l, u, M, and x0 [4].

Thus, once we have a polynomial size Graver basis, we get a polynomial time

algorithm to solve the convex integer minimization problem at hand.

For this, let us consider again n-fold systems (introduced in Section 15.2.2). Two

nice stabilization results established by Hoşten and Sullivant [72] and Santos and

Sturmfels [114] immediately imply that if A1 and A2 are kept fixed, then the size

of the Graver basis increases only polynomially in the number n of copies of A1

and A2.

Proposition 15.2. For any fixed (r + s)× t integer matrix A there is a polynomial

time algorithm that, given any n, computes the Graver basis G (A(n)) of the n-fold

matrix A(n) = (1n ⊗A1)⊕ (In ⊗A2).

Combining this proposition with Theorem 15.13, we get the following nice result

from [70].

Theorem 15.14. Let A be a fixed integer (r + s)× t matrix and let f : Rnt → R be

any separable convex function given by a comparison oracle. Then there is a poly-

nomial time algorithm that, given n, a right-hand side vector b ∈ Zr+ns and some

bound | f (x)| < M on f over the feasible region, solves the n-fold convex integer

programming problem

min{ f (x) : A(n)x = b, x ∈ Nnt}.

Note that by applying an approach similar to Phase I of the simplex method one

can also compute an initial feasible solution x0 to the n-fold integer program in

polynomial time based on greedy Graver basis directions [47, 68].

We wish to point out that the presented approach can be generalized to the mixed-

integer situation and also to more general objective functions that satisfy a certain

superadditivity/subadditivity condition, see [69, 87] for more details. Note that for

mixed-integer convex problems one may only expect an approximation result, as

there need not exist a rational optimum. In fact, already a mixed-integer greedy aug-

mentation vector can be computed only approximately. Nonetheless, the technical

difficulties when adjusting the proofs for the pure integer case to the mixed-integer

situation can be overcome [69]. It should be noted, however, that the Graver basis



580 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

of n-fold matrices does not show a stability result similar to the pure integer case

as presented in [72, 114]. Thus, we do not get a nice polynomial time algorithm for

solving mixed-integer convex n-fold problems.

15.3.3 Practical algorithms

In this section, the methods that we look at, aimed at formulations having convex

continuous relaxations, are driven by O.R./engineering approaches, transporting and

motivated by successful mixed-integer linear programming technology and smooth

continuous nonlinear programming technology. In Section 15.3.3.1 we discuss gen-

eral algorithms that make few assumptions beyond those that are typical for convex

continuous nonlinear programming. In Section 15.3.3.2 we present some more spe-

cialized techniques aimed at convex quadratics.

15.3.3.1 General algorithms

Practical, broadly applicable approaches to general mixed-integer nonlinear pro-

grams are aimed at problems involving convex minimization over a convex set with

some additional integrality restriction. Additionally, for the sake of obtaining well-

behaved continuous relaxations, a certain amount of smoothness is usually assumed.

Thus, in this section, the model that we focus on is

min f (x,y)

s.t. g(x,y) 6 0

l ≤ y ≤ u

x ∈ Rn1 , y ∈ Zn2 ,

(P[l,u])

where f : Rn → R and g : Rn → Rm are twice continuously-differentiable convex

functions, l ∈ (Z∪ {−∞})n2 , u ∈ (Z∪ {+∞})n2 , and l ≤ u. It is also helpful to

assume that the feasible region of the relaxation of (P[l,u]) obtained by replacing

y ∈Zn2 with y ∈Rn2 is bounded. We denote this continuous relaxation by (PR[l,u]).
To describe the various algorithmic approaches, it is helpful to define some re-

lated subproblems of (P[l,u]) and associated relaxations. Our notation is already

designed for this. For vector l′ ∈ (Z ∪ {−∞})n2 and u′ ∈ (Z ∪ {+∞})n2 , with

l ≤ l′ ≤ u′ ≤ u, we have the subproblem (P[l′,u′]) and its associated continuous

relaxation (PR[l′,u′]).
Already, we can see how the family of relaxations (PR[l′,u′]) leads to the ob-

vious extension of the Branch-and-Bound Algorithm of mixed-integer linear pro-

gramming. Indeed, this approach was experimented with in [64]. The Branch-and-

Bound Algorithm for mixed-integer nonlinear programming has been implemented

as MINLP-BB [89], with continuous nonlinear-programming subproblem relax-

ations solved with the active-set solver filterSQP and also as SBB, with asso-



15 Nonlinear Integer Programming 581

ciated subproblems solved with any of CONOPT, SNOPT and MINOS. Moreover,

Branch-and-Bound is available as an algorithmic option in the actively developed

code Bonmin [22, 24, 26], which can be used as a callable library, as a stand-alone

solver, via the modeling languages AMPL and GAMS, and is available in source-code

form, under the Common Public License, from COIN-OR [29], available for run-

ning on NEOS [28]. By default, relaxations of subproblems are solved with the

interior-point solver Ipopt (whose availability options include all of those for

Bonmin), though there is also an interface to filterSQP. The Branch-and-Bound

Algorithm in Bonmin includes effective strong branching and SOS branching. It

can also be used as a robust heuristic on problems for which the relaxation (PR)
does not have a convex feasible region, by setting negative “cutoff gaps”.

Another type of algorithmic approach emphasizes continuous nonlinear pro-

gramming over just the continuous variables of the formulation. For fixed ȳ ∈ Zn2 ,

we define
min f (x,y)

s.t. g(x,y) 6 0

y = ȳ

x ∈ Rn1 .

(Pȳ)

Clearly any feasible solution to such a continuous nonlinear-programming subprob-

lem (Pȳ) yields an upper bound on the optimal value of (P[l,u]). When (Pȳ) is

infeasible, we may consider the continuous nonlinear-programming feasibility sub-

problem

min
m

∑
i=1

wi

s.t. g(x,y) 6 w

y = ȳ

x ∈ Rn1

w ∈ Rm
+.

(Fȳ)

If we can find a way to couple the solution of upper-bounding problems (Pȳ) (and

the closely related feasibility subproblems (Fȳ)) with a lower-bounding procedure

exploiting the convexity assumptions, then we can hope to build an iterative proce-

dure that will converge to a global optimum of (P[l,u]). Indeed, such a procedure is

the Outer-Approximation (OA) Algorithm [49, 50]. Toward this end, for a finite set

of “linearization points”

K := {(xk ∈ Rn1 ,yk ∈ Rn2) : k = 1, . . . ,K},

we define the mixed-integer linear programming relaxation



582 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

min z

s.t. ∇ f (xk,yk)⊤
(

x−xk

y−yk

)
+ f (xk,yk) 6 z, ∀(xk,yk) ∈ K

∇g(xk,yk)⊤
(

x−xk

y−yk

)
+g(xk,yk) 6 0, ∀(xk,yk) ∈ K

x ∈ Rn1

y ∈ Rn2 , l ≤ y ≤ u

z ∈ R.

(PK [l,u])

We are now able to concisely state the basic OA Algorithm 15.1.

Algorithm 15.1 OA Algorithm

Input: The mixed-integer nonlinear program (P[l,u]).
Output: An optimal solution (x∗,y∗).

1. Solve the nonlinear-programming relaxation (PR), let
(
x1,y1

)
be an optimal solution, and let

K := 1, so that initially we have K =
{(

x1,y1
)}

.

2. Solve the mixed-integer linear programming relaxation (PK [l,u]), and let (x∗,y∗,z∗) be an op-
timal solution. If (x∗,y∗,z∗) corresponds to a feasible solution of (P[l,u]) (i.e., if f (x∗,y∗) ≤ z∗

and g(x∗,y∗) ≤ 0), then STOP (with the optimal solution (x∗,y∗) of (P[l,u])).

3. Solve the continuous nonlinear-programming subproblem (Pȳ∗ ).

i. Either a feasible solution (x∗,y∗,z∗) is obtained,

ii. or (Pȳ∗ ) is infeasible, in which case we solve the nonlinear-programming feasibility sub-
problem (Fȳ), and let its solution be (x∗,y∗,u∗).

4. In either case, we augment the set K of linearization points, by letting K := K + 1 and(
xK ,yK

)
:= (x∗,y∗).

5. GOTO 2.

Each iteration of Steps 3–4 generate a linear cut that can improve the mixed-

integer linear programming relaxation (PK [l,u]) that is repeatedly solved in Step 2.

So clearly the sequence of optimal objective values for (PK [l,u]) obtained in Step 2

corresponds to a nondecreasing sequence of lower bounds on the optimum value

of (P[l,u]). Moreover each linear cut returned from Steps 3–4 cuts off the previ-

ous solution of (PK [l,u]) from Step 2. A precise proof of convergence (see for

example [22]) uses these simple observations, but it also requires an additional as-

sumption that is standard in continuous nonlinear programming (i.e., a “constraint

qualification”).

Implementations of OA include DICOPT [40] which can be used with either of

the mixed-integer linear programs codes Cplex and Xpress-MP, in conjunction

with any of the continuous nonlinear programming codes CONOPT, SNOPT and

MINOS and is available with GAMS. Additionally Bonmin has OA as an algorith-

mic option, which can use Cplex or the COIN-OR code Cbc as its mixed-integer



15 Nonlinear Integer Programming 583

linear programming solver, and Ipopt or FilterSQP as its continuous nonlinear

programming solver.

Generalized Benders Decomposition [55] is a technique that is closely related

to and substantially predates the OA Algorithm. In fact, one can regard OA as a

proper strengthening of Generalized Benders Decomposition (see [49, 50]), so as a

practical tool, we view it as superseded by OA.

Substantially postdating the development of the OA Algorithm is the simpler

and closely related Extended Cutting Plane (ECP) Algorithm introduced in [135].

The original ECP Algorithm is a straightforward generalization of Kelley’s Cutting-

Plane Algorithm [78] for convex continuous nonlinear programming (which pre-

dates the development of the OA Algorithm). Subsequently, the ECP Algorithm has

been enhanced and further developed (see, for example [136, 134]) to handle, for

example, even pseudo-convex functions.

The motivation for the ECP Algorithm is that continuous nonlinear programs

are expensive to solve, and that all the associated solutions give us are further lin-

earization points for (PK [l,u]). So the ECP Algorithm dispenses altogether with

the solution of continuous nonlinear programs. Rather, in the most rudimentary ver-

sion, after each solution of the mixed-integer linear program (PK [l,u]), the most

violated constraint (i.e, of f (x∗,y∗) ≤ z and g(x∗,y∗) ≤ 0) is linearized and ap-

pended to (PK [l,u]). This simple iteration is enough to easily establish conver-

gence (see [135]). It should be noted that for the case in which there are no integer-

constrained variables, then at each step (PK [l,u]) is just a continuous linear program

and we exactly recover Kelley’s Cutting-Plane Algorithm for convex continuous

nonlinear programming.

It is interesting to note that Kelley, in his seminal paper [78], already considered

application of his approach to integer nonlinear programs. In fact, Kelley cited Go-

mory’s seminal work on integer programming [59, 58] which was also taking place

in the same time period, and he discussed how the approaches could be integrated.

Of course, many practical improvements can be made to the rudimentary ECP

Algorithm. For example, more constraints can be linearized at each iteration. An im-

plementation of the ECP Algorithm is the code Alpha-ECP (see [134]) which uses

Cplex as its mixed-integer linear programming solver and is available with GAMS.

The general experience is that for mildly nonlinear problems, an ECP Algorithm can

outperform an OA Algorithm. But for a highly nonlinear problem, the performance

of the ECP Algorithm is limited by the performance of Kelley’s Cutting-Plane Al-

gorithm, which can be quite poor on highly-nonlinear purely continuous problems.

In such cases, it is typically better to use an OA Algorithm, which will handle the

nonlinearity in a more sophisticated manner.

In considering again the performance of an OA Algorithm on a mixed-integer

nonlinear program (P[l,u]), rather than the convex continuous nonlinear program-

ming problems (Pȳ∗) and (Fȳ) being too time consuming to solve (which led us

to the ECP Algorithm), it can be the case that solution of the mixed-integer linear

programming problems (PK [l,u]) dominates the running time. Such a situation led

to the Quesada-Grossmann Branch-and-Cut Algorithm [108]. The viewpoint is that

the mixed-integer linear programming problems (PK [l,u]) are solved by a Branch-



584 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

and-Bound or Branch-and-Cut Algorithm. During the solution of the mixed-integer

linear programming problem (PK [l,u]), whenever a new solution is found (i.e., one

that has the variables y integer), we interrupt the solution process for (PK [l,u]), and

we solve the convex continuous nonlinear programming problems (Pȳ∗) to derive

new outer approximation cuts that are appended to mixed-integer linear program-

ming problem (PK [l,u]). We then continue with the solution process for (PK [l,u]).
The Quesada-Grossmann Branch-and-Cut Algorithm is available as an option in

Bonmin.

Finally, it is clear that the essential scheme of the Quesada-Grossmann Branch-

and-Cut Algorithm admits enormous flexibility. The Hybrid Algorithm [22] incor-

porates two important enhancements.

First, we can seek to further improve the linearization (PK [l,u]) by solving con-

vex continuous nonlinear programming problems at additional nodes of the mixed-

integer linear programming Branch-and-Cut tree for (PK [l,u]) — that is, not just

when solutions are found having y integer. In particular, at any node (PK [l′,u′]) of

the mixed-integer linear programming Branch-and-Cut tree, we can solve the as-

sociated convex continuous nonlinear programming subproblem (PR[l′,u′]): Then,

if in the solution (x∗,y∗) we have that y∗ is integer, we may update the incumbent

and fathom the node; otherwise, we append (x∗,y∗) to the set K of linearization

points. In the extreme case, if we solve these continuous nonlinear programming

subproblems at every node, we essentially have the Branch-and-Bound Algorithm

for mixed-integer nonlinear programming.

A second enhancement is based on working harder to find a solution (x∗,y∗)
with y∗ integer at selected nodes (PK [l′,u′]) of the mixed-integer linear program-

ming Branch-and-Cut tree. The idea is that at a node (PK [l′,u′]), we perform a

time-limited mixed-integer linear programming Branch-and-Bound Algorithm. If

we are successful, then we will have found a solution to the node with (x∗,y∗) with

y∗ integer, and then we perform an OA iteration (i.e., Steps 3-4) on (P[l′,u′]) which

will improve the linearization (PK [l′,u′]). We can then repeat this until we have

solved the mixed-integer nonlinear program (P[l′,u′]) associated with the node. If

we do this without time limit at the root node (P[l,u]), then the entire procedure

reduces to the OA Algorithm. The Hybrid Algorithm was developed for and first

made available as part of Bonmin.

FilMint [2] is another successful modern code, also based on enhancing the

general framework of the Quesada-Grossmann Branch-and-Cut Algorithm. The

main additional innovation introduced with FilMint is the idea of using ECP

cuts rather than only performing OA iterations for getting cuts to improve the

linearizations (PK [l′,u′]). Subsequently, this feature was also added to Bonmin.

FilMint was put together from the continuous nonlinear programming active-set

code FilterSQP, and the mixed-integer linear programming code MINTO. Cur-

rently, FilMint is only generally available via NEOS [51].

It is worth mentioning that just as for mixed-integer linear programming, effec-

tive heuristics can and should be used to provide good upper bounds quickly. This

can markedly improve the performance of any of the algorithms described above.

Some examples of work in this direction are [27] and [23].



15 Nonlinear Integer Programming 585

15.3.3.2 Convex quadratics and second-order cone programming

Though we will not go into any details, there is considerable algorithmic work

and associated software that seeks to leverage more specialized (but still rather

general and powerful) nonlinear models and existing convex continuous nonlinear-

programming algorithms for the associated relaxations. In this direction, recent

work has focused on conic programming relaxations (in particular, the semi-definite

and second-order cones). On the software side, we point to work on the binary

quadratic and max-cut problems (via semi-definite relaxation) [109, 110] with the

code BiqMac [21]. We also note that Cplex (v11) has a capability aimed at solving

mixed-integer quadratically-constrained programs that have a convex continuous re-

laxation.

One important direction for approaching quadratic models is at the modeling

level. This is particulary useful for the convex case, where there is a strong and ap-

pealing relationship between quadratically constrained programming and second-

order cone programming (SOCP). A second-order cone constraint is one that ex-

presses that the Euclidean norm of an affine function should be no more than another

affine function. An SOCP problem consists of minimizing a linear function over a

finite set of second-order cone constraints. Our interest in SOCP stems from the fact

that (continuous) convex quadratically constrained programming problems can be

reformulated as SOCP problems (see [93]). The appeal is that very efficient interior-

point algorithms have been developed for solving SOCP problems (see [57], for

example), and there is considerable mature software available that has functional-

ity for efficient handling of SOCP problems; see, for example: SDPT3 [118] (GNU

GPL open-source license; Matlab), SeDuMi [120] (GNU GPL open-source license;

Matlab), LOQO [94] (proprietary; C library with interfaces to AMPL and Matlab),

MOSEK [100] (proprietary; C library with interface to Matlab), Cplex [73] (propri-

etary; C library). Note also that MOSEK and Cplex can handle integer variables as

well; one can expect that the approaches essentially marry specialized SOCP solvers

with Branch-and-Bound and/or Outer-Approximation Algorithms. Further branch-

and-cut methods for mixed-integer SOCP, employing linear and convex quadratic

cuts [37] and a careful treatment of the non-differentiability inherent in the SOCP

constraints, have recently been proposed [48].

Also in this vein is recent work by Günlük and Linderoth [62, 63]. Among

other things, they demonstrated that many practical mixed-integer quadratically

constrained programming formulations have substructures that admit extended for-

mulations that can be easily strengthened as certain integer SOCP problems. This

approach is well known in the mixed-integer linear programming literature. Let

Q := {w ∈ R, x ∈ Rn
+, z ∈ {0,1}n : w ≥

n

∑
i=1

rix
2
i , uizi ≥ xi ≥ lizi, i = 1,2, . . . ,n},

where ri ∈ R+ and ui, li ∈ R for all i = 1,2, . . . ,n. The set Q appears in several

formulations as a substructure. Consider the following extended formulation of Q



586 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Q̄ := {w ∈ R, x ∈ Rn,y ∈ Rn,z ∈ Rn : w ≥ ∑
i

riyi,(xi,yi,zi) ∈ Si, i = 1,2, . . . ,n},

where

Si := {(xi,yi,zi) ∈ R2 ×{0,1} : yi ≥ x2
i , uizi ≥ xi ≥ lizi, xi ≥ 0},

and ui, li ∈ R. The convex hull of each Si has the form

Sc
i := {(xi,yi,zi) ∈ R3 : yizi ≥ x2

i , uizi ≥ xi ≥ lizi, 1 ≥ zi ≥ 0, xi,yi ≥ 0}

(see [36, 62, 63, 130]). Note that x2
i −yizi is not a convex function, but nonetheless Sc

i

is a convex set. Finally, we can state the result of [62, 63], which also follows from

a more general result of [71], that the convex hull of the extended formulation Q̄ has

the form

Q̄c := {w ∈ R,x ∈ Rn,y ∈ Rn,z ∈ Rn :≥
n

∑
i=1

riyi,(xi,yi,zi) ∈ Sc
i , i = 1,2, . . . ,n}.

Note that all of the nonlinear constraints describing the Sc
i and Q̄c are rather simple

quadratic constraints. Generally, it is well known that even the “restricted hyperbolic

constraint”

yizi ≥
n

∑
k=1

x2
k , x ∈ Rn, yi ≥ 0, zi ≥ 0

(more general than the nonconvexity in Sc
i ) can be reformulated as the second-order

cone constraint ∥∥∥∥
(

2x

yi − zi

)∥∥∥∥
2

≤ yi + zi .

In this subsection, in the interest of concreteness and brevity, we have focused

our attention on convex quadratics and second-order cone programming. However,

it should be noted that a related approach, with broader applicability (to all con-

vex objective functions) is presented in [52], and a computational comparison is

available in [53]. Also, it is relevant that many convex non-quadratic functions are

representable as second-order cone programs (see [5, 16]).

15.4 Polynomial optimization

In this section, we focus our attention on the study of optimization models in-

volving polynomials only, but without any assumptions on convexity or concavity.

It is worth emphasizing the fundamental result of Jeroslow (Theorem 15.4) that

even pure integer quadratically constrained programming is undecidable. One can

however avoid this daunting pitfall by bounding the variables, and this is in fact

an assumption that we should and do make for the purpose of designing practical

approaches. From the point of view of most applications that we are aware of, this



15 Nonlinear Integer Programming 587

is a very reasonable assumption. We must be cognizant of the fact that the geome-

try of even quadratics on boxes is daunting from the point of view of mathematical

programming; see Figure 15.6. Specifically, the convex envelope of the graph of the

product x1x2 on a box deviates badly from the graph, so relaxation-based methods

are intrinsically handicapped. It is easy to see, for example, that for δ1,δ2 > 0, x1x2

is strictly convex on the line segment joining (0,0) and (δ1,δ2); while x1x2 is strictly

concave on the line segment joining (δ1,0) and (0,δ2) .

Fig. 15.6 Tetrahedral convex envelope of the graph of the product x1x2 on a box.

Despite these difficulties, we have positive results. In Section 15.4.1, the high-

light is a fully polynomial time approximation scheme (FPTAS) for problems in-

volving maximization of a polynomial in fixed dimension, over the mixed-integer

points in a polytope. In Section 15.4.2, we broaden our focus to allow feasible re-

gions defined by inequalities in polynomials (i.e., semi-algebraic sets). In this set-

ting, we do not present (nor could we expect) complexity results as strong as for

linear constraints, but rather we show how tools of semi-definite programming are

being developed to provide, in a systematic manner, strengthened relaxations. Fi-

nally, in Section 15.4.3, we describe recent computational advances in the special

case of semi-algebraic programming for which all of the functions are quadratic —

i.e., mixed-integer quadratically constrained programming (MIQCP).

15.4.1 Fixed dimension and linear constraints: An FPTAS

As we pointed out in the introduction (Theorem 15.2), optimizing degree-4 poly-

nomials over problems with two integer variables is already a hard problem. Thus,

even when we fix the dimension, we cannot get a polynomial-time algorithm for

solving the optimization problem. The best we can hope for, even when the number

of both the continuous and the integer variables is fixed, is an approximation result.



588 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Definition 15.3 (FPTAS).

(a) An algorithm A is an ε-approximation algorithm for a maximization problem

with optimal cost fmax, if for each instance of the problem of encoding length n,

A runs in polynomial time in n and returns a feasible solution with cost fA ,

such that fA > (1− ε) · fmax.

(b) A family {Aε}ε of ε-approximation algorithms is a fully polynomial time ap-

proximation scheme (FPTAS) if the running time of Aε is polynomial in the

encoding size of the instance and 1/ε .

Indeed it is possible to obtain an FPTAS for general polynomial optimization of

mixed-integer feasible sets in polytopes [45, 44, 46]. To explain the method of the

FPTAS, we need to review the theory of short rational generating functions pio-

neered by Barvinok [13, 14]. The FPTAS itself appears in Section 15.4.1.3.

15.4.1.1 Introduction to rational generating functions

We explain the theory on a simple, one-dimensional example. Let us consider

the set S of integers in the interval P = [0, . . . ,n]; see the top of Figure 15.7 (a). We

associate with S the polynomial g(S;z) = z0 + z1 + · · ·+ zn−1 + zn; i.e., every integer

α ∈ S corresponds to a monomial zα with coefficient 1 in the polynomial g(S;z).
This polynomial is called the generating function of S (or of P). From the viewpoint

of computational complexity, this generating function is of exponential size (in the

encoding length of n), just as an explicit list of all the integers 0, 1, . . . , n− 1, n

would be. However, we can observe that g(S;z) is a finite geometric series, so there

exists a simple summation formula that expresses it in a much more compact way:

g(S;z) = z0 + z1 + · · ·+ zn−1 + zn =
1− zn+1

1− z
. (15.11)

The “long” polynomial has a “short” representation as a rational function. The en-

coding length of this new formula is linear in the encoding length of n.

Suppose now someone presents to us a finite set S of integers as a generating

function g(S;z). Can we decide whether the set is nonempty? In fact, we can do

something much stronger even – we can count the integers in the set S, simply by

evaluating at g(S;z) at z = 1. On our example we have |S|= g(S;1) = 10 +11 + · · ·+
1n−1 + 1n = n + 1. We can do the same on the shorter, rational-function formula if

we are careful with the (removable) singularity z = 1. We just compute the limit

|S| = lim
z→1

g(S;z) = lim
z→1

1− zn+1

1− z
= lim

z→1

−(n+1)zn

−1
= n+1

using the Bernoulli–l’Hôpital rule. Note that we have avoided to carry out a poly-

nomial division, which would have given us the long polynomial again.

The summation formula (15.11) can also be written in a slightly different way:



15 Nonlinear Integer Programming 589

(a)

0 1 2 3 4

=

+

(b)

ℑz

Rz1

|z| < 1

|z| > 1

Fig. 15.7 (a) One-dimensional Brion theorem. (b) The domains of convergence of the Laurent
series.

g(S;z) =
1

1− z
−

zn+1

1− z
=

1

1− z
+

zn

1− z−1
(15.12)

Each of the two summands on the right-hand side can be viewed as the summation

formula of an infinite geometric series:

g1(z) =
1

1− z
= z0 + z1 + z2 + . . . , (15.13a)

g2(z) =
zn

1− z−1
= zn + zn−1 + zn−2 + . . . . (15.13b)

The two summands have a geometrical interpretation. If we view each geometric

series as the generating function of an (infinite) lattice point set, we arrive at the

picture shown in Figure 15.7. We remark that all integer points in the interval [0,n]
are covered twice, and also all integer points outside the interval are covered once.

This phenomenon is due to the one-to-many correspondence of rational functions

to their Laurent series. When we consider Laurent series of the function g1(z) about

z = 0, the pole z = 1 splits the complex plane into two domains of convergence

(Figure 15.7): For |z|< 1, the power series z0 +z1 +z2 + . . . converges to g1(z). As a

matter of fact, it converges absolutely and uniformly on every compact subset of the

open circle {z ∈ C : |z| < 1}. For |z| > 1, however, the series diverges. On the other

hand, the Laurent series −z−1− z−2− z−3− . . . converges (absolutely and compact-

uniformly) on the open circular ring {z ∈C : |z|> 1} to the function g1(z), whereas

it diverges for |z| < 1. The same holds for g2(z). Altogether we have:

g1(z) =

{
z0 + z1 + z2 + . . . , for |z| < 1,

−z−1 − z−2 − z−3 − . . . , for |z| > 1,
(15.14)

g2(z) =

{
−zn+1 − zn+2 − zn+3 − . . . , for |z| < 1,

zn + zn−1 + zn−2 + . . . , for |z| > 1.
(15.15)

We can now see that the phenomenon we observed in formula (15.13) and Fig-

ure 15.7 is due to the fact that we had picked two Laurent series for the summands

g1(z) and g2(z) that do not have a common domain of convergence; the situation of



590 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

(a)

eb2

eb1

(b)

ee1

ee2

e0

Fig. 15.8 (a) Tiling a rational two-dimensional cone with copies of the fundamental parallelepiped.
(b) The semigroup S ⊆ Z2 generated by b1 and b2 is a linear image of Z2

+.

formula (15.13) and Figure 15.7 appears again in the d-dimensional case as Brion’s

Theorem.

Let us now consider a two-dimensional cone C spanned by the vectors b1 =
(α,−1) and b2 = (β ,1); see Figure 15.8 for an example with α = 2 and β = 4. We

would like to write down a generating function for the integer points in this cone. We

apparently need a generalization of the geometric series, of which we made use in

the one-dimensional case. The key observation now is that using copies of the half-

open fundamental parallelepiped, Π =
{

λ1b1 +λ2b2 : λ1 ∈ [0,1),λ2 ∈ [0,1)
}
, the

cone can be tiled:

C =
⋃

s∈S

(s+Π), where S = {µ1b1 + µ2b2 : (µ1,µ2) ∈ Z2
+ } (15.16)

(a disjoint union). Because we have chosen integral generators b1,b2, the integer

points are “the same” in each copy of the fundamental parallelepiped. Therefore,

also the integer points of C can be tiled by copies of Π ∩Z2; on the other hand, we

can see C∩Z2 as a finite disjoint union of copies of S, shifted by the integer points

of Π :

C∩Z2 =
⋃

s∈S

(
s+(Π ∩Z2)

)
=

⋃

x∈Π∩Z2

(x+S). (15.17)

The set S is just the image of Z2
+ under the matrix (b1,b2) =

(
α β
−1 1

)
; cf. Figure 15.8.

Now Z2
+ is the direct product of Z+ with itself, whose generating function is the geo-

metric series g(Z+;z) = z0 + z1 + z2 + z3 + · · ·= 1
1−z

. We thus obtain the generating

function as a product, g(Z2
+;z1,z2) = 1

1−z1
· 1

1−z2
. Applying the linear transforma-

tion (b1,b2),

g(S;z1,z2) =
1

(1− zα
1 z−1

2 )(1− z
β
1 z1

2)
.

From (15.17) it is now clear that g(C;z1,z2) = ∑x∈Π∩Z2 z
x1
1 z

x2
2 g(S;z1,z2); the mul-

tiplication with the monomial z
x1
1 z

x2
2 corresponds to the shifting of the set S by the

vector (x1,x2). In our example, obviously Π ∩Z2 = {(i,0) : i = 0, . . . ,α +β −1}.



15 Nonlinear Integer Programming 591

(a)

5

eb1

ew

eb2

ew′

(b) eb1

ew

eb2

⊕

⊖

⊕

2

3

(c)

⊕

ew

1
eb2

eb1

1

⊕⊖

Fig. 15.9 (a) A cone of index 5 generated by b1 and b2. (b) A triangulation of the cone into the
two cones spanned by {b1,w} and {b2,w}, having an index of 2 and 3, respectively. We have
the inclusion-exclusion formula g(cone{b1,b2};z) = g(cone{b1,w};z) + g(cone{b2,w};z) −
g(cone{w};z); here the one-dimensional cone spanned by w needed to be subtracted. (c) A
signed decomposition into the two unimodular cones spanned by {b1,w′} and {b2,w′}. We have
the inclusion-exclusion formula g(cone{b1,b2};z) = g(cone{b1,w

′};z)− g(cone{b2,w
′};z) +

g(cone{w′};z).

Thus

g(C;z1,z2) =
z0

1 + z1
1 + · · ·+ z

α+β−2
1 + z

α+β−1
1

(1− zα
1 z−1

2 )(1− z
β
1 z1

2)
.

Unfortunately, this formula has an exponential size as the numerator contains α +β
summands. To make the formula shorter, we need to recursively break the cone into

“smaller” cones, each of which have a much shorter formula. We have observed

that the length of the formula is determined by the number of integer points in the

fundamental parallelepiped, the index of the cone. Triangulations usually do not

help to reduce the index significantly, as another two-dimensional example shows.

Consider the cone C′ generated by b1 = (1,0) and b2 = (1,α); see Figure 15.9.

We have Π ′ ∩Z2 = {(0,0)}∪{(1, i) : i = 1, . . . ,α − 1}, so the rational generating

function would have α summands in the numerator, and thus have exponential size.

Every attempt to use triangulations to reduce the size of the formula fails in this

example. The choice of an interior vector w in Figure 15.9, for instance, splits the

cone of index 5 into two cones of index 2 and 3, respectively – and also a one-

dimensional cone. Indeed, every possible triangulation of C′ into unimodular cones

contains at least α two-dimensional cones! The important new idea by Barvinok

was to use so-called signed decompositions in addition to triangulations in order to

reduce the index of a cone. In our example, we can choose the vector w = (0,1) from

the outside of the cone to define cones C1 = cone{b1,w} and C2 = cone{w,b2}; see

Figure 15.9. Using these cones, we have the inclusion-exclusion formula

g(C′;z1,z2) = g(C1;z1,z2)−g(C2;z1,z2)+g(C1 ∩C2;z1,z2).



592 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

(a) (b)

Fig. 15.10 Brion’s theorem, expressing the generating function of a polyhedron to those of the
supporting cones of all vertices.

It turns out that all cones C1 and C2 are unimodular, and we obtain the rational

generating function by summing up those of the subcones,

g(C′;z1,z2) =
1

(1− z1)(1− z2)
−

1

(1− z1
1zα

2 )(1− z2)
+

1

1− z1zα
2

.

15.4.1.2 Barvinok’s algorithm for short rational generating functions

We now present the general definitions and results. Let P ⊆ Rd be a rational

polyhedron. We first define its generating function as the formal Laurent series

g̃(P;z) = ∑ααα∈P∩Zd zααα ∈ Z[[z1, . . . ,zd ,z
−1
1 , . . . ,z−1

d ]], i.e., without any consideration

of convergence properties. (A formal power series is not enough because monomi-

als with negative exponents can appear.) As we remarked above, this encoding of a

set of lattice points does not give an immediate benefit in terms of complexity. We

will get short formulas only when we can identify the Laurent series with certain

rational functions. Now if P is a polytope, then g̃(P;z) is a Laurent polynomial (i.e.,

a finite sum of monomials with positive or negative integer exponents), so it can be

naturally identified with a rational function g(P;z). Convergence comes into play

whenever P is not bounded, since then g̃(P;z) can be an infinite formal sum. We

first consider a pointed polyhedron P, i.e., P does not contain a straight line.

Theorem 15.15. Let P ⊆ Rd be a pointed rational polyhedron. Then there exists

a non-empty open subset U ⊆ Cd such that the series g̃(P;z) converges abso-

lutely and uniformly on every compact subset of U to a rational function g(P;z) ∈
Q(z1, . . . ,zd).

Finally, when P contains an integer point and also a straight line, there does not

exist any point z ∈ Cd where the series g̃(P;z) converges absolutely. In this case

we set g(P;z) = 0; this turns out to be a consistent choice (making the map P 7→

g(P;z) a valuation, i.e., a finitely additive measure). The rational function g(P;z) ∈
Q(z1, . . . ,zd) defined as described above is called the rational generating function

of P∩Zd .



15 Nonlinear Integer Programming 593

Theorem 15.16 (Brion [31]). Let P be a rational polyhedron and V (P) be the set of

vertices of P. Then, g(P;z) = ∑v∈V (P) g(CP(v);z), where CP(v) = v + cone(P− v)
is the supporting cone of the vertex v; see Figure 15.10.

We remark that in the case of a non-pointed polyhedron P, i.e., a polyhedron that

has no vertices because it contains a straight line, both sides of the equation are zero.

Barvinok’s algorithm computes the rational generating function of a polyhe-

dron P as follows. By Brion’s theorem, the rational generating function of a polyhe-

dron can be expressed as the sum of the rational generating functions of the support-

ing cones of its vertices. Every supporting cone vi +Ci can be triangulated to obtain

simplicial cones vi +Ci j. If the dimension is fixed, these polyhedral computations

all run in polynomial time.

Now let K be one of these simplicial cones, whose basis vectors b1, . . . ,bd

(i.e., primitive representatives of its extreme rays) are the columns of some ma-

trix B ∈ Zd×d ; then the index of K is |detB|. Barvinok’s algorithm now computes a

signed decomposition of K to produce simplicial cones with smaller index. To this

end, it constructs a vector w = α1b1 + · · ·+αdbd ∈Zd \{0} with |αi|6 |detB|−1/d .
The existence of such a vector follows from Minkowski’s first theorem, and it can

be constructed in polynomial time using integer programming or lattice basis reduc-

tion followed by enumeration. The cone is then decomposed into cones spanned by

d vectors from the set {b1, . . . ,bd ,w}; each of the resulting cones then has an index

at most (indK)(d−1)/d . In general, these cones form a signed decomposition of K;

only if w lies inside K, they form a triangulation (see Figure 15.9). The resulting

cones and their intersecting proper faces (arising in an inclusion-exclusion formula)

are recursively processed, until cones of low index (for instance unimodular cones)

are obtained. Finally, for a unimodular cone v+BRd
+, the rational generating func-

tion is za/∏d
j=1(1− zb j), where a is the unique integer point in the fundamental

parallelepiped. We summarize Barvinok’s algorithm as Algorithm 15.2.

Algorithm 15.2 Barvinok’s Algorithm

Input: A polyhedron P ⊂ Rd given by rational inequalities.
Output: The rational generating function for P∩Zd in the form

gP(z) = ∑
i∈I

εi

zai

∏d
j=1(1− zbi j )

(15.18)

where εi ∈ {±1}, ai ∈ Zd , and bi j ∈ Zd .

1. Compute all vertices vi and corresponding supporting cones Ci of P.
2. Triangulate Ci into simplicial cones Ci j , keeping track of all the intersecting proper faces.
3. Apply signed decomposition to the cones vi +Ci j to obtain unimodular cones vi +Ci jl , keeping

track of all the intersecting proper faces.
4. Compute the unique integer point ai in the fundamental parallelepiped of every resulting

cone vi +Ci jl .
5. Write down the formula (15.18).



594 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

k = 1 k = 2

Fig. 15.11 Approximation properties of ℓk-norms.

We remark that it is possible to avoid computations with the intersecting proper

faces of cones (step 2 of the algorithm) entirely, using techniques such as polariza-

tion, irrational decomposition [81], or half-open decomposition [32, 82].

Due to the descent of the indices in the signed decomposition procedure, the

depth of the decomposition tree is at most
⌊
1+

log2 log2 D

log2
d

d−1

⌋
, where D = |detB|. Be-

cause at each decomposition step at most O(2d) cones are created and the depth of

the tree is doubly logarithmic in the index of the input cone, Barvinok could obtain

a polynomiality result in fixed dimension:

Theorem 15.17 (Barvinok [13]). Let d be fixed. There exists a polynomial-time

algorithm for computing the rational generating function (15.18) of a polyhedron

P ⊆ Rd given by rational inequalities.

15.4.1.3 The FPTAS for polynomial optimization

We now describe the fully polynomial-time approximation scheme, which ap-

peared in [45, 44, 46]. It makes use of the elementary relation

max{s1, . . . ,sN} = lim
k→∞

k

√
sk

1 + · · ·+ sk
N , (15.19)

which holds for any finite set S = {s1, . . . ,sN} of non-negative real numbers. This

relation can be viewed as an approximation result for ℓk-norms. Now if P is a poly-

tope and f is an objective function non-negative on P∩Zd , let x1, . . . ,xN denote all

the feasible integer solutions in P∩Zd and collect their objective function values

si = f (xi) in a vector s ∈ QN . Then, comparing the unit balls of the ℓk-norm and the

ℓ∞-norm (Figure 15.11), we get the relation

Lk := N−1/k‖s‖k 6 ‖s‖∞ 6 ‖s‖k =: Uk.

Thus, for obtaining a good approximation of the maximum, it suffices to solve a

summation problem of the polynomial function h = f k on P∩Zd for a value of k that

is large enough. Indeed, for k =
⌈
(1+1/ε) logN

⌉
, we obtain Uk −Lk 6 ε f (xmax).

On the other hand, this choice of k is polynomial in the input size (because 1/ε is

encoded in unary in the input, and logN is bounded by a polynomial in the binary

encoding size of the polytope P). Hence, when the dimension d is fixed, we can

expand the polynomial function f k as a list of monomials in polynomial time.



15 Nonlinear Integer Programming 595

Solving the summation problem can be accomplished using short rational gener-

ating functions as follows. Let g(P;z) be the rational generating function of P∩Zd ,

computed using Barvinok’s algorithm. By symbolically applying differential op-

erators to g(P;z), we can compute a short rational function representation of the

Laurent polynomial g(P,h;z) = ∑ααα∈P∩Zd h(ααα)zααα , where each monomial zααα corre-

sponding to an integer point ααα ∈ P∩Zd has a coefficient that is the value h(ααα). To

illustrate this, consider again the generating function of the interval P = [0,4],

gP(z) = z0 + z1 + z2 + z3 + z4=
1

1− z
−

z5

1− z
.

We now apply the differential operator z d
dz

and obtain

(
z

d

dz

)
gP(z) = 1z1 +2z2 +3z3 +4z4=

1

(1− z)2
−

−4z5 +5z4

(1− z)2
.

Applying the same differential operator again, we obtain

(
z

d

dz

)(
z

d

dz

)
gP(z) = 1z1 +4z2 +9z3 +16z4=

z+ z2

(1− z)3
−

25z5 −39z6 +16z7

(1− z)3
.

We have thus evaluated the monomial function h(α) = α2 for α = 0, . . . ,4; the

results appear as the coefficients of the respective monomials. The same works for

several variables, using the partial differential operators zi
∂

∂ zi
for i = 1, . . . ,d. In fixed

dimension, the size of the rational function expressions occuring in the symbolic

calculation can be bounded polynomially. Thus one obtains the following result.

Theorem 15.18.

(a) Let h(x1, . . . ,xd) = ∑βββ cβββ xβββ ∈ Q[x1, . . . ,xd ] be a polynomial. Define the differ-

ential operator

Dh = h

(
z1

∂

∂ z1
, . . . ,zd

∂

∂ zd

)
= ∑

βββ

cβββ

(
z1

∂

∂ z1

)β1

. . .

(
zd

∂

∂ zd

)βd

.

Then Dh maps the generating function g(P;z) = ∑ααα∈P∩Zd zααα to the weighted

generating function (Dhg)(z) = g(P,h;z) = ∑ααα∈P∩Zd h(ααα)zααα .

(b) Let the dimension d be fixed. Let g(P;z) be the Barvinok representation of the

generating function ∑ααα∈P∩Zd zααα of P ∩Zd . Let h ∈ Q[x1, . . . ,xd ] be a poly-

nomial, given as a list of monomials with rational coefficients cβββ encoded

in binary and exponents βββ encoded in unary. We can compute in polynomial

time a Barvinok representation g(P,h;z) for the weighted generating function

∑ααα∈P∩Zd h(ααα)zααα .

Thus, we can implement the polynomial time algorithm 15.3.

Taking the discussion of the convergence of the bounds into consideration, one

obtains the following result.



596 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Algorithm 15.3

Input: A rational convex polytope P ⊂ Rd ; a polynomial objective function f ∈ Q[x1, . . . ,xd ] that
is non-negative over P∩Zd , given as a list of monomials with rational coefficients cβββ encoded in
binary and exponents βββ encoded in unary; an index k, encoded in unary.

Output: A lower bound Lk and an upper bound Uk for the maximal function value f ∗ of f over
P∩Zd . The bounds Lk form a nondecreasing, the bounds Uk a nonincreasing sequence of bounds
that both reach f ∗ in a finite number of steps.

1. Compute a short rational function expression for the generating function g(P;z) = ∑ααα∈P∩Zd zααα .

Using residue techniques, compute |P∩Zd | = g(P;1) from g(P;z).
2. Compute the polynomial f k from f .
3. From the rational function g(P;z) compute the rational function representation of g(P, f k;z) of

∑ααα∈P∩Zd f k(ααα)zααα by Theorem 15.18. Using residue techniques, compute

Lk :=
⌈

k

√
g(P, f k;1)/g(P;e1)

⌉
and Uk :=

⌊
k

√
g(P, f k;1)

⌋
.

Theorem 15.19 (Fully polynomial-time approximation scheme). Let the dimen-

sion d be fixed. Let P ⊂ Rd be a rational convex polytope. Let f be a polynomial

with rational coefficients that is non-negative on P∩Zd , given as a list of monomials

with rational coefficients cβββ encoded in binary and exponents βββ encoded in unary.

(i) Algorithm 15.3 computes the bounds Lk, Uk in time polynomial in k, the in-

put size of P and f , and the total degree D. The bounds satisfy the following

inequality:

Uk −Lk 6 f ∗ ·
(

k

√
|P∩Zd |−1

)
.

(ii) For k = (1 + 1/ε) log(|P∩Zd |) (a number bounded by a polynomial in the in-

put size), Lk is a (1− ε)-approximation to the optimal value f ∗ and it can be

computed in time polynomial in the input size, the total degree D, and 1/ε .

Similarly, Uk gives a (1+ ε)-approximation to f ∗.

(iii) With the same complexity, by iterated bisection of P, we can also find a feasible

solution xε ∈ P∩Zd with
∣∣ f (xε)− f ∗

∣∣ 6 ε f ∗.

The mixed-integer case can be handled by discretization of the continuous vari-

ables. We illustrate on an example that one needs to be careful to pick a sequence of

discretizations that actually converges. Consider the mixed-integer linear optimiza-

tion problem depicted in Figure 15.12, whose feasible region consists of the point

( 1
2 ,1) and the segment {(x,0) : x ∈ [0,1]}. The unique optimal solution is x = 1

2 ,

z = 1. Now consider the sequence of grid approximations where x ∈ 1
m

Z>0. For

even m, the unique optimal solution to the grid approximation is x = 1
2 , z = 1. How-

ever, for odd m, the unique optimal solution is x = 0, z = 0. Thus the full sequence

of the optimal solutions to the grid approximations does not converge because it has

two limit points; see Figure 15.12.

To handle polynomial objective functions that take arbitrary (positive and nega-

tive) values on the feasible region, one can shift the objective function by a constant



15 Nonlinear Integer Programming 597

Z

1

11
2 R

Optimal solution

f ( 1
2

,1) = 1

Z

1

11
2 R

f ( 1
2

,1) = 1

Optimal solution Z

1

11
2 Rf (0,0) = 0

Opt.

Fig. 15.12 A mixed-integer linear optimization problem and a sequence of optimal solutions to
grid problems with two limit points, for even m and for odd m.

that is large enough. Then, to obtain a strong approximation result, one iteratively

reduces the constant by a factor. Altogether we have the following result.

Theorem 15.20 (Fully polynomial-time approximation schemes). Let the dimen-

sion n = n1 +n2 be fixed. Let an optimization problem (15.2) of a polynomial func-

tion f over the mixed-integer points of a polytope P and an error bound ε be given,

where

(I1) f is given as a list of monomials with rational coefficients cβββ encoded in

binary and exponents βββ encoded in unary,

(I2) P is given by rational inequalities in binary encoding,

(I3) the rational number 1
ε is given in unary encoding.

(a) There exists a fully polynomial time approximation scheme (FPTAS) for the max-

imization problem for all polynomial functions f (x,z) that are non-negative on

the feasible region. That is, there exists a polynomial-time algorithm that, given

the above data, computes a feasible solution (xε ,zε) ∈ P∩
(
Rn1 ×Zn2

)
with

∣∣ f (xε ,zε)− f (xmax,zmax)
∣∣ 6 ε f (xmax,zmax).

(b) There exists a polynomial-time algorithm that, given the above data, computes

a feasible solution (xε ,zε) ∈ P∩
(
Rn1 ×Zn2

)
with

∣∣ f (xε ,zε)− f (xmax,zmax)
∣∣ 6 ε

∣∣ f (xmax,zmax)− f (xmin,zmin)
∣∣.

15.4.2 Semi-algebraic sets and SOS programming

In this section we use results from algebraic geometry over the reals to provide a

convergent (and in the case of binary optimization, finite) sequence of semi-definite

relaxations for the general polynomial optimization problem over semi-algebraic

sets:



598 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Z∗ = minimize f (x)

s.t. gi(x) > 0, i = 1, . . . ,m,

x ∈ Rn,

(15.20)

where f ,gi ∈ R[x] are polynomials defined as:

f (x) = ∑
ααα∈Zn

+

fααα xααα , gi(x) = ∑
ααα∈Zn

+

gi,ααα xααα ,

where there are only finitely many nonzero coefficients fααα and gi,ααα . Moreover, let

K = {x ∈Rn : gi(x) > 0, i = 1, . . . ,m} denote the set of feasible solutions. Note that

problem (15.20) can model binary optimization, by taking f (x) = c⊤x, and taking

as the polynomials gi(x), a⊤i x− bi, x2
j − x j and −x2

j + x j (to model x2
j − x j = 0).

Problem (15.20) can also model bounded integer optimization (using for example

the equation (x j − l j)(x j − l j +1) · . . . · (x j −u j) = 0 to model l j 6 x j 6 u j), as well

as bounded mixed-integer nonlinear optimization. Problem (15.20) can be written

as:
maximize γ

s.t. f (x)− γ > 0, ∀ x ∈ K.
(15.21)

This leads us to consider conditions for polynomials to be nonnegative over a set K.

Definition 15.4. Let p ∈ R[x] where x = (x1, . . . ,xn)
⊤. The polynomial p is called

sos (sum of squares), if there exist polynomials h1, . . . ,hk ∈ R[x] such that p =

∑k
i=1 h2

i .

Clearly, in multiple dimensions if a polynomial can be written as a sum of squares

of other polynomials, then it is nonnegative. However, is it possible for a polyno-

mial in higher dimensions to be nonnegative without being a sum of squares? The

answer is yes. The most well-known example is probably the Motzkin-polynomial

M(x,y,z) = x4y2 + x2y4 + z6 − 3x2y2z2, which is nonnegative without being a sum

of squares of polynomials.

The following theorem establishes a certificate of positivity of a polynomial on

the set K, under a certain assumption on K.

Theorem 15.21 ([107] [75]). Suppose that the set K is compact and there exists a

polynomial h(x) of the form

h(x) = h0(x)+
m

∑
i=1

hi(x)gi(x),

such that {x ∈ Rn : h(x) > 0} is compact and hi(x), i = 0,1, . . . ,m, are polynomials

that have a sum of squares representation. Then, if the polynomial g is strictly posi-

tive over K, then there exist pi ∈ R[x], i = 0,1, . . . ,m, that are sums of squares such

that

g(x) = p0(x)+
m

∑
i=1

pi(x)gi(x). (15.22)



15 Nonlinear Integer Programming 599

Note that the number of terms in Equation (15.22) is linear. While the assumption

of Theorem 15.21 may seem restrictive, it is satisfied in several cases:

(a) For binary optimization problems, that is, when K includes the inequalities

x2
j > x j and x j > x2

j for all j = 1, . . . ,n.

(b) If all the g j’s are linear, i.e., K is a polyhedron.

(c) If there is one polynomial gk such that the set {x ∈ Rn : gk(x) > 0} is compact.

More generally, one way to ensure that the assumption of Theorem 15.21 holds

is to add to K the extra quadratic constraint gm+1(x) = a2 −‖x‖2 > 0 for some a

sufficiently large. It is also important to emphasize that we do not assume that K is

convex. Notice that it may even be disconnected.

Let us now investigate algorithmically when a polynomial is a sum of squares.

As we will see this question is strongly connected to semi-definite optimization.

The idea of using semi-definite optimization for solving optimization problems over

polynomials is due to [121] and further expanded in [83] and [105]. We consider the

vector

vd(x) = (xααα)|ααα|6d = (1,x1, . . . ,xn,x
2
1,x1x2, . . . ,xn−1xn,x

2
n, . . . ,x

d
1 , . . . ,x

d
n)

⊤,

of all the monomials xααα of degree less than or equal to d, which has dimension

s = ∑d
i=0

(
n
i

)
=

(
n+d

d

)
.

Proposition 15.3 ([38]). The polynomial g(x) of degree 2d has a sum of squares

decomposition if and only if there exists a positive semi-definite matrix Q for which

g(x) = vd(x)⊤Qvd(x).

Proof. Suppose there exists an s× s matrix Q º 0 for which g(x) = vd(x)⊤Qvd(x).
Then Q = HH⊤ for some s× k matrix H, and thus,

g(x) = vd(x)⊤HH⊤vd(x) =
k

∑
i=1

(H⊤vd(x))2
i .

Because (H⊤vd(x))i is a polynomial, then g(x) is expressed as a sum of squares of

the polynomials (H⊤vd(x))i.

Conversely, suppose that g(x) has a sum of squares decomposition g(x) =

∑ℓ
i=1 hi(x)2. Let hi be the vector of coefficients of the polynomial hi(x), i.e.,

hi(x) = h⊤
i vd(x). Thus,

g(x) =
ℓ

∑
i=1

vd(x)⊤hih
⊤
i vd(x) = vd(x)⊤Qvd(x),

with Q = ∑ℓ
i=1 hih

⊤
i º 0, and the proposition follows.

Proposition 15.3 leads to an algorithm. Given a polynomial f (x) ∈ R[x1, . . . ,xn]
of degree 2d. In order to compute the minimum value f ∗ = min{ f (x) : x ∈ Rn} we

introduce an artificial variable λ and determine

max{λ : λ ∈ R, f (x)−λ > 0}.



600 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

With the developments above, we realize that we can determine a lower bound for f ∗

by computing the value

psos = max{λ : λ ∈ R, f (x)−λ is sos} 6 f ∗.

The latter task can be accomplished by setting up a semi-definite program. In fact,

if we denote by fααα the coefficient of the monomial xααα in the polynomial f , then

f (x)−λ is sos if and only if there exists an s×s matrix Q º 0 for which f (x)−λ =
vd(x)⊤Qvd(x). Now we can compare the coefficients on both sides of the latter

equation. This leads to the SOS-program

psos = max λ

s.t. f0 −λ = Q0,0

∑
βββ ,γγγ, βββ+γγγ=ααα

Qβββ ,γγγ = fααα

Q = (Qβββ ,γγγ)βββ ,γγγ º 0.

In a similar vein, Theorem 15.21 and Proposition 15.3 jointly imply that we can

use semi-definite optimization to provide a sequence of semi-definite relaxations for

the optimization problem (15.21). Assuming that the set K satisfies the assumption

of Theorem 15.21, then if f (x)− γ > 0 for all x ∈ K, then

f (x)− γ = p0(x)+
m

∑
i=1

pi(x)gi(x), (15.23)

where pi(x), i = 0,1, . . . ,m have a sum of squares representation. Theorem 15.21

does not specify the degree of the polynomials pi(x). Thus, we select a bound 2d on

the degree of pi(x), and we apply Proposition 15.3 to each of the polynomials pi(x),
that is, pi(x) is a sum of squares if and only if pi(x) = vd(x)⊤Qivd(x) with Qi º 0,

i = 0,1, . . . ,m. Substituting to (15.23), we obtain that γ , Qi, i = 0,1, . . . ,m, satisfy

linear equations that we denote as L(γ,Q0,Q1, . . . ,Qm) = 0. Thus, we can find a

lower bound to problem (15.20) by solving the semi-definite optimization problem

Zd = max γ

s.t. L(γ,Q0,Q1, . . . ,Qm) = 0,

Qi º 0, i = 0,1, . . . ,m.

(15.24)

Problem (15.24) involves semi-definite optimization over m+1 s×s matrices. From

the construction we get the relation Zd 6 Z∗. It turns out that as d increases, Zd

converges to Z∗. Moreover, for binary optimization, there exists a finite d for which

Zd = Z∗ [84].

Problem (15.24) provides a systematic way to find convergent semi-definite re-

laxations to problem (15.20). While the approach is both general (it applies to very

general nonconvex problems including nonlinear mixed-integer optimization prob-

lems) and insightful from a theoretical point of view, it is only practical for values



15 Nonlinear Integer Programming 601

of d = 1,2, as large scale semi-definite optimization problems cannot be solved in

practice. In many situations, however, Z1 or Z2 provide strong bounds. Let us con-

sider an example.

Example 15.2. Let us minimize f (x1,x2) = 2x4
1 + 2x3

1x2 − x2
1x2

2 + 5x4
2 over R2. We

attempt to write

f (x1,x2) = 2x4
1 +2x3

1x2 − x2
1x2

2 +5x4
2

=




x2
1

x2
2

x1x2




⊤


q11 q12 q13

q12 q22 q23

q13 q23 q33







x2
1

x2
2

x1x2




= q11x4
1 +q22x4

2 +(q13 +2q12)x
2
1x2

2 +2q13x3
1x2 +2q23x1x3

2.

In order to have an identity, we obtain

q11 = 2, q22 = 5, q33 +2q12 = −1, 2q13 = 2, q23 = 0.

Using semi-definite optimization, we find a particular solution such that Q º 0 is

given by

Q =




2 −3 1

−3 5 0

1 0 5


 = HH⊤, H =

1
√

2




2 0

−3 1

1 3


 .

It follows that f (x1,x2) = 1
2 (2x2

1 −3x2
2 +x1x2)

2 + 1
2 (x2

2 +3x1x2)
2, and thus the opti-

mal solution value is γ∗ = 0 and the optimal solution is x∗1 = x∗2 = 0.

15.4.3 Quadratic functions

In this section, we focus on instances of polynomial programming where the

functions are all quadratic. The specific form of the mixed-integer quadratically

constrained programming problem that we consider is

min q0(x)

s.t. q(x) 6 0

l ≤ x ≤ u

xi ∈ R, for i = 1, . . . ,k,

xi ∈ Z, for i = k +1, . . . ,n,

(MIQCP[l,u])

where q0 : Rn → R and q : Rn → Rm are quadratic, l,u ∈ Zn, and l ≤ u. We denote

the continuous relaxation by (MIQCPR[l,u]). We emphasize that we are not gener-

ally making any convexity/concavity assumptions on the quadratic functions qi, so

when we do require any such assumptions we will state so explicitly.



602 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Of course one can write a binary constraint yi ∈ {0,1} as the (nonconvex)

quadratic inequality yi(1− yi) ≤ 0 in the bound-constrained variable 0 ≤ yi ≤ 1.

So, in this way, the case of binary variables yi can be seen as the special case

of (MIQCP[l,u]) with no discrete variables (i.e., k = n). So, in a sense, the topic

of mixed-binary quadratically constrained programming can be seen as a special

case of (purely continuous) quadratically constrained programming. We are not

saying that it is necessarily useful to do this from a computational viewpoint, but

it makes it clear that the scope of even the purely continuous quadratic model in-

cludes quadratic models having both binary and continuous variables, and in partic-

ular mixed-{0,1} linear programming.

In addition to the natural mathematical interest in studying mixed-integer quadrat-

ically constrained programming, there is a wealth of applications that have mo-

tivated the development of practical approaches; for example: Trimloss problems

(see [85], for example), portfolio optimization (see [25], for example), Max-Cut

and other binary quadratic models (see [109, 110] and the references therein).

In the remainder of this section, we describe some recent work on practical com-

putational approaches to nonconvex quadratic optimization models. Rather than at-

tempt a detailed survey, our goal is to present a few recent and promising techniques.

One could regard these techniques as belonging more to the field of global optimiza-

tion, but in Section 15.5 we present material on global optimization aimed at more

general unstructured nonlinear integer programming problems.

15.4.3.1 Disjunctive programming

It is not surprising that integer variables in a mixed-integer nonlinear program

can be treated with disjunctive programming [8, 10]. A corresponding branch-and-

cut method was first described in [124] in the context of 0/1 mixed convex program-

ming.

Here we describe an intriguing result from [115, 116, 117], which shows that one

can also make useful disjunctions from nonconvex quadratic functions in a mixed-

integer quadratically-constrained programming problem or even in a purely con-

tinuous quadratically-constrained programming problem. The starting point for this

approach is that we can take a quadratic form x⊤Aix in x ∈ Rn, and rewrite it via an

extended formulation as the linear form 〈Ai,X〉, using the matrix variable X ∈Rn×n,

and the nonlinear equation X = xx⊤. The standard approach is to relax X = xx⊤ to

the convex inequality X º xx⊤. But the approach of [115, 116, 117] involves work-

ing with the nonconvex inequality X¹ xx⊤. This basic idea is as follows. Let v∈Rn

be arbitrary (for now). We have the equation

〈vv⊤,X〉 = 〈vv⊤,xx⊤〉 = (v⊤x)2 ,

which we relax as the concave inequality

(v⊤x)2 ≥ 〈vv⊤,X〉. (Ω)



15 Nonlinear Integer Programming 603

If we have a point (x̂, X̂) that satisfies the convex inequality X º xx⊤, but for which

X̂ 6= x̂x̂⊤ , then it is the case that X̂− x̂x̂⊤ has a positive eigenvalue λ . Let v denote

a unit-length eigenvector belonging to λ . Then

λ = λ‖v‖2
2

= 〈vv⊤, X̂− x̂x̂⊤〉.

So, λ > 0 if and only if (v⊤x̂)2 < 〈vv⊤, X̂〉 . That is, every positive eigenvalue of

X̂− x̂x̂⊤ yields an inequality of the form (Ω) that is violated by (x̂, X̂). Next, we

make a disjunction on this violated nonconvex inequality (Ω). First, we choose

a suitable polyhedral relaxation P of the feasible region, and we let [ηL,ηU ] be

the range of v⊤x as (x,X) varies over the relaxation P . Next, we choose a value

θ ∈ (ηL,ηU ) (e.g., the midpoint), and we get the polyhedral disjunction:

{
(x,X) ∈ P :

ηL(v) ≤ v⊤x ≤ θ
(v⊤x)(ηL(v)+θ) − θηL(v) ≥ 〈vv⊤,X〉

}

or

{
(x,X) ∈ P :

θ ≤ v⊤x ≤ ηU (v)
(v⊤x)(ηU (v)+θ) − θηU (v) ≥ 〈vv⊤,X〉.

}
.

Notice that the second part of the first (resp., second) half of the disjunction corre-

sponds to a secant inequality over the interval between the point θ and the lower

(resp., upper) bound for v⊤x. Finally, we use the linear-programming technology

of ordinary disjunctive programming to separate, via a linear inequality, the point

(x̂, X̂) from the convex closure of the two halves of the disjunction. Details and

extensions of this idea appear in [115, 116, 117].

15.4.3.2 Branch and cut

A branch-and-cut scheme for optimization of a nonconvex quadratic form over a

box was recently developed by Vandenbussche and Nemhauser [133, 132]. They use

a formulation of Balas via linear programming with complementarity conditions,

based on the necessary optimality conditions of continuous quadratic programming

(see [9]). Specifically, they consider the problem

min 1
2 x⊤Qx+ c⊤x

s.t. x ∈ [0,1]n,
(BoxQP[Q,c])

where Q is an n×n symmetric, non positive semi-definite matrix, and c ∈ Rn. The

KKT necessary optimality conditions for (BoxQP[Q,c]) are



604 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

y−Qx− z = c, (15.25)

y⊤(1−x) = 0 (15.26)

z⊤x = 0 (15.27)

x ∈ [0,1]n (15.28)

y, z ∈ Rn
+ . (15.29)

Vandenbussche and Nemhauser, appealing to a result of Balas, define P(Q,c) as

the polyhedron defined as the convex hull of solutions to (15.25–15.29), and they

work with the reformulation of (BoxQP) as the linear program

min 1
2 c⊤x+ 1

2 1⊤y

s.t. (x,y,z) ∈ P(Q,c).
(Balas[Q,c])

The main tactic of Vandenbussche and Nemhauser is to develop cutting planes

for P(Q,c).
Burer and Vandenbussche pursue a similar direction, but they allow general poly-

hedral constraints and employ semi-definite relaxations [34].

15.4.3.3 Branch and bound

Linderoth also looks at quadratically-constrained programs that are not con-

vex [92]. He develops a novel method for repeatedly partitioning the continuous

feasible region into the Cartesian product of triangles and rectangles. What is partic-

ularly interesting is that to do this effectively, Linderoth develops convex envelopes

of bilinear functions over rectangles and triangles (also see Anstreicher and Bu-

rer’s paper [7]), and then he demonstrates that these envelopes involve hyperbolic

constraints which can be reformulated as the second-order cone constraints. It is in-

teresting to compare this with the similar use of second-order cone constraints for

convex quadratics (see Section 15.3.3.2).

One can view the technique of Linderoth as being a specialized “Spatial Branch-

and-Bound Algorithm.” In Section 15.5 we will describe the Spatial Branch-and-

Bound Algorithm for global optimization in its full generality.

15.5 Global optimization

In the present section we take up the subject of global optimization of rather

general nonlinear functions. This is an enormous subject, and so we will point to

just a couple of directions that we view as promising. On the practical side, in Sec-

tion 15.5.1 we describe the Spatial Branch-and-Bound Algorithm which is one of

the most successful computational approaches in this area. In Section 15.5.2, from

the viewpoint of complexity theory, with a goal of trying to elucidate the bound-



15 Nonlinear Integer Programming 605

ary between tractable and intractable, we describe some very recent work on global

optimization of a very general class of nonlinear functions over an independence

system.

15.5.1 Spatial Branch-and-Bound

In this section we address methods for global optimization of rather general

mixed-integer nonlinear programs having non-convex relaxations. Again, to have

any hope at all, we assume that the variables are bounded. There is a very large

body of work on solution techniques in this space. We will not attempt to make any

kind of detailed survey. Rather we will describe one very successful methodology,

namely the Spatial Branch-and-Bound Algorithm. We refer to [123, 128] and the

references therein.

The Spatial Branch-and-Bound Algorithm for mixed-integer nonlinear program-

ming has many similarities to the ordinary branch-and-bound employed for the so-

lution of mixed-integer linear programs, but there are many additional wrinkles.

Moreover, the techniques can be integrated. In what follows, we will concentrate on

how continuous nonlinearities are handled. We leave it to the reader to see how these

techniques would be integrated with the associated techniques for mixed-integer lin-

ear programs.

One main difference with the mixed-integer linear case is that all nonlinear func-

tions in a problem instance are symbolically and recursively decomposed via simple

operators, until we arrive at simple functions. The simple operators should be in a

limited library. For example: sum, product, quotient, exponentiation, power, loga-

rithm, sine, cosine, absolute value. Such a decomposition is usually represented via

a collection of rooted directed acyclic graphs. At each root is a nonlinear function

occurring in the problem formulation. Leaves are constants, affine functions and

atomic variables. Each non-leaf node is thought of as an auxiliary variable and also

as representing a simple operator, and its children are the arguments of that operator.

An inequality constraint in the problem formulation can be thought of as a bound-

ing interval on a root. In addition, the objective function is associated with a root,

and so lower and upper bounds on the optimal objective value can also be thought

of as a bounding interval on a root. Simple bounds on a variable in the problem

formulation can be thought of as a bounding interval on a leaf. In this way, we have

an extended-variable reformulation of the given problem.

Bounds are propagated up and down each such rooted directed acyclic graph via

interval arithmetic and a library of convex envelopes or at least linear convex relax-

ations of the graphs of simple nonlinear operators acting on one or two variables on

simple domains (intervals for univariate operators and simple polygons for bivariate

operators). So, in this way, we have a now tractable convex or even linear relaxation

of the extended-variable reformulation, and this is used to get a lower bound on the

minimum objective value.



606 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

The deficiency in our relaxation is localized to the graphs of simple functions that

are only approximated by convex sets. We can seek to improve bounds by branching

on the interval for a variable and reconvexifying on the subproblems. For example,

we may have a variable v that is a convex function f in a variable w on an inter-

val [l,u]. Then the convex envelope of the graph G[l,u] := {(v,w) : v = f (w)} is

precisely

G̃[l,u] :=
{
(v,w) : f (w) ≤ v ≤ f (l)+

( f (u)− f (l)

u− l

)
(w− l)

}
.

We may find that at a solution of the relaxation, the values of the variables (u,v),
say (v̂, ŵ) ∈ G̃[l,u], are far from G[l,u]. In such a case, we can branch by choosing

a point b ∈ [l,u] (perhaps at or near v̂), and forming two subproblems in which

the bounding interval for v is amended as [l,b] in one and [b,u] in the other. The

value in branching on such a continuous variable is that we now reconvexify on

the subintervals, effectively replacing G̃[l,u] with the smaller set G̃[l,b]∪ G̃[b,u]. In

particular, if we did choose b = v̂, then (v̂, ŵ) /∈ G̃[l,b]∪ G̃[l,b], and so the algorithm

makes some progress. We note that a lot of work has gone into good branching

strategies (see [15] for example).

Finally, a good Spatial Branch-and-Bound procedure should have an effective

strategy for finding good feasible solutions, so as to improve the objective upper

bound (for minimization problems). A good rudimentary strategy is to take the so-

lution of a relaxation as a starting point for a continuous nonlinear-programming

solver aimed at finding a locally-optimal solution of the continuous relaxation (of

either the original or extended-variable formulation). Then if a feasible solution to

this relaxation is obtained and if it happens to have integer values for the appro-

priate variables, then we have an opportunity to update the objective value upper

bound. Alternatively, one can use a solver aimed mainly at mixed-integer nonlinear

programs having convex relaxation as a heuristic also from such a starting point.

In fact, the Branch-and-Bound Algorithm in Bonmin has options aimed at giving

good solutions from such a starting point, even for non-convex problems.

The Spatial Branch-and-Bound Algorithm relies on the rapid and tight convexifi-

cation of simple functions on simple domains. Therefore, considerable work has

gone into developing closed-form expressions for such envelopes. This type of

work has paralleled some research in mixed-integer linear programming that has

focused on determining convex hulls for simple constraints. Useful results include:

univariate functions [3, 122, 36], univariate monomials of odd degree [90, 91],

bilinear functions [6, 98], trilinear functions [99], so-called (n− 1)-convex func-

tions [74], and fractional terms [127]. Further relevant work includes algorithms ex-

ploiting variable transformations and appropriate convex envelopes and relaxations.

For example, for the case of “signomials” (i.e., terms of the form a0x
a1
1 x

a2
2 · · ·xan

n ,

with ai ∈ R), see [106].

We do not make any attempt to exhaustively review available software for global

optimization. Rather we just mention that state-of-the-art codes implementing a



15 Nonlinear Integer Programming 607

Spatial Branch-and-Bound Algorithm include Baron [113, 128, 129] and the new

open-source code Couenne [15].

15.5.2 Boundary cases of complexity

Now, we shift our attention back to the viewpoint of complexity theory. Our goal

is to sample a bit of the recent work that is aimed at revealing the boundary between

tractable and intractable instances of nonlinear discrete optimization problems. We

describe some very recent work on global optimization of a very general class of

nonlinear functions over an independence system (see [86]). Other work in this vein

includes [17, 19].

Specifically, we consider the problem of optimizing a nonlinear objective func-

tion over a weighted independence system presented by a linear-optimization oracle.

While this problem is generally intractable, we are able to provide a polynomial-

time algorithm that determines an “r-best” solution for nonlinear functions of the

total weight of an independent set, where r is a constant that depends on certain

Frobenius numbers of the individual weights and is independent of the size of the

ground set.

An independence system is a nonempty set of vectors S ⊆ {0,1}n with the prop-

erty that x ∈ {0,1}n, x 6 y ∈ S implies x ∈ S. The general nonlinear optimization

problem over a multiply-weighted independence system is as follows. Given an in-

dependence system S ⊆ {0,1}n, weight vectors w1, . . . ,wd ∈ Zn, and a function

f : Zd → R, find x ∈ S minimizing the objective f (w⊤
1 x, . . . ,w⊤

d x).
The representation of the objective in the above composite form has several ad-

vantages. First, for d > 1, it can naturally be interpreted as multi-criteria optimiza-

tion: the d given weight vectors w1, . . . ,wd represent d different criteria, where the

value of x ∈ S under criterion i is its i-th total weight w⊤
i x and the objective is

to minimize the “balancing” f (w⊤
1 x, . . . ,w⊤

d x) of the d given criteria by the given

function f . Second, it allows us to classify nonlinear optimization problems into a

hierarchy of increasing generality and complexity: at the bottom lies standard linear

optimization, recovered with d = 1 and f the identity on Z; and at the top lies the

problem of maximizing an arbitrary function, which is typically intractable, arising

with d = n and wi = 1i the i-th standard unit vector in Zn for all i.

The computational complexity of the problem depends on the number d of

weight vectors, on the weights wi, j, on the type of function f and its presenta-

tion, and on the type of independence system S and its presentation. For example,

when S is a matroid, the problem can be solved in polynomial time for any fixed d,

any {0,1, . . . , p}-valued weights wi, j with p fixed, and any function f presented

by a comparison oracle, even when S is presented by a mere membership oracle,

see [17]. Also, for example, when S consists of the matchings in a given bipar-

tite graph G, the problem can be solved in polynomial time for any fixed d, any

weights wi, j presented in unary, and any concave function f , see [18]; but on the

other hand, for convex f , already with fixed d = 2 and {0,1}-valued weights wi, j,



608 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

the problem includes as a special case the exact matching problem whose complex-

ity is long open [101, 103].

In view of the difficulty of the problem already for d = 2, we take a first step and

concentrate on nonlinear optimization over a (singly) weighted independence sys-

tem, that is, with d = 1, single weight vector w = (w1, . . . ,wn), and univariate func-

tion f : Z → R. The function f can be arbitrary and is presented by a comparison

oracle that, queried on x,y ∈ Z, asserts whether or not f (x) 6 f (y). The weights w j

take on values in a p-tuple a = (a1, . . . ,ap) of positive integers. Without loss of gen-

erality we assume that a = (a1, . . . ,ap) is primitive, by which we mean that the ai are

distinct positive integers whose greatest common divisor gcd(a) := gcd(a1, . . . ,ap)
is 1. The independence system S is presented by a linear-optimization oracle that,

queried on vector c∈Zn, returns an element x∈ S that maximizes the linear function

c⊤x = ∑n
j=1 c jx j. It turns out that this problem is already quite intriguing, and so we

settle for an approximative solution in the following sense, that is interesting in its

own right. For a nonnegative integer r, we say that x∗ ∈ S is an r-best solution to the

optimization problem over S if there are at most r better objective values attained by

feasible solutions. In particular, a 0-best solution is optimal. Recall that the Frobe-

nius number of a primitive a is the largest integer F(a) that is not expressible as a

nonnegative integer combination of the ai. We prove the following theorem.

Theorem 15.22. For every primitive p-tuple a =(a1, . . . ,ap), there is a constant r(a)
and an algorithm that, given any independence system S ⊆ {0,1}n presented by a

linear-optimization oracle, weight vector w∈ {a1, . . . ,ap}
n, and function f : Z → R

presented by a comparison oracle, provides an r(a)-best solution to the nonlinear

problem min{ f (w⊤x) : x ∈ S}, in time polynomial in n. Moreover:

1. If ai divides ai+1 for i = 1, . . . , p− 1, then the algorithm provides an optimal

solution.

2. For p = 2, that is, for a = (a1,a2), the algorithm provides an F(a)-best solution.

In fact, we give an explicit upper bound on r(a) in terms of the Frobenius num-

bers of certain subtuples derived from a. An interesting special case is that of

a = (2,3). Because F(2,3) = 1, the solution provided by our algorithm in that case

is either optimal or second best.

The proof of Theorem 15.22 is pretty technical, so we only outline the main ideas.

Below we present a naı̈ve solution strategy that does not directly lead to a good ap-

proximation. However, this naı̈ve approach is used as a basic building block. One

partitions the independence system into suitable pieces, to each of which a suitable

refinement of the naı̈ve strategy is applied separately. Considering the monoid gen-

erated by {a1, . . . ,ap} allows one to show that the refined naı̈ve strategy applied to

each piece gives a good approximation within that piece. In this way, the approxima-

tion quality r(a) can be bounded as follows, establishing a proof to Theorem 15.22.

Lemma 15.6. Let a = (a1, . . . ,ap) be any primitive p-tuple. Then the following

hold:

1. An upper bound on r(a) is given by r(a) 6 (2max(a))p
.



15 Nonlinear Integer Programming 609

2. For divisible a, we have r(a) = 0.

3. For p = 2, that is, for a = (a1,a2), we have r(a) = F(a).

Before we continue, let us fix some notation. The indicator of a subset J ⊆ N is

the vector 1J := ∑ j∈J 1 j ∈ {0,1}n, so that supp(1J) = J. Unless otherwise specified,

x denotes an element of {0,1}n and λλλ ,τττ,ννν denote elements of Zp
+. Throughout,

a = (a1, . . . ,ap) is a primitive p-tuple. We will be working with weights taking

values in a, that is, vectors w ∈ {a1, . . . ,ap}
n. With such a weight vector w being

clear from the context, we let Ni := { j ∈ N : w j = ai} for i = 1, . . . , p, so that

N =
⊎p

i=1 Ni. For x ∈ {0,1}n we let λi(x) := |supp(x)∩Ni| for i = 1, . . . , p, and

λλλ (x) := (λ1(x), . . . ,λp(x)), so that w⊤x = λλλ (x)⊤a. For integers z,s ∈ Z and a set of

integers Z ⊆ Z, we define z+ sZ := {z+ sx : x ∈ Z}.

Let us now present the naı̈ve strategy to solve the univariate nonlinear problem

min{ f (w⊤x) : x ∈ S}. Consider a set S ⊆ {0,1}n, weight vector w ∈ {a1, . . . ,ap}
n,

and function f : Z → R presented by a comparison oracle. Define the image of S

under w to be the set of values w⊤x taken by elements of S; we denote it by w ·S.

We point out the following simple observation.

Proposition 15.4. A necessary condition for any algorithm to find an r-best solu-

tion to the problem min{ f (w⊤x) : x ∈ S}, where the function f is presented by a

comparison oracle only, is that it computes all but at most r values of the image w ·S

of S under w.

Note that this necessary condition is also sufficient for computing the objective

value f (w⊤x∗) of an r-best solution, but not for computing an actual r-best solution

x∗ ∈ S, which may be harder. Any point x̄ attaining max{w⊤x : x ∈ S} provides an

approximation of the image given by

{w⊤x : x 6 x̄} ⊆ w ·S ⊆ {0,1, . . . ,w⊤x̄} . (15.30)

This suggests the following natural naı̈ve strategy for finding an approximative so-

lution to the optimization problem over an independence system S that is presented

by a linear-optimization oracle.

(Naı̈ve Strategy)

input Independence system S ⊆ {0,1}n presented by a linear-optimization oracle, f : Z → R pre-
sented by a comparison oracle, and w ∈ {a1, . . . ,ap}

n

obtain x̄ attaining max{w⊤x : x ∈ S} using the linear-optimization oracle for S

output x∗ as one attaining min{ f (w⊤x) : x 6 x̄} using the algorithm of Lemma 15.7 below.

Unfortunately, as the next example shows, the number of values of the image that

are missing from the approximating set on the left-hand side of equation (15.30)

cannot generally be bounded by any constant. So by Proposition 15.4, this strategy

cannot be used as is to obtain a provably good approximation.



610 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

Example 15.3. Let a := (1,2), n := 4m, y := ∑2m
i=1 1i, z := ∑4m

i=2m+1 1i, and w :=
y+2z, i.e.,

y = (1, . . . ,1,0, . . . ,0) , z = (0, . . . ,0,1, . . . ,1) , w = (1, . . . ,1,2, . . . ,2) ,

define f on Z by

f (k) :=

{
k, k odd,

2m, k even,

and let S be the independence system

S := {x ∈ {0,1}n : x 6 y} ∪ {x ∈ {0,1}n : x 6 z}.

Then the unique optimal solution of the linear-objective problem max{w⊤x : x∈ S}

is x̄ := z, with w⊤x̄ = 4m, and therefore

{w⊤x : x 6 x̄} = {2i : i = 0,1, . . . ,2m} and

w ·S = {i : i = 0,1, . . . ,2m} ∪ {2i : i = 0,1, . . . ,2m}.

So all m odd values (i.e., 1,3, . . . ,2m− 1) in the image w · S are missing from the

approximating set {w⊤x : x 6 x̄} on the left-hand side of (15.30), and x∗ at-

taining min{ f (w⊤x) : x 6 x̄} output by the above strategy has objective value

f (w⊤x∗) = 2m, while there are m = n
4 better objective values (i.e., 1,3, . . . ,2m−1)

attainable by feasible points (e.g., ∑k
i=1 1i, for k = 1,3, . . . ,2m−1).

Nonetheless, a more sophisticated refinement of the naı̈ve strategy, applied re-

peatedly to several suitably chosen subsets of S rather than S itself, will lead to a

good approximation. Note that the naı̈ve strategy can be efficiently implemented as

follows.

Lemma 15.7. For every fixed p-tuple a, there is a polynomial-time algorithm that,

given univariate function f : Z → R presented by a comparison oracle, weight vec-

tor w ∈ {a1, . . . ,ap}
n, and x̄ ∈ {0,1}n, solves min{ f (w⊤x) : x 6 x̄}.

Proof. Consider the following algorithm:

input function f : Z → R presented by a comparison oracle, w ∈ {a1, . . . ,ap}
n and x̄ ∈ {0,1}n

let Ni := { j : w j = ai} and τi := λi(x̄) = |supp(x̄)∩Ni|, i = 1, . . . , p.
For every choice of ννν = (ν1, . . . ,νp) 6 (τ1, . . . ,τp) = τττ
determine some xννν 6 x̄ with λi(xννν ) = |supp(xννν )∩Ni| = νi, i = 1, . . . , p.
output x∗ as one minimizing f (w⊤x) among the xννν by using the comparison oracle of f .

As the value w⊤x depends only on the cardinalities |supp(x)∩Ni|, i = 1, . . . , p,

it is clear that

{w⊤x : x 6 x̄} = {w⊤xννν : ννν 6 τττ}.

Clearly, for each choice ννν 6 τττ it is easy to determine some xννν 6 x̄ by zeroing out

suitable entries of x̄. The number of choices ννν 6 τττ and hence of loop iterations and



15 Nonlinear Integer Programming 611

Constraints
Objective
function Linear Convex Polynomial Arbitrary Polynomial

Linear Polynomial-time in fixed

dimension:

– Lenstra’s algo-
rithm [88]

– Generalized basis
reduction, Lovász–
Scarf [95]

– Short rational generat-
ing functions, Barvi-
nok [13]

Polynomial-time in fixed

dimension:

Lenstra-type algorithms
(15.3.1)

– Khachiyan–
Porkolab [80]

– Heinz [67]

Incomputable:

Hilbert’s 10th problem,
Matiyasevich [96]
(15.1), even for:

– quadratic
constraints,
Jeroslow [76]

– fixed
dimension 10,
Matiyasevich [77]

Convex max
(15.2)

Polynomial-time in fixed

dimension: Cook et al. [39]
(15.2.1)

Incomputable (15.1)

Convex min
(15.3)

Polynomial-time in fixed dimension: Lenstra-type
algorithms: Khachiyan–Porkolab [80], Heinz [67]
(15.3.1)

Incomputable (15.1)

Arbitrary
Polynomial
(15.4)

NP-hard, inapproximable, even for quadratic forms
over hypercubes: MAX-CUT, Håstad [66] (15.1)

NP-hard, even for fixed dimension 2, degree 4 (15.1)

FPTAS in fixed dimen-

sion: Short rational gener-
ating functions, De Loera
et al. [45] (15.4.1)

Incomputable (15.1)

Table 15.1 Computational complexity and algorithms for nonlinear integer optimization.

comparison-oracle queries of f to determine x∗ is

p

∏
i=1

(τi +1) 6 (n+1)p.

15.6 Conclusions

In this chapter, we hope to have succeeded in reviewing mixed-integer nonlinear

programming from two important viewpoints.

We have reviewed the computational complexity of several important classes

of mixed-integer nonlinear programs. Some of the negative complexity results (in-



612 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

computability, NP-hardness) that appeared in Section 15.1 have been supplemented

by polynomiality or approximability results in fixed dimension. Table 15.1 gives

a summary. In addition to that, and not shown in the table, we have explored the

boundary between tractable and intractable problems, by highlighting interesting

cases in varying dimension where still polynomiality results can be obtained.

Additionally, we have reviewed a selection of practical algorithms that seem to

have the greatest potential from today’s point of view. Many of these algorithms,

at their core, are aimed at integer convex minimization. Here we have nonlinear

branch-and-bound, outer approximation, the Quesada–Grossman algorithm, hybrid

algorithms, and generalized Benders decomposition. As we have reported, such ap-

proaches can be specialized and enhanced for problems with SDP constraints, SOCP

constraints, and (convex) quadratics. For integer polynomial programming (without

convexity assumptions), the toolbox of Positivstellensätze and SOS programming is

available. For the case of quadratics (without convexity assumptions), specialized

versions of disjunctive programming, branch-and-cut, and branch-and-bound have

been devised. Finally, for general global optimization, spatial branch-and-bound is

available as a technique, which relies heavily on convexification methods.

It is our hope that, by presenting these two viewpoints to the interested reader,

this chapter will help to create a synergy between both viewpoints in the near future.

May this lead to a better understanding of the field, and to much better algorithms

than what we have today!

Acknowledgments

We would like to thank our coauthors, Jesús De Loera and Shmuel Onn, for their

permission to base the presentation of some of the material in this chapter on our

joint papers [47, 87, 86].

References

1. 4ti2 team, 4ti2 – a software package for algebraic, geometric and combinatorial problems

on linear spaces, Available at http://www.4ti2.de.
2. K. Abhishek, S. Leyffer, and J.T. Linderoth, Filmint: An outer-approximation-based solver

for nonlinear mixed integer programs, Preprint ANL/MCS-P1374-0906, 2006.
3. C.S. Adjiman, Global optimization techniques for process systems engineering, Ph.D. thesis,

Princeton University, June 1998.
4. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, algorithms, and applica-

tions, Prentice-Hall, Inc., New Jersey, 1993.
5. S. Aktürk, A. Atamtürk, and S. Gürel, A strong conic quadratic reformulation for machine-

job assignment with controllable processing times, Operations Research Letters 37 (2009)
187–191.

6. F.A. Al-Khayyal and J.E. Falk, Jointly constrained biconvex programming, Mathematics of
Operations Research 8 (1983) 273–286.



15 Nonlinear Integer Programming 613

7. K. Anstreicher and S. Burer, Computable representations for convex hulls of low-dimensional

quadratic forms, Technical report, Department of Management Sciences, University of Iowa,
2007.

8. E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, MSRR
No. 330, Carnegie Mellon University, Pittsburgh, 1974.

9. E. Balas, Nonconvex quadratic programming via generalized polars, SIAM Journal on Ap-
plied Mathematics 28 (1975) 335–349.

10. E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, Discrete
Applied Mathematics 89 (1998) 3–44.

11. B. Bank, J. Heintz, T. Krick, R. Mandel, and P. Solernó, Une borne optimale pour la pro-

grammation entiére quasi-convexe, Bull. Soc. math. France 121 (1993) 299–314.
12. B. Bank, J. Heintz, T. Krick, R. Mandel, and P. Solernó, A geometrical bound for integer

programming with polynomial constraints, Fundamentals of Computation Theory, Lecture
Notes In Computer Science 529, Springer, 1991, pp. 121–125.

13. A.I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when

the dimension is fixed, Mathematics of Operations Research 19 (1994) 769–779.
14. A.I. Barvinok and J.E. Pommersheim, An algorithmic theory of lattice points in polyhe-

dra, New Perspectives in Algebraic Combinatorics (L.J. Billera, A. Björner, C. Greene, R.E.
Simion, and R.P. Stanley eds.), Math. Sci. Res. Inst. Publ., Vol. 38, Cambridge Univ. Press,
Cambridge, 1999, pp. 91–147.

15. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and bounds tightening

techniques for non-convex MINLP, IBM Research Report RC24620, 2008.
16. A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: Analysis, algo-

rithms, and engineering applications, MPS-SIAM Series on Optimization, SIAM, Philadel-
phia, USA, 2001.

17. Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel, and H. Wynn,
Nonlinear matroid optimization and experimental design, SIAM Journal on Discrete Mathe-
matics 22 (2008) 901–919.

18. Y. Berstein and S. Onn, Nonlinear bipartite matching, Discrete Optimization 5 (2008) 53–65.
19. Y. Berstein, J. Lee, S. Onn, and R. Weismantel, Nonlinear optimization for matroid intersec-

tion and extensions, IBM Research Report RC24610, 2008.
20. D. Bertsimas and R. Weismantel, Optimization over integers, Dynamic Ideas, Belmont, Ma.,

2005.
21. Biq-Mac Solver - Binary quadratic and Max cut Solver, biqmac.uni-klu.ac.at, 2006.
22. P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi,

F. Margot, N. Sawaya, and A. Wächter, An algorithmic framework for convex mixed integer

nonlinear programs, Discrete Optimization 5 (2008) 186–204.
23. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, A feasibility pump for mixed integer

nonlinear programs, Mathematical Programming 119 (2009) 331–352.
24. P. Bonami and J. Lee, Bonmin users’ manual, Technical report, June 2006.
25. P. Bonami and M.A. Lejeune, An exact solution approach for integer constrained portfolio

optimization problems under stochastic constraints, Operations Research 57 (2009) 650–
670.

26. P. Bonami, J. Forrest, J. Lee, and A. Wächter, Rapid development of an MINLP solver with

COIN-OR, Optima 75 (2007) 1–5.
27. P. Bonami and J.P.M. Gonçalves, Primal heuristics for mixed integer nonlinear programs,

IBM Research Report RC24639, 2008.
28. Bonmin, neos.mcs.anl.gov/neos/solvers/minco:Bonmin/AMPL.html.
29. Bonmin, projects.coin-or.org/Bonmin, v. 0.99.
30. E. Boros and P.L. Hammer, Pseudo-Boolean optimization, Discrete Applied Mathematics

123 (2002) 155–225.
31. M. Brion, Points entiers dans les polyédres convexes, Ann. Sci. École Norm. Sup. 21 (1988)

653–663.
32. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in

rational polytopes, J. Amer. Math. Soc. 10 (1997) 797–833.



614 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

33. C. Buchheim and G. Rinaldi, Efficient reduction of polynomial zero-one optimization to the

quadratic case, SIAM Journal on Optimization 18 (2007) 1398–1413.
34. S. Burer and D. Vandenbussche, A finite branch-and-bound algorithm for nonconvex quad-

ratic programming via semidefinite relaxations, Mathematical Programming 113 (2008)
259–282.

35. R.E. Burkard, E. Çela, and L. Pitsoulis, The quadratic assignment problem, Handbook of
Combinatorial Optimization (Dordrecht), Computer-aided chemical engineering, Kluwer
Academic Publishers, 1998, pp. 241–339.

36. S. Ceria and J. Soares, Convex programming for disjunctive convex optimization, Mathemat-
ical Programming 86 (1999) 595–614.

37. M.T. Çezik and G. Iyengar, Cuts for mixed 0-1 conic programming, Mathematical Program-
ming 104 (2005) 179–202.

38. M.D. Choi, T.Y. Lam, and B. Reznick, Sums of squares of real polynomials, Proceedings of
symposia in pure mathematics 58 (1995) 103–126.

39. W.J. Cook, M.E. Hartmann, R. Kannan, and C. McDiarmid, On integer points in polyhedra,
Combinatorica 12 (1992) 27–37.

40. GAMS Development Corp., DICOPT, www.gams.com/dd/docs/solvers/dicopt.pdf.
41. J.A. De Loera and S. Onn, The complexity of three-way statistical tables, SIAM Journal of

Computing 33 (2004) 819–836.
42. J.A. De Loera and S. Onn, All linear and integer programs are slim 3-way transportation

programs, SIAM Journal of Optimization 17 (2006) 806–821.
43. J.A. De Loera and S. Onn, Markov bases of three-way tables are arbitrarily complicated,

Journal of Symbolic Computation 41 (2006) 173–181.
44. J.A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel, FPTAS for mixed-integer poly-

nomial optimization with a fixed number of variables, 17th ACM-SIAM Symposium on Dis-
crete Algorithms, 2006, pp. 743–748.

45. J.A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel, Integer polynomial optimiza-

tion in fixed dimension, Mathematics of Operations Research 31 (2006) 147–153.
46. J.A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel, FPTAS for optimizing polyno-

mials over the mixed-integer points of polytopes in fixed dimension, Mathematical Program-
ming 118 (2008) 273–290.

47. J.A. De Loera, R. Hemmecke, S. Onn, and R. Weismantel, N-fold integer programming,
Discrete Optimization 5 (2008), 231–241.

48. S. Drewes and S. Ulbrich, Mixed integer second order cone programming, IMA Hot Topics
Workshop, Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications,
November 17–21, 2008.

49. M.A. Duran and I.E. Grossmann, An outer-approximation algorithm for a class of mixed-

integer nonlinear programs, Mathematical Programming 36 (1986) 307–339.
50. M.A. Duran and I.E. Grossmann, Erratum: “An outer-approximation algorithm for a class

of mixed-integer nonlinear programs” [Mathematical Programming 36 (1986) 307–339],
Mathematical Programming 39 (1987) 337.

51. FilMINT, www-neos.mcs.anl.gov/neos/solvers/minco:FilMINT/AMPL.html.
52. A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0-1 mixed integer pro-

grams, Mathematical Programmming 106 (2006) 225–236.
53. A. Frangioni and C. Gentile, A computational comparison of reformulations of the perspec-

tive relaxation: SOCP vs. cutting planes, Operations Research Letters 37 (2009) 206–210.
54. M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-

completeness, W.H. Freeman and Company, New York, NY, 1979.
55. A.M. Geoffrion, Generalized Benders decomposition, J. Optimization Theory Appl. 10

(1972) 237–260.
56. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995)
1115–1145.



15 Nonlinear Integer Programming 615

57. D. Goldfarb, S.C. Liu, and S.Y. Wang, A logarithmic barrier function algorithm for quadrat-

ically constrained convex quadratic programming, SIAM Journal on Optimization 1 (1991)
252–267.

58. R.E. Gomory, An algorithm for integer solutions to linear programs, Princeton IBM Mathe-
matics Research Project, Technical Report No. 1, Princeton University, November 17, 1958.

59. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of
the American Mathematical Society 64 (1958) 275–278.

60. J.E. Graver, On the foundations of linear and integer linear programming I, Mathematical
Programming 8 (1975) 207–226.

61. M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial opti-

mization, Springer, 1988.
62. O. Günlük and J. Linderoth, Perspective relaxation of mixed integer nonlinear programs with

indicator variables, Integer Programming and Combinatorial Optimization 2008 – Bertinoro,
Italy (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science 5035,
Springer, 2008, pp. 1–16.

63. O. Günlük and J. Linderoth, Perspective reformulations of mixed integer nonlinear programs

with indicator variables, Optimization Technical Report, ISyE Department, University of
Wisconsin-Madison, June 20, 2008.

64. O.K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear integer

programming, Management Sci. 31 (1985) 1533–1546.
65. M.E. Hartmann, Cutting planes and the complexity of the integer hull, Phd thesis, Cornell

University, Department of Operations Research and Industrial Engineering, Ithaca, NY, 1989.
66. J. Håstad, Some optimal inapproximability results, Proceedings of the 29th Symposium on

the Theory of Computing (STOC), ACM, 1997, pp. 1–10.
67. S. Heinz, Complexity of integer quasiconvex polynomial optimization, Journal of Complexity

21 (2005) 543–556.
68. R. Hemmecke, On the positive sum property and the computation of Graver test sets, Math-

ematical Programming 96 (2003) 247–269.
69. R. Hemmecke, M. Köppe, and R. Weismantel, Oracle-polynomial time convex mixed-integer

minimization, Manuscript, 2008.
70. R. Hemmecke, S. Onn, and R. Weismantel, A polynomial oracle-time algorithm for convex

integer minimization, Manuscript, 2008.
71. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms ii:

Advanced theory and bundle methods., Grundlehren der Mathematischen Wissenschaften
306, Springer, 1993.

72. S. Hoşten and S. Sullivant, A finiteness theorem for Markov bases of hierarchical models,
Journal of Combinatorial Theory Ser. A 114 (2007) 311–321.

73. Ilog-Cplex, www.ilog.com/products/cplex, v. 10.1.
74. M. Jach, D. Michaels, and R. Weismantel, The convex envelope of (n-1)-convex functions,

SIAM Journal on Optimization 19 (2008), 1451–1466.
75. T. Jacobi and A. Prestel, Distinguished representations of strictly positive polynomials, Jour-

nal für die Reine und Angewandte Mathematik 532 (2001) 223–235.
76. R.G. Jeroslow, There cannot be any algorithm for integer programming with quadratic con-

straints, Operations Research 21 (1973) 221–224.
77. J.P. Jones, Universal diophantine equation, Journal of Symbolic Logic 47 (1982) 403–410.
78. J.E. Kelley, Jr., The cutting-plane method for solving convex programs, Journal of the Society

for Industrial and Applied Mathematics 8 (1960) 703–712.
79. L.G. Khachiyan, Convexity and complexity in polynomial programming, Proceedings of

the International Congress of Mathematicians, August 16–24, 1983, Warszawa (New York)
(Zbigniew Ciesielski and Czesław Olech, eds.), North-Holland, 1984, pp. 1569–1577.

80. L.G. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets., Dis-
crete and Computational Geometry 23 (2000) 207–224.

81. M. Köppe, A primal Barvinok algorithm based on irrational decompositions, SIAM Journal
on Discrete Mathematics 21 (2007) 220–236.



616 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

82. M. Köppe and S. Verdoolaege, Computing parametric rational generating functions with a

primal Barvinok algorithm, The Electronic Journal of Combinatorics 15 (2008) 1–19, #R16.
83. J.B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM

Journal on Optimization 11 (2001) 796–817.
84. M. Laurent, A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations

for 0-1 programming, Mathematics of Operations Research 28 (2003) 470–496.
85. J. Lee, In situ column generation for a cutting-stock problem, Computers & Operations Re-

search 34 (2007) 2345–2358.
86. J. Lee, S. Onn, and R. Weismantel, Nonlinear optimization over a weighted independence

system, IBM Research Report RC24513, 2008.
87. J. Lee, S. Onn, and R. Weismantel, On test sets for nonlinear integer maximization, Opera-

tions Research Letters 36 (2008) 439–443.
88. H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Oper-

ations Research 8 (1983) 538–548.
89. S. Leyffer, User manual for MINLP BB, Technical report, University of Dundee, UK, March

1999.
90. L. Liberti, Comparison of convex relaxations for monomials of odd degree, Optimization

and Optimal Control (I. Tseveendorj, P.M. Pardalos, and R. Enkhbat, eds.), World Scientific,
2003.

91. L. Liberti and C.C. Pantelides, Convex envelopes of monomials of odd degree, Journal of
Global Optimization 25 (2003) 157–168.

92. J. Linderoth, A simplicial branch-and-bound algorithm for solving quadratically constrained

quadratic programs, Mathematical Programming 103 (2005) 251–282.
93. M. Sousa Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order

cone programming, Linear Algebra Appl. 284 (1998) 193–228, ILAS Symposium on Fast
Algorithms for Control, Signals and Image Processing (Winnipeg, MB, 1997).

94. LOQO, www.princeton.edu/∼rvdb, v. 4.05.
95. L. Lovász and H.E. Scarf, The generalized basis reduction algorithm, Mathematics of Oper-

ations Research 17 (1992) 751–764.
96. Y.V. Matiyasevich, Enumerable sets are diophantine, Doklady Akademii Nauk SSSR 191

(1970) 279–282, (Russian); English translation, Soviet Mathematics Doklady 11 (1970) 354–
357.

97. Y.V. Matiyasevich, Hilbert’s tenth problem, The MIT Press, Cambridge, MA, USA, 1993.
98. G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part i

— convex underestimating problems, Mathematical Programming 10 (1976) 146–175.
99. C.A. Meyer and C.A. Floudas, Trilinear monomials with mixed sign domains: Facets of the

convex and concave envelopes, Journal of Global Optimization 29 (2004) 125–155.
100. MOSEK, www.mosek.com, v. 5.0.
101. K. Mulmuley, U.V. Vazirani, and V.V. Vazirani, Matching is as easy as matrix inversion,

Combinatorica 7 (1987) 105–113.
102. S. Onn and U.G. Rothblum, Convex combinatorial optimization, Disc. Comp. Geom. 32

(2004) 549–566.
103. C.H. Papadimitriou and M. Yanakakis, The complexity of restricted spanning tree problems,

Journal of the Association for Computing Machinery 29 (1982) 285–309.
104. P.M. Pardalos, F. Rendl, and H. Wolkowicz, The quadratic assignment problem: A survey

and recent developments., Quadratic Assignment and Related Problems (P.M. Pardalos and
H. Wolkowicz, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 16, American Mathematical Society, DIMACS Workshop May 20–21, 1993
1994, pp. 1–42.

105. P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Mathemati-
cal Programming 96 (2003) 293–320.

106. R. Pörn, K.-M. Björk, and T. Westerlund, Global solution of optimization problems with

signomial parts, Discrete Optimization 5 (2008) 108–120.
107. M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathe-

matics Journal 42 (1993) 969–984.



15 Nonlinear Integer Programming 617

108. I. Quesada and I.E. Grossmann, An LP/NLP based branch and bound algorithm for convex

MINLP optimization problems, Computers & Chemical Engineering 16 (1992) 937–947.
109. F. Rendl, G. Rinaldi, and A. Wiegele, A branch and bound algorithm for max-cut based on

combining semidefinite and polyhedral relaxations, Integer Programming and Combinatorial
Optimization 2007 – Ithaca, New York (M. Fischetti and D.P. Williamson, eds.), Lecture
Notes in Computer Science 4513, Springer, 2007, pp. 295–309.

110. F. Rendl, G. Rinaldi, and A. Wiegele, Solving max-cut to optimality by intersecting semidef-

inite and polyhedral relaxations, Technical report, Alpen-Adria-Universität Klagenfurt, Inst.
f. Mathematik, 2008.

111. J. Renegar, On the computational complexity and geometry of the first-order theory of the

reals. part III: Quantifier elimination, Journal of Symbolic Computation 13 (1992) 329–352.
112. J. Renegar, On the computational complexity of approximating solutions for real algebraic

formulae, SIAM Journal on Computing 21 (1992) 1008–1025.
113. N.V. Sahinidis, BARON: A general purpose global optimization software package, Journal

of Global Optimization 8 (1996) 201–205.
114. F. Santos and B. Sturmfels, Higher Lawrence configurations, Journal of Combinatorial The-

ory Ser. A 103 (2003) 151–164.
115. A. Saxena, P. Bonami, and J. Lee, Disjunctive cuts for non-convex mixed integer quadrati-

cally constrained programs, Integer Programming and Combinatorial Optimization 2008 –
Bertinoro, Italy (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer
Science 5035, Springer, 2008, pp. 17–33.

116. A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed integer quadrati-

cally constrained programs: Extended formulations, IBM Research Report RC24621, 2008.
117. A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed integer quadrati-

cally constrained programs: Projected formulations, IBM Research Report RC24695, 2008.
118. SDPT3, www.math.nus.edu.sg/∼mattohkc/sdpt3.html, v. 4.0 (beta).
119. A. Sebö, Hilbert bases, Caratheodory’s Theorem and combinatorial optimization, Proceed-

ings of the IPCO conference, Waterloo, Canada, 1990, pp. 431–455.
120. SeDuMi, sedumi.mcmaster.ca, v. 1.1.
121. N.Z. Shor, An approach to obtaining global extremums in polynomial mathematical pro-

gramming, Kibernetika 52 (1987) 102–106.
122. E.M.B. Smith, On the optimal design of continuous processes, Ph.D. thesis, Imperial College

of Science, Technology and Medicine, University of London, Oct. 1996.
123. E.M.B. Smith and C.C. Pantelides, A symbolic reformulation/spatial branch-and-bound al-

gorithm for the global optimisation of nonconvex MINLPs, Computers & Chemical Engi-
neering 23 (1999) 457–478.

124. R.A. Stubbs and S. Mehrotra, A branch-and-cut method for 0-1 mixed convex programming,
Mathematical Programming 86 (1999) 515–532.

125. B. Sturmfels, Gröbner bases and convex polytopes, American Mathematical Society, Provi-
dence, RI, 1996.

126. S.P. Tarasov and L.G. Khachiyan, Bounds of solutions and algorithmic complexity of systems

of convex diophantine inequalities, Soviet Math. Doklady 22 (1980) 700–704.
127. M. Tawarmalani and N. Sahinidis, Convex extensions and envelopes of semi-continuous func-

tions, Mathematical Programming 93 (2002) 247–263.
128. M. Tawarmalani and N.V. Sahinidis, Convexification and global optimization in continuous

and mixed-integer nonlinear programming: Theory, algorithms, software and applications,
Nonconvex Optimization and Its Applications, vol. 65, Kluwer Academic Publishers, Dor-
drecht, 2002.

129. M. Tawarmalani and N.V. Sahinidis, Global optimization of mixed-integer nonlinear pro-

grams: A theoretical and computational study, Mathematical Programming 99 (2004) 563–
591.

130. M. Tawarmalani and N.V. Sahinidis, Semidefinite Relaxations of Fractional Programs via

Novel Convexification Techniques, Journal of Global Optimization 20 (2001) 137–158.
131. R.R. Thomas, Algebraic methods in integer programming, Encyclopedia of Optimization

(C. Floudas and P. Pardalos, eds.), Kluwer Academic Publishers, Dordrecht, 2001.



618 R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel

132. D. Vandenbussche and G.L. Nemhauser, A branch-and-cut algorithm for nonconvex quad-

ratic programs with box constraints, Mathematical Programming 102 (2005) 559–575.
133. D. Vandenbussche and G.L. Nemhauser, A polyhedral study of nonconvex quadratic pro-

grams with box constraints, Mathematical Programming 102 (2005) 531–557.
134. T. Westerlund and K. Lundqvist, Alpha-ECP, version 5.101: An interactive MINLP-solver

based on the extended cutting plane method, Technical Report 01-178-A, Process Design
Laboratory at Abo Akademi University, Updated version of 2005-10-21.

135. T. Westerlund and F. Pettersson, An extended cutting plane method for solving convex MINLP

problems, Computers and Chemical Engineering 19(Suppl.) (1995) S131–S136.
136. T. Westerlund and R. Pörn, Solving pseudo-convex mixed integer optimization problems by

cutting plane techniques, Optimization and Engineering 3 (2002) 253–280.



Chapter 16

Mixed Integer Programming Computation

Andrea Lodi

Abstract The first 50 years of Integer and Mixed-Integer Programming have taken

us to a very stable paradigm for solving problems in a reliable and effective way.

We run over these 50 exciting years by showing some crucial milestones and we

highlight the building blocks that are making nowadays solvers effective from both a

performance and an application viewpoint. Finally, we show that a lot of work must

still be done for improving the solvers and extending their modeling capability.

In memory of my friend and colleague Lorenzo Brunetta (1966–2008).

16.1 Introduction

We consider a general Mixed Integer Linear Program (MIP) in the form

min{cT x : Ax ≥ b, x ≥ 0, x j ∈ Z ∀ j ∈ I} (16.1)

where we do not assume that the matrix A has any special structure. Thus, the al-

gorithmic approach relies on the iterative solution, through general-purpose tech-

niques, of the Linear Programming (LP) relaxation

min{cT x : Ax ≥ b, x ≥ 0}, (16.2)

i.e., the same as problem (16.1) above but the integrality requirement on the x vari-

ables in the set I has been dropped. We denote an optimal solution of problem (16.2)

as x∗. The reason for dropping such constraints is that MIP is NP-hard while LP is

polynomially solvable and general-purpose techniques for its solution are efficient

in practice.

Andrea Lodi
DEIS, University of Bologna, Italy
e-mail: andrea.lodi@unibo.it

619
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_16, © Springer-Verlag Berlin Heidelberg 2010 



620 Andrea Lodi

Due to space limitations, this chapter does not cover LP state-of-the-art, while

it covers the basic characteristics and components of current, commercial and non-

commercial, MIP solvers. However, Bixby et al. [27] report that in 2004 an LP was

solved, by Cplex 8, a million times faster than it was by Cplex 1 in 1990, three

orders of magnitudes due to hardware and to software improvements, respectively.

This gives a clear indication of how much LP technology has been and is important

for MIP development.

Roughly speaking, using the LP computation as a tool, MIP solvers integrate the

branch-and-bound and the cutting plane algorithms through variations of the gen-

eral branch-and-cut scheme proposed by Padberg and Rinaldi [76, 77] in the context

of the Traveling Salesman Problem (TSP). The reader is referred to Chapter 12 for

a detailed account on the history of the branch-and-cut framework which is, in turn,

tightly connected to the history of the TSP and other combinatorial optimization

problems like the Linear Ordering, see Grötschel, Jünger and Reinelt [57].

The branch-and-bound algorithm, Land and Doig [63]. In its basic version the

branch-and-bound algorithm iteratively partitions the solution space into sub-MIPs

(the children nodes) which have the same theoretical complexity of the originat-

ing MIP (the father node, or the root node if it is the initial MIP). Usually, for MIP

solvers the branching creates two children by using the rounding of the solution of

the LP relaxation value of a fractional variable, say x j, constrained to be integral

x j 6 ⌊x∗j⌋ or x j > ⌊x∗j⌋+1. (16.3)

The two children above are often referred to as left (or “down”) branch and right

(or “up”) branch, respectively. On each of the sub-MIPs the integrality requirement

on the variables x j,∀ j ∈ I is relaxed and the LP relaxation is solved. Despite the

theoretical complexity, the sub-MIPs become smaller and smaller due to the parti-

tion mechanism (basically some of the decisions are taken) and eventually the LP

relaxation is directly integral for all the variables in I. In addition, the LP relax-

ation is solved at every node to decide if the node itself is worthwhile to be further

partitioned: if the LP relaxation value is already not smaller than the best feasible

solution encountered so far, called incumbent, the node can safely be fathomed be-

cause none of its children will yield a better solution than the incumbent. Finally, a

node is also fathomed if its LP relaxation is infeasible.

The cutting plane algorithm, Gomory [55]. Any MIP can be solved without

branching by simply finding its “right” linear programming description, more pre-

cisely, the convex hull of its (mixed-)integer solutions. In order to do that, one has

to iteratively solve the so called separation problem

Given a feasible solution x∗ of the LP relaxation (16.2) which is not feasible for the
MIP (16.1), find a linear inequality αT x > α0 which is valid for (16.1), i.e., satisfied by
all feasible solutions x̄ of the system (16.1), while it is violated by x∗, i.e., αT x∗ < α0.

Any inequality solving the separation problem is called a cutting plane (or a cut, for

short) and has the effect of tightening the LP relaxation to better approximate the

convex hull.



16 Mixed Integer Programming Computation 621

Gomory [55] has given an algorithm that converges in a finite number of itera-

tions for pure Integer Linear Programming (IP)1 with integer data. Such an algo-

rithm solves the separation problem above in an efficient and elegant manner in the

special case in which x∗ is an optimal basis of the LP relaxation. No algorithm of

this kind is known for MIPs, that being one of the most intriguing open questions

in the area (see e.g., Cook, Kannan and Schrijver [37]). An important step in this

direction is the work of Jörg [60].

The idea behind integrating the two algorithms above is that LP relaxations (16.2)

do not naturally well approximate, in general, the convex hull of (mixed-)integer

solutions of MIPs (16.1). Thus, some extra work to devise a better approximation

by tightening any relaxation with additional linear inequalities (cutting planes) in-

creases the chances that fewer nodes in the search tree are needed. On the other

hand, pure cutting plane algorithms show, in general, a slow convergence and the

addition of too many cuts can lead to very large LPs which in turn present numer-

ical difficulties for the solvers. The branch-and-cut algorithm has been proven to

be very effective initially for combinatorial optimization problems (like TSP) with

special-purpose cuts based on a polyhedral analysis and later on in the general MIP

context.

The chapter is organized as follows.

In the first part, Section 16.2, we discuss the evolution of MIP solvers having in

mind both a performance perspective and a modeling/application viewpoint. At the

beginning of the section we present some important MIP milestones with no aim of

being exhaustive with respect to algorithms and software. We then go into the details

of the basic components of MIP codes in Section 16.2.1. Finally, in Section 16.2.2

we describe some important tools that allow a relevant degree of flexibility in the

development of MIP-based applications.

In the second part, Section 16.3, we discuss the challenges for the next generation

MIP solvers by first presenting a list of difficult MIP classes on which better perfor-

mance/strategies would be extremely beneficial. We again present the content first

from a performance angle, Section 16.3.1, and second with a modeling perspective,

Section 16.3.2.

Some conclusions are drawn in Section 16.4.

16.2 MIP evolution

Despite quite some work on basically all aspects of IP and in particular on cutting

planes, the early general-purpose MIP solvers were mainly concerned with develop-

ing a fast and reliable LP machinery used within good branch-and-bound schemes.

There are at least two remarkable exceptions to this trend. The first is a paper

published in 1983 by Crowder, Johnson and Padberg [42] which describes the im-

plementation of a general-purpose code for pure 0-1 IPs, called PIPX, that used

1 IPs are the special case of MIPs where all variables belong to I, i.e., are constrained to be integer.



622 Andrea Lodi

the IBM linear programming system MPSX/370 and the IBM integer programming

system MIP/370 as building blocks. The authors were able to solve ten instances

obtained from real-world industrial applications. Those instances were very large

for that time, up to 2,756 binary variables and 755 constraints. Some cutting planes

were integrated in a good branch-and-bound framework (with some preprocessing

to reduce coefficients of variables) and in particular cover inequalities which will be

discussed in Section 16.2.1.2 below.

The second exception is a paper published in 1987 by Van Roy and Wolsey [87]

in which the authors describe a system called MPSARX that solved mixed 0-1 in-

dustrial instances arising from applications like production planning, material re-

quirement planning, multilevel distribution planning, etc. Also in this case, the in-

stances were very large for the time, up to 2,800 variables and 1,500 constraints.

The system acted in two phases: in phase one some preprocessing was performed

and, more importantly, cutting planes were generated. Such a phase was called re-

formulation in [87] and performed by a system called ARX. The second phase was

the solution of the new model by the mathematical programming system called SCI-

CONIC/VM.

After the success2 of the two early MIP solvers [42, 87] and, mainly, the formal-

ization of the branch-and-cut algorithm in the TSP context [77], a major step was

required to prove that cutting plane generation in conjunction with branching could

work in general, i.e., without exploiting the structure of the underlying polyhedron,

in particular in the cutting plane separation.

The proof of concept came through two papers both published in 1996. In [19],

Balas, Ceria and Cornuéjols showed that a branch-and-cut algorithm based on

general-purpose disjunctive cuts (see Balas [18]) could lead to very effective re-

sults for 0-1 MIPs. More precisely, the cutting planes used are the so called lift-

and-project cuts in which the separation problem amounts to solving an LP in an

extended space and the computational results in [19] showed a very good and sta-

ble behavior. In addition, these results showed that the quality and the speed of

LP solvers in the late nineties allowed the solution of LPs as an additional build-

ing block of the overall algorithm. Such an outcome was not granted and LP rapid

evolution showed to have reached a very stable state.

In [20], Balas, Ceria, Cornuéjols and Natraj revisited the classical Gomory

mixed-integer cuts [56] by overruling the common sense that these cuts had a purely

theoretical interest. In fact, the results in [20] showed that, embedded in a branch-

and-cut framework, Gomory mixed-integer cuts are a fundamental tool for the so-

lution of 0-1 MIPs. Such an improvement was mainly obtained by separating and

adding groups (denoted as “rounds”) of cuts3 instead of one cut at a time. It turns

out that Gomory mixed-integer cuts are one of the most crucial ingredients for the

success of current MIP solvers.

2 The paper by Crowder, Johnson and Padberg [42] won the “Frederick W. Lanchester Prize”
awarded by INFORMS in 1983 while the paper by Van Roy and Wolsey [87] won the “Beale-
Orchard-Hays” Prize awarded by MPS in 1988.
3 In principle, one Gomory mixed-integer cut can be separated from each tableau row where an
integer variable is non-zero and fractional.



16 Mixed Integer Programming Computation 623

The two papers above have played a central role in the move to the current gen-

eration of MIP solvers and the fact that the use of cutting planes, and in particular

within a branch-and-cut framework, has been a breakthrough is shown by the fol-

lowing very meaningful experiment due to Achterberg and Bixby [8]. On a testbed

of 1,734 MIP instances all Cplex versions beginning with Cplex 1.2, the first hav-

ing MIP capability, have been extensively compared. The results of this experiment

are shown in Tables 16.1 and 16.2. Specifically, Table 16.1 reports the evolution

of Cplex by comparing each version with the most current one, version 11.0. The

first column of the table indicates the version while the second recalls the year in

which the version has been released. The third and fourth columns count the number

of times each version is better and worse with respect to Cplex 11.0, respectively:

computing times within 10% are considered equivalent, i.e., counted neither better

nor worse. Finally, the last column gives the computing time as geometric mean

again normalized with respect to Cplex 11.0. A time limit of 30,000 CPU seconds

for each instance was provided on a cluster of Intel Xeon machines 3 GHz. Besides

Cplex
version year better worse time

11.0 2007 – – 1.00
10.0 2005 201 650 1.91
9.0 2003 142 793 2.73
8.0 2002 117 856 3.56
7.1 2001 63 930 4.59
6.5 1999 71 997 7.47

6.0 1998 55 1060 21.30
5.0 1997 45 1069 22.57
4.0 1995 37 1089 26.29
3.0 1994 34 1107 34.63
2.1 1993 13 1137 56.16
1.2 1991 17 1132 67.90

Table 16.1 Computing times for 12 Cplex versions: normalization with respect to Cplex 11.0.

the comparison with the current Cplex version, the most interesting way of inter-

preting the results reported in the table is by looking at the trend the columns show:

together with a very stable decreasing of the computing time from version 1.2 up,

it is clear that the biggest step forward in a version-to-version scale has been made

with Cplex 6.5 which is the first having full cutting plane capability, and in particu-

lar Gomory mixed-integer cuts. Indeed, the geometric mean of the computing times

drops from 21.30 to 7.47 going from version 6.0 to 6.5, by far the biggest decrease.

The trend is confirmed by the numbers reported in Table 16.2. On a slightly

larger set of 1,852 MIPs (including some models in which older versions encoun-

tered numerical troubles), the table highlights the version-to-version improvement

in the number of solved problems. Besides the first two columns which report the

same information as Table 16.1, the third and fourth column report the number and

percentage of problems solved to proven optimality, respectively. Finally, the last



624 Andrea Lodi

Cplex # % v-to-v %
version year optimal optimal improvement

11.0 2007 1,243 67.1% 7.8%
10.0 2005 1,099 59.3% 3.5%

9.0 2003 1,035 55.9% 2.6%
8.0 2002 987 53.3% 2.5%
7.1 2001 941 50.8% 4.3%
6.5 1999 861 46.5% 13.4%

6.0 1998 613 33.1% 1.0%
5.0 1997 595 32.1% 1.8%
4.0 1995 561 30.3% 4.4%
3.0 1994 479 25.9% 6.2%
2.1 1993 365 19.7% 4.7%
1.2 1991 278 15.0% —

Table 16.2 Version-to-version comparison on 12 Cplex versions with respect to the number of
solved problems.

column gives precisely the version-to-version improvement in the percentage of

problems optimally solved.

Just to give an “absolute” flavor of the improvement due to cuts, we consider

instance p2756, the largest instance in the seminal paper by Crowder, Johnson and

Padberg [42]. If the cut generation phase is disabled Cplex 11 is able to solve the

problem by exploring 3,415,408 branch-and-bound nodes which are necessary to

close the percentage gap of 13.5 of the root node relaxation. In the default version,

i.e., with cutting planes, Cplex 11 solves the problem within 11 nodes. The root re-

laxation improved—among others—by 22 Gomory mixed-integer cuts and 23 cover

inequalities has a percentage gap of only 0.2.

We end this section by recognizing the crucial impact had on the MIP devel-

opment by two factors. On the one side, the creation of archives of instances used

to compare algorithmic ideas and software implementations through benchmarking

has contributed to define a common methodology. The last in order of time of such

libraries is the MIPLIB 2003 maintained at ZIB [11]. Figure 16.1 (courtesy of ZIB)

shows that every library tends rapidly to be crunched and the community is probably

ready for new challenging instances.

On the other hand, the availability of commercial and non-commercial MIP

solvers has created over the past decades and continues to create nowadays a very

fruitful competition that stimulates the entire MIP community to go “larger” and

“quicker”.

16.2.1 A performance perspective

The current generation of MIP solvers incorporates key ideas continuously devel-

oped during the first 50 years of Integer Programming. In the next sections we will



16 Mixed Integer Programming Computation 625

Fig. 16.1 Comparison of the number of solved MIPLIB 2003 instances at the beginning of each
year. “Easy” means, that the instance could be solved within one hour using a commercial MIP-
solver, “hard” stands for instances, that were solved, but not in the previous conditions.

discuss these main ingredients4. As it will be clear case by case, most of the times

these ideas have been developed by studying special-purpose, often, very small sub-

structures (see e.g., Wolsey [89]) and then extended and generalized to MIP. This

seems to be a key feature of MIP.

16.2.1.1 Presolving

In the presolving (often called preprocessing) phase the solver tries to detect cer-

tain changes in the input that will probably lead to a better performance of the solu-

tion process. This is generally done without “changing” the set of optimal solutions

of the problem at hand5 and it affects two main situations.

On the one side, it is often the case that MIP models, in particular those originat-

ing from real-world applications and created by using modeling languages, contain

some “garbage”, i.e., irrelevant or redundant information that tend to slow down the

solution process forcing the solver to perform useless operations. More precisely,

there are two types of sources of inefficiency: first, the models are unnecessary large

and thus harder to manage. This is the case in which there are redundant constraints

or variables which are already fixed and nevertheless appear in the model as ad-

ditional constraints. Second, the variable bounds can be unnecessary large or the

4 Each of the ingredients is treated in a somehow concise way with the aim of giving an overview,
discussing the main connections and providing useful pointers. For many more details, the reader
is referred to Part II of the excellent Ph.D. dissertation of Achterberg [6].
5 In fact, the set of optimal solutions might change due to presolve in case, for example, of sym-
metry breaking reductions, see Chapter 17.



626 Andrea Lodi

constraints could have been written in a loose way, for example with coefficients

weaker than they could possibly be.

Thus, modern MIP solvers have the capability of “cleaning up” the models so

as to create a presolved instance associated with the original one on which the

MIP technology is then applied. With respect to the two issues above, MIP pre-

solve is able to reduce the size of the problems by removing such redundancies

and it generally provides tools that, exploiting the information on the integrality

of the variables in set I, strengthen variables’ bound and constraints’ coefficients.

If the first improvement has only the effect of making each LP relaxation smaller

and then quicker to be solved, the second one has the, sometimes crucial, effect

of making such relaxations stronger, i.e., better approximating the convex hull of

(mixed-)integer solutions.

On the other hand, more sophisticated presolve mechanisms are also able to dis-

cover important implications and sub-structures that might be of fundamental im-

portance later on in the computation for both branching purposes and cutting plane

generation. As an example, the presolve phase determines the clique table or conflict

graph, i.e., groups of binary variables such that no more than one can be non-zero at

the same time. The conflict graph is then fundamental to separate clique inequalities

(see Johnson and Padberg [61]) which are written as

∑
j∈Q

x j 6 1 (16.4)

where Q denotes a subset of (indices of) binary variables with the property, stated

above, that at most one of them can be non-zero.

The most fundamental work about presolving is the one of Savelsbergh [85] to

which the interested reader is referred to.

16.2.1.2 Cutting plane generation

The importance of cutting planes has been already discussed extensively. The

arsenal of separation algorithms has been continuously enlarged over the years, thus

the main issue, discussed in Section 16.3.1.3, is probably how to select cuts instead

of how to generate them.

A large group of cuts, with strong relationship among each other, includes

Chvátal-Gomory cuts [55, 34], Gomory mixed-integer cuts [56], mixed-integer

rounding cuts [72, 46], {0, 1
2} cuts [31], lift-and-project cuts [18, 19] and split

cuts [37, 21]. Essentially, all these inequalities are obtained by applying a disjunc-

tive argument on an integer or mixed-integer set of a single constraint often derived

by aggregating many others. This group of cuts is presented in a brilliant and unified

way by Cornuéjols [38] and the reader is referred to that paper and to Chapter 11.

Besides the group above and clique inequalities already discussed in the previous

section, two more classes of very useful cuts are generally used within a MIP solver,



16 Mixed Integer Programming Computation 627

namely cover inequalities6 and flow cover inequalities, which are briefly discussed

in the following.

Cover cuts. Somehow similarly to the clique inequalities, cover constraints de-

fine a property on a set of binary variables. More precisely, given a knapsack kind

constraint in the form αT x 6 α0 where we assume that α ∈Z|V |
+ , α0 ∈Z+ and V is a

subset of (indices of) binary variables, a set Q ⊆V is called a cover if ∑ j∈Q α j > α0.

Moreover, the cover is said to be minimal if ∑ j∈Q\{ℓ} α j 6 α0 for all ℓ ∈ Q. In other

words, Q is a set of binary variables which cannot be all together non-zero at the

same time. In the light of the definition above, the simplest version of a cover in-

equality is

∑
j∈Q

x j 6 |Q|−1. (16.5)

The amount of work devoted to cover cuts is huge starting with the seminal work of

Balas [17] and Wolsey [88]. In particular, cover cuts do not define facets, i.e., poly-

hedral faces of dimension one less of the dimension of the associated polyhedron7,

but can be lifted (see Padberg [75]) to become facet defining.

Flow cover cuts. The polyhedral investigation of the so called 0-1 single node

flow problem is at the base of the definition of flow cover cuts by Padberg, Van Roy

and Wolsey [78]. Essentially, this is a fixed charge problem with arcs incoming and

outgoing to a single node: to each of these arcs is associated a continuous variables

measuring the flow on the arc and upper bounded by the arc capacity, if the flow

over the arc is non-zero a fixed cost must be paid and this is triggered by a binary

variable associated with the same arc. A flow balance on the node must also be satis-

fied. Flow cover cuts can then be devised as mixed-integer rounding inequalities (see

Marchand [67]) and then strengthened by lifting (see Gu, Nemhauser and Savels-

bergh [58]). The interested reader is also referred to Louveaux and Wolsey [65] for

a general discussion on these mixed-integer sets.

Finally, it is worth noting that despite the origin of the flow cover cuts is a specific

polyhedral context, they are useful and applied in general within MIP solvers. The

reason is that it is easy to aggregate variables (and constraints) of a MIP in order to

derive a mixed-integer set like the 0-1 single node flow set (see e.g., [67]).

We end the section by noting that the separation of all mentioned cuts (including

cliques) except lift-and-project cuts is NP-hard for a general x∗. Note that this is not

in contrast with the fact that one can separate, e.g., Gomory mixed-integer cuts by a

polynomial (very cheap) procedure [55, 56] once the fractional solution x∗ to be cut

off is a vertex of the continuous relaxation.

6 Recall that cover cuts were already used in the pioneering works [42, 87], see Section 16.2 above.
7 For a detailed presentation of polyhedral basic concepts as dimensions, faces, facets, etc. the
reader is referred for example to Papadimitriou and Steiglitz [79] and Nemhauser and Wolsey [71].



628 Andrea Lodi

16.2.1.3 Sophisticated branching strategies

The branching mechanism introduced in Section 16.1 requires to take two inde-

pendent and important decisions at any step: node selection and variable selection.

We will analyze them separately in the following by putting more attention on the

latter.

Node Selection. This is very classical: one extreme is the so called best-bound

first strategy in which one always considers the most promising node, i.e., the one

with the smallest LP value, while the other extreme is depth first where one goes

deeper and deeper in the tree and starts backtracking only once a node is fathomed,

i.e., it is either (mixed-)integer feasible, or LP infeasible or it has a lower bound

not better (smaller) than the incumbent. The pros and cons of each strategy are well

known: the former explores less nodes but generally maintains a larger tree in terms

of memory while the latter can explode in terms of nodes and it can, in the case

some bad decisions are taken at the beginning, explore useless portions of the tree

itself. All other techniques, more or less sophisticated, are basically hybrids around

these two ideas, like interleaving best-bound and diving8 in an appropriate way.

Variable Selection. The variable selection problem is the one of deciding how

to partition the current node, i.e., on which variable to branch on in order to cre-

ate the two children. For a long time, a classical choice has been branching on the

most fractional variable, i.e., in the 0-1 case the closest to 0.5. That rule has been

computationally shown by Achterberg, Koch and Martin [10] to be worse than a

complete random choice. However, it is of course very easy to evaluate. In order to

devise stronger criteria one has to do much more work. The extreme is the so called

strong branching technique (see e.g., Applegate, Bixby, Chvátal and Cook [16] and

Linderoth and Savelsbergh [64]). In its full version, at any node one has to ten-

tatively branch on each candidate fractional variable and select the one on which

the increase in the bound on the left branch times the one on the right branch is

the maximum. Of course, this is generally unpractical but its computational effort

can be easily limited in two ways: on the one side, one can define a much smaller

candidate set of variables to branch on and, on the other hand, can limit to a fixed

(small) amount the number of Simplex pivots to be performed in the variable eval-

uation. Another sophisticated technique is pseudocost branching which goes back

to Benichou, Gauthier, Girodet and Hentges [24] and keeps a history of the success

(in terms of the change in the LP relaxation value) of the branchings already per-

formed on each variable as an indication of the quality of the variable itself. The

most recent effective and sophisticated method introduced by Achterberg, Koch and

Martin [10] is called reliability branching and it integrates strong and pseudocost

branchings. The idea is to define a reliability threshold, i.e., a level below which the

information of the pseudocosts is not considered accurate enough and some strong

branching is performed. Such a threshold is mainly associated with the number of

previous branching decisions that involved the variable.

8 A dive in the tree is a sequence of branchings without backtracking.



16 Mixed Integer Programming Computation 629

We end the section by noting that until now the methods proposed in research

papers and implemented by MIP solvers to do enumeration have been rather struc-

tured, very relying on the (almost always binary) tree paradigm which has proven

to be stable and effective. Few attempts of seriously revisiting the tree framework

have been made, one notable exception being the work of Chvátal called resolution

search [35]. In that paper, the idea is to detect conflicts, i.e., sequences of variable

fixings that yield an infeasible subproblem, making each sequence minimal and use

the information to construct an enumeration strategy. A similar concept of conflicts

has been used by Achterberg [5, 6] to do propagation in MIP and it has been known

in the Artificial Intelligence and SATisfiability (SAT) communities with the name

of “no good recording” (see e.g., Stallman and Sussman [86]) since the seventies.

16.2.1.4 Primal heuristics

Primal heuristics are a relatively “fresh” component of MIP solvers in the sense

that in the last few years the capability of the solvers to quickly find in the search

tree very high quality solutions has improved dramatically. On the other hand, it is

also true that rounding heuristics, going from easy to complex, have been part of the

arsenal of the MIP solvers since almost the beginning. Thus, one could say that the

continuous hybridization between rounding and diving techniques with local search

has been the way to obtain the recent brilliant results.

Following the structure of Chapter 9 of [6], we distinguish among the following

types of heuristics.

Rounding heuristics. Starting from a feasible solution of the continuous relax-

ation (generally the optimal one) one rounds up or down the fractional values of the

variables in I in the attempt to produce a (mixed-)integer solution still satisfying the

linear constraints. This can be done in a straightforward and very fast manner or in

a more and more complex way, i.e., by allowing some backtracking mechanism in

the case a (partial) mixed-integer assignment becomes infeasible.

Diving heuristics. With respect to a rounding heuristic, the diving is performed

in an iterative way: after rounding one or more variables the LP relaxation is solved

again and the process is iterated. In this category, Achterberg [6] distinguishes be-

tween “hard” rounding in which the variables are really fixed to a specified value

and “soft” rounding in which the effect is obtained implicitly by changing the ob-

jective function coefficient of the variables to be “rounded” in an appropriate way.

An algorithm falling in the latter category is the feasibility pump heuristic proposed

for 0-1 MIPs by Fischetti, Glover and Lodi [49] and later extended to general MIPs

by Bertacco, Fischetti and Lodi [26] and Achterberg and Berthold [7]. The idea

of the algorithm is to alternatively satisfy either the linear constraints (by solving

LP relaxations) or integer constraints (by applying rounding). The LP relaxations

are obtained by replacing the original objective function with one taking into ac-

count the distance with respect to the current (mixed-)integer rounded solution. If

the trajectory of the rounded solutions intersects the one of the LP (neighborhood)

relaxations, then a feasible solution with respect to both the linear constraints and



630 Andrea Lodi

the integer ones has been found. Such an algorithmic framework has been recently

extended to convex mixed-integer non-linear programming by Bonami, Cornuéjols,

Lodi and Margot [29].

Improving heuristics. The heuristics in this category are designed to improve the

quality of the current incumbent solution, i.e., they exploit that solution or a group of

solutions so as to get a better one. These heuristics are usually local search methods

and we have recently seen a variety of algorithms which solve sub-MIPs for explor-

ing the neighborhood of the incumbent or of a set of solutions. When these sub-MIPs

are solved in a general-purpose fashion, i.e., through a nested call to a MIP solver,

this is referred to as MIPping and will be the content of Section 16.2.1.5 below.

Improvement heuristics of this type have connections to the so called metaheuristic

techniques [54] which have proven very successful on hard and large combinatorial

problems in the nineties. Techniques from metaheuristics have been now incorpo-

rated in the MIP solvers, see e.g., [50, 82], and as a result MIP solvers have now

improved their ability of quickly finding very good feasible solutions and can be

seen as competitive heuristic techniques if used in a truncated way, i.e., with either

a time or node limit.

Before closing this section, it is interesting to note that Achterberg [6] has shown

that the impact of heuristics is not dramatic in terms of ability of the MIP solver to

prove optimality in a (much) quicker way9. However, the psychological impact for

the user who sees a high quality feasible solution provided very early is huge.

16.2.1.5 MIPping

MIP computation has reached such an effective and stable quality to allow the

solution of sub-MIPs during the solution of a MIP itself, the MIPping approach (see

Fischetti, Lodi and Salvagnin [52] for a survey). In other words, optimization sub-

problems are formulated as general-purpose MIPs and solved, often heuristically,

by using MIP solvers, i.e., without taking advantage of any special structure. The

novelty is not in solving optimization sub-problems having different levels of com-

plexity, but in using a general-purpose MIP solver for handling them. In some sense

such a technique, originally proposed by Fischetti and Lodi [50] for modeling large

neighborhoods of 0-1 solutions, shows the high quality of the current generation of

MIP solvers like the solution of large LPs in the cutting plane generation phase [19]

showed more than ten years ago the effectiveness of the LP phase.

After the original paper on the primal heuristic side, the MIPping technique has

been successfully applied in the cutting plane generation phase [51], for accelerating

Benders decomposition [80], to detect dominated nodes in the search tree [84] and

again to devise very high quality primal solutions [45], just to cite a few applications.

9 This issue will be discussed in more detail in Section 16.3.1.5.



16 Mixed Integer Programming Computation 631

16.2.2 A modeling/application perspective

Solving a MIP to optimality is only one aspect of using a MIP solver for ap-

plications, sometimes not the most important one. Nowadays MIP solvers include

useful tools for complex algorithmic design (i.e., one can use the blocks of a solver

to devise a specialized algorithm) and data and model analysis. In this way, sev-

eral additional types of users besides the ones that want to use an MIP solver as

a black-box are taken into account: (a) the academic user who wants to develop a

sophisticated branch-and-cut or hybrid algorithm, (b) the practitioner who likes to

play with parameters and use a combination of his/her favorite techniques, and, fi-

nally, (c) the freshman who might need help with modeling and solution. Some of

these tools are discussed in the following.

Automatic tuning of the parameters. The number of parameters, corresponding to

different algorithmic options such as LP methods, branching strategies, cutting level

etc. gives the user a wide degree of flexibility but makes, at the same time, the hand-

tuning of parameters fairly complex. This is the reason for attempting to supporting

such a tuning in an automatic way: the tuning tool analyzes a model or a group of

models and suggests a suite of parameter settings that provide better performance

than the default parameter settings. In the academic context, automatic tuning has

been studied by Baz, Brooks, Gosavi and Hunsaker [22]. (Tool mainly intended for

users of type (c) above.)

Multiple solutions. The capability of finding not only one among all the optimal

solutions of a MIP but many of them and all those with a prefixed quality is a funda-

mental option for application-oriented solutions in which the availability of a set of

solutions instead of a single one allows flexibility and support for decision making.

From a theoretical viewpoint such a problem has been studied by Danna, Fenelon,

Gu and Wunderling [44] who also describe an implementation within Cplex. (Tool

intended for all users, mainly (b) and (c).)

Detection of sources of infeasibility. Real-world models are often over con-

strained and sources of infeasibility must be removed so as to allow a solution.

Sometimes such a detection helps the user to better understand his/her own model

and to make a step forward in the direction of solving the problem even before any

optimal/heuristic solution has been computed. From a theoretical viewpoint finding

the minimal set of constraints that once removed make an LP feasible is NP-hard in

its own, thus MIP solvers incorporate heuristics following the work of the academic

community [12, 33]. (Tool intended for all users, mainly (b) and (c).)

Callbacks. Any additional knowledge of the user with respect to the problem

at hand, in particular if such a knowledge is hard to automatically discover by the

MIP solver, should be used in the design of the solution algorithm. Callbacks are

pieces of code that allow the flexibility of accommodating the user code for specific

cutting plane generation, primal heuristics, branching strategies, etc. Moreover, sev-

eral of these callbacks allow recovering information from the system in the solution

phase so as to favor a better understanding of the algorithm evolution. (Tool mainly

intended for users (a) and (b).)



632 Andrea Lodi

16.3 MIP challenges

Overall, a big challenge from both performance and modeling viewpoints is ac-

curacy which is a new issue, or more precisely, an old issue that has become very

important after realizing that MIP solvers can now really solve interesting prob-

lems. As an example, accuracy in computation and benchmarking are the topics

of the issue 77 of Optima: http://www.mathprog.org/?nav=optima_

newsletter.

Accuracy checks are needed in basically all parts of a MIP solver but maybe the

most crucial part is cutting plane generation. Sophisticated cutting plane procedures

challenge the floating-point arithmetic of the solvers heavily, the danger being the

generation of invalid cuts, i.e., linear inequalities cutting off (mixed-)integer feasible

solutions, possibly the optimal one. This issue has been recently investigated in two

papers. Margot [68] studied a methodology for testing accuracy and strength of cut

generators based on random dives of the search tree by recording a well-chosen set

of indicators. Cook, Dash, Fukasawa and Goycoolea [36] proposed a method that

weakens slightly the Gomory mixed-integer cuts but makes them “safe” with respect

to accumulation of floating-point errors.

Both papers above investigate the accuracy issue of cutting plane generation

mainly from a research viewpoint. At the moment, the standard method of deal-

ing with inaccuracy of cuts in the solvers is discarding “suspicious” or “dangerous”

cuts without doing extra work to either test their correctness or separating them

in a proven careful way. Among other indicators, cutting planes with high rank10

are considered suspicious in the sense that they might have accumulated relevant

floating-point errors while dense inequalities are said to be dangerous since they

generally slow down the LP machinery.

The cutting plane accuracy case is indeed rather typical also with respect to some

of the issues that will be discussed in the next sections. Nowadays both commercial

and non-commercial MIP solvers are very reliable and the methodology they use is

well understood. Thus, a criterion for deciding if a new idea coming from academia

can make it “inside” a MIP solver is its capability of being integrated in such a

methodology in a smooth way. Thus, cutting planes potentially very effective but

numerically “unsafe” are discarded.

Before getting into the details of performance and modeling aspects, we would

like to briefly give a non-exhaustive list of difficult classes of MIPs. The improve-

ment on dealing with any of these classes would represent a solid progress for the

MIP methodology.

Badly modeled MIPs. MIP difficulties often come from bad modeling. This might

happen for two main reasons.

10 The rank of the inequalities in the original formulation is 0 while every inequality obtained as
combination of two or more inequalities of rank 0 has rank 1 and so on. The reader is referred to
Chvátal [34] for an accurate definition of the rank of an inequality and its implications for IP.



16 Mixed Integer Programming Computation 633

On the one side, the user might have not paid enough attention to the modeling

phase and used the MIP methodology too optimistically. Common mistakes11 are,

for example, variables unnecessarily unbounded or free, very small and/or very large

coefficients, unnecessarily large bigM values, etc. These mistakes cause numerical

difficulties for the solver and sometimes forbid the sophisticated and effective tech-

niques discussed in the previous sections to be applied successfully.

On the other hand, the MIP modeling capability might not be sufficient to care-

fully express the real problem at hand. This is the case, for example, of models

having too complicated disjunctive constraints or of problems being naturally non-

linear on which classical linearization tools are not effective. An example of the

latter case will be discussed in Section 16.3.2.2.

Large-size MIPs. The size of the model still matters. On the one side, the in-

herent structure of a model is the most important factor determining its practical

hardness for a MIP solver. Indeed, cases in which small MIPs are hard to solve are

no surprise (see e.g., Salazar-González [83]). On the other hand, very large models

involving several hundreds of thousands of variables and constraints tend to gener-

ally challenge MIP solvers a lot. This is mainly due to two reasons. First, solving

very large LP relaxations can be slow. Second, a MIP of very large size is often

associated with complex real-world systems involving heterogeneous constraints,

generally resulting in weak LP relaxations.

Chapter 13 of this book is devoted to decomposition and reformulation which

are very useful techniques in this cases. However, from an application point of view,

some of the tools discussed in Section 16.2.2, as the automatic tuning and the call-

backs, are extremely useful to deal with very large models, often from a heuristic

point of view.

Market Split-type MIPs. Cornuéjols and Dawande [39] formulated a class of

small 0-1 IPs that were very difficult for branch-and-cut solvers and problems in

such a class are referred to as Market Split (or sometimes Market Share) instances.

That seminal paper brought the attention of the mathematical programming com-

munity essentially to the problem of solving a system of diophantine equations with

upper and lower bounds on the variables. Related to this class are all those problems

which contain (hard) knapsack equality constraints which might involve huge co-

efficients. The methodology which has been developed over the years to deal with

these difficult instances involves lattice basis reduction [2, 1, 3] which is quite hard

to integrate within a MIP solver. Indeed, in spite of the improvement in the MIP

solvers in the last decade, those problems remain hard for MIP.

MIPs from Scheduling. Scheduling applications are among the most important

ones in Operations Research. Many problems of that kind can be formulated as

MIPs, in general by using disjunctive constraints and bigM formulations. However,

it is rather disappointing to admit that state-of-the-art MIP technology and solvers

are only very rarely the best way to go for solving scheduling problems, at least in

their pure form. For large scale applications in which the scheduling part is only

11 Note that with the word “mistake” we are indicating trivial untidiness that any user could have
avoided and not sophisticated modeling decisions which might require a high degree of mathemat-
ical and optimization knowledge.



634 Andrea Lodi

one component, then MIP might still be effective. Of course, a natural (hard) ques-

tion is if there exist good MIP models for Scheduling or we should better look for

extending modeling capability in different directions by hybridizing the solvers12.

This issue is discussed in Section 16.3.2.

16.3.1 A performance perspective

The performance of MIP solvers can/must be improved in many different direc-

tions. In the following section we will briefly discuss our favorite ones.

16.3.1.1 Branching versus cutting

Karamanov and Cornuéjols [62] experimented with branching on Gomory mixed-

integer disjunctions obtained by the optimal basis of the LP relaxation. More pre-

cisely, from each simplex tableau row i in which an integer variable xℓ is basic at

the fractional value x∗ℓ , say āT
i x = x∗ℓ , instead of deriving the associated Gomory

mixed-integer cut, they consider the corresponding disjunction

πT x 6 ⌊x∗ℓ⌋ or πT x > ⌊x∗ℓ⌋+1, (16.6)

where

π j =





⌊āi j⌋, if j ∈ I, j 6= ℓ, āi j −⌊āi j⌋ 6 x∗ℓ −⌊x∗ℓ⌋,

⌈āi j⌉, if j ∈ I, j 6= ℓ, āi j −⌊āi j⌋ > x∗ℓ −⌊x∗ℓ⌋,

1, if j = ℓ,

0, otherwise.

The best disjunction according to a heuristic measure is selected for branching.

In Figure 16.2 we give an intuition of why such an approach can give some

advantages with respect to cutting. The left-hand side of the figure shows that the

intersection cut (see Balas [18]) β T x 6 β0 derived from the associated disjunction

can be weaker than the two branchings in isolation since its intersections with the

two polyhedra, obtained by using the branching conditions, is above the two new

optimal LP relaxation solutions x∗,1 and x∗,2. The situation is even more extreme on

the right-hand side of the figure where the left polyhedron obtained by imposing the

condition πT x 6 π0 is empty while the associated intersection cut does not take any

advantage on that.

In the line of the work in [62], Cornuéjols, Liberti and Nannicini [40] try to

improve the disjunction to be used for branching by row manipulations in the spirit

of the reduce-and-split approach for cuts proposed by Andersen, Cornuéjols and

Li [13].

12 Obviously, this question is tightly connected to the “bad modeling” point above.



16 Mixed Integer Programming Computation 635

x∗

πT x 6 π0 πT x > π0 +1

-¾

/
R

x∗

x∗,1 x∗,2

β T x 6 β0

W

W

/

@
@

@
@

@
@

@@R

x∗

β T x 6 β0

πT x 6 π0
¾ -

BBN

BBN

πT x > π0 +1

Fig. 16.2 Branching on Gomory mixed-integer disjunctions (the notation is π0 = ⌊x∗ℓ⌋).

Branching on general disjunctions has been also used in context less related

to cutting plane theory. A pioneering work in this direction is the one of Owen

and Mehrotra [74] where the general disjunctions to branch on are generated by a

search heuristic in the neighborhood containing all disjunctions with coefficients in

{−1,0,1} on the integer variables with fractional values at the current node. More-

over, branching on appropriate disjunctions has recently been proposed in the con-

text of highly symmetric MIPs by Ostrowsky, Linderoth, Rossi and Smriglio [73]

(see also Chapter 17). Finally, Bertacco [25] has experimented using the MIPping

approach for devising general disjunctions either associated with “thin” directions of

the polyhedron13 or resulting in the maximization of the corresponding lower bound.

A very similar approach has been followed recently by Mahajan and Ralphs [66].

The real impact of branching on disjunctions is however still to be asserted.

Before ending the section, we would like to note that the work in [62] highlighted

the possibility of using some cutting plane theory in the branching context, where,

as already discussed, branching on variables is by far predominant with respect to

anything else. Overall, it seems that a tighter coordination of the two most funda-

mental ingredients of the MIP solvers, branching and cutting, can lead to strong

improvements.

16.3.1.2 Dealing with general integer and continuous variables

A very important class of MIPs is 0-1 IPs, for instance for the most famous com-

binatorial optimization problem, i.e., the TSP. Many of the sophisticated techniques

discussed in the previous sections have been originally proposed for this class and

eventually extended to general MIPs.

13 Such thin directions are used in the context of lattice basis reduction to reformulate the problem,
see also the following section.



636 Andrea Lodi

As an example, branching on variables is particularly natural and effective in

the 0-1 case: the two children created by branching according to (16.3) correspond

to fixing the associated variable and are simply obtained by changing the upper and

lower bound for the left and right child, respectively. In the case of general integer

variables, however, the classical variable branching does not fix the associated vari-

able anymore in the children nodes and in particular when these variables have a

large difference between lower and upper bound, branching (16.3) turns out to be

less effective.

Another example is in the context of primal heuristics. The techniques discussed

in Section 16.2.1.4 basically assume that, once the integer variables have been fixed,

what is left is simply solving an LP to find the good value for the rest, i.e., the

continuous variables. Of course, this has a single positive outcome over three: the LP

can be feasible and luckily provide a solution of “good” quality. In fact, it might

be either infeasible (worst case) or provide a solution of “bad” quality, basically

useless.

The two examples above suggest that very little has been tailored to deal with

both general integer and continuous variables. That might also be a reason for which

some of the difficult MIPs discussed in Section 16.3 are hard. Indeed, the relative

weakness of variable branching is a reason for which MIP solvers are not performing

well on solving systems of diophantine equations in the general form, i.e., not 0-1.

Instead, basis reduction methods essentially look for a direction in which the un-

derlying polyhedron is “thin” and a reformulation of the problem exploiting such

a direction makes variable branching much more effective. Moreover, such a lack

might partially explain the difficulty with Scheduling models since in many of them

continuous variables play a central role while they are put aside by disjunctive for-

mulations. For example, Scheduling problems with precedences are modeled with

binary variables and bigM constraints which generally lead to weak LP relaxations

while the inherent structure is captured by the continuous variables corresponding

to the starting time of the jobs.

It is worth mentioning that an exception to this trend concerns the cutting plane

phase. Although most of the cuts discussed in Section 16.2.1 are essentially based

on disjunctions on the integer part of the model, the continuous variables are lifted

with sophisticated techniques and special mixed-integer structures are explicitly ex-

ploited (see e.g., Wolsey [89]).

Overall, we feel that a urgent MIP challenge is dealing with general integer and

continuous variables with special-purpose, sophisticated, techniques.

16.3.1.3 Cutting planes exploitation

As shown in Section 16.2, cutting plane generation has been a key step for the

success of MIP solvers and their capability of being effective for a wide variety

of problems. However, the most natural question is: are we using cuts in the best

possible way?



16 Mixed Integer Programming Computation 637

The answer is, in our view, rather negative. Fundamental questions about the use

of cutting planes remain open and the fact that we do not understand many issues

possibly reduces what we could really gain from them. Among these questions, we

like to mention the following ones.

Accuracy. We have already pointed out that floating-point inaccuracy in the cut

generation can lead to troubles for MIP solvers and that the common reaction is

defining confidence threshold values for a cut to be safe. This is only a heuristic

action, probably very conservative too. The role of the rank and other aspects such

as normalizations, i.e., conditions to truncate the cone associated with disjunctive

cutting planes, are not fully understood and much more can be done in this direction,

some attempts being reported in Fischetti, Lodi and Tramontani [53].

Cut selection and interaction. The number of procedures we currently have for

generating cuts is relevant and so is the number of cuts we could generate at any

round. Thus, one of the most relevant issues is which cuts should be selected and

added to the current LP relaxation. In other words, cuts should be able to interact in

a profitable way together so as to have an overall “cooperative behavior”. Results in

this direction have been reported by Andreello, Caprara and Fischetti [15].

Cut strength. The strength of a cut is generally measured by its violation. How-

ever, scaling and other factors can make such a measure highly misleading. If this is

the case, cut selection is very hard and, for example, separating over a larger class

of cuts is not necessarily a good idea with respect to preferring a smaller (thus,

theoretically weaker) sub-class. An example of such a counter-intuitive behavior

is the separation of Chvátal-Gomory cuts instead of their stronger mixed integer

rounding version as experienced by Dash, Günlük and Lodi [46]: separating over

the sub-class as a heuristic mixed integer rounding procedure helped accelerating

the cutting plane convergence dramatically14.

We close this section by mentioning one of the most exciting and potentially

helpful challenges in the cutting plane context even if this is not strictly related to

cut exploitation. A recent series of papers [14, 48, 41, 47] has brought the attention

of the community to the possibility of generating cuts using more than one row of

the simplex tableau at a time. In particular, this is based on characterizing lattice-

free triangles (and lattice-free bodies in general) instead of simply split disjunctions

as in the case of the single row tableau cuts discussed in Section 16.2.1.2. (For cuts

from more tableau rows the reader is also referred to Chapter 19.)

16.3.1.4 Symmetry

Symmetric MIP formulations are among the most difficult ones to deal with. Ex-

amples of difficult symmetric MIPs are those arising in coloring, scheduling and

covering applications, just to mention a few. In the recent years some special tech-

14 Note that such an outcome might be also related to the stable behavior of Chvátal-Gomory
cuts with respect to Gomory mixed-integer or mixed integer rounding cuts due to their numerical
accuracy (see e.g., [51, 91]).



638 Andrea Lodi

niques have been incorporated into the MIP solvers but there is room for improve-

ment.

Chapter 17 of this book is entirely devoted to symmetry.

16.3.1.5 Code complexity or performance variability

The interaction of key ingredients of a MIP solver presented in Sections 16.2.1.2–

16.2.1.5 has side effects: sometimes positive and sometimes negative ones. A pos-

itive example is any improvement in LP performance. It explicitly speeds up node

throughput, and implicitly helps because one can now do more strong branching

and MIPping in the same amount of computing time. On the negative side, finding a

(near-)optimal solution very early in the search tree explicitly improves the quality

of the primal bound but might sometimes hurt in proving optimality, or at least it

does not help as expected.

The latter is an example of what we call performance variability studied by

Danna [43]: some good features that might not be always helpful because the com-

plexity of the code creates unexpected (negative) interactions. A partial explanation

of this special case is that the number of fathomed nodes increases due to the fact

of having a very tight primal bound, thus reducing the amount of information one

collects from solving relaxations and then resulting in a less precise guidance in the

branching decisions.

A deeper understanding through sophisticated testing techniques of these per-

formance effects would be highly beneficial for the design of more robust MIP

solvers, where more robust also means that among the same class of instances a

solver performs somehow homogeneously. Some steps in this direction has been

done by Hooker [59] and McGeoch [69] but such work is not specific for MIP.

Another negative example can be possibly derived from a very recent work of

Zanette, Fischetti and Balas [91]. These authors show that a careful implementation

of the original cutting plane algorithm of Gomory [55] can be surprisingly effective.

In particular, they notice that such an algorithm does not suffer from the classical

issues always documented as the quick weakening of the quality of cuts after few

iterations because of numerical difficulties such as huge determinants, saturation,

etc. The analysis shows that one crucial point is that the Simplex algorithm (the one

generally used to solve the LP relaxations) tends to recover primal feasibility after

the addition of cuts through (very) few dual pivots with the effect of two consec-

utive optimal bases being very “close”. This behavior is of course good since the

algorithm is fast but comparing it with its lexicographic version15 one can notice

that the much higher effectiveness (and lack of numerical difficulties) of the cut-

ting planes in the latter seems to be associated to consecutive optimal bases being

15 The lexicographic dual simplex is a generalized version of the simplex algorithm where, instead
of considering the minimization of the objective function, viewed without loss of generality as an
additional integer variable x0 = cT x, one is interested in the lexicographical minimization of the
entire solution vector (x0,x1, . . . ,xn), where (x0,x1, . . . ,xn) >LEX (y0,y1, . . . ,yn) means that there
exists an index k such that xi = yi for all i = 1, . . . ,k−1 and xk > yk.



16 Mixed Integer Programming Computation 639

very “far apart”. On the one side, this behavior might be interpreted as a lack of un-

derstanding (still) of Gomory mixed-integer cuts. On the other hand, it shows that

recovering feasibility quickly (certainly a good feature) might hurt the quality (for

cutting) of the bases, thus creating a negative effect overall.

We close this section by formulating a very intriguing research question asso-

ciated with the first negative example of side effects above (Wolsey [90]). Besides

avoiding good primal solutions hurting the optimality proof, how can one use them

to have instead a strong speed up? This seems to be a very hard topic whose impact

might, however, be crucial for radical steps forward.

16.3.2 A modeling perspective

Of course, new challenges in modeling and application viewpoints involve the

development of additional tools in the spirit of the ones described in Section 16.2.2.

Among all possible, our favorite would be a tool for detecting minimal sources

of numerical instability, i.e., providing the user a set of few columns which make

the LP difficult to solve because they are ill-conditioned (Rothberg [81]).

However, the main challenge from an application viewpoint seems to be dissem-

ination. More precisely, an interesting direction is extending the current modeling

(and solving) capability by taking into account (classes of) non-linear constraints

within the MIP framework, i.e., while keeping the structure and infra-structure that

have made MIP solvers very successful and reliable. Both commercial and non-

commercial solvers are currently following such a direction in rather different ways.

Of course, one difficulty in this context is related to the modeling language one

decides to use for expressing the non-linear constraints. Such a problem does not

exist in the pure MIP case because the two formats MPS and LP commonly used

have been proven robust for the purposes of the problems at hand.

Nevertheless, two successful non-commercial stories are described in the next

two sections. (The reader is also referred to Chapter 15 for both theoretical and

practical aspects of Nonlinear Integer Programming.)

16.3.2.1 SCIP

The solver SCIP (Solving Constraint Integer Programs, Achterberg [6]) provides

within the framework of a MIP solver a tight integration of Constraint Program-

ming (CP) and SATisfiability techniques and, of course, MIP methodology. SCIP is

currently the non-commercial MIP solver with the best performance16 but in our

view its main characteristic is that it can handle, in principle, arbitrary (non-linear)

constraints by domain propagation.

16 Note that SCIP must rely on an external LP solver.



640 Andrea Lodi

A Chip verification example. Recently, such a tight integration of techniques and

capability to handle non-linear constraints has been successfully applied to the prop-

erty checking problem for System-on-Chip design by Achterberg, Brinkmann and

Wedler [9]. Without going into the details of the application, current MIP and CP

solvers were considered not promising for the control part of chip verification but

at the same time SAT solvers have troubles in the case of verification of arithmetic

circuits. The algorithm in [9] presents a unified decision procedure that tackles the

property checking problem at the Register Transfer (RT) level. For each RT op-

eration, a specific domain propagation algorithm is applied, using both, bit- and

word-level representations. In addition, conflict clauses are learned by analyzing

infeasible LPs and deductions, and by employing reverse propagation.

In summary, using the MIP framework an algorithm based on SCIP proved suc-

cessful on a rather complex and heterogeneous application in which the components

which are hard for MIP are handled by domain propagation and SAT techniques.

16.3.2.2 Bonmin

The solver Bonmin (Basic Open-source Nonlinear Mixed INteger programming,

Bonami et al. [28]) has been developed for Convex Mixed-Integer Non-Linear Pro-

grams (MINLP) within the framework of the MIP solver Cbc [32] by essentially

replacing everything which was peculiar for the linear case with a non-linear coun-

terpart but keeping the structure as unchanged as possible17.

A network design example in the water distribution. The solver Bonmin has been

recently applied successfully by Bragalli et al. [30] to a water network design prob-

lem in which one has to select among a discrete set the diameter of the pipe to

install on the arcs. The model does not have special difficulties besides the so called

Hazen-Williams equation modeling pressure loss in water pipes. However, such an

equation is very “nasty”, i.e., the model is highly non-linear and non-convex. In this

context Bonmin only behaves as a heuristic but can be tailored a bit to avoid a too

early termination.

A classical MIP model from the eighties linearizes such an equation using the so-

called Special Ordered Sets of type 2 (SOS2) introduced by Beale and Tomlin [23].

Specifically, by defining a set of variables to be an SOS2, a MIP solver automatically

imposes that at most 2 such variables can take a non-zero value, and that they must

be consecutive. However, Cplex 10.2 does not find any feasible solution for the

instance fossolo (see Figure 16.3) in 2 days of CPU time (!!) while Bonmin

finds a very accurate one in seconds. Moreover, using the diameters computed by

Bonmin, the MIP computation is unable to certify the solution to be feasible even

by allowing 1,000 linearization points. In other words, besides the fact that Bonmin

was lucky, i.e., heuristically, effective for such a non-convex problem, it is easy to

see that the attempt of solving such a problem with a pure MIP solver was a very bad

17 A very similar approach using the MIP solver MINTO [70] as starting point has been followed
by Abhishek, Leyffer and Linderoth and ended up with a Convex Mixed-Integer Non-Linear solver
called FilMINT [4].



16 Mixed Integer Programming Computation 641

Fig. 16.3 A network design example in the water distribution, instance fossolo.

idea because even when all true decisions were taken (the diameters) the problem

remained hard.

16.4 Conclusions

We have looked back at the first 50 years of MIP by showing some milestones

that have made possible the current state-of-the-art, i.e., the ability of solving in a

reliable and effective way many pure and real-world problems. We have also shown

that it is not at all the end of the story. Indeed, we do not fully understand even

basic components as remarkably shown by Zanette, Balas and Fischetti [91] in the

most recent IPCO 2008 meeting which implements for the first time (!) the ap-

proach considered by the editors of the present book as the beginning of IP, i.e.,

Gomory’s 1958 paper [55], and demonstrates that it had been somehow overlooked.

In addition, there are still very difficult classes of MIPs on which the current solvers

are not effective. One of the reasons can be found in the intrinsic weakness of MIP

formulations when facing some constraints that can be, otherwise, naturally stated in

non-linear or combinatorial fashion. We call for a dissemination of the MIP frame-

work in the direction of increasing its modeling and solving capability.

Acknowledgements The writing of this chapter as well as the talk delivered in the Aussois meet-
ing celebrating the 50 Years of Integer Programming have been challenging. I would like to thank
the editors for challenging me and a number of friends and colleagues for very beneficial discus-
sions on the subject and comments on preliminary versions of this chapter. Among them, Ed Klotz,
Matteo Fischetti, Egon Balas, Claudia D’Ambrosio and Andrea Tramontani. A special thank goes
to Bob Bixby and Tobias Achterberg for sharing with me the results of the experiments on the



642 Andrea Lodi

Cplex evolution presented in Section 16.2. I am also indebted to Tobias after having read his re-
markable thesis that was very helpful in the preparation of this chapter. A warm thank goes to
Emilie Danna with whom I share the interest for performance variability and branching issues.
Emilie is also trying to teach me some statistics. Finally, I am indebted to two anonymous referees
for very useful comments and a careful reading.

References

1. K. Aardal, R.E. Bixby, C.A.J. Hurkens A.K. Lenstra, and J.W. Smeltink, Market split and basis

reduction: Towards a solution of the Cornuéjols-Dawande instances, INFORMS Journal on
Computing 12 (2000) 192–202.

2. K. Aardal, C.A.J. Hurkens, and A.K. Lenstra, Solving a system of diophantine equations with

lower and upper bounds on the variables, Mathematics of Operations Research 25 (2000)
427–442.

3. K. Aardal and A.K. Lenstra, Hard equality constrained integer knapsacks, Mathematics of
Operations Research 29 (2004) 724–738.

4. K. Abhishek, S. Leyffer, and J.T. Linderoth, FilMINT: An outer-approximation-based solver

for nonlinear mixed integer programs, Preprint ANL/MCS-P1374-0906, Mathematics and
Computer Science Division, Argonne National Lab, 2006.

5. T. Achterberg, Conflict analysis in mixed integer programming, Discrete Optimization 4
(2007) 4–20.

6. T. Achterberg, Constraint integer programming, Ph.D. thesis, ZIB, Berlin, 2007.
7. T. Achterberg and T. Berthold, Improving the feasibility pump, Discrete Optimization 4 (2007)

77–86.
8. T. Achterberg and R.E. Bixby, Personal communication, 2008.
9. T. Achterberg, R. Brinkmann, and M. Wedler, Property checking with constraint integer pro-

gramming, Tech. Report 07-37, ZIB, Berlin, 2007.
10. T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Operations Research Letters

33 (2005) 42–54.
11. T. Achterberg, T. Koch, and A. Martin, MIPLIB 2003, Operations Research Letters 34 (2006)

361–372, see http://miplib.zib.de.
12. E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr., On the maximum feasible subsystem problem,

IISs, and IIS-hypergraphs, Mathematical Programming 95 (2003) 533–554.
13. K. Andersen, G. Cornuéjols, and Y. Li, Reduce-and-split cuts: Improving the performance of

mixed integer Gomory cuts, Management Science 51 (2005) 1720–1732.
14. K. Andersen, Q. Louveaux, R. Weismantel, and L.A. Wolsey, Inequalities from two rows of a

simplex tableau, Integer Programming and Combinatorial Optimization IPCO 2007 (M. Fis-
chetti and D.P. Williamson, eds.), Lecture Notes in Computer Science 4513, Springer-Verlag,
2007, pp. 1–15.

15. G. Andreello, A. Caprara, and M. Fischetti, Embedding cuts in a branch and cut framework: a

computational study with {0, 1
2}-cuts, INFORMS Journal on Computing 19 (2007) 229–238.

16. D. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The traveling salesman problem. A

computational study, Princeton University Press, 2007.
17. E. Balas, Facets of the knapsack polytope, Mathematical Programming 8 (1975) 146–164.
18. E. Balas, Disjunctive programming, Annals of Discrete Mathematics 5 (1979) 3–51.
19. E. Balas, S. Ceria, and G. Cornuéjols, Mixed 0-1 programming by lift-and-project in a branch-

and-cut framework, Management Science 42 (1996) 1229–1246.
20. E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, Gomory cuts revisited, Operations Research

Letters 19 (1996) 1–9.
21. E. Balas and A. Saxena, Optimizing over the split closure, Mathematical Programming 113

(2008) 219–240.



16 Mixed Integer Programming Computation 643

22. M. Baz, J.P. Brooks, A. Gosavi, and B. Hunsaker, Automated tuning of optimization software

parameters, Tech. Report 2007-7, University of Pittsburgh, 2007.
23. E.M.L. Beale and J.A. Tomlin, Special facilities in a general mathematical programming sys-

tem for non-convex problems using ordered sets of variables, OR 69. Proceedings of the Fifth
International Conference on Operational Research (J. Lawrence, ed.), Tavistock Publications,
1970, pp. 447–454.

24. M. Benichou, J.M. Gauthier, P. Girodet, and G. Hentges, Experiments in mixed-integer pro-

gramming, Mathematical Programming 1 (1971) 76–94.
25. L. Bertacco, Exact and heuristic methods for mixed integer linear programs, Ph.D. thesis,

Università degli Studi di Padova, 2006.
26. L. Bertacco, M. Fischetti, and A. Lodi, A feasibility pump heuristic for general mixed-integer

problems, Discrete Optimization 4 (2007) 63–76.
27. R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, Mixed-integer program-

ming: A progress report, The Sharpest Cut: The Impact of Manfred Padberg and his Work
(M. Grötschel, ed.), MPS-SIAM Series on Optimization, 2004, pp. 309–325.

28. P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A.Wächter, An algorithmic framework for convex mixed

integer nonlinear programs, Discrete Optimization 5 (2008) 186–204.
29. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, A feasibility pump for mixed integer non-

linear programs, Mathematical Programming 119 (2009) 331–352.
30. C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth, Water network design by MINLP,

Tech. Report RC24495, IBM, 2008.
31. A. Caprara and M. Fischetti, {0, 1

2} Chvátal-Gomory cuts, Mathematical Programming 74
(1996) 221–235.

32. Cbc, https://projects.coin-or.org/Cbc.
33. J.W. Chinneck, Fast heuristics for the maximum feasible subsystem problem, INFORMS Jour-

nal on Computing 13 (2001) 210–223.
34. V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathe-

matics 4 (1973) 305–337.
35. V. Chvátal, Resolution search, Discrete Applied Mathematics 73 (1997) 81–99.
36. W.J. Cook, S. Dash, R. Fukasawa, and M. Goycoolea, Numerically accurate Gomory mixed-

integer cuts, Tech. report, School of Industrial and Systems Engineering, Georgia Tech, 2007,
http://mgoycool.uai.cl/papers/cdfg08 ijoc.pdf.

37. W.J. Cook, R. Kannan, and A. Schrijver, Chvátal closures for mixed integer programming

problems, Mathematical Programming 47 (1990) 155–174.
38. G. Cornuéjols, Valid inequalities for mixed integer linear programs, Mathematical Program-

ming 112 (2008) 3–44.
39. G. Cornuéjols and M. Dawande, A class of hard small 0-1 programs, INFORMS Journal on

Computing 11 (1999) 205–210.
40. G. Cornuéjols, L. Liberti, and G. Nannicini, Improved strategies for branching on general

disjunctions, Tech. report, LIX, École Polytechnique, Optimization Online, paper 2071, 2008.
41. G. Cornuéjols and F. Margot, On the facets of mixed integer programs with two integer vari-

ables and two constraints, Mathematical Programming 120 (2009) 429–456.
42. H. Crowder, E. Johnson, and M.W. Padberg, Solving large scale zero-one linear programming

problem, Operations Research 31 (1983) 803–834.
43. E. Danna, Performance variability in mixed integer programming, Workshop on Mixed Inte-

ger Programming, Columbia University, New York, 2008, see http://coral.ie.lehigh.edu/mip-
2008/abstracts.html#Danna.

44. E. Danna, M. Fenelon, Z. Gu, and R.Wunderling, Generating multiple solutions for mixed

integer programming problems, Integer Programming and Combinatorial Optimization IPCO
2007 (M. Fischetti and D.P. Williamson, eds.), Lecture Notes in Computer Science 4513,
Springer-Verlag, 2007, pp. 280–294.

45. E. Danna, E. Rothberg, and C. Le Pape, Exploiting relaxation induced neighborhoods to im-

prove MIP solutions, Mathematical Programming 102 (2005) 71–90.



644 Andrea Lodi

46. S. Dash, O. Günlük, and A. Lodi, MIR closures of polyhedral sets, Mathematical Programming
121 (2010) 33–60.

47. S. Dey and L.A. Wolsey, Lifting integer variables in minimal inequalities corresponding

to lattice-free triangles, Integer Programming and Combinatorial Optimization IPCO 2008
(A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science, 5035,
Springer-Verlag, 2008, pp. 463–475.

48. D.G. Espinoza, Computing with multi-row gomory cuts, Integer Programming and Combina-
torial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes
in Computer Science 5035, Springer-Verlag, 2008, pp. 214–224.

49. M. Fischetti, F. Glover, and A. Lodi, The feasibility pump, Mathematical Programming 104
(2005) 91–104.

50. M. Fischetti and A. Lodi, Local branching, Mathematical Programming 98 (2002) 23–47.
51. M. Fischetti and A. Lodi, Optimizing over the first Chvátal closure, Mathematical Program-

ming 110 (2007) 3–20.
52. M. Fischetti, A. Lodi, and D. Salvagnin, Just MIP it!, MATHEURISTICS: Hybridizing meta-

heuristics and mathematical programming (V. Maniezzo, T. Stützle, and S. Voss, eds.), Oper-
ations Research/Computer Science Interfaces Series, Springer, 2009.

53. M. Fischetti, A. Lodi, and A. Tramontani, On the separation of disjunctive cuts, Mathematical
Programming, DOI 10.1007/s10107-009-0300-y, 2010.

54. F.W. Glover and G.A. Kochenberger (eds.), Handbook of metaheuristics, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2003.

55. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the
American Mathematical Society 64 (1958) 275–278.

56. R.E. Gomory, An algorithm for the mixed integer problem, Tech. Report RM-2597, The Rand
Corporation, 1960.

57. M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering

problem, Operations Research 32 (1984) 1195–1220.
58. Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh, Mixed flow covers for mixed 0-1 integer

programs, Mathematical Programming 85 (1999) 439–467.
59. J.N. Hooker, Needed: An empirical science of algorithms, Operations Research 42 (1994)

201–212.
60. M. Jörg, k-disjunctive cuts and cutting plane algorithms for general mixed integer linear pro-

grams, Ph.D. thesis, Technische Universität München, 2008.
61. E.L. Johnson and M.W. Padberg, Degree-two inequalities, clique facets and biperfect graphs,

Annals of Discrete Mathematics 16 (1982) 169–187.
62. M. Karamanov and G. Cornuéjols, Branching on general disjunctions, Tech. report, Tepper

School of Business, Carnegie Mellon University, 2005, revised 2008.
63. A.H. Land and A.G. Doig, An automatic method of solving discrete programming problems,

Econometrica 28 (1960) 497–520.
64. J.T. Linderoth and M.W.P. Savelsbergh, A computational study of search strategies for mixed

integer programming, INFORMS Journal on Computing 11 (1999) 173–187.
65. Q. Louveaux and L.A. Wolsey, Lifting, superadditivity, mixed integer rounding and single

node flow sets revisited, 4OR 1 (2003) 173–207.
66. A. Mahajan and T.K. Ralphs, Experiments with branching using general disjunctions, Tech.

Report COR@L Lab, Lehigh University, 2008.
67. H. Marchand, A polyhedral study of the mixed knapsack set and its use to solve mixed integer

programs, Ph.D. thesis, Université Catholique de Louvain, 1998.
68. F. Margot, Testing cut generators for mixed-integer linear programming, Tech. Report E-43,

Tepper School of Business, Carnegie Mellon University, 2007.
69. C.C. McGeogh, Experimental analysis of algorithms, Notices of the American Mathematical

Association 48 (2001) 304–311.
70. MINTO, http://coral.ie.lehigh.edu/minto/.
71. G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimization, Wiley-Inter-

science, New York, 1988.



16 Mixed Integer Programming Computation 645

72. G.L. Nemhauser and L.A. Wolsey, A recursive procedure to generate all cuts for 0-1 mixed

integer programs, Mathematical Programming 46 (1990) 379–390.
73. J. Ostrowsky, J. Linderoth, F. Rossi, and S. Smriglio, Constraint orbital branching, Integer

Programming and Combinatorial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Ri-
naldi, eds.), Lecture Notes in Computer Science 5035, Springer-Verlag, 2008, pp. 225–239.

74. J. Owen and S. Mehrotra, Experimental results on using general disjunctions in branch-and-

bound for general-integer linear program, Computational Optimization and Applications 20
(2001) 159–170.

75. M.W. Padberg, A note on 0-1 programming, Operations Research 23 (1975) 833–837.
76. M.W. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman prob-

lem by branch and cut, Operations Research Letters 6 (1987) 1–7.
77. M.W. Padberg and G. Rinaldi, A branch and cut algorithm for the resolution of large-scale

symmetric traveling salesmen problems, SIAM Review 33 (1991) 60–100.
78. M.W. Padberg, T.J. Van Roy, and L.A. Wolsey, Valid inequalities for fixed charge problems,

Operations Research 33 (1985) 842–861.
79. C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: Algorithms and complexity,

Prentice-Hall, 1982.
80. W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano, Accelerating Benders decomposition by

local branching, Tech. Report C7PQMR PO2006-02-X, C.R.T., Montréal, 2006.
81. E. Rothberg, Personal communication, 2007.
82. E. Rothberg, An evolutionary algorithm for polishing mixed integer programming solutions,

INFORMS Journal on Computing 19 (2007) 534–541.
83. J.J. Salazar González, Difficult tiny MIPs arising from an application in commutative algebra,

Poster presentation, MIP, Berkeley, 2009.
84. D. Salvagnin, A dominance procedure for integer programming, Master’s thesis, University of

Padova, October 2005.
85. M.P.W. Savelsbergh, Preprocessing and probing techniques for mixed integer programming

problems, ORSA Journal on Computing 6 (1994) 445–454.
86. R.M. Stallman and G.J. Sussman, Forward reasoning and dependency directed backtracking

in a system for computer-aided circuit analysis, Artificial Intelligence 9 (1977) 135–196.
87. T.J. Van Roy and L.A. Wolsey, Solving mixed integer programming problems using automatic

reformulation, Operations Research 35 (1987) 45–57.
88. L.A. Wolsey, Facets for a linear inequality in 0-1 variables, Mathematical Programming 8

(1975) 165–178.
89. L.A. Wolsey, Strong formulations for mixed integer programs: Valid inequalities and extended

formulations, Mathematical Programming 97 (2003) 423–447.
90. L.A. Wolsey, Personal communication, 2005.
91. A. Zanette, M. Fischetti, and E. Balas, Can pure cutting plane algorithms work?, Integer

Programming and Combinatorial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Ri-
naldi, eds.), Lecture Notes in Computer Science 5035, Springer-Verlag, 2008, pp. 416–434.



Chapter 17

Symmetry in Integer Linear Programming

François Margot∗

Abstract An integer linear program (ILP) is symmetric if its variables can be per-

muted without changing the structure of the problem. Areas where symmetric ILPs

arise range from applied settings (scheduling on identical machines), to combina-

torics (code construction), and to statistics (statistical designs construction). Rela-

tively small symmetric ILPs are extremely difficult to solve using branch-and-cut

codes oblivious to the symmetry in the problem. This paper reviews techniques de-

veloped to take advantage of the symmetry in an ILP during its solution. It also

surveys related topics, such as symmetry detection, polyhedral studies of symmet-

ric ILPs, and enumeration of all non isomorphic optimal solutions.

17.1 Introduction

An integer linear program (ILP) is symmetric if its variables can be permuted

without changing the structure of the problem. Symmetric ILPs frequently appear

when formulating classical problems in combinatorics or optimization. For example,

graph coloring, scheduling of jobs on parallel identical machines, covering design or

codes construction are problems involving symmetries. Additional real world exam-

ples can be found in [107, 108, 109]. Even for relatively modestly sized problems,

ILPs with large symmetry groups are difficult to solve using traditional branch-and-

bound or branch-and-cut algorithms. (We assume that the reader is familiar with

these procedures, as excellent introductions can be found in [38, 59, 90, 117].) The

trouble comes from the fact that many subproblems in the enumeration tree are iso-

morphic, forcing a wasteful duplication of effort.

François Margot
Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
e-mail: fmargot@andrew.cmu.edu

∗ Supported by ONR grant N00014-03-1-0133.

647M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_17, © Springer-Verlag Berlin Heidelberg 2010 



648 François Margot

Even fairly small symmetric ILPs might be difficult to solve using state-of-the-art

ILP solvers. Table 17.1 gives characteristics of a few problems. The first three prob-

lems are covering, packing, and orthogonal array construction problems (see [15] for

details), the next two are covering problems (see [74] for details), cod93 is a binary

error-correcting code construction (see [74] for details), and STS81 is a covering

problem with a constraint matrix corresponding to a Steiner triple system (see [74]

for details). Finally, codbt24 is the problem of constructing a binary-ternary cover-

ing code of radius one with two binary entries and four ternary ones [9, 28]: For

integers a,b ≥ 0, let W be the set of words of length a+b where the first a entries in

a word take values in {0,1} and the last b entries take values in {0,1,2}. The prob-

lem codbtab is then the problem of finding a minimum cardinality set C ⊆W such

that for each w ∈W , there exists c ∈C such that the Hamming distance between w

and c is at most one. (An ILP formulation of each problem listed in this paper is

available [71].)

Despite the rather small number of variables and small integrality gap (except

for cod93 and STS81 where the gap is quite large; OA2(6,3,3,2) has no gap at

all; it amounts to prove that no integer solution with value 54 exists), these prob-

lems are challenging for state-of-the-art codes. Using one of the leading commer-

cial codes available today, finding an optimal solution (when it exists) is relatively

easy. Proving its optimality, however, is much harder. Setting the upper bound value

to the optimal value (except for the infeasible problem OA2(6,3,3,2)), only prob-

lems CA7(7,2,4,7) (6 minutes) and OA2(6,3,3,2) (19 hours) can be solved in less

than 24 hours. On the other hand, a code taking advantage of the symmetry in the

problem (the code of [75], described in Section 17.9) is able to solve most of them in

under a minute. The exceptions are PA7(7,2,4,7) (1 hour and 30 minutes), cov1174

(1 hour and 15 minutes), and codbt24 (10 hours) 2.

Problem n Opt LP |G|

CA7(7,2,4,7) 128 113 112 645,120

PA7(7,2,4,7) 128 −108 −112 645,120

OA2(6,3,3,2) 729 – 54 33,592,320

cov1054 252 51 50 3,628,800

cov1174 330 17 15.71 39,916,800

cod93 512 −40 −51.20 185,794,560

codbt24 324 36 29.45 248,832

ST S81 81 61 27 1,965,150,720

Table 17.1 Problem characteristics; n is the number of variables, Opt is the optimal value, LP is
the value of the LP relaxation of the initial formulation, and |G| is the number of permutations in
the symmetry group.

2 The machine used is a 64 bits Monarch Empro 4-Way Tower Server with four AMD
Opteron 852 2.6GHz processors, each with eight DDR-400 SDRAM of 2 GB and run-
ning Linux Fedora 9. The compiler is g++ version 4.3.0 20080428 (Red Hat

4.3.0-8). Results are obtained using only one processor.



17 Symmetry in Integer Linear Programming 649

Various techniques for dealing with symmetric problems have been studied by

several research communities, yielding similar approaches. However, since the fa-

vorite algorithmic tools available to each community are different, slightly different

algorithms have been developed. In this paper, we survey some of the approaches

that have been developed in the Mathematical Programming community for solving

symmetric ILPs. Limited comparisons and pointers to similar approaches developed

in the Computer Science and Constraint Programming communities are given. A re-

cent survey of techniques developed in the Constraint Programming Community to

solve symmetric problems is [49].

The main approaches to deal with symmetries that are discussed here are pertur-

bation (Section 17.4), fixing variables (Section 17.5), symmetry breaking inequali-

ties (Section 17.8), and pruning of the enumeration tree (Section 17.9). The remain-

der of the paper covers related topics, such as detecting symmetries (Section 17.3),

symmetric polyhedra (Section 17.6), partitioning problems (Section 17.7), enumer-

ation of all non isomorphic solutions (Section 17.11), further developments using

isomorphism pruning (Section 17.12), choice of formulation (Section 17.13), and

the use of additional symmetries (Section 17.14). Finally, basic definitions and no-

tation are covered in Section 17.2, and a very brief introduction to computational

group representation is given in Section 17.10.

17.2 Preliminaries

In this section, basic definitions and notation are presented. The reader is invited

to use standard references on permutation groups [20, 52, 102] to complement the

extremely succinct material given here.

An unordered set containing elements e1, . . . ,en is denoted by the notation

{e1, . . . ,en} while an ordered set of the same elements is denoted by (e1, . . . ,en).
Let Π n be the set of all permutations of the ground set In = {1, . . . ,n}. Π n is

known as the symmetric group of In. A permutation π ∈ Π n is represented by an

n-vector, with πi being the image of i under π . The permutation π such that πi = i

for i = 1, . . . is the identity permutation and is denoted by I.

If v is an n-vector and π ∈ Π n, let w = π(v) denote the vector w obtained by

permuting the coordinates of v according to π , i.e.,

wπi
= vi, for all i ∈ In.

The composition of two permutations π1,π2 ∈ Π n, written π1 · π2, is defined

as the permutation h = π1(π2). The composition of permutations is associative,

i.e., for any π1,π2,π3 ∈ G, we have (π1 ·π2) ·π3 = π1 · (π2 ·π3). The neutral ele-

ment for the composition is the identity permutation, i.e., for any π ∈ Π n, we have

π · I = I ·π = π .

A subset G ⊆ Π n with the composition operation defined above is a group, if it

contains the identity permutation I and satisfies the following properties:



650 François Margot

(i) For any g1,g2 ∈ G, we have g1 ·g2 ∈ G;

(ii) For any permutation g ∈ G, there exists an inverse permutation g−1 ∈ G such

that g ·g−1 = g−1 ·g = I.

If G is a group, the permutation g−1 of point (ii) above is unique. The number

of permutations in G, denoted by |G|, is the order of the group. A group is finite

if its order is finite. All groups considered in this paper are finite. A subgroup of

a group G is any subset of G that is a group. To simplify the notation, we make

no difference between a set S ⊆ In and its characteristic vector. Hence π(S) is the

subset of In containing πi for all i ∈ S.

Let K = {0,1, . . . ,k} for some positive integer value k. We consider an integer

linear program of the form

min cT x

Ax > b, (17.1)

x ∈ Kn,

where A is an m× n matrix, b is an m-vector, c is an n-vector, and all three have

rational entries. Let Q be the set of all feasible solutions of ILP (17.1). Note that

sometimes not all n variables are requested to be integer, or some variables have

slightly different bounds. These are small extensions of the model, and most re-

sults and algorithms can be adapted to handle them. However, symmetry between

continuous variables is not always exploited.

The symmetry group G of ILP (17.1) is the set of all permutations π of the n vari-

ables mapping Q on itself and mapping each feasible solution on a feasible solution

having the same value, i.e.,

G = {π ∈ Π n : cT x̄ = cT π(x̄) and π(x̄) ∈ Q for all x̄ ∈ Q} .

Example 17.1. The following ILP with four binary variables is used to illustrate

several definitions.

min x1 +x2 +x3 +x4

x1 +x2 ≥ 1

x2 +x3 ≥ 1

x3 +x4 ≥ 1

x1 +x4 ≥ 1

x1, x2, x3, x4 ∈ {0,1}.

(17.2)

The set Q contains 7 solutions: (1,0,1,0), (0,1,0,1), (1,1,1,0), (1,1,0,1),
(1,0,1,1), (0,1,1,1), and (1,1,1,1). The symmetry group G of ILP (17.2) contains

eight permutations: the identity permutation I, (2,3,4,1), (3,4,1,2), (4,1,2,3),
(3,2,1,4), (4,3,2,1), (1,4,3,2), and (2,1,4,3). ⊓⊔

It is straightforward to check that G is indeed a group. Note that in most situations

G is not known, but a subgroup G′ of G is. All the results in this paper hold if G is



17 Symmetry in Integer Linear Programming 651

replaced by G′, but it should be expected that symmetry removal obtained with G′

is weaker than the one obtained with G.

The orbit of any v ∈ Rn under G is

orb(v,G) = {w ∈ Rn : w = g(v) for some g ∈ G} .

The stabilizer of any v ∈ Rn in G is the subgroup of G given by

stab(v,G) = {g ∈ G : g(v) = v} .

Given a set H = {g1, . . . ,gs} ⊆ Π n, the collection of all g ∈ Π n that can be

obtained by composing the given permutations in an arbitrary way (including using

any of them more than once) is the group G generated by H. The permutations

in H are generators of G. Any subgroup of Π n can be generated by a set of O(n2)
generators.

Given a group G⊆Π n and a nonempty set J ⊆{1, . . . ,n}, the restriction of G to J

is the set of all permutations of the elements in J that are induced by permutations

in stab(J,G). The restriction of G to J is a group.

A vector v ∈ Rn is lexicographically smaller (resp., lexicographically larger)

than a vector w ∈ Rn if for some 1 ≤ p ≤ n we have vi = wi for i = 1, . . . , p−1 and

vp < wp (resp., vp > wp). This is denoted by

v <L w (resp., v >L w).

Given a group G ⊆ Π n, a vector v is lexicomin (resp., lexicomax) in its orbit

under G if there is no g ∈ G with g(v) <L v (resp., g(v) >L v).

Example 1 (cont.). The two permutations (2,3,4,1) and (1,4,3,2) form a set

of generators for G. The orbit of the vector v = (0,1,0,1) contains only vector

(1,0,1,0) in addition to v itself. Vector v is lexicomin in its orbit under G. The

stabilizer of v is the subgroup G′ of G containing four permutations: I, (3,4,1,2),
(3,2,1,4), and (1,4,3,2). The restriction of G to J = {2,4} contains only the iden-

tity and the permutation swapping 2 and 4 as stab(J,G) = stab(v,G) = G′. ⊓⊔

17.3 Detecting symmetries

In most cases where a symmetric ILP occurs, the fact that symmetries are present

is known to the modeler. However, sometimes only a subgroup G′ of the true sym-

metry group G is known. Devising techniques to compute generators of the symme-

try group of an ILP is thus of practical importance.

The main difficulty to face is that G is implicitly defined in term of the feasible set

of the ILP. By definition, an ILP with n variables and an empty feasible set has Π n

for its symmetry group. As deciding if the feasible set of an ILP is empty or not is

an NP-complete problem, it is rather easy to show that deciding if G = Π n is also an

NP-complete problem. Indeed, adding two integer variables 0 ≤ y1,y2 ≤ k and the



652 François Margot

constraint y1 +y2 = 1 to the ILP, we get that the symmetry group of the modified ILP

is Π n+2 if and only if the original one is infeasible.

While this leaves little hope to find a polynomial-time algorithm for comput-

ing generators of G, the situation is in fact much worse. The implicit definition

of G makes it difficult to design practical algorithms for this task, even worst-case

exponential-time ones. One practical algorithm computes a subgroup GLP of G de-

fined as the symmetry group of the LP relaxation: Consider an ILP of the form (17.1)

with n variables and m constraints. For a permutation π ∈ Π n and a permuta-

tion σ ∈ Π m of the m rows, let A(π,σ) be the matrix obtained from A by permuting

its columns according to π and its rows according to σ . The subgroup GLP is given

by

GLP = {π ∈ Π n : π(c) = c and ∃ σ ∈ Π m withσ(b) = b, A(π,σ) = A} .

Example 1 (cont.). For ILP (17.2), we have GLP = G, as permuting both the vari-

ables and constraints according to any π ∈ G yields an ILP identical to ILP(17.2).

However, consider the ILP obtained by adding to ILP (17.2) the inequality

−2x1 −x2 −2x3 −2x4 ≥−6 . (17.3)

Let H be its symmetry group and HLP be the symmetry group of its LP relaxation.

One can check that the only feasible solution of ILP (17.2) that becomes infeasible

is (1,1,1,1). It follows that H is identical to G. However, adding (17.3) destroys in

the LP relaxation the symmetry between x2 and the other variables. As a result, we

have that HLP contains only I and (3,2,1,4) and H 6= HLP. ⊓⊔

In the case where A is a (0,1)-matrix, it is possible to cast the computation of

generators of GLP as computing generators of the automorphism group of a bipartite

graph with colored vertices. (The automorphism group of a graph is the set of all

permutations of its nodes that maps adjacent nodes to adjacent nodes.) Indeed, the

matrix (
0 AT

A 0

)

can be seen as the adjacency matrix of a bipartite graph H having one vertex for

each column of A and one for each row of A, the two sets of vertices forming the

two sides of the bipartition. Two column-vertices (resp., row-vertices) have the same

color if and only if their corresponding objective coefficients (resp., right hand side

coefficients) are identical. Any automorphism of H that fixes both sides of the bipar-

tition and the color classes induces a permutation of the columns of A that is in GLP.

Any permutation of GLP can be extended to an automorphism of H that fixes the

bipartition and color classes.

When A is not a (0,1)-matrix, it is possible to modify the above construction to

get the correct result. Details can be found in [103]. Note that mapping the instance

of a problem to a colored graph such that color preserving automorphisms of the

graph correspond to symmetries of the problem is standard procedure. For example,



17 Symmetry in Integer Linear Programming 653

see [1, 98, 99] for satisfiability problems and [95] for Constraint Programming in

general.

The computational complexity status of computing generators of the automor-

phism group of a graph is an open problem as it is equivalent to the complexity

status of the famous Graph Isomorphism problem (see [69] for a detailed discussion

of complexity of problems related to permutation groups). However, efficient algo-

rithms (such as nauty [77], Saucy [32], as part of MAGMA [10] or GAP [113]) are

available and perform satisfactorily in many instances.

Another track is to formulate the problem of computing permutations in GLP as

an ILP [66], although this approach seems unlikely to be competitive when the order

of GLP is large.

While working with GLP instead of G might result in a loss of efficiency, most

applications have a known LP formulation for which GLP is either a large subgroup

of G or G itself, except for infeasible problems. Usually, the symmetry group used

is either built from the modeler knowledge or by computing GLP for some ILP

formulation.

17.4 Perturbation

One of the first ideas that comes to mind when facing a symmetric problem is to

perturb it slightly to destroy the symmetry or to capture some of the symmetry in

the problem. For example, adding a small random perturbation to the coefficients ci

for i = 1, . . . ,n easily destroys the symmetry in the problem. This, in general, does

not help much and can even be counter-productive. The main reason is that when

ILP (17.1) is infeasible, the same amount of work has to be done regardless of the

objective function. In addition, even if the ILP is feasible, once the algorithm has

found an optimal solution, the remainder of the computation can be seen as solving

an infeasible ILP. Destroying symmetry by perturbation of the objective function

thus achieves very little and using symmetry information in an efficient way while

solving the problem is a far superior alternative.

The same is true for the “lexicographic” perturbation ci = 2i for i = 1, . . . ,n that

can be used for certain binary problems, with the additional caveat that this trans-

formation is numerically unstable and can only be used for very small problems.

Using perturbation is sometimes helpful when trying to find a good solution, but

using symmetry information is a superior approach when dealing with an infeasible

problem or when proving optimality of a solution.

17.5 Fixing variables

Another simple idea to reduce symmetry in an ILP is to fix variables. While

this could be considered a special case of symmetry breaking inequalities (a topic



654 François Margot

covered in Section 17.8), we treat it separately as it can easily be combined with

other techniques for dealing with symmetric ILPs when it is used as a preprocessing

step.

Let ILP be a particular instance of ILP (17.1) with symmetry group G. Suppose

that it is known that, for some t ≥ 1, some index set F = {i1, . . . , it} and some values

{x̄i1 , . . . , x̄it}, ILP has an optimal solution with xi = x̄i for all i ∈ F . Let the fixed

ILP (FILP) be obtained by adding to ILP the constraints xi = x̄i for all i ∈ F . Let

the reduced ILP (RILP) be obtained from ILP by substituting xi by x̄i for all i ∈ F .

Let GF (resp., GR) be the symmetry group of FILP (resp., RILP). Note that FILP is

an ILP with n variables, while RILP has n− t variables.

Example 17.2. Consider the ILP with six binary variables

min x1 +x2 +x3 +x4 −x5 −x6

x1 +x2 −x5 −x6 ≥ −1

x2 +x3 −x6 ≥ 0

x3 +x4 −x5 −x6 ≥ −1

x1 +x4 −x5 ≥ 0

x1 +x2 +x5 ≥ 1

x3 +x4 +x6 ≥ 1

x1, x2, x3, x4 x5, x6 ∈ {0,1}.

(17.4)

Its feasible set contains 36 solutions, 9 with (x5,x6) = (0,0), 10 with (x5,x6) =
(1,0), 10 with (x5,x6) = (0,1), and 7 with (x5,x6) = (1,1). The symmetry group G

of ILP (17.4) contains only two permutations: I and (3,4,1,2,6,5).
A simple analysis of ILP (17.4) proves that there exists an optimal solution with

x5 = 1 and x6 = 1. Adding these two constraints to the ILP yields FILP and its

symmetry group GF is G. Substituting x5 and x6, we get RILP which is exactly

ILP (17.2) with a symmetry group GR containing eight permutations generated by

{(2,3,4,1),(1,4,3,2)}. ⊓⊔

In this section, we discuss properties that might indicate which of the formula-

tions ILP, FILP or RILP should be used. This is of course a difficult question and

only partial answers or rules of thumb can be given.

Let v be the n-vector with vi = x̄i for all i ∈ F and vi = −1 otherwise. Assuming

that in FILP there are at least two possible values for variable xi for all i /∈ F , we

have that GF = stab(v,G). It follows that |GF | ≤ |G|. On the other hand, GR contains

a subgroup G′ that is the restriction of stab(v,G) to the variables indices in the

complement of F . As shown in Example 17.1 at the end of Section 17.2, the order of

a restriction of a group can be smaller than the order of the group itself and thus we

might have |GR|< |stab(v,G)|= GF . However, as shown in Example 17.2, it is also

possible to have |GR| > |G|. As a result, there is no general relation between |GR|

and either |GF | or |G|.

Which of the three ILP formulations to use depends on the solution algorithm A.

If A is a branch-and-bound algorithm oblivious to symmetry, regardless of the sizes

of the symmetry groups, using either FILP or RILP produces similar results, and this



17 Symmetry in Integer Linear Programming 655

should not be worse than using ILP. (A very simple illustration can be found in [57].)

On the other hand, if A uses the symmetry group of the problem, the situation is not

so clear cut. If A is efficient in using the symmetry group, it might be better to

solve ILP than FILP or RILP. In the remainder of the section, we give two examples

where this happens. In general, however, it should be expected that solving FILP or

RILP is more efficient, in particular if the number of fixed variables is large.

An example where solving ILP is easier than solving FILP is for an ILP formu-

lation to solve the classical edge coloring problem for a graph H with maximum

vertex degree ∆ . We want to decide if a coloring of the edges of H with ∆ colors

exists or not, such that any two edges sharing an endpoint receive distinct colors.

A simple ILP formulation for edge coloring (EC) uses ∆ binary variables xe j for

j = 1, . . . ,∆ for each edge e in the graph with the meaning that xe j = 1 if and only

if e receives color j. Constraints are simply

∆

∑
j=1

xe j = 1, for each edge e ∈ E(H), (17.5)

∑
e∈δ (v)

xe j ≤ 1, for all v ∈V (H), for all j = 1, . . . ,∆ , (17.6)

where δ (v) is the set of edges incident with vertex v. The symmetry group G of EC

is the product of the automorphism group of the graph H with the symmetric group

on the ∆ colors.

Obviously, permuting the ∆ colors in any feasible solution of EC yields another

feasible solution. For a vertex v of maximum degree ∆ , all edges in δ (v) must re-

ceive ∆ distinct colors. As a result, it is valid to fix the colors on δ (v) to any valid

coloring. This will break the symmetry between the colors, yielding the FEC formu-

lation. The symmetry group GF contains all permutations of G fixing edges in δ (v)
and their colors. Using this ILP formulation for coloring the edges of a clique on 9

nodes and fixing the colors as described above results in a solution time orders of

magnitude larger for FEC than for EC for algorithms of [75].

Going back to the general case, it is also sometimes the case that solving ILP

is better than solving RILP. An example from [74] is the code construction prob-

lem cod93 listed in Table 17.1. It has 512 variables, a group with order 185,794,560,

an optimal value of −40 and an LP relaxation value of −51.20. By fixing a few

variables and substituting them in the formulation, one obtains an equivalent prob-

lem cod93r that has 466 variables, a group order of 362,880, an optimal value

of −39 and an LP relaxation value of −47.00. Yet, several algorithms using the

symmetry in the problem require a smaller enumeration tree to prove that no solu-

tion of value smaller than −40 exists in cod93 than to prove that no solution of value

smaller than −39 exists in cod93r.

If ILP is binary and an algorithm based on pruning of the enumeration tree (see

Section 17.9) is used, it can be shown that fixing a set F of variables to value 1

and then use the algorithm on FILP is never superior to using the algorithm on the

original ILP and branching first on the variables in F , creating only one subprob-

lem corresponding to the fixing. A similar result for non binary ILPs can be stated



656 François Margot

provided that the variables and the values to which they are fixed satisfy a techni-

cal condition. It follows that for these algorithms, solving FILP is not a good idea.

A similar result holds for comparing ILP with RILP: the latter might be preferable

only if |GR| > |stab(v,G)|.

17.6 Symmetric polyhedra and related topics

The definition of a symmetric ILP given in Section 17.2 involves the objective

function c. If c in (17.1) is replaced by the zero vector, the symmetry group G of the

corresponding ILP is the symmetry group of the polyhedron corresponding to the

convex hull of the characteristic vectors of the solutions of the problem. (Note that

this group should not be confused with the group of the geometric symmetries of

the polyhedron; only symmetries permuting space coordinates are considered here.)

Many combinatorial polyhedra have large symmetry groups. Just to cite one exam-

ple, the polytope associated with the Traveling Salesman Problem (TSP) [3, 63] on

the complete graph on n nodes has a symmetry group of order n!. This statement

might be a little bit misleading, since there are many ILP formulations of the TSP,

some of them having less symmetry than others. We are talking here about the most

studied formulation using exclusively binary edge variables xi j for all i, j = 1, . . . ,n
and i < j. This polytope has received a lot of attention and has been the focus of

intense computational studies in the last decades with impressive results [3]. How-

ever, in these studies, the topic of symmetry is rarely considered, as the objective

function used in most instances essentially destroys the symmetry.

Similarly, many polyhedra related to combinatorial problems have large sym-

metry groups, but studies of their facial structure rarely rely on this knowledge.

There are several polytopes closely linked to permutations or permutation groups:

The permutahedron is the convex hull of all permutations of the entries of the n-

vector (1,2,3, . . . ,n). Its complete linear description is known [6]. A generalization

of this polytope is the permutahedron of a poset, the convex hull of all permuta-

tions π such that if i < j is the poset, then πi < π j. Its complete linear description

is known for some classes of posets [4]. The assignment polytope is the convex hull

of all binary n×n matrices with exactly one nonzero entry per row and per column.

These matrices are in bijection with permutations of n elements: For a matrix M and

permutation π , entry Mi j = 1 if and only if πi = j. A complete linear description

of the assignment polytope is known [84]. In [13, 14], the permutation polytope is

studied. This polytope is the convex hull of the vertices of the assignment polytope

corresponding to permutations that are in a given group G. While a complete linear

description of the permutation polytope is given in [14], that paper also proves that

deciding if one of its inequalities is violated by a given matrix M is an NP-complete

problem.

Let Q be the feasible set of an ILP with variables x and let P be the convex hull

of Q. The action of altering the ILP by adding to it a number of variables y, adding a

number of constraints and modifying the original constraints such that the projection



17 Symmetry in Integer Linear Programming 657

of the resulting feasible set on the space of the x variables remains P is known as a

lifting P′ of P. If Q has a symmetry group G, a symmetric lifting of P is a lifting P′

of P such that G is the restriction of the symmetry group of P′ to the x variables.

Two important results of Yannakakis [118] are that neither the matching polytope

nor the TSP polytope have a symmetric lifting of subexponential size.

One notable exception where the symmetry group G of the polyhedron plays a

central role in the study of its facial structure is the problem of obtaining its com-

plete linear description by enumeration. Typically, extreme points of the polyhedron

are partitioned into orbits under G and then, for one vertex v in each orbit the facets

incident to v are described. These algorithms are based on clever enumeration pro-

cedures using the symmetry group of the polyhedron and can be carried out for

problems of small dimension. For example, a complete linear description is known

for the TSP polytope on a complete graph with up to 10 nodes [27], the Linear Or-

dering polytope with up to 8 items [27], the Cut polytope on a complete undirected

graph with up to 9 nodes [27], the Metric cone and Metric polytope on a complete

graph with up to 8 nodes [35, 36].

All enumeration algorithms are limited in the size of instances they can tackle.

They might give hints on the form of the complete linear description for all instances

but, most of the time, classes of facet defining inequalities for large instances are

not facet defining in smaller ones. The search for facet defining inequalities for

symmetric polytopes thus requires some effort. One could hope that some generic

process could be used to generate strong valid (let alone facet defining) inequalities

using the symmetry group of the polytope, but no such process seems to be known.

Most derivations of valid inequalities are problem specific and only use the existence

of the symmetry group in a limited way. For many symmetric ILPs used to test

the existence of combinatorial objects (such as problems similar to those listed in

Table 17.1) the gap between the optimal value of the ILP formulation and its LP

relaxation is large. The generation of strong valid inequalities for these problems has

received little attention. One recent paper [70] does this for the very hard problem

codbt06, better known as the Football Pool problem [28, 53] or as the construction

of an optimal ternary covering code of length 6. This problem is still open despite

extensive efforts for solving it [67, 86].

One main tenet of polyhedral combinatorics is that the knowledge of families of

facets of the convex hull P of the feasible set of an ILP is useful for solving the

problem, even if the complete linear description of P is not known. If the number of

facets in a family F is exponential in the size of the problem encoding, F can still be

used in an efficient way providing that it has an efficient separation algorithm. Such

an algorithm takes a point x̄ as input and either outputs one inequality corresponding

to a facet in F violated by x̄ or guarantees that all such inequalities are satisfied by x̄.

Many papers describe facets and separation algorithms for specific symmetric

polyhedra. For a symmetric problem with symmetry group G, any valid inequality

for P of the form ax ≤ a0 generates a collection of “symmetric” inequalities of

the form g(a) · x ≤ a0 for all g ∈ G. This naturally leads to look for a separation

algorithm for this class of inequalities, i.e., an algorithm for the following problem:



658 François Margot

LINEAR OPTIMIZATION UNDER SYMMETRY

Input: A group G permuting the elements in In given by a set of t generators,

a vector a ∈ Rn and a point x̄ ∈ Rn;

Output: A permutation g ∈ G maximizing g(a) · x̄.

In practice, the typical situation is to look for the most violated inequality in a

class of facets under all possible permutations in G, and numerous examples where

this can be done efficiently are known. For example, virtually all exact separation

algorithms for facets of the TSP polytope described in [3] fall into this category.

Nevertheless, it is straightforward to show that the above problem is NP-hard, using

a polynomial transformation from the following problem (a variant of Problem 5

of [14], variant shown there to be NP-hard):

MAXIMUM OVERLAP UNDER SYMMETRY

Input: A group G permuting the elements in In given by a set of t generators,

and two functions φ1,φ2 : In →{0,1};

Output: A permutation g ∈ G maximizing |{i ∈ In : φ1(i) = φ2(g(i))}|.

Indeed, define ai := φ2(i) and x̄i := φ1(i) for all i ∈ In. For g ∈ G, k, ℓ = 0,1 and

s = 1,2, define

y
g
kℓ = |{i ∈ In : φ1(i) = k, φ2(g(i)) = ℓ}|

zs = |{i ∈ In : φs(i) = 1}| .

The first problem asks for a permutation g ∈ G maximizing y
g
11 while the second

problem asks for maximizing y
g
11 +y

g
00. But as y

g
11 +y

g
10 = z1 and y

g
10 +y

g
00 = n− z2,

we have y
g
11 + y

g
00 = 2 y

g
11 +n− z1 − z2. As the above transformation is polynomial

in the size of the instance of the second problem, it is a polynomial time reduction

from the second problem to the first one.

17.7 Partitioning problems

Several classes of symmetric problems arising in practice are of the partitioning

type: Given a set S of s elements, find a partition of S into at most t subsets with

each of the subsets having to meet the same requirements. There is immediately a

symmetry between the subsets in the partition. A typical ILP formulation for such a

problem uses binary variables xi j for all i = 1, . . . ,s and j = 1, . . . ,t with the meaning

xi j =

{
1, if i is assigned to subset j,

0, otherwise.
(17.7)

The problem formulation might use additional variables yi for i = 1, . . . ,ny

with yi ∈ Z for i ∈ Y ⊆ {1, . . .ny}. The problem can then be written as



17 Symmetry in Integer Linear Programming 659

mincxT
x+ cyT

y

Ax x+Ay y > b

t

∑
j=1

xi j = 1, for all i = 1, . . . ,s, (17.8)

xi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . ,t,

yi ∈ Z, for all i ∈ Y ,

where Ax is an m×(s · t) matrix, Ay is an m×ny matrix, cx is an (s · t)-vector, cy is

an ny-vector, and b is an m-vector and all these matrices and vectors are rational. In

addition, we assume that any permutation of the t subsets can be extended to a per-

mutation in the symmetry group of the ILP. In other words, if h is any permutation

of It , then there exists a permutation h′ of Iny and

(x11, . . . ,xs1,x12, . . . ,xs2, . . . ,x1t , . . . ,xst ,y1, . . . ,yny)

is feasible if and only if

(x1h(1), . . . ,xsh(1),x1h(2), . . . ,xsh(2), . . . ,x1h(t), . . . ,xsh(t),yh′(1), . . . ,yh′(ny))

is and both solutions have the same objective value. We also assume that the vec-

tor cx is symmetric with respect to the t subsets, i.e., writing c(xi j) for the entry of cx

corresponding to variable xi j, we assume that c(xi j) = c(xi j′) for all j, j′ = 1, . . . ,t.
A few examples of problems fitting this model are bin packing, cutting stock,

scheduling on identical machines, graph coloring (either vertex-coloring or edge-

coloring), and graph partitioning. Many other practical problems featuring partitions

into interchangeable subsets fit this model too (see [108] for examples).

Note that, in addition to the symmetry between the subsets, it is possible that

some symmetry between the elements also occurs. Such symmetry occurs for ex-

ample for graph coloring with a graph with a nontrivial automorphism group, or for

bin packing with multiple items having identical dimensions. The material in this

section concentrates on dealing with the symmetry between subsets only.

17.7.1 Dantzig-Wolfe decomposition

To address the symmetry between the subsets of the partition, a Dantzig-Wolfe

decomposition approach can be tried: Given the collection of all binary s-vectors zℓ

for ℓ = 1, . . . ,u corresponding to the characteristic vector of a subset of the partition,

the above problem can sometimes be reformulated with variables λ ℓ for ℓ = 1, . . . ,u
and objective vector cλ with cλ

ℓ = ∑s
i=1 c(xi1) zℓ

i :



660 François Margot

mincλ T
λ + cyT

y

Aλ λ +Ay′ y > b′,
u

∑
ℓ=1

zℓ
i λ ℓ = 1, for all i = 1, . . . ,s,

u

∑
ℓ=1

λ ℓ = t,

λ ℓ ∈ {0,1}, for ℓ = 1, . . . ,u,

yi ∈ Z, for all i ∈ Y .

This reformulation makes the symmetry between the subsets of the partition dis-

appear, as it only asks for t of the given zℓ vectors that are disjoint and cover all

items in S, without paying attention to their ordering. The disadvantage is of course

the large number of variables. This type of formulation requires column generation

procedures, as soon as the size of the problem is non-trivial. A pricing problem for

vectors zℓ not included in the formulation then has to be solved.

Examples of successful applications of this approach can be found for the cut-

ting stock problem [114, 115], scheduling [34, 37, 7, 116], edge coloring [83], ver-

tex coloring [79], and graph partitioning [80]. See section 13.3 for a more general

presentation and additional examples.

17.7.2 Partitioning orbitope

Consider the polytope obtained by taking the convex hull of the feasible solutions

to the partitioning part of ILP (17.8), namely:

t

∑
j=1

xi j = 1, for all i = 1, . . . ,s, (17.9)

xi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . ,t. (17.10)

Assuming that this system is part of a larger problem that has a symmetry be-

tween the sets in the partition, one can try to remove that symmetry from the prob-

lem by partitioning the feasible set of (17.9)–(17.10) in equivalence classes under

that symmetry and by selecting one representative of each class. One natural way to

do this is to arrange variables xi j for i = 1, . . . ,s, j = 1, . . . ,t in a matrix X with xi j

being the entry in row i and column j of X . A matrix X is feasible if its entries x̄i j

satisfy the constraints in (17.9)-(17.10). The symmetry group GC considered here is

the group that permutes the columns of X in any possible way. For column j of X ,

define its value v j as



17 Symmetry in Integer Linear Programming 661

v j =
s

∑
i=1

2s−i · x̄i j .

A matrix X is then a representative of its equivalence class under GC if and only

if its columns are ordered in non-increasing order of their values. The partitioning

orbitope, introduced in [61], is the polytope obtained as the convex hull of these rep-

resentative matrices. Its complete linear description is known and is based on shifted

column inequalities (SCI). An SCI has a bar formed by variables {xī j̄,xī j̄+1, . . . ,xīt}

for some 2 ≤ ī ≤ s, 2 ≤ j̄ ≤ min{ī, t} and a shifted column (SC) consisting of

ī− j̄+1 variables, exactly one on each of the diagonals xd+1,1,xd+2,2, . . . ,xd+ j̄−1, j̄−1

for d = 0, . . . , ī− j̄ and with the condition that the variable selected in diagonal d

has a column index no larger than the one of the variable selected in diagonal d +1

for d = 0, . . . , ī− j̄−1 (see Figure 17.1). The SCI with bar B and shifted column S

is then x(B)− x(S) ≤ 0, using the notation x(A) = ∑
xi j∈A

xi j.

Theorem 17.1. [61] A linear description of the the partitioning orbitope is given by

t

∑
j=1

xi j = 1, for all i = 1, . . . ,s, (17.11)

x(B)− x(S) ≤ 0, for all SCI with B its bar and S its SC, (17.12)

xi j = 0, for i = 1, . . . ,s, j = i+1, . . .t, (17.13)

xi j ≥ 0, for i = 1, . . . ,s, j = 1, . . .t. (17.14)

The packing orbitope is obtained by replacing in (17.9) the equality sign by ≤.

A result similar to Theorem 17.1 is given in [61] for the packing orbitope.

While the formulation of Theorem 17.1 has an exponential number of constraints,

efficient separation algorithms are given in [61]. Empirical results using this formu-

lation and further development of fixing algorithms based on it can be found in [60].

Fig. 17.1 Graphic represen-
tation of an SCI with s = 7,
t = 6, ī = 6, and j̄ = 4. Entries
in the shaded rectangle form
the bar B and have coeffi-
cients 1; exactly one entry in
each of the three diagonal seg-
ments has a coefficient −1;
these three entries form the
shifted column S. All other
entries have coefficient 0, in-
cluding entries in the top right
shaded part corresponding to
constraints (17.13).



662 François Margot

Note that the ordering of the objects in S, or equivalently the ordering of the

rows in the matrix X might have a big influence on the efficiency derived from the

partitioning orbitope. An extreme example is solving an edge coloring problem on

a graph H with maximum vertex degree ∆ using the ILP formulation described in

Section 17.5. If the edges corresponding to the first ∆ rows of X are edges adjacent

to a vertex v of maximum degree in H, the constraints (17.5)–(17.6) together with

(17.13)–(17.14) immediately imply xii = 1 for all i = 1, . . . ,∆ . As a result, all SCI

inequalities are satisfied and the gain obtained by using the partitioning orbitope

amounts to fixing the colors on the edges adjacent to v. It is likely, however, that a

different ordering of the rows of X allows to derive more strength from the SCI. The

effect of different orders of the elements in S when using the orbitope has not been

investigated.

It could be the case that the partitioning orbitope is particularly useful when it is

not clear how to construct a set S of t objects, no two of which can be in the same

subset. This is the case for the graph partitioning problem used in the computational

experiments of [60].

Alternative integer linear descriptions for the partitioning orbitope are sometimes

used and examples can be found in [81, 92]. Generalizing Theorem 17.1 to the case

where the right hand side of (17.9) is larger than 1 seems difficult, but would have

practical implications.

17.7.3 Asymmetric representatives

Consider the partitioning problem where the goal is to minimize the number of

subsets required to partition the s elements, with the additional constraint that the

elements in any set Ud from a given list U = {U1, . . . ,Uw} cannot all be assigned

to the same subset of the partition. (We assume that |Ud | ≥ 2 for all d = 1, . . . ,w
since otherwise the problem is infeasible.) For example, the problem of coloring the

nodes of a graph H = (V,E) with the minimum number of colors fits this description,

taking V as elements and U as the list of all pairs of elements corresponding to edges

in E.

An ILP formulation for this problem (named Asymmetric Representatives and

developed for node coloring [23, 24, 25] but that can be generalized to handle the

description above), uses binary variables zi j for all i = 1, . . . ,s and j = 1, . . . ,s with

the meaning

zi j =

{
1, if i is the representative of j,

0, otherwise.
(17.15)

The idea of the formulation is that each element selects an element as its rep-

resentative, all elements selecting the same representative forming a subset of the

partition. Representative elements are elements i with zii = 1. The formulation is as

follows.



17 Symmetry in Integer Linear Programming 663

min
s

∑
i=1

zii

s

∑
i=1

zi j = 1, for all j = 1, . . . ,s, (17.16)

∑
j∈Ud

zi j ≤ (|Ud |−1) · zii, for all d = 1, . . . ,w, i = 1, . . . ,s, (17.17)

zi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . ,s. (17.18)

Inequalities (17.16) force each element to select exactly one representative, while

an inequality (17.17) prevents the elements in set Ud to all select i as representative

and requires that zii = 1 if node i is used as representative of one of the elements

in Ud .

This formulation might or might not have symmetries, but the symmetry between

the subsets in the partition is destroyed. Nevertheless, this formulation still has sev-

eral equivalent solutions: for a given partition of the elements, all elements in a

subset of the partition can select any of the elements in the subset to get a feasi-

ble solution with the same objective value. The formulation can thus also impose

that zi j = 0 for all i > j. (A more general formulation is given in [25], using a partial

order on the elements instead of the total order used here.) For coloring the nodes

of a graph H = (V,E), the formulation simplifies to

min
s

∑
i=1

zii

∑
(i, j)6∈E

zi j = 1, for all j = 1, . . . ,s, (17.19)

zi j + zik ≤ zii, for all distinct i, j,k, (i, j),(i,k) 6∈ E, ( j,k) ∈ E, (17.20)

zi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . ,s, (17.21)

zi j = 0, for all i = 1, . . . ,s, j = 1, . . . ,s, i > j, (17.22)

zi j = 0, for all (i, j) ∈ E. (17.23)

Polyhedral results for this formulation can be found in [23, 24, 25] and [22]

gives computational results. Investigation of a similar formulation for the stable set

problem is available in [21].

17.8 Symmetry breaking inequalities

A natural way to get rid of symmetry in a problem is to add symmetry breaking

inequalities. There are two main ways to do so. The first one, using dynamic sym-



664 François Margot

metry breaking inequalities, is to generate inequalities during the solution process.

These inequalities might be invalid for the initial formulation but, due to the devel-

opment of the enumeration, it is guaranteed that adding them does not prevent the

discovery of an optimal solution. The second one, using static symmetry breaking

inequalities, is to add inequalities to the initial formulation (explicitly or implicitly),

cutting some of the symmetric solutions while keeping at least one optimal solution.

An example of static symmetry breaking inequalities are the inequalities describing

the partitioning orbitope of Section 17.7.2.

17.8.1 Dynamic symmetry breaking inequalities

Several examples of static symmetry breaking inequalities can be found in

the Mathematical Programming literature. On the other hand, dynamic symme-

try breaking has been investigated mostly in the Constraint Programming litera-

ture [43, 45, 50, 91, 94, 96, 97]. The main reason for this is that constraint pro-

gramming can express constraints in a form different than linear inequalities [111].

Indeed, when the ILP is not binary, some of the constraints described below sim-

ply cannot be expressed by linear inequalities. For binary problems, however, an

example are the isomorphism inequalities of [73].

The basis of most dynamic symmetry breaking inequalities is that if a node a of

the enumeration tree has a subset of variables (xi1 , . . . ,xik) fixed respectively to some

values (vi1 , . . . ,vik), then for any g ∈ G adding an inequality that cuts all solutions

with (xg(i1), . . . ,xg(ik)
) fixed respectively to values (vi1 , . . . ,vik) can be added at some

nodes of the enumeration tree. However, this inequality is not valid for the initial

formulation and can only be added during the enumeration.

The drawback of this approach is either the huge number of constraints to han-

dle [50], or the choice of a subset of constraints to use [31, 94, 96], or the design

of a separation algorithm. In [45], an implementation based on the computational

group theory package GAP [113] is presented.

17.8.2 Static symmetry breaking inequalities

The most general description of static symmetry breaking inequalities for the

symmetry group G of ILP (17.1) is probably the following. A fundamental region

for G is a closed set F in Rn such that:

(i) g(int(F)) ∩ int(F) = /0, for all g ∈ G, g 6= I,

(ii) ∪g∈G g(F) = Rn,

where int(F) denotes the interior of F . Observe that (i) forces F to be not too large,

while (ii) implies that F contains at least one optimal solution of ILP (17.1). Indeed,



17 Symmetry in Integer Linear Programming 665

if x∗ is an optimal solution, (ii) guarantees that g(F) contains x∗ for some g ∈ G or,

equivalently, that g−1(x∗) ∈ F . We thus get:

Theorem 17.2. Let G be the symmetry group for ILP (17.1) and let F be a fun-

damental region for G. Then an optimal solution to ILP (17.1) can be found by

optimizing over the intersection of the feasible set of ILP (17.1) with F.

It turns out that finding a linear description of a fundamental region for G is quite

easy, at least in theory. The following result can be found in [52].

Theorem 17.3. Let G be the symmetry group of ILP (17.1) and let x̄ ∈ Rn such that

g(x̄) 6= x̄ for all g ∈ G,g 6= I. Then

F = {x ∈ Rn : (g(x̄)− x̄) · x ≤ 0, for all g ∈ G, g 6= I} (17.24)

is a fundamental region for G.

The obvious practical weakness of this result is the huge number of inequali-

ties (one for each permutation g ∈ G, except the identity) in this description with

many of them not being facet defining for F . Another weakness, shared by almost

all practical methods using static symmetry breaking inequalities, is that several iso-

morphic solutions might still be present in the boundary of F . In practice, relatively

simple sets of static symmetry breaking inequalities are used, and most of them can

be derived using a weak version of Theorem 17.2, as given in the next corollary.

Corollary 17.1. Theorem 17.2 remains true when the fundamental region F is re-

placed by the region obtained from Theorem 17.3 by relaxing its statement in either

of the following ways (or both):

(i) Inequalities in (17.24) are written only for a subset of permutations in G.

(ii) The condition that g(x̄) 6= x̄ for all g ∈ G, g 6= I is removed.

Proof. The proof of (i) is immediate. For (ii), let F be the feasible set defined

by (17.24) for x̄. For any real number ε > 0, define x̄(ε)∈Rn such that x̄(ε)i = x̄i +ε i

for i = 1, . . . ,n. For ε > 0 small enough, all components of x̄(ε) are distinct and thus,

using (17.24), it defines a fundamental region Fε for G. Let Q be the set of feasible

solutions to ILP (17.1) and let z ∈ Q−F . We now show that there exists ε(z) > 0,

such that z /∈ Fε for all 0 < ε < ε(z). This implies that F contains all the feasible

points from a fundamental region, yielding the result. Define

hz(ε) = max
g∈G

{(g(x̄ε)− x̄ε) · z} .

Observe that hz(ε) is the maximum of a finite number of polynomials in ε of de-

gree n and thus is a continuous function in ε . As z /∈ F , we have hz(0) > 0, implying

that there exists ε(z) > 0 such that hz(ε) > 0 for all 0 < ε < ε(z). As Q is a finite

set, for 0 < δ < min{ε(z) : z ∈ Q} we have Fδ ∩Q ⊆ F ∩Q. ⊓⊔



666 François Margot

We list a few applications of Theorem 17.2 or Corollary 17.1 below.

(i) The ILP has integer variables 0 ≤ xi ≤ k for i = 1, . . . ,n and G restricted on

these variables contains all permutations of In.
Add inequalities

x1 ≥ x2 ≥ . . . ≥ xn .

This result is widely known and used routinely. It can be obtained using Corol-

lary 17.1 with x̄ defined by x̄i = i for i = 1, . . . ,n and observing that the n− 1 in-

equalities given above dominate the remainder of the inequalities obtained from the

theorem.

(ii) The ILP has integer variables 0 ≤ xi j ≤ k for i = 1, . . . ,s and j = 1, . . . ,t
and G, when restricted to these variables, contains all permutations of the first in-

dices and all the permutations of the second indices. In other words, when arranging

the variables xi j in a two dimensional matrix X as in Section 17.7.2, all permuta-

tions of the rows of X and all the permutations of the columns of X can be extended

to permutations in G. Add inequalities expressing that the columns of X must be in

non-increasing lexicographic order and that the rows of X must be in non-increasing

lexicographic order [40, 41]. This is the Lex2 symmetry breaking set, following the

terminology of [96]. This result can be obtained from Theorem 17.2 using a ma-

trix X with xi j = (k+1)s·t−(i−1)·t− j for i = 1, . . . ,s and j = 1, . . . ,t. For example, for

s = 3, t = 4 and k = 1 we get

X =




2048 1024 512 256

128 64 32 16

8 4 2 1


 .

Using only the permutations in G that either swap two adjacent columns or swap two

adjacent rows, we get the Lex2 set of constraints. For example, using the permutation

swapping the first two columns, we get the inequality

−1024 x11 −64 x21 −4 x31 +1024 x12 +64 x22 +4 x32 ≤ 0 (17.25)

implying the non-increasing lexicographic ordering of these columns. Similarly, us-

ing the permutation swapping the first two rows, we get the inequality

− 1920 x11 −960 x12 −480 x13 −240 x14

+ 1920 x21 +960 x22 +480 x23 +240 x24 ≤ 0 (17.26)

implying the non-increasing lexicographic ordering of these rows. Of course, using

inequalities (17.25) or (17.26) is not advisable in practice when s or t is large, due to

the numerical instability introduced by large coefficients. This is an example where

Constraint Programming is a more flexible framework than Mathematical Program-

ming to handle symmetry, as the lexicographic orderings on the rows and columns

do not have to be expressed as linear inequalities.

However, in the case where k = 1 and exactly one entry in each row must have

value 1, we can do much better than using the linear inequalities above: To enforce



17 Symmetry in Integer Linear Programming 667

the non-increasing lexicographic ordering of the columns, we can use the Shifted

Column inequalities of Section 17.7.2 and to enforce the non-increasing lexico-

graphic ordering of the rows, we can use the inequalities

xip ≤
t

∑
j=p

xi+1, j, for i = 1, . . . ,s−1, p = 1 . . . , t.

Note that [41] shows that when X must have exactly one 1 per row, the Lex2 set

of constraints can be reinforced by adding the constraints that the sum of the entries

in each column is also non-increasing, i.e., adding the constraints

s

∑
i=1

xi j ≥
s

∑
i=1

xi, j+1, for j = 1 . . . , t −1.

This result is of course implied by the inequalities obtained from Theorem 17.2

(it is implied by the lexicographic ordering of the columns and of the rows) but it

does not seem easy to derive it algebraically directly from the inequalities obtained

from the theorem.

(iii) The generalization of (ii) where the matrix X is d-dimensional with d ≥ 3

and where any permutation of indices along any dimension of the matrix can be

extended to a permutation in G can be handled similarly to (ii). For i = 1, . . . ,d,

define Xi,ℓ as the (d−1)-dimensional matrix obtained from X by selecting all entries

whose ith index is equal to ℓ.

Imposing, for each i = 1, . . . ,d, and each possible value of ℓ that the entries in Xi,ℓ

are lexicographically not smaller than entries in Xi,ℓ+1 is valid [40]. This result can

be derived from Theorem 17.2 similarly to (ii). A weaker result for the case where

entries in X are binary, imposing only that the sum of the entries in Xi,ℓ is not smaller

than the sum of the entries in Xi,ℓ+1 is given in [101].

(iv) The matrix X is an s× t matrix and any permutation of the columns of X can

be extended to a permutation in G. A lexicographic ordering on the columns of X

can be imposed. This can be done using the inequalities

s

∑
i=1

(k +1)s−i · xi j ≥
s

∑
i=1

(k +1)s−i · xi, j+1, for j = 1, . . . ,t −1,

but this is not numerically very stable when s is large. Note that this is identical to

case (i) applied to the variables corresponding to ∑s
i=1 (k+1)s−i ·xi j for j = 1, . . . ,t.

Application of this idea can be found [33] for solving a layout problem and in [56]

for solving lot-sizing problems. Of course, in special cases, the partitioning orbitope

of Section 17.7.2 for example, better inequalities can be used. Weaker conditions

have also been tested on practical problems (see [56, 93, 108] for examples and

comparisons) such as the following three possibilities: First,

s

∑
i=1

xi j ≥
s

∑
i=1

xi, j+1, for j = 1, . . . ,t −1.



668 François Margot

This can be obtained from Corollary 17.1 using xi j = j for i = 1, . . . ,s, j = 1 . . . , t.
Second,

s

∑
i=1

i · xi j ≥
s

∑
i=1

i · xi, j+1, for j = 1, . . . ,t −1,

This can be obtained from Corollary 17.1 using xi j = i · j for i = 1, . . . ,s, j = 1 . . . , t.
Finally,

s

∑
i=1

i2 · xi j ≥
s

∑
i=1

i2 · xi, j+1, for j = 1, . . . ,t −1.

This can be obtained from Corollary 17.1 using xi j = i2 · j for i = 1, . . . ,s, j = 1 . . . , t.
It should be noted that the impact of different sets of static symmetry breaking

inequalities is difficult to estimate. In most cases, only empirical evaluation of spe-

cific implementations for specific classes of problems are available. Very little is

known about desirable properties of such a set. Discussion related to the choice of x̄

and separation of the inequalities in (17.24) when G is the symmetric group Π n or

a cyclic group can be found in [44]. In [66], a ranking of sets of static symmetry

breaking inequalities is introduced. It is based on the maximum number of points in

the orbit of an extreme point of the polytope that are cut by the set of inequalities.

The discussion of efficiency of different sets of static symmetry breaking in-

equalities when embedded in a branch-and-bound algorithm is muddled by the in-

teraction between the set of inequalities and valid choices for branching decisions.

Some experiments have been made [56, 107, 108, 109], but no definite answer is

available. There are simply too many variables to consider: problem classes, formu-

lation choice, large or small group order, choice of algorithm, coupling with other

symmetry breaking techniques, etc.

Deciding with confidence beforehand that using a given set of dynamic symmetry

breaking inequalities is better or worse than using a given set of static symmetry

breaking inequalities is extremely difficult. One general rule of thumb is that for

problems with a symmetry group of order up to a few thousands of permutations,

dynamic symmetry breaking might be very effective. However, when the order of

the symmetry groups is larger than, say, a million, dynamic symmetry breaking

inequalities can be effective, but only when coupled with other symmetry breaking

techniques. Some limited comparisons are reported in [91, 97].

17.9 Pruning the enumeration tree

A special case of static symmetry breaking inequalities for ILP (17.1) is obtained

from Theorem 17.2 and Theorem 17.3 using x̄i = (k + 1)n−i, for = 1, . . . ,n in the

latter. Then, a vector z ∈ {0, . . . ,k}n is in the fundamental region F if and only if

(g(x̄)− x̄) · z ≤ 0 for all g ∈ G, which is equivalent to

max{g(x̄) · z : g ∈ G} ≤ x̄ · z and to max{x̄ ·g(z) : g ∈ G} ≤ x̄ · z.



17 Symmetry in Integer Linear Programming 669

This last expression is equivalent to say that z is in F if and only if z is lexicomax

in its orbit under G, due to the particular choice of x̄. This is hardly a surprising

or difficult result, and restricting the search for lexicomax (or lexicomin) solutions

in their orbit has been used routinely (see [19, 100, 104, 112], just to name a few,

more general expositions and applications can be found in [62, 78]). In [31], in

the setting of clausal propositional logic, predicates similar to the constraints above

are derived. Results on reducing the number of constraints that must be included

to break all symmetries is also discussed. However, the number of constraints that

must be included is, in general, too large for this approach to work. Experiments

with a small subset of the constraints that does not break all symmetries have been

tried [1, 31, 94, 96]. Moreover, even if it were possible to add all these inequalities,

the resulting feasible set rarely is an integral polytope, implying that some work is

left do be done to solve the problem. An alternative is to handle these constraints by

pruning the enumeration tree: Node a of the enumeration tree is pruned if it can be

shown that none of the solutions in the subtree rooted at a is lexicomax in its orbit.

A direct use of this idea leads to algorithms that fix (or build) an order on the

variables and where lexicomax solutions with respect to that order are sought. These

algorithms are presented in Section 17.9.1. However, it is possible to relax the need

of an order on the variables. The resulting algorithms are covered in Section 17.9.2.

Both types of algorithms are similar and it might help to study first algorithms work-

ing with a fixed order on the variables, as their description is a little bit simpler.

We focus on three different algorithms for tackling problems with arbitrary sym-

metry groups. These algorithms were developed independently of each other and

look different, although they all use the same basic principles. These algorithms

are: Symmetry Backtracking Search (SBS) [11, 12], Symmetry Breaking via Dom-

inance Detection (SBDD) [39, 46, 96], and Isomorphism Pruning (IsoP) [74, 75].

Algorithms for handling special symmetry groups (such as product of several dis-

joint symmetric groups) have been studied too [42].

Related but simpler and less efficient algorithms for solving quadratic assign-

ment problems can be found in [8, 76]. They essentially just avoid the creation of

isomorphic subproblems from the same parent node. Nevertheless, this simple op-

eration makes a difference when solving difficult benchmark quadratic assignment

problems [2].

A few definitions are necessary to help in the description of the algorithms.

Let a be a node of the enumeration tree T and, for i = 1, . . . ,n, let Da
i be the pos-

sible values for variable xi at node a. Let ILPa be the ILP (17.1) with the additional

constraints xi ∈ Da
i for i = 1, . . . ,n. The path of a in T is the path Pa from the root

node of T to a. A node a1 is a son of node a if aa1 is an edge of T and the path of a1

goes through a. See Figure 17.2.

We consider the following three branching rules at node a:

(i) Partitioning: Select a variable xi with |Da
i | ≥ 2. Partition Da

i into 2 ≤ ℓ ≤ |Da
i |

non-empty sets Da
i (1), . . . ,Da

i (ℓ). Create the ILP for son a j for j = 1, . . . , ℓ by

replacing xi ∈ Da
i in ILPa by xi ∈ Da

i ( j). To avoid cumbersome notation, we

assume that the partition of Da
i satisfies that, for all 1 ≤ j ≤ ℓ−1, if t ∈ Da

i ( j)
and t ′ ∈ Da

i ( j +1) then t < t ′.



670 François Margot

(ii) Splitting: Select a variable xi such that Da
i = {v1, . . . ,vℓ} with ℓ ≥ 2 and

v j < v j+1 for j = 1, . . . , ℓ− 1. Create the ILP for son a j for j = 1, . . . , ℓ, by

replacing xi ∈ Da
i in ILPa by xi = v j.

(iii) Minimum Index Splitting: Similar to (ii), the only difference is that i must be the

smallest index with |Da
i | ≥ 2.

It should be clear that (ii) is more restrictive than (i) and that (iii) is more restric-

tive than (ii). Note also that if one chooses ℓ = |Da
i | in (i), the resulting rule is (ii). In

this section, we assume implicitly that one of these three rules is used, with an arbi-

trary rule for selecting the branching variable for Partitioning and Splitting. Suppose

that a branching rule is fixed and let T be the enumeration tree obtained following

that rule, pruning nodes only when they are infeasible (pruned nodes are included

in T ). Tree T is called the full enumeration tree for the selected branching rule. Note

that if a is a feasible leaf of T then |Da
i | = 1 for all i = 1, . . . ,n. Feasible leaves of T

are in bijection with the feasible solutions of the ILP.

17.9.1 Pruning with a fixed order on the variables

In this section, we assume that a total order on the variables is fixed from the

beginning of the algorithm. To simplify notation and without loss of generality we

take this order as the natural order defined by the indices on the variables, with x1

being the first variable in the order.

Note that the material in this section can be adapted so that the order used is built

during the execution of the algorithm: The algorithm works with a partial order

that is refined during the execution. The initial partial order is an order where all

variables have the same priority. Then, each time an operation is performed, it must

be valid for an extension of the current partial order and the partial order is modified

to include the corresponding constraints. However, the resulting algorithm can be

Fig. 17.2 Node a and the
ordering of its sons; path Pa

(in bold); b to the immediate
left of Pa; c to the left of Pa.



17 Symmetry in Integer Linear Programming 671

seen as a constrained version of the algorithms presented in Section 17.9.2 and as

such does not deserve much attention.

We know that node a of the enumeration tree can be pruned if none of the optimal

solutions in the subtree rooted at a can be lexicomax in its orbit. It is possible to

identify situations were this holds using the following extension of lexicographic

ordering.

Given two nodes a and b of T , we say that Db = (Db
1, . . . ,D

b
n) is lexico-set larger

than Da = (Da
1, . . . ,D

a
n), written Db >Ls Da, if and only for some t ∈ {1, . . . ,n} we

have min{ j : j ∈ Db
i } ≥ max{ j : j ∈ Da

i } for i = 1, . . . ,t −1 and min{ j : j ∈ Db
t } >

max{ j : j ∈ Da
t }. By extension, the definition applies to any pair of n-vectors of

subsets of In. We write g(Da) for the vector of subsets obtained by permuting the

entries of Da according to g.

Example 17.3. Consider Da
1 = {0,1}, Da

2 = {0}, Da
3 = {1}, Da

4 = {1} and Db
1 = {1},

Db
2 = {1}, Db

3 = {0}, Db
4 = {0,1}. We have Db >Ls Da and for g = (3,4,2,1), we

have g(Da) = Db. ⊓⊔

We then have:

Theorem 17.4. Let a be a node of the full enumeration tree T . If there exists g ∈ G

such that g(Da) >Ls Da then node a can be pruned.

The pruning done by Theorem 17.4 is called isomorphism pruning (IP). It is

immediate that if IP is able to prune node a, it is also able to prune all sons d of a,

as Dd
i ⊆ Da

i for all i = 1, . . . ,n and thus g(Dd) >Ls Dd if g(Da) >Ls Da. Nodes of T

that are not pruned thus form a subtree of T containing the root of T as well as all

solutions that are lexicomax in their orbit. The validity of the pruning follows.

If we assume that at the root r of T we have Dr
i = {0, . . . ,k} for all i = 1, . . . ,n,

IP is virtually useless until branching on variable x1 has occurred. In general, IP

is more efficient when the domains Da
i for i = 1, . . . ,t are small and t is large. As

a consequence, most algorithms using IP also use the Minimum Index Splitting

rule [19, 26, 72, 73, 74, 75, 96, 100].

Having the branching order essentially fixed from the beginning is a minor re-

striction when pure backtracking enumeration algorithms are used, but it is poten-

tially a major drawback when using branch-and-bound algorithms or other domain

reduction techniques, as it is well known that a clever branching variable choice can

reduce the enumeration tree drastically. Nevertheless, algorithms based on IP and a

fixed ordering of the variables have been shown, on many instances, to be orders of

magnitude faster than a branch-and-bound algorithm oblivious to existing symme-

tries. It should be noted, however, that different orderings of the variables produce

wildly different performance, transforming a problem that can be solved in seconds

into one that is essentially impossible to solve. For many problems, finding a “rea-

sonable” ordering of the variables is not too difficult. However, as mentioned in

Section 17.5, for proving that no proper coloring of the edges of a clique on 9 nodes

with 8 colors exists, two “reasonable” ordering of the variables yield running times

that are orders of magnitude apart.



672 François Margot

17.9.1.1 Additional domain reduction or additional inequalities

Some care must be taken when additional inequalities or variable domain reduc-

tion techniques are used together with IP (or symmetry breaking inequalities, but

we focus on IP here). It is valid to use either, provided that it can be shown that at

least one optimal solution x∗ that is lexicomax in its orbit under G remains feasible.

This is usually quite difficult to prove, but the following are examples where this is

possible:

(i) ILP cutting planes: Add any inequality to ILPa that is valid for the convex hull

of the integer solutions of ILPa; indeed, as no integer point is cut by these,

all optimal solutions that are lexicomax in their orbit are kept. This implies that

any of the standard cutting plane generators for ILP (Gomory, Cover, Knapsack,

etc.) can be used.

(ii) Strict exclusion algorithms: Excluding value v from Da
i for some i is valid if it

is known that no optimal solution x̄ of ILP, valid for ILPa and lexicomax in its

orbit, has x̄i = v. This implies that many of the usual techniques for excluding

values for variables can be used. It is however necessary to stress that merely

guaranteeing that there is an optimal solution x̄ of ILPa with x̄i 6= v is not enough

for having the right of excluding value v from Da
i .

(iii) Strict exclusion algorithms working under symmetry: Similar to (ii) with the

additional constraint that if xi 6= v is produced by the algorithm for ILPa then,

for any g ∈ G, it can produce that xg(i) 6= v in the ILP obtained by permuting the

variables in ILPa according to g. This requirement prevents the use of exclusion

algorithms that use information related to lexicographic order. It is, however,

usually met by typical exclusion algorithms that are used in ILP. The interest of

imposing the constraint of working under symmetry on the exclusion algorithms

is explained later in this section and also in Section 17.10.

(iv) IP exclusion: Suppose at node a, for some g∈G, and for some t ∈ {1, . . . ,n}, we

have min{ j : j ∈Da
g(i)}= max{ j : j ∈Da

i } for i = 1, . . . ,t and max{ j : j ∈ Da
g(t)}

> max{ j : j ∈ Da
t }. Notice that any feasible solution x̄ for ILPa with x̄g(t) = v

for v = max{ j : j ∈Da
g(t)} is not lexicomax in its orbit, as g−1(x̄) is lexicograph-

ically larger. It is thus valid to exclude v from Da
g(t).

(v) Orbit exclusion: Suppose at node a, for some p ≥ 1, we have |Da
i | = 1 for i =

1, . . . , p and |Da
p+1| > 1. Let v be the vector defined by vi = Da

i for i = 1, . . . , p

and vi = −1 otherwise. Let O be an orbit under the stabilizer of v in G. Let D

be the intersection of the domains Da
i for all i ∈ O. Set Da

i = D for all i ∈ O.

Note that (ii) and (iii) were introduced in [74, 75] and that particular cases of (iv)

have been used in [11, 12] as well as many papers in the Constraint Programming

literature (this is a filtering algorithm), as well as under the name 0-fixing in [74, 75].

Observe that (iv) does not fit the conditions of (iii). It is important to understand also

that (v) is valid only if the other exclusion algorithms used satisfy (iii) or (iv). (v)

was introduced in [75] under the name orbit fixing and a generalization of (v) is also

given there.



17 Symmetry in Integer Linear Programming 673

17.9.2 Pruning without a fixed order of the variables

The practical need, mentioned in Section 17.9.1, of branching using the Mini-

mum Index Splitting to perform IP can however be relaxed. A few definitions are

needed before continuing the presentation.

Graphically, the full enumeration tree T is drawn with the root at the top and the

sons a j of a for j = 1, . . . , ℓ are drawn from right to left below a, starting with a1

(see Figure 17.2). We say that a j′ is to the left of a j if j < j′. A node b is to the

immediate left of Pa if b is the son of a node c ∈ Pa −a and b is to the left of the son

of c that is part of Pa. A node c is to the left of Pa if c is in the subtree rooted at a

node to the immediate left of Pa.

If we assume that the domains of the variables are modified only by the branching

operation, we have [39]:

Theorem 17.5. Let a be a node of the full enumeration tree T . If there exists a node b

to the immediate left of the path of a and a permutation g ∈ G such that Da
g(i) ⊆ Db

i

for i = 1, . . . ,n, then a can be pruned.

Proof. All optimal solutions of the ILP are feasible leaves of T . Since T is drawn

according to the convention above, the orbit O under G of any optimal solution has

one solution s∗ that is to the left of the path to any s ∈ O− s∗. We claim that no

node t in the path to s∗ is pruned by the pruning of the statement. Indeed, if t is

pruned, then there exists b to the left of the path of t and g ∈ G with Dt
g(i) ⊆ Db

i

for i = 1, . . . ,n. But then g(s∗) is a feasible leaf of T to the left of the path to s∗, a

contradiction with the definition of s∗. ⊓⊔

To showcase the connection between Theorem 17.5 and the lexicographic prun-

ing of Section 17.9.1, suppose that the branching rule used to produce T in Theo-

rem 17.5 is the Minimum Index Splitting rule. The pruning made by Theorem 17.5

is then equivalent to the one done by Theorem 17.4.

One major difference, however, between the two theorems is that Theorem 17.4

has the same efficiency when additional exclusion of values are done whereas, as

stated, Theorem 17.5 might miss some pruning due to shrinkage of some domains

in b. This motivates the tracking of branching decisions that have been made on the

path of a. Let oa be the order list at a, where oa is simply the ordered list of the

indices of the variables used as branching variables on the path of a. In this section,

we assume that the Splitting branching rule is used to simplify the presentation, but

the algorithms can handle the Partitioning branching rule.

The definition of lexico-set larger given in Section 17.9.1 can be extended so that

comparisons are made according to an ordered list of indices: Let o be an ordered list

of p indices with oi denoting the ith element in the list. We say that, with respect to o,

Db = (Db
1, . . . ,D

b
n) is lexico-set larger than Da = (Da

1, . . . ,D
a
n), written Db >os Da, if

and only for some t ∈ {1, . . . , p} we have min{ j : j ∈ Db
oi
} ≥ max{ j : j ∈ Da

oi
} for

i = 1, . . . ,t −1 and min{ j : j ∈ Db
ot
} > max{ j : j ∈ Da

ot
}.

We then have [11, 12]:



674 François Margot

Theorem 17.6. Let a be a node of the full enumeration tree T obtained using the

Splitting branching rule and let oa be the order list at a. If there exists g ∈ G such

that g(Da) >oas Da then node a can be pruned.

17.9.2.1 Additional domain reduction or additional inequalities

As in Section 17.9.1, it is possible to couple the pruning of Theorem 17.6 with

domain reduction techniques and cutting planes, with restrictions similar to those

listed in Section 17.9.1.1.

It is easy to overlook that two techniques conflict with each other. An example re-

ported in the literature [96] is the attempt to use jointly the pruning of Theorem 17.6

with the Lex2 symmetry breaking constraints described in Section 17.8.2.

While this is perfectly valid if Theorem 17.4 or Theorem 17.6 is used with an

ordering of the variable for which lexicomax solutions satisfy the Lex2 constraints,

it might fail when Theorem 17.6 is used with an arbitrary order.

17.10 Group representation and operations

While Theorem 17.5 and Theorem 17.6 form the basis for pruning algorithms,

they are only existence results. For a practical implementation, we need an algorithm

for checking if there exists g ∈ G satisfying the statement. The implementation of

SBS from [11, 12] and implementation of IsoP from [74, 75] work with an ar-

bitrary group given by a collection of generators. The implementations of SBDD

from [39, 96] use problem specific algorithms or work only for very simple groups

(typically symmetric groups). The SBDD implementation of [46] uses an approach

similar to [11, 12], but few details are available, preventing a finer comparison with

the implementations of SBS and IsoP. This section covers the basics for handling

computational group operations needed in a branch-and-bound algorithm and points

differences between the implementations of [11, 12] and [74, 75]3.

The group representation and algorithms are based on the Schreier-Sims repre-

sentation of G, a tool widely used in computational group theory [16, 17, 18, 19, 54,

62, 64, 65]. The reader is referred to [16, 17, 55, 106] for a comprehensive overview

of the field.

Let G0 = G and Gi = stab(i,Gi−1) for i = 1, . . . ,n. Observe that G0,G1, . . . ,Gn

are nested subgroups of G. For t = 1, . . . ,n, let orb(t,Gt−1) = { j1, . . . , jp} be the

orbit of t under Gt−1. Then for each 1 ≤ i ≤ p, let ht, ji be any permutation in Gt−1

sending t on ji, i.e., ht, ji [t] = ji. Let Ut = {ht, j1 , . . . ,ht, jp}. Note that Ut is never

empty as orb(t,Gt−1) always contains t.

Arrange the permutations in the sets Ut , t = 1, . . . ,n in an n×n table T , with

3 The algorithms of [74, 75] assume a fixed order of the variables, but as pointed out first by
Ostrowski [87] and as the presentation in this paper shows, this requirement can be waived.



17 Symmetry in Integer Linear Programming 675

Tt, j =

{
ht, j, if j ∈ orb(t,Gt−1),

/0, otherwise.

Example 17.4. As observed in Example 17.1, the symmetry group G of ILP (17.2)

is {I,(2,3,4,1),(3,4,1,2),(4,1,2,3),(3,2,1,4),(4,3,2,1),(1,4,3,2),(2,1,4,3)}.

We have G0 := G and orb(1,G0) = {1,2,3,4} with h1,1 = I, h1,2 = (2,3,4,1),
h1,3 = (3,4,1,2), and h1,4 = (4,1,2,3). Then G1 := stab(1,G0) = {I,(1,4,3,2)}
and orb(2,G1) = {2,4} with h2,2 = I and h2,4 = (1,4,3,2).

And finally we obtain, G2 := stab(2,G1) = {I}, G3 := stab(3,G2) = {I} and

G4 := stab(4,G3) = {I}. The corresponding table T is:

1 2 3 4

1 I h1,2 h1,3 h1,4

2 I h2,4

3 I

4 I
⊓⊔

The table T is called the Schreier-Sims representation of G. It is possible to make

a small generalization of the presentation by ordering the points of the ground set in

an arbitrary order β , called the base of the table. In that case, the subgroups G(β )t

for t = 1, . . . ,n are defined as the stabilizer of βt in G(β )t−1, with G(β )0 = G. The

corresponding table is denoted by T (β ). Row t of T (β ) corresponds to the ele-

ment t, U(β )t is the set of non-empty entries in row t of T (β ) and J(β )t denotes the

corresponding set of indices { j ∈ In : T (β )[t, j] 6= /0}, also called the basic orbit of t

in T (following the terminology of [65]). When the base β is fixed, we sometimes

drop the qualifier (β ) in these symbols, but from now on each table T is defined

with respect to a base.

The most interesting property of this representation of G is that each g ∈ G can

be uniquely written as

g = g1 ·g2 · . . . ·gn (17.27)

with gi ∈ Ui for i = 1, . . .n. Hence the permutations in the table form a set of

generators of G. It is called a strong set of generators, since the equation (17.27)

shows that g ∈ G can be expressed as a product of at most n permutations in the set.

For a permutation g∈G, it is easy to find the n permutations g1, . . . ,gn of (17.27):

the permutations g2, . . . ,gn all stabilize element 1, forcing g1 to be T [1,g(1)].
Then, as g3, . . . ,gn all stabilize element 2, we must have (g1 ·g2)(2) = g(2), i.e.,

g2(2) = (g−1
1 ·g)(2) and thus g2 = T [2,(g−1

1 · g)(2)]. With a similar reasoning we

obtain g3, . . . ,gn.

Algorithms for creating the table T (β ) and for changing the base β of the repre-

sentation can be found in [16, 18, 19, 54, 55, 62, 64, 65, 106]. For a group G given by

a set T of generators, algorithms for creating the table and with worst-case running

time in O(n6 +n2 · |T |) [62] have been devised. Faster but more complex algorithms

are also known [5, 55, 58, 105, 106]. The complexity of the algorithm of Jerrum [58]



676 François Margot

is in O(n5 + n2 · |T |) and the one of Babai et al. [5] is in O(n4 · logc n + n2 · |T |)
where c is a constant and one from [106] is O(n2 · log3 |G|+ |T | ·n2 · log |G|). Since

we might assume that the permutation group is given by a set of strong generators,

the speed of the algorithm for finding the representation of the group is not partic-

ularly relevant here. Note also that the cardinality of the ground set of the groups

that are usually of interest are small (for computational group theory standards, at

least) and that the simpler algorithms perform satisfactorily in the large majority of

the cases.

Algorithms for changing the base of the table can be found in [11, 19, 30, 55,

62, 106] with worst-case running time up to O(n6), while more complex algorithms

run in almost linear time. An algorithm with worst case complexity in O(n6) or

even O(n4) might seem impractical for values of n ≥ 100. It turns out that the com-

plexity bounds given above are very pessimistic and are usually attained for the

symmetric group on n elements. The amount of time spent in the algorithms dealing

with the group operations for the applications of [74, 75] stays below 10% of the

total cpu time.

Although the algorithms are described here for a 2-dimensional table T , a more

space efficient implementation uses a vector of ordered lists instead, as most en-

tries in the table are usually empty. For example, when solving the covering de-

sign problem cov1054 mentioned in Section 17.1, n = 252, the group has or-

der 10! = 3,628,800, but the number of entries in the table is, on average, 550.

It is worth noting that most of the cpu time used by the group algorithms is spent

multiplying permutations. Speedup may be obtained in some cases by keeping per-

mutations in product form (see [55, 106] for details).

Property (17.27) is the corner stone of the algorithm testing the existence of g∈G

satisfying Theorem 17.6. To simplify the notation, assume that the Minimum Index

Splitting rule is used, and thus at node a, for some p ≥ 1, we have oa
i = i and xi = vi

for i = 1, . . . , p.

We use a backtracking algorithm to construct g, if it exists: For v = 1, . . . ,k, let Fa
v

be the set of indices of variables that have value v at a, i.e., Fa
v = {i ∈ In : Da

i = {v}}.

0) Let g0 := I, i = 1 and T be a Schreier-Sims table for G with base (1,2, . . . ,n)
and initialize the sets Fa

v for v = 0, . . . ,k.

1) Let v be the value that xi takes at a.

2) If g−1
i−1(i) ∈ Fa

w for some w > v then STOP.

3) For all j ∈ gi−1(F
a
v ) do

3.1) Let hi := T [i, j].
3.2) If hi 6= /0 then

3.2.1) Remove index g−1
i−1( j) from Fa

v .

3.2.2) gi := h−1
i ·gi−1.

3.2.3) i := i+1; If i ≤ p then go to step 1).

If the algorithm terminates in step 2), then gi−1 is a permutation showing that a

can be pruned, according to Theorem 17.6. Although this algorithm is essentially

the one used in implementations, important variations occur. The implementations



17 Symmetry in Integer Linear Programming 677

of SBS of [11, 12] and of IsoP of [74, 75] differ in modifications reducing the

pruning that is done to improve running time. Another important difference is that

in [11, 12], the algorithm is called before the branching variable is chosen while

in [74, 75] it is called to weed out all values in the domain of the selected branching

variable that would lead to a node that could be pruned by isomorphism. Advantages

of the former is that information about the orbits of variables can be used to select the

branching variable (experiments with different selection rules are described in [88]),

while the latter leverages the fact that the operations performed by the algorithm at

different sons of a node are very similar and can be collapsed efficiently in one

application of the algorithm as described below.

Note that in both implementations of [11, 12] and [74, 75], the sets Fa
v contain

only the indices in {1, . . . , p}. The motivation for this choice is firstly the orbit ex-

clusion algorithm of Section 17.9.1.1. Secondly, the fact that the stabilizer used in

the orbit exclusion algorithm is a group means that orbit computations can be per-

formed by computing generators of that group.

This last point is the approach taken in [11, 12], where a clever shortcut is used:

when step 3.2.2) is reached with i = p, orbits are updated to reflect the effect of gp

and backtracking can be made directly to the smallest index i in step 3.2.2) for

which hi 6= I. This potentially speeds up the execution, but might miss some pruning

that could be obtained from step 2.

In [74, 75] the algorithm is used before branching on variable xp+1. In other

words, at node a, assuming that more than one value is in Da
p+1, the index p + 1

would appear in Fa
v for all v ∈ Da

p+1. The algorithm is then modified as follows:

(i) In step 2), if g−1
i−1(i) = p + 1, then instead of stopping, the value w is removed

from Da
p+1 and p+1 is removed from Fa

w . This is an application of the domain

reduction (iv) of Section 17.9.1.1.

(ii) If the stopping criterion is met in step 2), but p+1 was the index g−1
i−1( j) in an

earlier step 3.2.1) used to build the current permutation gi−1, then we can back-

track to that step 3.2.1), remove the value v from Da
p+1, remove p + 1 from Fa

v

and continue. This is also an application of (iv) of Section 17.9.1.1.

(iii) In step 3.2.1), if g−1
i−1( j) = p+1, then p+1 is removed from all the sets Fa

w .

Using these modifications, the values in Da
p+1 at termination of the algorithm are

the values that need to be used to create sons by splitting. Of course, if that domain

is empty then a is pruned.

Another modification used in [74, 75] is to ignore variables that have been set

to 0 by branching. Suppose that variables that have been set to positive values by

branching at a are (i1, . . . , it) and assume that the base β of T starts with these

elements in that order. The above algorithm is then run with i := i1 and instead of

incrementing i by one, it skips from i j to i j+1. The justification for this modification

is that if xī = 0 is set for some ī, and a permutation g is obtained in Step 2) of the

algorithm, then the minimum value in the domain of j = g−1(ī) cannot be smaller

than 0. Using the original algorithm, we could exclude from Da
j all values larger

than 0 and continue. This reduction is possibly missed by the modified algorithm,

but it remains correct.



678 François Margot

The importance of this modification is on display when solving a problem where

the variables taking a positive value in any optimal solution are a small subset of

the variables. (This is a usual feature of combinatorial problems that are typically

solved by ILP.) The depth of the backtracking of the modified algorithm is then

much smaller, with a significant impact on the running time.

Unfortunately, there is no direct comparison available between the implementa-

tions of [11, 12] and [74, 75], as the only published results for the former are for

the well-known Queens problem: On an n× n chessboard, place n queens that do

not attack each other. It would be foolish to draw conclusions on implementations

of algorithms designed to handle groups with large orders based only on results on

an application where the group order is 8. In Section 17.13, a comparison (hardly an

ideal one but a little bit more meaningful) between implementations of SBDD and

IsoP is given.

17.11 Enumerating all non-isomorphic solutions

One important application of the pruning algorithms of Section 17.9 is their use

for enumerating all non-isomorphic solutions to a symmetric ILP. Pruning is the

only technique that can reliably list only non-isomorphic solutions, as, in general,

symmetry breaking inequalities are either too expensive to use or do not remove all

symmetry from the problem. There is interest emanating from the Combinatorics

and Statistics communities (among others) for enumerating all non-isomorphic

graphs or matrices with certain properties. For example, covering designs [51, 82]

or balanced incomplete block designs [29] have a long history. For small values

of the parameters, complete or implicit enumeration algorithms were used to gen-

erate solutions. Enumerating all non-isomorphic solution is interesting, since these

objects are used to build other mathematical objects or used to test conjectures.

A few of the enumeration results obtained by pruning algorithms are available

in [15, 26, 68, 73, 75, 78, 94, 96, 104]. Note that the solutions obtained by a pruning

algorithm are non-isomorphic solutions with respect to the symmetry group G used

by the algorithm. It might happen that G is only a subgroup of the symmetry group

of the feasible set of the problem and thus that isomorphic solutions remain in the

output.

Enumerating all non-isomorphic solutions also provides a powerful debugging

tool. Replicating enumeration results on problems having thousands of non-isomor-

phic solutions is a much better indication that an algorithm is correct than when it is

run to find an optimal solution. Indeed, in symmetric problems, a faulty algorithm

can still find optimal solutions with surprising ease, whereas it is more likely that at

least one of the non-isomorphic optimal solutions is missed or that two isomorphic

solutions appear in the output when enumerating all non-isomorphic solutions.

Some empirical results for enumeration of all non-isomorphic solution to a com-

binatorial problem are given in Section 17.13.



17 Symmetry in Integer Linear Programming 679

17.12 Furthering the reach of isomorphism pruning

Isomorphism pruning and other techniques for handling symmetries in ILP help

push the boundaries of the problems that can be solved routinely. However, many

symmetric ILPs have a parametrized formulation yielding a never ending stream of

challenging problems. When trying to solve an ILP, it is possible to use some kind of

partial isomorphism pruning in order to speed up the process. For example, skipping

the isomorphism pruning at deep level in the tree is usually beneficial as illustrated

on a few examples in [96]. Another idea is to use the orbits of the variables not yet

fixed to some values for branching variable selection [88].

Another recent development is the idea of branching on constraints using orbits.

Given a branching corresponding to a valid disjunction a · x ≤ b or a · x ≥ b + 1

one son is created with the first constraint, while the second one is generated using

g(a) · x ≥ b+1 for all g ∈ G. Further, when the disjunction is chosen carefully, it is

sometimes possible to enumerate all non-isomorphic solution to a · x = t for some

values of t and use these solutions for solving the original problem. This technique

was pioneered by Östergård and Blass [85] in the combinatorics community and

used for improving the lower bound for the Football Pool problem using integer

programming [67, 86]. In [89], Ostrowski et al. formalize and generalize the tech-

nique and apply it successfully to solve Steiner Triple Systems and Covering Design

problems that were previously out of reach.

A special situation of practical interest occurs when the symmetry group G is the

product of a nontrivial group with a symmetric group. This is the typical situation

for partitioning problems of the form considered in Section 17.7.2 when symmetry

between the elements is also present. This happens for example for graph coloring

problems where the automorphism group of the graph is non trivial. As symmetric

groups are the most challenging ones to handle using the algorithms mentioned in

Section 17.10 while they can be handled easily without complex representation,

in [75] hybrid algorithms are used where the symmetric groups are handled directly.

Improvement in reported running times are significant.

17.13 Choice of formulation

When dealing with a symmetric problem, the choice of the formulation might

have a big impact on the performances of a solution technique. This is well known

for ILPs, and it is even more acute when dealing with symmetries. While tight-

ness of linear relaxation, number of variables, and constraint types can be used as

guides for choosing an ILP formulation, things are obscured when dealing with a

symmetric ILP, as different variable choices might yield very different symmetry

groups. One would expect that fewer variables and a symmetry group with smaller

order is better, but as described in Section 17.5 things are not so simple. In [110],

several formulations for constructing a particular class of combinatorial designs are

compared.



680 François Margot

Just to have a concrete example illustrating how alternative formulations can

make a big difference, consider the problem of constructing Balanced Incomplete

Block Designs (BIBD). A BIBD is a binary matrix with given dimensions b× v

with exactly k ones per row and constant dot product of value λ between any two of

its columns (see [29] for background material). The results of [46, 96] are obtained

using a nonlinear formulation with b · v binary variables, one for each entry in the

matrix. This yields a formulation where the symmetry group has order v! · b!. It

is not convenient to use these variables to get an ILP formulation. An alternative

linear formulation can be built from a list {R1, . . . ,Rq} of all possible binary rows

of length v and having exactly k ones. Define one integer variable xi taking values

between 0 and λ , indicating how many times row Ri appears in the solution, for

i = 1, . . . ,q. Constraints are that, for each pair j1, j2 of columns, the sum of all

variables corresponding to rows having 1s in columns j1 and j2 should be exactly λ .

This yields a formulation with v!
(v−k)!·k!

variables,
v(v−1)

2 constraints and a symmetry

group of order v!.

For many instances, the latter formulation seems much simpler to solve than

the former. The following table compares results for three codes for solving BIBD

problems. The comparison is far from ideal, since the three codes are run on differ-

ent machines and the formulations are not identical. Both GAP-ECLIPSE [46] and

SBDD+STAB [96] use the first formulation, while IsoP [75] uses the second one. It

is clear that SBDD+STAB outperforms GAP-ECLIPSE, but this should not be too

surprising as SBDD+STAB uses the particular (extremely simple) structure of the

symmetry group, while GAP-ECLIPSE is a code that can be used with any group.

Nevertheless, the difference in running time on the third problem is quite stunning,

possibly due to different branching variable choices. On the other hand, on hard

problems, IsoP seems significantly faster than SBDD+STAB, even after discount-

ing for the difference in machine speeds. It is likely that part of the difference can

be attributed to the formulation IsoP uses.

v k λ # solutions GAP-ECLIPSE SBDD+STAB IsoP

11 5 2 1 19 0 1

13 4 1 1 42 0 10

13 3 1 2 59,344 0 1

7 3 8 5,413 21,302 115

9 3 3 22,521 34,077 1,147

15 3 1 80 2,522 161

13 4 2 2,461 18,496 5,142

11 5 4 4,393 83,307 3,384

Table 17.2 Comparison of formulations for BIBD problems. Number of non isomorphic solutions
and times (rounded down) in seconds for enumerating them. Empty entries indicate that the corre-
sponding result is not available. Times for GAP-ECLIPSE are from [46], obtained on a 2.6GHz
Pentium IV processor. Times for SBDD+STAB are from [96], obtained a 1.4GHz Pentium Mobile
laptop running Windows XP. Times for IsoP are obtained on the machine mentioned in Sec-
tion 17.1.



17 Symmetry in Integer Linear Programming 681

17.14 Exploiting additional symmetries

So far, only symmetries of the original ILP (17.1) were considered. However,

while solving the ILP by branch-and-bound, it is sometimes the case that, at node a

of the enumeration tree, additional symmetries exist in ILPa, as seen in Exam-

ple 17.2 in Section 17.5. These symmetries can be used when solving ILPa, provided

that they can be identified. This last point is a big hurdle to clear. As pointed out

in Section 17.3, automatic symmetry detection is a difficult problem in itself. Few

papers attempt to use an automatic symmetry detection algorithm at nodes of the

tree, and when they do, results are unconvincing [88], as the time spend in search-

ing for additional symmetries is not compensated by a commensurate reduction in

the size of the enumeration tree. Successful exploitation of additional symmetries

are limited to cases where problem specific rules for generating the symmetries are

designed from the start [47]. Development of theory and algorithms for exploiting

additional symmetries can be found in [48].

References

1. F.A. Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah, Solving difficult instances of Boolean

satisfiability in the presence of symmetry, IEEE Transactions on CAD 22 (2003) 1117–1137.
2. K.M. Anstreicher, Recent advances in the solution of quadratic assignment problems, Math-

ematical Programming 97 (2003) 27–42.
3. D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The Traveling Salesman Problem, A

Computational Study, Princeton, 2006.
4. A. von Arnim, R. Schrader, and Y. Wang, The permutahedron of N-sparse posets, Mathe-

matical Programming 75 (1996) 1–18.
5. L. Babai, E.M. Luks, and Á. Seress, Fast management of permutation groups I, SIAM Journal

on Computing 26 (1997) 1310–1342.
6. E. Balas, A linear characterization of permutation vectors, Management Science Research

Report 364, Carnegie Mellon University, Pittsburgh, PA, 1975.
7. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance, Branch-

and-price: Column generation for solving huge integer programs, Operations Research 46
(1998) 316–329.

8. M.S. Bazaraa and O. Kirca, A branch-and-bound based heuristic for solving the quadratic

assignment problem, Naval Research Logistics Quarterly 30 (1983) 287–304.
9. R. Bertolo, P. Östergård, and W.D. Weakley, An updated table of binary/ternary mixed cov-

ering codes, Journal of Combinatorial Designs 12 (2004) 157–176.
10. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The User Language,

Journal of Symbolic Computations 24 (1997) 235–265.
11. C.A. Brown, L. Finkelstein, and P.W. Purdom, Backtrack searching in the presence of sym-

metry, Lecture Notes in Computer Science 357, Springer, 1989, pp. 99–110.
12. C.A. Brown, L. Finkelstein, and P.W. Purdom, Backtrack Searching in the Presence of Sym-

metry, Nordic Journal of Computing 3 (1996) 203–219.
13. C. Buchheim and M. Jünger, Detecting symmetries by branch&cut, Mathematical Program-

ming 98 (2003) 369–384.
14. C. Buchheim and M. Jünger, Linear optimization over permutation groups, Discrete Opti-

mization 2 (2005) 308–319.
15. D.A. Bulutoglu and F. Margot, Classification of orthogonal arrays by integer programming,

Journal of Statistical Planning and Inference 138 (2008) 654–666.



682 François Margot

16. G. Butler, Computing in permutation and matrix groups II: Backtrack algorithm, Mathemat-
ics of Computation 39 (1982) 671–680.

17. G. Butler, Fundamental Algorithms for Permutation Groups, Lecture Notes in Computer
Science 559, Springer, 1991.

18. G. Butler and J.J. Cannon, Computing in permutation and matrix groups I: Normal closure,

commutator subgroups, series, Mathematics of Computation 39 (1982) 663–670.
19. G. Butler and W.H. Lam, A general backtrack algorithm for the isomorphism problem of

combinatorial objects, Journal of Symbolic Computation 1 (1985) 363–381.
20. P.J. Cameron, Permutation Groups, London Mathematical Society, Student Text 45, Cam-

bridge University Press,1999.
21. M. Campêlo and R.C. Corrêa, A Lagrangian decomposition for the maximum stable set prob-

lem, Working Paper (2008), Universidade Federal do Ceará, Brazil.
22. M. Campêlo, V.A. Campos, and R.C. Corrêa, Um algoritmo de Planos-de-Corte para o

número cromático fracionário de um grafo, Pesquisa Operational 29 (2009) 179–193.
23. M. Campêlo, R. Corrêa, and Y. Frota, Cliques, holes and the vertex coloring polytope, Infor-

mation Processing Letters 89 (2004) 159–164.
24. M. Campêlo, V. Campos, and R. Corrêa, On the asymmetric representatives formulation for

the vertex coloring problem, Electronic Notes in Discrete Mathematics 19 (2005) 337–343.
25. M. Campêlo, V. Campos, and R. Corrêa, On the asymmetric representatives formulation for

the vertex coloring problem, Discrete Applied Mathematics 156 (2008) 1097–1111.
26. R.D. Cameron, C.J. Colbourn, R.C. Read, and N.C. Wormald, Cataloguing the graphs on 10

vertices, Journal of Graph Theory 9 (1985) 551–562.
27. T. Christof and G. Reinelt, Decomposition and parallelization techniques for enumerating

the facets of combinatorial polytopes, International Journal on Computational Geometry and
Applications 11 (2001) 423–437.

28. G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North Holland, 1997.
29. C.J. Colbourn and J.H. Dinitz (eds.): The CRC Handbook of Combinatorial Designs, CRC

Press, 2007.
30. G. Cooperman, L. Finkelstein, and N. Sarawagi, A random base change algorithm for per-

mutation groups, Proceedings of the International Symposium on Symbolic and Algebraic
Computations – ISSAC 90, ACM Press, 1990, pp. 161–168.

31. J. Crawford, M.L. Ginsberg, E. Luks, and A. Roy, Symmetry-breaking predicates for search

problems, KR’96: Principles of Knowledge Representation and Reasoning (L.C. Aiello,
J. Doyle, and S. Shapiro, eds.), 1996, pp. 148–159.

32. P. Darga, M.H. Liffiton, K.A. Sakallah, and I.L. Markov, Exploiting structure in symmetry

generation for CNF, Proceedings of the 41st Design Automation Conference, San Diego
2004, pp. 530–534.

33. Z. Degraeve, W. Gochet, and R. Jans, Alternative formulations for a layout problem in the

fashion industry, European Journal of Operational Research 143 (2002) 80–93.
34. M. Desrochers and F. Soumis, A column generation approach to the urban transit crew

scheduling problem, Transportation Science 23 (1989) 1–13.
35. A. Deza, K. Fukuda, T. Mizutani, and C. Vo, On the face lattice of the metric polytope,

Discrete and Computational Geometry: Japanese Conference (Tokyo, 2002), Lecture Notes
in Computer Science 2866, Springer, 2003, pp. 118–128.

36. A. Deza, K. Fukuda, D. Pasechnik, and M. Sato, On the skeleton of the metric polytope, Dis-
crete and Computational Geometry: Japanese Conference (Tokyo, 2000), in Lecture Notes
in Computer Science 2098, Springer, 2001, pp. 125–136.

37. Y. Dumas, M. Desrochers, and F. Soumis, The pickup and delivery problem with time win-

dows, European Journal of Operations Research 54 (1991) 7–22.
38. M. Elf, C. Gutwenger, M. Jünger, and G. Rinaldi, Branch-and-cut algorithms for combina-

torial optimization and their implementation in ABACUS, in [59] (2001) 155–222.
39. T. Fahle, S. Shamberger, and M. Sellmann, Symmetry breaking, Proc. 7th International Con-

ference on Principles and Practice of Constraint Programming – CP 2001, Lecture Notes in
Computer Science 2239, Springer, 2001, pp. 93–107.



17 Symmetry in Integer Linear Programming 683

40. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh, Symmetry in

matrix models, working paper APES-30-2001, 2001.
41. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh, Breaking row

and column symmetries in matrix models, Proc. 8th International Conference on Principles
and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science
2470, Springer, 2002, pp. 462–476.

42. P. Flener, J. Pearson, M. Sellmann, P. van Hentenryck, and M. Ågren, Dynamic structural

symmetry breaking for constraint satisfaction problems, DOI 10.1007/s10601-008-9059-7,
Constraints 14 (2009).

43. F. Focacci and M. Milano, Global cut framework for removing symmetries, Proc. 7th Interna-
tional Conference on Principles and Practice of Constraint Programming – CP 2001, Lecture
Notes in Computer Science 2239, Springer, 2001, pp. 77–92.

44. E.J. Friedman, Fundamental domains for integer programs with symmetries, Proceedings of
COCOA 2007, Lecture Notes in Computer Science 4616, 2007, pp. 146–153.

45. I.P. Gent, W. Harvey, and T. Kelsey, Groups and constraints: Symmetry breaking during

search, Proc. 8th International Conference on Principles and Practice of Constraint Program-
ming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 415–430.

46. I.P. Gent, W. Harvey, T. Kelsey, and S. Linton, Generic SBDD using computational group

theory, Proc. 9th International Conference on Principles and Practice of Constraint Program-
ming – CP 2003, Lecture Notes in Computer Science 2833, Springer, 2003, pp. 333–347.

47. I.P. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B. Smith, Conditional symme-

try breaking, Proc. 11th International Conference on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science 3709, 2005, pp. 333–347.

48. I.P. Gent, T. Kelsey, S.T. Linton, J. Pearson, and C.M. Roney-Dougal, Groupoids and condi-

tional symmetry, Proc. 13th International Conference on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science 4741, 2007, pp. 823–830.

49. I.P. Gent, K.E. Petrie, and J.-F. Puget, Symmetry in constraint programming, Handbook of
Constraint Programming (F. Rossi, P. van Beek, and T. Walsh eds.), Elsevier, 2006, pp. 329–
376.

50. I.P. Gent and B.M. Smith, Symmetry breaking in constraint programming, Proceedings of
ECAI-2002, IOS Press, 2002, pp. 599–603.

51. D.M. Gordon and D.R. Stinson, Coverings, The CRC Handbook of Combinatorial Designs
(C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, 2007, pp. 365–372.

52. L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985.
53. H. Hämäläinen, I. Honkala, S. Litsyn, and P. Östergård, Football pools–A game for mathe-

maticians, American Mathematical Monthly 102 (1995) 579–588.
54. C.M. Hoffman, Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in

Computer Science 136, Springer, 1982.
55. D.F. Holt, B. Eick, and E.A. O’Brien, Handbook of Computational Group Theory, Chapman

& Hall/CRC, 2004.
56. R. Jans, Solving lotsizing problems on parallel identical machines using symmetry breaking

constraints, INFORMS Journal on Computing 21 (2009) 123–136.
57. R. Jans and Z. Degraeve, A note on a symmetrical set covering problem: The lottery problem,

European Journal of Operational Research 186 (2008) 104–110.
58. M. Jerrum, A compact representation for permutation groups, Journal of Algorithms 7 (1986)

60–78.
59. M. Jünger and D. Naddef (eds.), Computational Combinatorial Optimization, Lecture Notes

in Computer Science 2241, Springer, 2001.
60. V. Kaibel, M. Peinhardt, and M.E. Pfetsch, Orbitopal fixing, Proceedings of the 12th Interna-

tional Integer Programming and Combinatorial Optimization Conference (M. Fischetti and
D.P. Williamson, eds.), Lecture Notes in Computer Science 4513, Springer, 2007, pp. 74–88.

61. V. Kaibel and M.E. Pfetsch, Packing and partitioning orbitopes, Mathematical Programming
114 (2008) 1–36.

62. D.L. Kreher and D.R. Stinson, Combinatorial Algorithms, Generation, Enumeration, and

Search, CRC Press, 1999.



684 François Margot

63. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, The Traveling Salesman

Problem, Wiley, 1985.
64. J.S. Leon, On an algorithm for finding a base and a strong generating set for a group given

by generating permutations, Mathematics of Computation 35 (1980) 941–974.
65. J.S. Leon, Computing automorphism groups of combinatorial objects, Computational Group

Theory (M.D. Atkinson, ed.), Academic Press, 1984, pp. 321–335.
66. L. Liberti, Automatic generation of symmetry-breaking constraints, Proceedings of COCOA

2008, Lecture Notes in Computer Science 5165, 2008, pp. 328–338.
67. J. Linderoth, F. Margot, and G. Thain, Improving bounds on the football pool problem via

symmetry: Reduction and high-throughput computing, to appear in INFORMS Journal on
Computing, 2009.

68. C. Luetolf and F. Margot, A catalog of minimally nonideal matrices, Mathematical Methods
of Operations Research 47 (1998) 221–241.

69. E. Luks, Permutation groups and polynomial-time computation, Groups and Computation
(L. Finkelstein and W. Kantor, eds.), DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science 11 (1993) 139–175.

70. J.L. Marenco and P.A. Rey, The football pool polytope, Electronic Notes in Discrete Mathe-
matics 30 (2008) 75–80.

71. http://wpweb2.tepper.cmu.edu/fmargot/index.html
72. F. Margot, Pruning by isomorphism in branch-and-cut, Mathematical Programming 94

(2002) 71–90.
73. F. Margot, Small covering designs by branch-and-cut, Mathematical Programming 94 (2003)

207–220.
74. F. Margot, Exploiting orbits in symmetric ILP, Mathematical Programming 98 (2003) 3–21.
75. F. Margot, Symmetric ILP: Coloring and small integers, Discrete Optimization 4 (2007) 40–

62.
76. T. Mautor and C. Roucairol, A new exact algorithm for the solution of quadratic assignment

problems, Discrete Applied Mathematics 55 (1994) 281–293.
77. B.D. McKay, Nauty User’s Guide (Version 2.2), Computer Science Department, Australian

National University, Canberra.
78. B.D. McKay, Isomorph-free exhaustive generation, Journal of Algorithms 26 (1998) 306–

324.
79. A. Mehrotra and M.A. Trick, A column generation approach for graph coloring, INFORMS

Journal on Computing 8 (1996) 344–354.
80. A. Mehrotra and M.A. Trick, Cliques and clustering: A combinatorial approach, Operations

Research Letters 22 (1998) 1–12.
81. I. Méndez-Dı̀az and P. Zabala, A branch-and-cut algorithm for graph coloring, Discrete Ap-

plied Mathematics 154 (2006) 826–847.
82. W.H. Mills and R.C. Mullin, Coverings and packings, Contemporary Design Theory: A Col-

lection of Surveys (J.H. Dinitz and D.R. Stinson, eds.), Wiley, 1992, pp. 371–399.
83. G.L. Nemhauser and S. Park, A polyhedral approach to edge colouring, Operations Research

Letters 10 (1991) 315–322.
84. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1988.
85. P. Östergård and W. Blass, On the size of optimal binary codes of length 9 and covering

radius 1, IEEE Transactions on Information Theory 47 (2001) 2556–2557.
86. P. Östergård and A. Wassermann, A new lower bound for the football pool problem for six

matches, Journal of Combinatorial Theory Ser. A 99 (2002) 175–179.
87. J. Ostrowski, Personal communication, 2007.
88. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio, Orbital branching, IPCO 2007: The

Twelfth Conference on Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science 4513, Springer, 2007, pp. 104–118.

89. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio, Constraint orbital branching, IPCO
2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization,
Lecture Notes in Computer Science 5035, Springer, 2008, pp. 225–239.



17 Symmetry in Integer Linear Programming 685

90. M.W. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large scale

symmetric travelling salesman problems, SIAM Review 33 (1991) 60–100.
91. K.E. Petrie and B.M. Smith, Comparison of symmetry breaking methods in constraint pro-

gramming, In Proceedings of SymCon05, 2005.
92. F. Plastria, Formulating logical implications in combinatorial optimisation, European Journal

of Operational Research 140 (2002) 338–353.
93. J.-F. Puget, On the satisfiability of symmetrical constrainted satisfaction problems, Proceed-

ings of the 7th International Symposium on Methodologies for Intelligent Systems, Lecture
Notes in Artificial Intelligence 689, Springer, 1993, pp. 350–361.

94. J.-F. Puget, Symmetry breaking using stabilizers, Proc. 9th International Conference on Prin-
ciples and Practice of Constraint Programming – CP 2003, Lecture Notes in Computer Sci-
ence 2833, Springer, 2003, pp. 585–599.

95. J.-F. Puget, Automatic detection of variable and value symmetries, Proc. 11th International
Conference on Principles and Practice of Constraint Programming – CP 2005, Lecture Notes
in Computer Science 3709, Springer, 2005, pp. 475–489.

96. J.-F. Puget, Symmetry breaking revisited, Constraints 10 (2005) 23–46.
97. J.-F. Puget, A comparison of SBDS and dynamic lex constraints, In Proceeding of SymCon06,

2006, pp. 56–60.
98. A. Ramani, F.A. Aloul, I.L. Markov, and K.A. Sakallah, Breaking instance-independent sym-

metries in exact graph coloring, Journal of Artificial Intelligence Research 26 (2006) 191–
224.

99. A. Ramani and I.L. Markov, Automatically exploiting symmetries in constraint programming,
CSCLP 2004 (B. Faltings et al., eds.), Lecture Notes in Artificial Intelligence 3419, Springer,
2005, pp. 98–112.

100. R.C. Read, Every one a winner or how to avoid isomorphism search when cataloguing com-

binatorial configurations, Annals of Discrete Mathematics 2 (1978) 107–120.
101. P.A. Rey, Eliminating redundant solutions of some symmetric combinatorial integer pro-

grams, Electronic Notes in Discrete Mathematics 18 (2004) 201–206.
102. J.J. Rotman, An Introduction to the Theory of Groups, 4th edition, Springer, 1994.
103. D. Salvagnin, A Dominance Procedure for Integer Programming, Master’s thesis, University

of Padova, 2005.
104. E. Seah and D.R. Stinson, An enumeration of non-isomorphic one-factorizations and Howell

designs for the graph K10 minus a one-factor, Ars Combinatorica 21 (1986) 145–161.
105. Á. Seress, Nearly linear time algorithms for permutation groups: An interplay between the-

ory and practice, Acta Applicandae Mathematicae 52 (1998) 183–207.
106. Á. Seress, Permutation Group Algorithms, Cambridge Tracts in Mathematics 152, Cam-

bridge University Press, 2003.
107. H.D. Sherali, B.M.P. Fraticelli, and R.D. Meller, Enhanced model formulations for optimal

facility layout, Operations Research 51 (2003) 629–644.
108. H.D. Sherali and J.C. Smith, Improving discrete model representations via symmetry consid-

erations, Management Science 47 (2001) 1396–1407.
109. H.D. Sherali, J.C. Smith, and Y. Lee, Enhanced model representations for an intra-ring syn-

chronous optical network design problem allowing demand splitting, INFORMS Journal on
Computing 12 (2000) 284–298.

110. B. Smith, Reducing symmetry in a combinatorial design problem, Proc. 8th International
Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes
in Computer Science 2470, Springer, 2002, pp. 207–213.

111. B.M. Smith, S.C. Brailsford, P.M. Hubbard, and H.P. Williams, The progressive party prob-

lem: Integer linear programming and constraint programming compared, Constraints 1
(1996) 119–138.

112. R.G. Stanton and J.A. Bates, A computer search for B-coverings, in Combinatorial Mathe-
matics VII (R.W. Robinson, G.W. Southern, and W.D. Wallis, eds.), Lecture Notes in Com-
puter Science 829, Springer, 1980, pp. 37–50.

113. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007),
http://www.gap-system.org.



686 François Margot

114. P.H. Vance, Branch-and-price algorithms for the one-dimensional cutting stock problem,
Computational Optimization and Applications 9 (1998) 111–228.

115. P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser, Solving binary cutting stock

problems by column generation and branch-and-bound, Computational Optimization and
Applications 3 (1994) 111–130.

116. P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser, Airline crew scheduling: A new

formulation and decomposition algorithm, Operations Research 45 (1997) 188–200.
117. L.A. Wolsey, Integer Programming, Wiley, 1998.
118. M. Yannakakis, Expressing combinatorial optimization problems by linear programs, Journal

of Computer and System Sciences 43 (1991) 441–466.



Chapter 18

Semidefinite Relaxations for Integer
Programming

Franz Rendl

Abstract We survey some recent developments in the area of semidefinite opti-

mization applied to integer programming. After recalling some generic modeling

techniques to obtain semidefinite relaxations for NP-hard problems, we look at the

theoretical power of semidefinite optimization in the context of the Max-Cut and

the Coloring Problem. In the second part, we consider algorithmic questions related

to semidefinite optimization, and point to some recent ideas to handle large scale

problems. The survey is concluded with some more advanced modeling techniques,

based on matrix relaxations leading to copositive matrices.

18.1 Introduction

Looking back at fifty years of integer programming, there is wide agreement

that Polyhedral Combinatorics is a major ingredient to approach NP-hard integer

optimization problems. Having at least a partial description of the convex hull of all

feasible solutions of an integer program can be exploited by the strong algorithmic

machinery available to solve linear programming problems, notably the Simplex

method. First systematic attempts to use polyhedral techniques to solve 0/1 integer

optimization go back to [10].

We consider an abstract combinatorial optimization problem (COP) given as fol-

lows. Let E be a finite set and let F be a (finite) family of subsets of E. The fam-

ily F denotes the set of feasible solutions of (COP). Each e ∈ E has a given integer

cost ce. We define the cost c(F) of F ∈ F to be

c(F) := ∑
e∈F

ce.

Franz Rendl
Department of Mathematics, Alpen-Adria Universität, Klagenfurt, Austria
e-mail: franz.rendl@uni-klu.ac.at

687
 

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_18, © Springer-Verlag Berlin Heidelberg 2010 



688 Franz Rendl

The problem (COP) now consists in finding a feasible solution F of minimum

cost:

(COP) z∗ = min{c(F) : F ∈ F}.

The traveling salesman problem (TSP) could be modeled with E being the edge set

of the underlying graph G. An edge set F is in F exactly if it is the edge set of a

Hamiltonian cycle in G.

By assigning to each F ∈ F a characteristic vector xF ∈ {0,1}n with (xF)e = 1

if and only if e ∈ F , we can write (COP) as a linear program as follows. Let

P := conv{xF : F ∈ F} denote the convex hull of the incidence vectors of feasi-

ble solutions. Then it is clear that

z∗ = min{cT xF : F ∈ F} = min{cT x : x ∈ P}.

This is the basic principle underlying the polyhedral approach to solve combinato-

rial optimization problems.

As an example, consider F to be the set of all permutation matrices. Birkhoff’s

theorem states that the convex hull of permutation matrices is the polyhedron of

doubly stochastic matrices:

conv{X : X ∈ Π} = Ω .

For notation, see the end of this section. Hence the combinatorial problem of finding

a permutation φ minimizing ∑i ci,φ(i) can be solved through the linear program

min{〈C,X〉 : X ∈ Ω}.

The practical difficulty lies in the fact that in general the polyhedron P is not easily

available. The use of a computationally tractable partial description of P in combina-

tion with systematic enumeration, like Branch and Bound, has led to quite successful

solution methods for a variety of combinatorial optimization problems like the TSP,

see e.g., [47]. It turned out however, that for some prominent NP-hard problems like

Stable-Set or Max-Cut, this polyhedral approach was not as successful as one might

have hoped in view of the results for TSP, see e.g., [5].

This motivated the study of more powerful approximation techniques for (COP).

One such possibility consists in studying matrix liftings of the form

M := conv{xF xT
F : F ∈ F}, (18.1)

see e.g., [53, 69, 70]. Any relaxation based on M lies in the space Sn of symmetric

matrices, rather than Rn, the “natural” space of (COP). The modeling power of using

M comes from the fact that any quadratic constraint on x ∈ P, such as xix j = 0,

translates into a linear constraint on X ∈M , such as xi j = 0. Moreover, any X ∈M

is positive semidefinite.

Polyhedral implications of working with M instead of P are investigated e.g.,

in [53, 4, 69] under the key words “lift and project”. Using the condition that M is

contained in the cone



18 Semidefinite Relaxations for Integer Programming 689

S
+

n := {X ∈ Sn : X º 0}

of positive semidefinite matrices leads to semidefinite relaxations which are a gen-

eralization of linear programs. Formally, a semidefinite program, SDP for short, is

defined by the data C,A1, . . . ,Am ∈ Sn and b ∈ Rm and consists of the following

(SDP) zp = inf{〈C,X〉 : 〈Ai,X〉 = bi, i = 1, . . . ,m, X º 0}. (18.2)

In this chapter we will consider relaxations of integer programs which are based

on SDP, rather than purely polyhedral combinatorics. We first recall some basics

about SDP in Section 18.2. In Section 18.3 various modeling ideas are described

which all lead to SDP relaxations. SDP as generalization of LP often provides tighter

approximations, at increased computational cost. The theoretical power of SDP to

approximate some NP-hard optimization problems is presented in Section 18.4. The

hyperplane rounding idea of Goemans and Williamson [20] turns out to be a generic

method to generate provably good feasible solutions for a variety of problems. In

Section 18.5 we turn to algorithms for solving SDP. While interior-point based al-

gorithms are still the method of choice, it turns out that large scale problems are

beyond the scope of these algorithms and alternatives, capable of handling an arbi-

trary number of constraints at least approximately, are necessary. Several of these are

discussed in 18.5. Finally, we touch some more recent modeling techniques which

go beyond SDP in Section 18.6.

This article lines up with several survey papers devoted to the connection be-

tween semidefinite optimization and integer programming. The interested reader is

referred to [46] for an extensive summary on the topic covering the development

until 2003. The surveys by Lovász [52], Goemans [19] and Helmberg [27] all fo-

cus on the same topic, but also reflect the scientific interests and preferences of the

respective authors. The present paper is no exception to this principle. The material

selected, and also omitted, reflects the author’s subjective view on the subject. Since

the scientific area covered here is still under rapid development, the present survey

is far from complete. Some discussion and pointers to material not covered will be

given at the end of each chapter.

We introduce some notation. The vector of all ones is denoted e, and J = eeT is

the all-ones matrix. The identity matrix is denoted by I = (e1, . . . ,en). Thus the ei

represent the standard unit vectors. For i 6= j we define Ei j = eie
T
j + e je

T
i .

The set of symmetric matrices is denoted by S and S + denotes the closed

convex cone of semidefinite matrices. Its interior is the set of definite matri-

ces, denoted S ++. We also use the cone C of copositive matrices, given by

C = {X : vT Xv > 0 ∀ vectors v > 0}. Its dual cone C ∗ consists of the set of com-

pletely positive matrices, C ∗ = {X : X = VV T , V > 0 is n× k}. The standard sim-

plex is ∆ = {x : x > 0, eT x = 1}. The convex hull of a set S is denoted by conv(S). We

denote by Π the set of permutation matrices and by Ω the set of doubly stochastic

matrices, Ω = {X : Xe = XT e = e,X > 0}. For a,b ∈ Rn,〈a,b〉+ denotes the max-

imal scalar product of a and b, if the entries in a and b can be permuted arbitrarily.



690 Franz Rendl

It is given e.g., by sorting the entries in both a and b in nondecreasing order. The

minimal scalar product 〈a,b〉− is defined analogously.

If A and B are matrices of the same order, then the Hadamard or elementwise

product is C = A ◦ B with ci j = ai jbi j. The Kronecker product (or tensor prod-

uct) A⊗B of two matrices A and B consists of the matrix of all pairwise products of

elements from A and B. Formally, if A = (ai j) is m×n and B is p×q, then

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB


 .

The operator Diag : Rn 7→ Sn maps a vector y to the diagonal matrix Diag(y), its

adjoint mapping diag(X) extracts the main diagonal from the matrix X .

If G is a graph, and S ⊆V (G) is a subset of its vertices, we denote by δ (S) the set

of all edges i j such that i ∈ S, j /∈ S. The neighbourhood N(i) of vertex i ∈V (G) is

the set of all vertices, adjacent to i,N(i) = { j : i j ∈E(G)}. The complement graph G

of a graph G has edges i j ∈ E(G) whenever i 6= j and i j /∈ E(G).

18.2 Basics on semidefinite optimization

Problem (18.2) is a convex optimization problem, because a linear function is

optimized over the convex set

Fp := {X : A(X) = b, X º 0}.

The linear operator A(X) maps matrices into Rm and has A(X)i = 〈Ai,X〉. Its ad-

joint AT , defined through the adjoint identity

yT A(X) = 〈AT (y),X〉

is given by AT (y) = ∑i yiAi. The problem (SDP) as a convex problem possesses a

dual, which is most conveniently derived through the Lagrangian

L(X ,y) = 〈C,X〉+ yT (b−A(X)) = bT y+ 〈C−AT (y),X〉 (18.3)

and the Minimax inequality

inf
u∈U

sup
v∈V

f (u,v) > sup
v∈V

inf
u∈U

f (u,v),

which holds for any function f : U ×V 7→ R. To get the dual, we first observe

sup
y

L(X ,y) =

{
〈C,X〉, if A(X) = b,

+∞, otherwise.



18 Semidefinite Relaxations for Integer Programming 691

To see what happens to infXº0 L(X ,y) we recall Fejer’s theorem.

Theorem 18.1. The matrix M ∈ S + if and only if 〈M,X〉 > 0 ∀X ∈ S +.

In the language of convex analysis, this translates into the fact that the cone dual to

the semidefinite matrices is again the cone of semidefinite matrices. Recall that the

dual cone K∗ of the cone K ⊆ Rd is by definition

K∗ := {y ∈ Rd : 〈y,x〉 > 0 ∀x ∈ K}.

Now if C − AT (y) º 0, then by Fejer’s theorem infXº0 〈C − AT (y),X〉 = 0. On

the other hand, if C −AT (y) /∈ S +, then there must exist some X º 0 such that

〈C−AT (y),X〉 < 0. We conclude

inf
Xº0

L(X ,y) =

{
bT y, if C−AT (y) º 0,

−∞, otherwise.
(18.4)

Therefore (18.2) is equivalent to zp = infXº0 supy L(X ,y) and the Minimax inequal-

ity implies

zp > sup
y

inf
Xº0

L(X ,y) =: zd .

The problem defining zd can be rewritten using (18.4) to yield

zd = sup bT y such that C−AT (y) º 0. (18.5)

The last problem is again a semidefinite program, which is usually called the dual

of (18.2). In contrast to linear programming, strong duality (zp = zd) does not hold

in general. Moreover, attainment of sup and inf only holds under some additional

conditions. The following condition, often called Slater’s constraint qualification,

insures zp = zd . Problem (18.2) satisfies the Slater constraint qualification if there

exists a positive definite matrix X ≻ 0 such that A(X) = b. Such matrices are often

called strictly feasible.

Theorem 18.2. (see e.g., Duffin [14]) If (18.2) satisfies the Slater condition and zp is

finite, then the dual problem is feasible, the dual supremum is attained, and zp = zd .

In most of the semidefinite relaxations considered in this chapter, both the primal

and the dual problem satisfy the Slater condition, therefore we have the following

situation. Suppose

∃X ≻ 0 such that A(X) = b and ∃y with C−AT (y) ≻ 0. (18.6)

Then (X ,y,Z) is optimal for (18.2) and (18.5) if and only if

A(X) = b, X º 0, C−AT (y) = Z º 0, 〈Z,X〉 = 0. (18.7)

Note that in the dual problem, we have introduced for notational and algorithmic

convenience the slack matrix Z in the formulation. The condition 〈Z,X〉 = 0 is a

consequence of 0 = zp − zd = 〈C,X〉−bT y = 〈C−AT (y),X〉.



692 Franz Rendl

18.3 Modeling with semidefinite programs

The basic idea to come to semidefinite relaxations of (COP), and more gener-

ally integer programs, consists in working with M from (18.1), instead of P. Going

from Rn to the space of symmetric matrices Sn allows to replace quadratic con-

straints and cost functions by linear ones. As a first example we consider a semidef-

inite relaxation of quadratic 0/1 optimization.

18.3.1 Quadratic 0/1 optimization

For given Q ∈ Sn we consider

(QP) min
x∈{0,1}n

xT Qx. (18.8)

This problem is equivalent to Max-Cut, see e.g., [25, 5], and therefore NP-hard. We

may assume without loss of generality that there is no additional linear term cT x in

the objective function (18.8), because x2
i = xi allows us to add c to the main diagonal

of Q. The cost function can be rewritten as

xT Qx = 〈Q,xxT 〉.

Following the linearization idea we introduce a matrix variable X taking the role

of xxT . Since x2
i = xi, the main diagonal of X is equal to x. The nonconvex constraint

X − xxT = 0 is relaxed to X − xxT º 0. The Schur-complement lemma shows that

this set is convex.

Lemma 18.1. Let M =

(
A B

BT C

)
be symmetric and A invertible. Then M º 0 if and

only if A º 0 and C−BT A−1B º 0.

Proof. This well known fact follows from the similarity transformation

(
I 0

−BT A−1 I

)(
A B

BT C

)(
I 0

−BT A−1 I

)T

=

(
A 0

0 C−BT A−1B

)
.

⊓⊔

Hence we get the following SDP relaxation of (QP):

min〈Q,X〉 such that X − xxT º 0, diag(X) = x. (18.9)

We use the Schur-complement lemma to replace the quadratic condition X−xxT º 0

by

(
1 xT

x X

)
º 0.



18 Semidefinite Relaxations for Integer Programming 693

18.3.2 Max-Cut and graph bisection

Let A be the (weighted) adjacency matrix of a graph G on n vertices. A basic

graph optimization problem consists in separating the vertex set V of G into two

sets S and V\S such that

∑
i j∈δ (S)

ai j

is optimized. In case of Max-Cut one has

(MC) zmc = max
S⊆V

∑
i j∈δ (S)

ai j. (18.10)

The Bisection Problem has an additional input parameter s, specifying |S| = s, and

is defined as follows.

(BS) zbs = min
S⊆V,|S|=s

∑
i j∈δ (S)

ai j (18.11)

The special case s = n
2 is often called Equicut. Kernighan and Lin [41] investi-

gated various local improvement heuristics for this problem, see also [38]. All these

bisection problems are well known to be NP-hard. A simple integer program for

these problems can be obtained as follows. Subsets S ⊆ V are modeled by vectors

x ∈ {−1,1}n with xi = 1 exactly if i ∈ S. Then e = i j ∈ δ (S) precisely if xix j = −1.

A convenient way to model the objective function makes use of the Laplacian, as-

sociated to A, which is defined as follows.

L = LA = Diag(Ae)−A (18.12)

A simple calculation shows that

∑
i j∈δ (S)

ai j = ∑
i j∈E

ai j

1− xix j

2
=

1

4
xT Lx, (18.13)

if x ∈ {−1,1}n represents S. Hence we have

zmc = max
x∈{−1,1}n

1

4
xT Lx,

zbs = min
x∈{−1,1}n,eT x=n−2s

1

4
xT Lx.

The linearization idea gives again xT Lx = 〈L,xxT 〉, and we introduce X = xxT and

now have diag(X) = e. The cardinality constraint is easily incorporated using

|eT x| = n−2s if and only if 〈J,xxT 〉 = (n−2s)2.

Hence we get the SDP relaxation of Max-Cut as



694 Franz Rendl

zmc,sdp = max
1

4
〈L,X〉 such that diag(X) = e, X º 0, (18.14)

and for bisection as

zbs,sdp = min
1

4
〈L,X〉 such that diag(X) = e, 〈J,X〉 = (n−2s)2, X º 0.

Quadratic 0/1 optimization can linearly (and bijectively) be mapped to optimiza-

tion in −1/1 variables, showing the claimed equivalence between Max-Cut and

quadratic 0/1 optimization. One may therefore wonder whether there is also some

relation between the two relaxations (18.9) and (18.14). It is not too difficult to ver-

ify that these relaxations are in fact also equivalent, see e.g., [31, 45]. Helmberg [26]

provides an explicit transformation between these problems, which preserves struc-

ture, like sparsity. The equivalence of Max-Cut and quadratic 0/1 optimization was

already pointed out by Hammer, see [25].

18.3.3 Stable sets, cliques and the Lovász theta function

Perhaps the earliest use of SDP to get relaxations of NP-hard problems goes back

to a fundamental paper by Lovász in 1979, see [51]. Consider the stable set problem

in an unweighted graph G. We recall that a set S ⊆V (G) is stable if the vertices in S

are pairwise nonadjacent. Consequently, S forms a complete subgraph in the com-

plement graph G of G. The stable set problem asks to find a stable set of maximum

cardinality in G. The cardinality of a largest stable set in G, denoted α(G), is called

the stability number of G. Modeling stable sets by their characteristic vectors, we

get

(STAB) α(G) = max{eT x : xix j = 0 ∀i j ∈ E(G), x ∈ {0,1}n}. (18.15)

Following our linearization idea for 0/1 optimization, we obtain the following SDP

relaxation, which was studied in some detail in [53].

α(G) 6 ϑ1(G) = max{eT x : X −xxT º 0, diag(X) = x, xi j = 0 ∀i j ∈ E}. (18.16)

Note in particular that the quadratic equations in x are now linear in X . This model

can in fact be simplified by eliminating x. Supppose x is the characteristic vector of

a (nonempty) stable set. Then

X =
1

xT x
xxT

satisfies the following conditions:

X º 0, tr(X) = 1, xi j = 0 ∀i j ∈ E, rank(X) = 1.

Moreover



18 Semidefinite Relaxations for Integer Programming 695

〈J,X〉 =
1

xT x
(eT x)2 = eT x,

because eT x = xT x. The following result is well known.

Lemma 18.2.

α(G) = max{〈J,X〉 : X º 0, tr(X) = 1, xi j = 0 ∀i j ∈ E, rank(X) = 1}. (18.17)

Proof. Feasibility of X implies X = aaT where the vector a is nonzero only on some

stable set S, because xi j = aia j = 0 ∀i j ∈ E. Looking at the nonzero submatrix aSaT
S

indexed by S, the cost function becomes (eT aS)
2, which is maximal exactly if aS is

parallel to the all ones vector e. Hence a is (a multiple of) the characteristic vector

of S and the maximization forces S to be a maximum stable set. ⊓⊔

Leaving out the (nonconvex) rank condition, we obtain another SDP relaxation

for α(G):

α(G) 6 ϑ2(G) = max{〈J,X〉 : tr(X) = 1, xi j = 0 ∀i j ∈ E, X º 0}.

This is the relaxation proposed by Lovász in [51]. Lovász and Schrijver [53] show

that ϑ1(G) = ϑ2(G) and this function is usually called the Lovász theta function

ϑ(G).
Let us introduce the linear operator AG : Sn 7→ RE associated to the edge set E

of G,

AG(X)i j = 〈X ,Ei j〉 = xi j + x ji = 2xi j ∀i j ∈ E

and its adjoint

AT
G(y) = ∑

i j∈E

yi jEi j.

Using these operators, we get the following primal-dual pair of semidefinite pro-

grams for ϑ(G).

ϑ(G) = max{〈J,X〉 : tr(X) = 1, AG(X) = 0, X º 0} (18.18)

= min{t : tI +AT
G(y) º J}.

Strong duality is justified by the observation that 1
n
I is strictly feasible for the max-

imization, and setting y = 0 and t = n+1 gives a strictly feasible point for the min-

imization problem. We will now use the adjoint AT to express symmetric matrices

in the following way. Let Z ∈ Sn, then

Z = Diag(y)+AT
G(u)+AT

G
(v),

if we define

yi = zii, ui j = zi j ∀i j ∈ E(G), vi j = zi j ∀i j ∈ E(G),

Suppose that X is feasible for (18.18). Then



696 Franz Rendl

X = Diag(x)+AT
G
(ξ ),

if we set xi = xii and ξi j = xi j ∀i j ∈ E(G). By construction xi j = 0 ∀i j ∈ E(G). We

substitute for X and obtain

ϑ(G) = max{eT x+2eT ξ : eT x = 1, Diag(x)+AT
G
(ξ ) º 0}. (18.19)

Both models are mathematically equivalent, but from a computational point of

view (18.18) is preferable in case |E| is small. If |E| is large (G is dense), then

the second formulation (18.19) is more efficient, because in this case the number

of variables |E(G)| is small. Computational experience with both models is given

in [15]. It turns out that ϑ(G) can be computed for graphs with n 6 200 in acceptable

time using interior-point methods and the sparse or the dense model depending on

|E(G)|. From [15] it is also clear that interior-point methods cannot handle graphs

with n > 200 and |E(G)| ≈ n2

4 , which is the worst case in terms of computational

effort for both models, see also Table 18.2 below.

18.3.4 Chromatic number

A k-coloring of a graph G is a k-partition (V1, . . . ,Vk) of the vertex set V (G) such

that each Vi is a stable set in G. The chromatic number χ(G) is the smallest value k,

such that G has a k-coloring. Let us encode k-partitions of V (G) by the characteristic

vectors si for Vi, thus

si ∈ {0,1}n and (si)u = 1 if u ∈Vi and 0 otherwise. (18.20)

The partition property implies that si 6= 0 and that ∑i si = e. Let ni := |Vi| denote the

cardinality of Vi. We call the matrix

M = ∑
i

sis
T
i (18.21)

the partition matrix associated to the k-partition (V1, . . . ,Vk). Note that rank(M) = k.

It is clear from the definition that for any k-partition matrix M there exists a permu-

tation matrix P ∈ Π such that

M = P




Jn1
0 . . . 0

0 Jn2

. . .
...

...
. . .

. . . 0

0 . . . 0 Jnk




PT .

Partition matrices have the following characterization.



18 Semidefinite Relaxations for Integer Programming 697

Lemma 18.3. Let M be a symmetric 0/1 matrix. Then M is a k-partition matrix if

and only if

diag(M) = e, rank(M) = k, M º 0. (18.22)

Proof. Suppose that M is a k-partition matrix. Then this matrix obviously satis-

fies (18.22). Conversely let M satisfy (18.22). We need to show that M is (after

appropriate renumbering) a direct sum of all ones blocks. Thus we need to show

that mi j = mik = 1 implies m jk = 1. If this is not the case then the submatrix of M,

indexed by i, j,k is 


1 1 1

1 1 0

1 0 1


 ,

which has negative determinant, contradicting M º 0. Therefore M is indeed a direct

sum of all ones blocks, and the rank condition shows that there must be k such

blocks. ⊓⊔

This leads to the following somewhat nonstandard way to define χ(G).

χ(G) = min{rank(M) : mi j ∈ {0,1}, diag(M) = e, mi j = 0 ∀i j ∈ E, M º 0}.

It turns out that in fact we can get rid of both the rank and the semidefiniteness

condition on M by introducing another semidefiniteness constraint.

Lemma 18.4. Let M be a symmetric 0/1 matrix. Then M is a k-partition matrix if

and only if

diag(M) = e, (tM− J º 0 ⇐⇒ t > k). (18.23)

This result is implicitly proved in many sources, see e.g., [51]. A simple argument

can be found also in [15]. Here we only take a closer look at how the semidefinite-

ness condition comes about. Looking at principal submatrices of tM − J, we first

observe that any minor with two rows from the same partition block is singular, be-

cause it contains two identical rows. Hence nonsingular principal submatrices can

have at most one row from each partition block. Therefore these must be of the form

tIs − Js

where s 6 k denotes the order of the submatrix. Clearly, this matrix is semidefinite

if and only if t > s, and since s could be as large as k we get the desired condition.

Using this result we can express the chromatic number as the optimal solution of

the following SDP in binary variables:

χ(G) = min{t : tM−J º 0, diag(M) = e, mi j = 0 ∀i j ∈ E,mi j ∈ {0,1}}. (18.24)

To get a tractable relaxation, we leave out the 0/1 condition and parametrize the

matrix tM as tM = tI +AT
G
(y). We get the following SDP as lower bound on χ(G):

χ(G) > ϑ(G) = min{t : tI +AT
G
(y) º J}. (18.25)



698 Franz Rendl

Comparing with the minimization problem in (18.18), we see that the above SDP is

indeed the dual applied to the complement graph. Hence we have shown the sand-

wich theorem of Lovász [51].

Theorem 18.3.

α(G) 6 ϑ(G) 6 χ(G).

The notation for ϑ is not uniform in the literature. If one starts from the clique

number of a graph G, it seems more natural to denote by ϑ(G) what we denote

by ϑ(G).
The problem (18.25) can be rephrased in the following way: Minimize z11 where

the matrix Z = (zi j)º 0,zii = z11 ∀i, zi j =−1 ∀i j ∈ E(G). This follows simply from

Z = tI +AT
G
(y)− J. This problem in turn can be rewritten as

min{λ : V º 0,vii = 1 ∀i, vi j = λ ∀i j ∈ E(G)}. (18.26)

The optimal value ϑ in (18.25) gives λ = − 1
ϑ−1 . This last model will be used later

on to analyze algorithms for graph coloring, see [39].

18.3.5 General graph partition

The concept of partition matrices from (18.23) in the context of coloring can

also be recycled to model the following general partition problems. Given the

weighted adjacency matrix A of a graph G on n nodes and an integer 2 6 k 6 n,

the general k-partition problem consists in finding a k-partition (S1, . . . ,Sk) of V (G)
with |Si| > 1 such that the total weight of edges joining different partition blocks

is optimized. In case of maximization, this problem also runs under the name of

Max-k-Cut. Max-Cut, see the previous sections, corresponds to the special case

k = 2. We represent partitions again through the respective characteristic vectors si,

see (18.20), which we collect in the matrix S = (s1, . . . ,sk). The characteristic vec-

tor si ∈ {0,1}n for the partition block Si allows us to express the weight of the edges

in δ (Si) using the Laplacian L, see (18.12) as follows,

∑
rs∈δ (Si)

ars = sT
i Lsi.

Therefore
1

2
〈S,LS〉 =

1

2 ∑
i

sT
i Lsi

gives the total weight of all edges joining different partition blocks. We obtain a

semidefinite relaxation of Max-k-Cut using (18.23), once 〈S,LS〉 = 〈L,SST 〉 is used

to replace SST by a new matrix variable. For notational convenience we introduce

the matrix variable Y = 1
k−1 (kSST −J). (Note that SST takes the role of M in (18.23)

and that Le = 0 implies 〈L,J〉 = 0.)



18 Semidefinite Relaxations for Integer Programming 699

max
{k−1

2k
〈L,Y 〉 : diag(Y ) = e, Y º 0, yi j > −

1

k−1
∀i 6= j

}
. (18.27)

The sign constraints follow from SST > 0. This model has been investigated theo-

retically by Frieze and Jerrum, see [18] and also by DeKlerk et al. [16].

A more restrictive version of k-partition, called k-Equicut, asks for k-partitions

with |Si| =
n
k
∀i. In this case the objective is to minimize the total weight of edges

cut. A feasible partition (S1, . . . ,Sk) for this problem implies the following additional

constraint

ST e =
n

k
e

which together with Se = e (note the varying dimension of e) gives

SST e =
n

k
e,

hence n
k

is eigenvalue of SST with eigenvector e, for any feasible partition matrix S.

Setting X = SST , this gives the following relaxation of k-Equicut.

min
{1

2
〈L,X〉 : diag(X) = e, Xe =

n

k
e, X º 0, X > 0

}
. (18.28)

We note that this model does not contain the condition kX º J º 0, but only the

weaker X º 0. The following simple observation explains why.

Lemma 18.5. Let A ∈ S +
n and suppose Av = λv holds with ‖v‖ = 1. Then

A−λvvT º 0.

Proof. The spectral decomposition theorem for A yields A = λvvT + ∑i λiviv
T
i

where we identified one of the eigenvalues of A as λ . A º 0 implies λi > 0 hence

A−λvvT = ∑i λiviv
T
i º 0. ⊓⊔

This justifies the semidefiniteness constraint X º 0 in (18.28). It is also interesting to

note that the sign constraint X > 0 together with the eigenvector condition Xe = n
k
e

implies that
n

k
I −X º 0

because in this case ‖X‖1 = n
k
. Therefore, any eigenvalue λ of X satisfies |λ | 6 n

k
.

In summary, the constraints in (18.28) imply

n

k
I º X º

1

k
J.

It should be observed that both SDP relaxations for partitioning are formulated in

the space of symmetric n×n matrices, but the models include roughly n2

2 sign con-

straints, which we will later see to be a computational challenge. Further details in

this direction can be found e.g., in [40] and [50].



700 Franz Rendl

We close this section with a bound on general k-partition, proposed by Donath

and Hoffman in 1973, see [13]. In view of the results from the subsequent Sec-

tion 18.3.7 on connections between eigenvalue optimization and semidefinite pro-

gramming, this result may well be the first SDP bound of a combinatorial optimiza-

tion problem, but in disguised form, see below.

We consider k-partition, where the cardinalities mi of Si are also specified through

integers

m1 > . . .mk > 1 and ∑
i

mi = n.

Minimizing the weight cut by S is equivalent to maximizing the weight not cut by S,

which is equal to 1
2 〈S,AS〉.

The starting point in [13] is the observation that any feasible partition matrix S

satisfies

ST S = diag(m1, . . . ,mk) =: M.

In words, the columns of S are pairwise orthogonal. An upper bound on the total

weight not cut is therefore given by

max
ST S=M

〈S,AS〉 = max
Y T Y=Ik

〈Y,AY M〉 =
k

∑
i=1

miλi(A), (18.29)

where λ1(A) > . . . > λn(A) are the eigenvalues of A in nonincreasing order.

The first equality follows from the substitution S = Y M
1
2 and the second from

Theorem 18.4 below. The last problem can in fact be expressed as the optimal so-

lution of a semidefinite program, see Section 18.3.7. Further details and extensions

on using this approach are contained e.g., in [66, 40].

18.3.6 Generic cutting planes

In the previous sections we saw SDP relaxations of a variety of graph optimiza-

tion problems. The matrix dimension typically was n = |V (G)| and the number of

(primal) constraints was n in case of (18.14) and (18.9). The SDP model of ϑ(G) can

have up to n2

4 equations, depending on |E(G)|, and which of the two computational

models (18.18) and (18.19) is used. The graph partition models (18.27) and (18.28)

both have roughly n2

2 sign constraints. All these models can of course be tightened

by adding further constraints valid for all points in M .

In the following we explain a generic way to tighten these semidefinite relax-

ations by adding further valid constraints. The class of hypermetric inequalities

provides a huge source of additional cutting planes, some of which also have an

explicit combinatorial interpretation. To explain this class we concentrate first on

the −1/1 model and the related relaxation (18.14).

Suppose b is an integer vector and bT e = 1. Then bT x is odd ∀x ∈ {−1,1}n,

because any x ∈ {−1,1}n can be obtained from e by successively changing the sign



18 Semidefinite Relaxations for Integer Programming 701

of some component i, which changes the inner product with b by 2bi, hence the

parity is unchanged. Let B denote the set of all such vectors b,

B := {b integer : eT b = 1}.

As a consequence, b ∈ B implies |bT x| > 1 ∀x ∈ {−1,1}n, and therefore

〈bbT ,xxT 〉 > 1.

Let us consider the (convex) set

HYP := {X : 〈bbT ,X〉 > 1 ∀b ∈ B},

which is the intersection of infinitely many halfspaces. Deza et al. [12] show that

this set is in fact polyhedral, but it is currently open whether the separation prob-

lem X ∈ HYP can be decided efficiently. The inequalities defining HYP are called

hypermetric inequalities. Further information can be found e.g., in [3].

The following subclass of hypermetric inequalities is generated by b ∈ B with

bi ∈ {−1,0,1} and only three nonzero entries, say bi,b j,bk. Elements in this class

are called triangle inequalities. The resulting polytope is sometimes called the met-

ric polytope MET,

MET = {X : xi j + xik + x jk > −1,xi j − xik − x jk > −1 ∀ distinct i, j,k}.

These conditions follow from bT Xb = xii + x j j + xkk +2(xi j + xik + x jk) > 1 in case

bi = b j = bk = 1 and the implicit assumption diag(X) = e. The other inequalities

follow by changing one of the signs in b.

Polynomial time separation for X ∈ MET can be done trivially by enumerating

all 4
(

n
3

)
constraints defining MET. This idea can be generalized to cliques of odd

size k > 3.

Including all the constraints from MET in (18.14) results in the following SDP

max
{1

4
〈L,X〉 : diag(X) = e, X ∈ MET, X º 0

}
(18.30)

with O(n3) constraints, which is a computational challenge for current state-of-the-

art software to solve SDP. Some computational experience with triangle inequalities

and odd order clique constraints combined with (18.14) is given in [32].

Just as it was straightforward to transform 0/1 QP into MC, it is also possible

to transform the triangle inequalities into the 0/1 setting. The resulting polyhedron

was in fact studied independently under the name of quadric Boolean polytope, see

e.g., [62, 71].



702 Franz Rendl

18.3.7 SDP, eigenvalues and the Hoffman-Wielandt inequality

We are now going to take a closer look at connections between eigenvalues of

symmetric matrices, optimization over (sets of pairwise) orthogonal vectors and

semidefinite programming. To illustrate these connections, we recall the following

well known facts. Let A ∈ Sn. Then we can express the largest eigenvalue λmax(A)
of A as

λmax(A) = max
xT x=1

xT Ax. (18.31)

On the other hand, it is trivial to note that

λmax(A) = minλ such that λ I −A º 0,

and this is a semidefinite program with dual

λmax(A) = max〈A,X〉 such that tr(X) = 1, X º 0. (18.32)

Both problems have strictly feasible solutions, hence strong duality holds. The rela-

tions (18.31) and (18.32) are the simplest connections relating eigenvalues to opti-

mization over orthogonal vectors on one hand and SDP on the other. It turns out that

the following theorem provides a generalization of (18.31) with many applications

in combinatorial optimization.

Theorem 18.4. Let A ∈ Sn, B ∈ Sk and 1 6 k 6 n. Let B̃ =

(
B 0

0 0

)
∈ Sn. Then

min
XT X=Ik

〈X ,AXB〉 = min
φ injection

∑
i

λi(B)λφ(i)(A) = 〈λ (B̃),λ (A)〉−. (18.33)

Remark 18.1. This theorem has a long history. John von Neumann [72] looks at the

more general problem maxRe(tr(AUBV )), where A and B are square complex ma-

trices and the maximization is carried out over unitary U and V . Re(x) denotes the

real part of the complex number x. The above result follows as a special case. Hoff-

man and Wielandt [36] study the question of the “distance” of the eigenvalues of

two normal matrices in terms of the matrix distance, and also prove the above re-

sult in disguised form for the case k = n. Berkowitz [7] and Marcus [55] investigate

the problem minXT X=Ik
Em(B + XT AX) where A and B are as in the theorem and

Em(Y ) is the m-th elementary symmetric function of degree m of the eigenvalues

of Y , hence E1(Y ) = tr(Y ). Therefore, their result proves the above theorem for the

case that the smaller matrix is the identity.

Since we consider this a fundamental result, we include the following proof, which

is inspired by [36] and which is in the spirit of combinatorial optimization. An ar-

gument based on first order optimality conditions in nonlinear optimization is given

in [65].

Proof. First we observe that for k < n we can extend X to an orthogonal ma-

trix Z = (X Y ) through an appropriate choice of Y . Therefore



18 Semidefinite Relaxations for Integer Programming 703

〈Z,AZB̃〉 = 〈X ,A(X Y )

(
B

0

)
〉+ 〈Y,AZ0〉 = 〈X ,AXB〉.

We also note for later use that I = ZZT = XXT +YY T , therefore

I −XXT º 0. (18.34)

Hence we may consider k = n. A and B are symmetric, therefore they have an or-

thogonal diagonalization:

A = PDAPT , B = QDBQT , (18.35)

with DA = Diag(λ (A)) and DB = Diag(λ (B)). Let us assume that P and Q are

chosen in such a way that the scalar product of the eigenvalues 〈λ (A),λ (B)〉 is

minimal. This holds e.g., if the elements in λ (A) are in nondecreasing order, and

those of λ (B) in nonincreasing order. Therefore we have

min
XT X=I

〈X ,AXB〉 6 〈PQT ,A(PQT )B〉 = 〈λ (A),λ (B)〉−.

On the other hand, for any orthogonal X we have

〈X ,AXB〉 = trDA(PT XQ)DB(PT XQ)T = 〈λ (A)λ (B)T ,(PT XQ)◦ (PT XQ)〉.

Now we observe that for the orthogonal matrix Y = PT XQ we have Y ◦Y ∈ Ω .
Therefore we get

〈λ (A)λ (B)T ,Y ◦Y 〉 > min
Z∈Ω

∑
i j

λi(A)λ j(B)zi j = 〈λ (A),λ (B)〉−.

If k < n, it is a simple exercise to show that

min
φ injection

∑
i

λi(B)λφ(i)(A) = 〈λ (B̃),λ (A)〉−.

⊓⊔

The semidefinite counterpart of this theorem, generalizing (18.32) has only re-

cently been shown by Anstreicher and Wolkowicz [1] for the case k = n.

Theorem 18.5. Let A,B ∈ Sn. Then

min
XT X=I

〈X ,AXB〉 = max{trS + trT : B⊗A− I⊗S−T ⊗ I º 0}.

This result is obtained by taking the Lagrangian dual of the first term with respect

to the constraints XT X = I, XXT = I. Hence there are two matrices S and T in

the SDP. Moreover this is an SDP in the matrix space Sn2 . The general case k 6 n

needs some slight modifications.



704 Franz Rendl

Theorem 18.6. Let A ∈ Sn, B ∈ Sk and 1 6 k 6 n. Then

min
XT X=Ik

〈X ,AXB〉 = max{trS− trT : B⊗A−S⊗ In + Ik ⊗T º 0, T º 0}.

Remark 18.2. It is not hard to see that the case k = n, considered in [1] can be

recovered from this result. We refer to [64] for further details.

Proof. We first recall that

z∗ := min
φ injection

∑
i

λi(B)λφ(i)(A)

= min
{
∑
i j

λi(B)λ j(A)zi j : Z = (zi j) k×n, Ze = e, ZT e 6 e, Z > 0
}

.

Linear programming duality shows that the last term is equal to

max
{
∑

i

si −∑
i

ti : si − t j 6 λi(B)λ j(A), t > 0
}
. (18.36)

On the other hand, we also have

z∗ = min{〈X ,AXB〉 : XT X = Ik, In −XXT º 0}

after adding the redundant constraint I − XXT º 0, see (18.34). The factoriza-

tion(18.35) suggests the transformation of variables Y = PT XQ and we get

z∗ = min{〈Y,DAY DB〉 : Y TY = Ik, I −YY T º 0}.

Duality for semidefinite programs shows that the last term is equal to

max{tr(S)− tr(T ) : DB ⊗DA −S⊗ In + Ik ⊗T º 0,T º 0}.

Here we introduced the multiplier S ∈ Sk for the equation Y TY = Ik and T ∈ S +
n

for I −YY T º 0. By restricting S and T to diagonal matrices we get

z∗ 6 max
{
∑

i

si −∑
i

ti : λi(B)λ j(A)− si + t j > 0, ti > 0
}
.

But this is again equal to (18.36), hence there is equality throughout. ⊓⊔

The Hoffman-Wielandt theorem was used in [23] to get eigenvalue based bounds

for the Quadratic Assignment Problem

min
X∈Π

tr〈X ,AXB〉.

Donath and Hoffman [13] use it to formulate the eigenvalue bound (18.29) for gen-

eral k-partition.



18 Semidefinite Relaxations for Integer Programming 705

Further reading: The previous sections have shown the rich structure of semi-

definite optimization models applied to integer programming. The idea of using

“matrix liftings” such as (18.1), has immediate generalizations. Since the extreme

points of (18.1) have again 0/1 coordinates, one could apply another lifting based on

this set. This iterated lifting raises interesting research questions. In [53] it is shown

e.g., that n such liftings suffice to get to the integer optimum for a problem in n

binary variables, see also [4, 69].

Optimization with polynomials has recently also turned out to be another fruitful

area for the use of semidefinite optimization. The key observation here is that a poly-

nomial p(x) in n variables x = (x1, . . . ,xn) is certainly nonnegative for all x ∈ Rn,

if p(x) can be written as a sum of squares of other polynomials in x. Such a sum of

square representation can be found by solving a related SDP. Recent results on this

can be found e.g., in [37, 44].

18.4 The theoretical power of SDP

Up to now we looked at semidefinite programs as a modeling tool for combi-

natorial optimization problems having some inherent “quadratic structure” in their

integer formulations. The seminal work of Goemans and Williamson [20] from the

early 1990’s shows that SDP can also be used to generate provably good integer

solutions. This approach now runs under the keyword “hyperplane rounding” and

exploits the Gram representation of semidefinite matrices. It was applied quite suc-

cessfully to various graph partition problems, the most prominent being Max-Cut.

In this section we consider the hyperplane rounding idea applied to Max-Cut and

graph coloring.

18.4.1 Hyperplane rounding for Max-Cut

Let us recall the cost function (18.13) of Max-Cut and its basic semidefi-

nite relaxation (18.14). Given any matrix X º 0 with diag(X) = e, Goemans and

Williamson suggest to use it in the following way to generate a random bisection,

given by ξ ∈ {−1,1}n.

Goemans-Williamson Hyperplane Rounding Algorithm

Input: X º 0 with diag(X) = e, given by X = V TV with n×n matrix V = (v1, . . . ,vn).
Output: Bisection ξ ∈ {−1,1}n.

Select random vector r ∈ Rn, uniformly distributed on the unit sphere.
ξi = 1 ⇐⇒ rT vi > 0.



706 Franz Rendl

Goemans and Williamson observe the remarkable fact that the expectation value

of the solution ξ has a simple form.

Theorem 18.7. The expectation value of the solution ξ from the hyperplane round-

ing routine has value

E( ∑
i j∈E

ai j

1−ξiξ j

2
) = ∑

i j∈E

ai j

arccos(vT
i v j)

π
. (18.37)

The proof of this result uses the following geometric fact. The probability that vi

and v j are separated by the random vector r, drawn uniformly on the sphere, is

proportional to the angle between the two vectors.

Prob(r separates vi and v j) =
arccos(vT

i v j)

π
. (18.38)

This together with the linearity of the expectation value gives the final result.

The idea now is to use the optimal solution X of the semidefinite relaxa-

tion (18.14) for hyperplane rounding. In order to estimate the quality of the resulting

partition ξ , we need to relate the expectation value (18.37) somehow to the optimal

solution value of (18.14). Goemans and Williamson observe the following lower

bound on arccos(x).

Lemma 18.6. For all −1 6 x 6 1 and 0.87856 < αGW < 0.87857 it holds that

arccos(x)

π
> αGW

1

2
(1− x).

They use it to show that a term by term lower estimate of the expectation value in

theorem 18.7 in case ai j > 0 leads to

∑
i j∈E

ai j

1

π
arccosxi j > αGW ∑

i j

ai j

1− xi j

2
= αGWzsdp.

This is summarized as follows.

Theorem 18.8. [20] Let A > 0. Then

zmc > 0.87856 zsdp.

Nesterov [60] proposes a different analysis. He uses the identity

∑
i< j

ai j

arccos(xi j)

π
=

1

2π ∑
i j

li j arcsin(xi j), (18.39)

which follows easily from the definition of the Laplacian L = (li j) and the fact that

arccos(x)+ arcsin(x) =
π

2
.



18 Semidefinite Relaxations for Integer Programming 707

Let us set Y = (yi j) with yi j = arcsin(xi j). Then the right hand side in (18.39) be-

comes
1

2π
〈L,Y 〉.

For comparing this to the optimal solution 1
4 〈L,X〉 of (18.14), Nesterov shows

that Y º X . The proof of this result is based on the Schur-product theorem.

Theorem 18.9.

A,B ∈ S
+ =⇒ A◦B ∈ S

+.

Proof. The following elegant one-line proof of this result can be found in [6], see

Lemma 4.3.1. We have the Gram representation ai j = aT
i a j and bi j = bT

i b j for ap-

propriate choices of vectors ai,bi. Setting C = (ci j) = (ai jbi j), we have

ci j = aT
i a jb

T
i b j = 〈aib

T
i ,a jb

T
j 〉,

showing that C also has a Gram representation, and hence is semidefinite. ⊓⊔

Lemma 18.7. Given X º 0 with diag(X) = e set Y = (yi j) with yi j = arcsin(xi j).
Then Y −X º 0.

Proof. Since arcsin(x) = x+ 1
2·3 x3 + 1·3

2·4·5 x5 . . . we have

Y −X =
1

6
X ◦X ◦X +

3

40
X ◦X ◦X ◦X ◦X . . .

The Schur-product theorem shows that the right hand side is positive semidefinite.

⊓⊔

This gives the following more general estimate.

Theorem 18.10. Suppose that the Laplacian L º 0. Then

zmc >
2

π
zsdp.

Proof. If L º 0, then 〈L,Y −X〉 > 0, using the previous lemma. Therefore the ex-

pectation value
1

2π
〈L,Y 〉 >

1

2π
〈L,X〉 =

2

π
zsdp.

⊓⊔

Since 2
π ≈ 0.636, this result is weaker than the Goemans-Williamson analysis, but

it is also more general, as A > 0 implies L º 0, but L can be semidefinite even if A

has negative entries.

Subsequently, the hyperplane rounding idea has been extended by Frieze and Jer-

rum [18] to the maximization version of bisection with s = n
2 . Since the hyperplane

rounding routine does not necessarily give a balanced bisection, the solution has to

be modified to ensure s = n
2 . Frieze and Jerrum [18] propose a 0.651-approximation



708 Franz Rendl

algorithm. Later, Halperin and Zwick [24] improve this performance ratio to 0.7016

by strengthening the underlying SDP with triangle inequalities, and also by employ-

ing a more refined rounding heuristic.

It seems also quite natural to extend the hyperplane rounding idea to Max-k-Cut,

starting from the SDP (18.27). We first note that a random partition into k blocks

has two vertices i and j with probability 1
k

in the same partition block. Therefore the

expected weight of this partition is

∑
i< j

ai j(1−
1

k
).

This immediately gives an approximation ratio of 1− 1
k

for Max-k-Cut. Frieze and

Jerrum [18] provide better approximation ratios for all values of k. In particular,

they have (not surprisingly) aGW for k = 2, 0.8327 for k = 3 and 0.8503 for k = 4.

The last two values have been improved later on by De Klerk et al. [16] to 0.836 for

k = 3 and 0.8574 for k = 4. The minimization versions of these problems are much

harder.

18.4.2 Coloring

The hyperplane rounding idea underlying the theoretical estimate of theorem 18.8

can be applied to other types of graph problems. This approach is extended to graph

coloring by Karger, Motwani and Sudan [39].

Determining χ(G) is well known to be NP-hard. Lund and Yannakakis [54] show

that, even worse, there exists a constant ε > 0 for which no polynomial algorithm

can color any graph with at most nε χ(G) colors, unless P=NP. In particular, coloring

a three-colorable graph with at most four colors is NP-complete, see [42].

In view of these theoretical complexity results it is therefore a challenge to design

polynomial algorithms to color three-colorable graphs with nontrivial upper bounds

on the colors used. We first recall the following easy facts.

Lemma 18.8. If χ(G) = 3 then N(v) is bipartite for any v ∈V (G).

Lemma 18.9. Let G be a graph with maximum vertex degree ∆ . Then G can be

colored in polynomial time with ∆ +1 colors.

Widgerson [73] observes that if ∆ >
√

n, then 2 colors suffice to color the neigh-

bourhood of the vertex with largest degree, thereby legally coloring at least
√

n

vertices. If ∆ 6
√

n, then the graph can be colored with
√

n + 1 colors. Hence the

following simple algorithm from Widgerson [73] colors any three-colorable graph

with at most 3
√

n colors.

It turns out that the semidefinite program, underlying the ϑ function, can be used

to improve Widgerson’s algorithm. In fact, ϑ(G) is one of the ingredients for the

currently strongest algorithms for three-colorable graphs.



18 Semidefinite Relaxations for Integer Programming 709

Widgerson Algorithm for three-colorable graphs

Input: A graph G on n vertices with χ(G) = 3.
Output: A coloring of G with at most O(

√
n) colors.

(1) While ∃v ∈V (G) with degree >
√

n

Color v with color 1 and N(v) with (at most) two new colors.
Remove v and N(v) from G and call the remaining graph G.

(2) Color G with at most ∆ <
√

n colors.

Here is a first analysis. Suppose the optimal solution V = (v1, . . . ,vn) of (18.26)

has been computed. Therefore ‖vi‖ = 1 and vT
i v j = λ 6 − 1

2 for i j ∈ E(G), because

λ 6− 1
χ(G)−1

. We associate the vectors vi to the vertices of G, and use them to define

the following vertex partition of V (G).
We first select t random hyperplanes through the origin (where t will be specified

later). These hyperplanes partition Rn into 2t regions and each vi belongs to exactly

one region. All vertices i with vi in the same region R j now are assigned to partition

block j.

The main task now is to show that an appropriate choice of t will ensure that with

high probability at least n
2 vertices in this partition are legally colored (= adjacent

vertices are in different partition blocks).

First note that the probability that two vertices i and j are in the same region is

equal to the probability that none of the t hyperplanes separates vi and v j, which is

equal to
(
1−

1

π
arccos(vT

i v j)
)t

,

see (18.38). We have just seen that i j ∈ E implies vT
i v j = λ 6− 1

2 = cos( 2π
3 ). There-

fore arccos(vT
i v j) > 2π

3 , so

(
1−

1

π
arccos(vT

i v j)
)t

6
1

3t
.

The expected value of edges with both endpoints in the same partition block (=

monochromatic edges) is at most

|E|
1

3t
6

n∆

2
3−t .

Markov’s inequality now tells us that with probability less than 1
2 there are more

than n∆3−t monochromatic edges. After repeating this process several times, we

have, with high probability, a coloring with 2t colors, where at most n∆3−t edges are

monochromatic. Selecting t = 2 + log3(∆) gives at most n
4 monochromatic edges.

Therefore at most n
2 vertices are not colored legally. In other words, with high prob-

ability at least n
2 vertices are legally colored with at most 2t 6 8∆ log3(2) colors.



710 Franz Rendl

As log3(2)≈ 0.631 and ∆ can be O(n), this technique by itself does not improve

Widgerson’s result. In [39] it is suggested to run the while-loop of Widgerson’s al-

gorithm as long as ∆ > n0.613. This uses up O(n0.387) colors. Having ∆ < O(n0.613),
now O((n0.613)log3(2)) = O(n0.387) colors suffice for coloring the remaining graph.

This gives, with high probability, a coloring using at most O(n0.387) colors.

Karger, Motwani and Sudan provide another more refined analysis, which shows

that in fact Õ(n0.25) colors suffice. We use the Õ notation to suppress polylogarith-

mic terms. We sketch this analysis, but follow the simplified presentation from [2].

The first observation is that if we can find a stable set of size O( n
s(n) ) for some func-

tion s(n), then we can use up one color for this stable set, and iterate at most s(n)
times to get a coloring using at most Õ(s(n)) colors. In [39] it is shown that a stable

set of size Õ( n

∆1/3 ) can be found by hyperplane rounding, see below. This is used as

follows. Apply the while loop of Widgerson’s algorithm as long as ∆ > n0.75. This

uses up O(n0.25) colors and leaves a graph with ∆ < n0.75. Now we apply the above

stable set argument with ∆ 1/3 = O(n0.25) to find a coloring in the remaining graph

using Õ(n0.25) colors. In summary, we obtain a coloring using Õ(n0.25) colors, once

we can find stable sets of size O( n

∆1/3 ).

We start with a solution of (18.26) of value λ = − 1
2 , which exists because

χ(G) = 3. We consider for a random vector r and ε > 0 to be specified later the

set

Vr(ε) := {i ∈V : 〈r,vi〉 > ε}.

We assume that the entries r j of r are drawn independently from the standard normal

distribution. This implies that for any unit vector v, vT r also has the standard normal

distribution. Therefore

Prob(i ∈Vr(ε)) =
∫ ∞

ε

1
√

2π
e−

t2

2 dt =: N(ε).

Let I ⊆Vr(ε) be the set of isolated vertices in Vr(ε). Next note that

Prob(i /∈ I|i ∈Vr(ε)) = Prob(∃ j ∈ N(i) : 〈r,v j〉 > ε|〈r,vi〉 > ε).

Having j ∈ N(i) means that 〈vi,v j〉 = − 1
2 . Therefore we can introduce ṽ j ⊥ vi such

that

v j = −
1

2
vi +

√
3

2
ṽ j.

Therefore ṽ j = 2√
3
v j +

1√
3
vi. If 〈r,v j〉> ε and 〈r,vi〉> ε , then 〈r, ṽ j〉>

√
3ε . There-

fore

Prob(i /∈ I | i ∈Vr(ε)) 6 Prob(∃ j ∈ N(i) : 〈r, ṽ j〉 >
√

3ε)

6 ∑
j∈N(i)

Prob(〈r, ṽ j〉 >
√

3ε)

6 ∆N(
√

3ε).



18 Semidefinite Relaxations for Integer Programming 711

Now ε > 0 is selected such that

N(
√

3ε) <
1

2∆
. (18.40)

This implies that with probability less than 1
2 , that a vertex is not in I, thus

Prob(i ∈ I) > 1
2 Prob(i ∈Vr(ε)) = 1

2 N(ε). Hence the expected cardinality of the sta-

ble set I is n
2 N(ε). To get the final result, one needs to see how the choice of ε in

(18.40) relates to ∆ and N(ε). It can be shown that ∆ is less than Θ̃(N(ε)3), see [2],

hence n
2 N(ε) = Ω̃(∆−1/3n).

In [2], a further refinement of the analysis is proposed, which together with a

strengthened version of (18.26) gives an approximation of Õ(n0.2111) colorings for

three-colorable graphs, see also the recent dissertation [9].

18.5 Solving SDP in practice

We have just seen the great variety of modeling ideas leading to SDP. Moreover,

some of these models even lead to relaxations where the approximation error can

be determined a priori. It is therefore natural to ask for efficient methods to solve

SDP. In this section we are going to describe the algorithmic machinery currently

available for SDP.

18.5.1 Interior point algorithms

The most elegant way to solve SDP, and more generally linear optimization over

closed convex cones, is based on Newton’s method applied to a slightly modified

version of the problem. The theoretical background for this approach goes back to

the seminal work of Nesterov and Nemirovski from the late 1980’s, see [61]. They

showed that a family of convex optimization problems can be solved in polynomial

time using self-concordant barrier functions.

Practical experience indicates that Newton’s method in combination with the bar-

rier idea works most efficiently in the primal-dual path-following setting, which will

be briefly explained now. We recall the primal problem (18.2) and its dual (18.5),

min〈C,X〉 such that A(X) = b, X º 0,

maxbT y such that Z = C−AT (y) º 0.

In the following we assume that both problems satisfy the Slater constraint qual-

ification (18.6). In this case (X ,y,Z) is optimal if and only if (18.7) holds. This is a

system of m +
(

n+1
2

)
+ 1 equations with the additional semidefiniteness constraints

in m + 2
(

n+1
2

)
variables. It is perhaps surprising that the additional semidefinitenes



712 Franz Rendl

conditions in fact lead to an overdetermined system. Indeed note that X º 0,Z º 0

implies X = UUT ,Z = VV T for U and V of appropriate size. But then

0 = 〈Z,X〉 = 〈VV T ,UUT 〉 = ‖V TU‖2

implies V TU = 0 and therefore

ZX = VV TUUT = 0.

Thus the scalar equation

〈Z,X〉 = 0

together with X º 0,Z º 0 implies the matrix equation

ZX = 0.

Since ZX need not be symmetric, even if X and Z are symmetric, this equation

has n2 components.

Primal-dual path-following interior-point methods are based on solutions X º 0,
Z º 0, of the following slightly modified optimality conditions for parameter µ > 0.

A(X)−b = 0, C−Z −AT (y) = 0, ZX −µI = 0. (18.41)

Clearly, any solution of this system must satisfy X ≻ 0,Z ≻ 0, as ZX = µI forces X

and Z to be non-singular. It turns out that strict feasibility in fact characterizes unique

solvability of (18.41).

Theorem 18.11. (see for e.g., Theorem 10.2.1 in [74]) The following statements are

equivalent:

(i) (18.2) and (18.5) both have strictly feasible points.

(ii) (18.41) has a unique solution (Xµ ,yµ ,Zµ) for all µ > 0.

The proof uses the following observation. Let f : S ++
n 7→R, f (X) = logdetX . This

function is strictly concave with ∇ f = X−1,

f (X +h) = f (X)+ 〈X−1,h〉+o(‖h‖).

Consider the auxiliary problem, for fixed parameter µ > 0.

(PB) min〈C,X〉−µ f (X) such that A(X) = b, X ≻ 0.

This is a convex optimization problem with Lagrangian

L(X ,y) = 〈C,X〉−µ logdetX + yT (b−A(X)).

The necessary and sufficient optimality conditions therefore are

∇X L = C−µX−1 −AT (y) = 0,

∇yL = b−A(X) = 0,



18 Semidefinite Relaxations for Integer Programming 713

together with the open set constraint X ≻ 0. Setting Z = µX−1, we recover (18.41).

Problem (PB) is sometimes called the primal barrier problem. The term−µ logdetX

goes to infinity as X ≻ 0 approaches the boundary of the cone of semidefinite matri-

ces. The value of µ controls the influence of this term. The conditions (18.41) can

also be derived by setting up a barrier problem for the dual SDP. Strict convexity

of the cost function from the primal barrier problem shows that a minimizer, if it

exists, must be unique. To show the existence of a minimizer requires an additional

compactness argument. We refer to [74] for further details.

So strict feasibility of (18.2) and (18.5) insures unique solutions (Xµ ,yµ ,Zµ) for

all µ > 0. To show that these solutions form a smooth curve, parametrized by µ , we

need to show that the system is differentiable with a non-singular Jacobian. While

differentiability is obvious, the Jacobian of (18.41) is certainly not invertible, as it is

not even square. The remedy is to replace the non-symmetric equation ZX −µI = 0

by an equivalent symmetric one. A general setup for this goes as follows. Let P be

non-singular and define

HP(M) :=
1

2
(PMP−1 +(PMP−1)T ).

Replacing ZX −µI = 0 by HP(ZX)−µI = 0 in (18.41) makes the Jacobian a square

matrix, which can be shown to be non-singular for any invertible P and for all

points (X ,y,Z) “close” to solutions (Xµ ,yµ ,Zµ) of (18.41). Hence the solution set

of (18.41) indeed defines a smooth curve which is often called (primal-dual) central

path. Let us denote it by CP := {Pµ = (Xµ ,yµ ,Zµ) : µ > 0}.

Primal-dual interior-point path-following methods use the Newton method to

follow the primal-dual central path, maintaining X ≻ 0, Z ≻ 0 (interior points)

for µ → 0. To follow the central path (at least approximately), we first need to

come close to it. We do this iteratively as follows. Having the current interior iter-

ate (X ,y,Z) and a target value for µ , we try to reach a new interior point (X+,y+,Z+)
close to Pµ for given µ . Then the target value µ is reduced and we iterate. The main

work is done in determining the search direction (∆X ,∆y,∆Z) which moves us from

the current iterate to the new point. As mentioned before, there is a great variety to

do so and here we show a very simple, popular and efficient variant. It was one of

the first search directions proposed to solve SDP, see [34, 43, 57]. We linearize the

equations in (18.41) and get

A(∆X) = b−A(X) := rp, (18.42)

∆Z +AT (∆y) = C−AT (y)−Z := rd , (18.43)

Z∆X +∆ZX = µI −ZX . (18.44)

The vectors rp and rd express primal and dual infeasibility and would be 0 if feasible

starting points were used. The last equation can be used to eliminate ∆X ,

∆X = µZ−1 −X −Z−1∆ZX ,



714 Franz Rendl

the second one gives

∆Z = rd −AT (∆y).

Substitution into the first equation gives

A(Z−1AT (∆y)X) = v with v = rp −A(µZ−1 −X)+A(Z−1rdX).

The linear operator on the left hand side has the matrix representation

M∆y = v, (18.45)

with mi j = tr(AiZ
−1A jX). This matrix can be shown to be positive definite (if X ≻ 0,

Z ≻ 0 and the equations A(X) = b are linearly independent). To determine the search

direction we therefore need to solve the equation M∆y = v. Having ∆y we get ∆Z

and ∆X from backsubstitution. ∆X need not be symmetric, so the symmetric part

of ∆X is taken.

This would give the new point X +∆X ,y+∆y,Z +∆Z except that the new point

need not have definite matrices. This is repaired by a backtracking strategy, where

starting with t = 1, t is reduced to a value t∗ > 0 such that X+ = X + t∗∆X ≻ 0,

Z+ = Z + t∗∆Z ≻ 0. This gives a new trial point (X+,y+,Z+). The new target pa-

rameter for this point can be estimated to be

µ+ =
1

n
tr(X+Z+),

and a new iteration is started with µ+ reduced by a multiplicative factor.

It was shown by Monteiro [57] that this rather simple and pragmatic approach in

fact falls in the general class of search directions mentioned above.

To give some idea on the actual work involved, we consider the basic semidefinite

relaxation for Max-Cut. Here A(X) = diag(X) and AT (y) = Diag(y). It is not too

hard to verify that in this case the matrix M in (18.45) has the simple form

M = X ◦Z−1.

Hence the work in each iteration involves computing Z−1, solving equation (18.45)

and doing a few matrix multiplications to get ∆X . An efficient way to do the

backtracking to stay inside the cone of semidefinite matrices consists in checking

whether the Cholesky decomposition of X + t∆X terminates successfully. This is a

certificate that the matrix is semidefinite, hence an additional small reduction of t

insures definiteness. To give some practical impression we tabulate computation

times to solve this relaxation for some representative values of n. The iterations were

stopped, once the relative error was below 10−7, and it always took less than 20 it-

erations to reach this level of accuracy. The results clearly show that interior-point

methods are indeed very efficient on smaller problems (n 6 1000), but become pro-

hibitive with respect to both time and space requirements, once n gets large.



18 Semidefinite Relaxations for Integer Programming 715

We also tabulate timings to compute the ϑ -function in the computationally most

expensive case of m = 1
2

(
n
2

)
equations, see Table 18.2. It is clear that once n ≈ 200,

the effort of interior point methods gets prohibitive.

Looking at the computation times in these two tables, it should be clear that

interior-point methods become impractical, once m is substantially larger than

say 5000, or once n is larger than about 1000. In the following sections we will

consider algorithmic alternatives for larger problems.

n time (secs.)

500 12

1000 75

1500 237

2000 586

2500 1109

3000 1900

Table 18.1 Interior-point computation times to solve (18.14) with relative accuracy 10−7. Here
m = n.

n m time (secs.)

100 2475 57

120 3570 161

140 4865 353

160 6360 757

180 8055 1520

200 9950 2817

Table 18.2 Interior-point computation times to solve (18.18) with relative accuracy 10−7,
m = 1

2

(
n
2

)
.

18.5.2 Partial Lagrangian and the bundle method

We have just seen that interior-point methods are the method of choice to solve

SDP and we also saw the limits of this approach both in terms of the dimension n

of the matrix space and also in the number m of (primal) constraints. We also saw

the need to be able to handle large-scale SDP to get good approximations of the

underlying combinatorial optimization problem.

We are now going to describe a rather generic “work-around” for problems,

where the matrix dimension is reasonable, but m can be arbitrary. Let us consider an

SDP of the form



716 Franz Rendl

z = max{〈C,X〉 : A(X) = a, B(X) = b, X º 0}.

We have split the constraints into two sets. The motivation is that maintaining only

the first set A(X) = a would result in an SDP that is still manageable by interior

point methods, but the inclusion of B(X) = b makes the problem impractical for

interior-point methods. For simplicity of exposition, we consider only equations.

The presence of inequalities only leads to minor modifications (sign constraints on

dual multipliers), which can be dealt with in the approach to be described.

Let us denote X := {X : A(X) = a, X º 0}. The idea now is to maintain X ∈X

explicitly and to put B(X) = b into the cost function by taking the partial Lagrangian

dual. Hence we get

z = max{〈C,X〉 : A(X) = a, B(X) = b, X º 0} = max
X∈X

min
y

L(X ,y),

where the partial Lagrangian L is given by L(X ,y) = 〈C,X〉+ yT (b−B(X)). Ap-

plying the Minimax inequality we get under the usual strict feasibility conditions

that

z = min
y

f (y) 6 f (y) ∀y,

where f (y) = maxX∈X L(X ,y). For evaluating f an SDP over X ∈ X has to be

solved which we assume to be manageable. Suppose that for some y∗, we have

f (y∗) = L(X∗,y∗), so the maximum is attained at X∗ ∈ X . By setting

g∗ = b−B(X∗)

we get for any y

f (y) > L(X∗,y) = f (y∗)+ 〈g∗,y− y∗〉. (18.46)

The inequality follows from the definition of f , the equality comes from substitut-

ing g∗. In the language of convex analysis, this inequality defines g∗ to be a subgra-

dient of f at y∗.

To compute z, we minimize f . This function is continuous and convex (point-

wise maximum of linear functions), but it is not differentiable at points where the

maximum is not unique. Hence we use some tools from non-smooth optimization

to minimize f .

The bundle method will serve our purposes. It was introduced in the 1970’s by

Lemarechal, see [48, 49]. A comprehensive survey is also contained in [35]. We

briefly explain its key features. The method iteratively approaches a minimizer of f .

Let the current iterate be ŷ. Suppose we have evaluated f at k > 1 points y1, . . . ,yk

with respective optimizers X1, . . . ,Xk and subgradients gi = b−B(Xi). We also set

fi = f (yi). It is assumed that ŷ ∈ {y1, . . . ,yk}. To get started we evaluate f at ŷ = 0

and set y1 = ŷ,k = 1.

The subgradient inequality (18.46) implies that for all y

f (y) > max
i
{ fi +gT

i (y− yi)} =: f̃ (y).



18 Semidefinite Relaxations for Integer Programming 717

For simplification we set hi = fi − gT
i yi, H = (h1, . . . ,hk)

T and G = (g1, . . . ,gk).
Then

f̃ (y) = max
λ∈∆k

λ T (H +GT y).

The bundle method now uses the minorant f̃ (y) as an approximation of the orig-

inal f “close” to the current iterate ŷ. This is plausible because ŷ ∈ {y1, . . . ,yk}

implies f̃ (ŷ) = f (ŷ). To insure that we stay close to ŷ, we add a regularization term

and consider the following function

fbdl(y) := f̃ (y)+
1

2t
‖y− ŷ‖2.

The bundle method minimizes this function over y to obtain a new iterate. The pa-

rameter t > 0 controls how close we stay to ŷ. Minimizing fbdl(y) is again a Min-

Max problem which can be simplified as follows.

min
y

fbdl(y) = max
λ∈∆

min
y

λ T (H +GT y)+
1

2t
‖y− ŷ‖2.

The inner minimization is a strictly convex unconstrained quadratic optimization

problem, hence we can replace the minimization by asking that the first order opti-

mality conditions hold. Setting the derivative with respect to y equal to 0 gives

y = ŷ− tGλ .

After substitution, we get the equivalent problem

max
λ∈∆

λ T (H +GT ŷ)−
t

2
‖Gλ‖2.

This is a convex quadratic problem over the standard simplex ∆ in Rk and can be

solved by standard methods from convex optimization. The solution effort depends

on k, which can be controlled by the user. Having the optimizer λ ∗ of this problem,

we get the new estimate

ynew = ŷ− tGλ ∗.

The bundle method now asks to evaluate the original function f at ynew. Some stan-

dard criteria are used to decide whether ynew becomes the new trial point, or whether

we stay at ŷ. In any case, information from the new point is included as yk+1 = ynew

and the iteration is continued. The convergence theory of the bundle method is quite

elaborate and can be found e.g., in [35].

Remark 18.3. Let us take a careful look at the above derivation of the bundle

method. The specific form of the function f (y) is in fact irrelevant, once the fol-

lowing property of f is satisfied. For any y∗ we can determine a vector g∗ such

that

f (y) > f (y∗)+ 〈g∗,y− y∗〉 ∀y



718 Franz Rendl

holds. In words, we assume that f is convex and we are able to determine a subgra-

dient of f at any point.

We close with an application of the bundle method applied to the semidefinite

relaxation of Max-Cut which also includes the triangle inequalities, see (18.30). We

maintain the equation diag(X) = e explicitly and dualize the triangle inequalities,

which we formally denote by B(X) 6 b. Recall that there are 4
(

n
3

)
inequality con-

straints. Let us denote the violation of these contraints by

r := min{0,b−B(X)}.

In Table 18.3 we consider the instance g3s of size n = 300 from [17]. This is a ran-

dom graph with edge density of 10% and edge weights 1 and −1. The optimal value

of the relaxation, as reported in [17] is 635.05. In the table we also provide infor-

mation about the error r. We include the total violation of all constraints ‖r‖1, the

maximal violation ‖r‖∞ and the total number of violated constraints (last column).

The results in this table clearly indicate that the bundle method is very efficient in

getting close to the optimum quickly. The computation time for 100 bundle itera-

tions was a few minutes only. The local convergence behaviour is obviously much

weaker than in the case of interior-point methods. We refer to [17] for further details

of this approach applied to (18.30).

iter f (y) ‖r‖1 ‖r‖∞ contrs. viol.

1 679.3 152541.0 0.96 680822

10 660.4 21132.7 0.73 147094

20 648.1 1234.6 0.52 13605

30 642.2 193.7 0.32 2979

40 639.5 50.8 0.32 957

50 638.2 29.5 0.25 647

60 637.6 25.3 0.26 570

70 637.1 28.9 0.20 688

80 636.9 17.1 0.23 397

90 636.6 18.2 0.18 448

100 636.5 13.5 0.18 369

Table 18.3 The semidefinite relaxation of Max-Cut from (18.30) for a graph with n = 300. The
vector r contains the violation of the triangle inequalities. The last column provides the number of
violated constraints.

18.5.3 The spectral bundle method

The spectral bundle method introduced in [33] reduces the solution of SDP to

the computation of the largest eigenvalue of a sequence of symmetric matrices.



18 Semidefinite Relaxations for Integer Programming 719

The algorithmic machinery from numerical linear algebra provides methods to com-

pute λmax(C), which do not require to have C explicitly available, but only need a

subroutine that evaluates the action of C. In other words, given x, we only need to

be able to compute y = Cx.

Before describing the spectral bundle method in detail we first show that SDP

with the constant trace property can equivalently be reformulated as an eigenvalue

optimization problem.

The mapping A from (18.2) satisfies the constant trace property if the identity

matrix is in the range of AT , which means ∃η such that AT (η) = I. In this case

any X such that A(X) = b, X º 0 satisfies

tr(X) = 〈X ,AT (η)〉 = 〈A(X),η〉 = bT η = a,

for some constant a > 0. The constant trace property therefore implies that feasible

solutions of (18.2) have constant trace, equal to a. Excluding the case a = 0, which

only has the zero matrix as feasible solution of SDP, we can assume without loss of

generality that a = 1.

Let us consider SDP with the constant trace property. In this case we can add the

redundant equation

tr(X) = 1

to (18.2) and get for the dual, with multiplier λ for the new constraint:

min{bT y+λ : AT (y)+λ I −C = Z º 0}.

The optimality condition ZX = 0 together with tr(X) = 1 implies that any optimal Z

is singular. Hence, at the optimum we have

0 = λmin(Z) = λmax(−Z) = λmax(C−AT (y))−λ .

We conclude that the multiplier λ satisfies λ = λmax(C−AT (y)). Substitution gives

the following function f (y) = bT y+λmax(C−AT (y)). Solving the dual is therefore

equivalent to the eigenvalue optimization problem

min
y

f (y).

The condition Z º 0 is hidden in λmin(Z) = 0, which moves λmax(C−AT (y)) into the

cost function. It can easily be shown that f is convex. The cost function is smooth but

not differentiable in case the largest eigenvalue has multiplicity larger than one. Sup-

pose now that x∗ is a unit-norm eigenvector to λmax(C−AT (y∗)). Then, see (18.31),

λmax(C−AT (y)) > 〈x∗,(C−AT (y))x∗〉 ∀y.

Let us define

g∗ := b−A(x∗x∗T ).

Then the above inequality shows that



720 Franz Rendl

f (y) > f (y∗)+ 〈g∗,y− y∗〉 ∀y.

Hence g∗ is subgradient of f at y∗. Moreover, if the multiplicity of λmax(C−AT (y∗))
is one, then x∗ is unique up to multiplication by −1, hence g∗ is unique as well,

and ∇ f (y∗) = g∗. In view of all this, a first idea would be to use again the bundle

method to minimize f . Indeed, Schramm and Zowe [67] apply it to compute ϑ(G).
We will now see that we can in fact do better by exploiting the special form of the

objective function. We recall from (18.32) that

λmax(A) = max{〈A,W 〉 : tr(W ) = 1, W º 0}.

After substitution, we get the following min-max problem for the dual SDP.

min
y

max
tr(W )=1,Wº0

bT y+ 〈C−AT (y),W 〉 (18.47)

In the spectral bundle method, this problem is solved iteratively. We observe that

evaluating f at ŷ amounts to compute λmax(C−AT (ŷ)) together with an eigenvec-

tor v. Having a current iterate ŷ, the following modifications are made in (18.47).

First, the maximization is simplified by constraining W to be of the form

W = PV PT

for given n × k matrix P such that PT P = Ik. The idea is that P should contain

“local” information of f around ŷ. In particular, we assume that the eigenvector v is

contained in P. The new variable now is V ∈ S
+

k . Since

λmax(C) = max
Wº0, tr(W )=1

〈C,W 〉 > max
Wº0, tr(W )=1, W=PV PT

〈C,W 〉 = λmax(P
T CP),

we get the follwowing minorant

f̃ (y) = max
Vº0, tr(V )=1

bT y+ 〈C−AT (y),PV PT 〉 6 f (y)

of f . The inclusion of v in P insures that f (ŷ) = f̃ (ŷ). To insure that the next it-

erate stays close to ŷ, we consider the following replacement of (18.47) for fixed

parameter t > 0.

min
y

max
Vº0, tr(V )=1

bT y+ 〈C−AT (y),PV PT 〉+
1

2t
‖y− ŷ‖2.

Note the similarity to the standard bundle method from before. In the spectral bundle

method, this min-max problem is solved to get the next trial point y. As before we

exchange min and max and exploit the fact that the minimization with respect to y is

again an unconstrained strictly convex quadratic problem. Therefore y is minimizer

if and only if the partial derivative with respect to y is zero. This results in

y = ŷ− t(b−A(PVPT )).



18 Semidefinite Relaxations for Integer Programming 721

We now substitute this for y and get the quadratic SDP

max
Vº0, tr(V )=1

bT ŷ+ 〈C−AT (ŷ),PV PT 〉−
t

2
‖b−A(PV PT )‖2.

This problem has just one scalar equation and can be solved by interior-point meth-

ods to get the optimal V ∗ ∈ S
+

k . The new trial point ynew = ŷ− t(b−A(PV ∗PT )) is

now used to compute the function value f , together with an eigenvector to λmax. We

follow the usual bundle concept to decide whether or not ynew becomes the new trial

point. In any case the matrix P is updated and a new iteration can be started. Helm-

berg and Rendl [33] explain in detail how the above quadratic SDP can be solved.

Various update strategies for P are discussed and an elementary convergence analy-

sis is given. Helmberg [28] describes implementation issues and presents computa-

tional results on a wide variety of SDP. Refinements of the spectral bundle method

are given in [29] and [30].

Remark 18.4. The similarities of the spectral to the standard bundle method are quite

obvious. In fact, constraining V to be a diagonal matrix (with diagonal entries λi)

simplifies the above SDP to optimizing over λ ∈ ∆ , and we recover the standard

bundle method in this case.

18.6 SDP and beyond

18.6.1 Copositive and completely positive matrices

In this section we will see that besides the cone of semidefinite matrices, there

are several other cones in the space of symmetric matrices which have a close con-

nection to integer programming. Let us define

C
∗ := {X ∈ Sn : X = VV T with n× k matrix V > 0} = conv{vvT : v ∈ Rn, v > 0}.

Matrices in C ∗ are often called completely positive. The cone C ∗ has a dual, which

we denote by C and which by definition is given as follows.

Y ∈ C ⇐⇒ 〈Y,X〉 > 0 ∀X ∈ C
∗.

This obviously holds if and only if

vTY v > 0 ∀v > 0. (18.48)

Matrices in this cone are usually called copositive. While X ∈ S + has an efficient

certificate, given e.g., through the Cholesky decomposition of X , it is NP-hard to

decide whether X /∈ C , see [59].

We call problems of the form



722 Franz Rendl

inf{〈C,X〉 : A(X) = b, X ∈ C } and

inf{〈C,X〉 : A(X) = b, X ∈ C
∗}

copositive programs because either the problem or its dual involves optimization

over copositive matrices.

18.6.2 Copositive relaxations

To see that copositive programs have some relevance in connection with integer

programs we recall the following theorem from Motzkin and Strauss.

Theorem 18.12 ([58]). Let A be the adjacency matrix of a graph. Then

1

α(G)
= min{xT (A+ I)x : x ∈ ∆}.

Starting from this fact, it is not hard to show the following result, which was pointed

out by De Klerk and Pasechnik, see [11].

Theorem 18.13. Let A be the adjacency matrix of a graph. Then

α(G) = max{〈J,X〉 : 〈A+ I,X〉 = 1, X ∈ C
∗} = min{λ : λ (A+ I)− J ∈ C }.

Proof. Let S be a stable set of maximum cardinality α(G) with characteristic vec-

tor ξ ∈ {0,1}n. Then 1
α ξ ξ T is feasible for the maximization problem and we get

the first inequality in

α 6 sup{〈J,X〉 : 〈A+ I,X〉 = 1, X ∈ C
∗} 6 inf{λ : λ (A+ I)− J ∈ C }.

Weak duality for conic programs implies the second inequality.

The Motzkin-Strauss theorem shows that

0 = min{xT (A+ I −
1

α
eeT )x : x ∈ ∆} = min{xT (α(A+ I)− J)x : x > 0}.

The second minimization being zero is the defining condition for α(A+ I)−J to be

in C , see (18.48). Therefore the infimum above is at most α , but weak duality states

that it is also at least α , hence there is equality throughout, and both the supremum

and the infimum are attained (at 1
α ξ ξ T and λ = α respectively). ⊓⊔

DeKlerk and Pasechnik provide a proof for this result which is independent of the

Motzkin-Strauss theorem. Let us put this result into perspective by recalling ϑ(G).

ϑ(G) = max{〈J,X〉 : AG(X) = 0, tr(X) = 1, X º 0}.

Suppose now that we include the additional constraint X > 0, leading to an improved

approximation ϑ+(G) of α(G). This improvement was in fact suggested by Schri-



18 Semidefinite Relaxations for Integer Programming 723

jver [68] and independently by [56]. The condition AG(X) = 0 together with X > 0

can be simplified to 〈A,X〉 = 0. In other words, the equations AG(X) = 0 are added

into just a scalar equation. We get

α(G) 6 ϑ+(G) = max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X º 0, X > 0}. (18.49)

The above theorem therefore shows that replacing the cone {X : X º 0, X > 0}

by C ∗ leaves no gap in (18.49).

This suggests to try a similar idea on the dual (18.25) of ϑ(G). Looking at the

matrix tM with M from (18.21), it is clear that M ∈ C ∗, therefore we get the follow-

ing improvement of ϑ(G) towards χ(G).

χ(G) > ϑC(G) = min{t : tI +AḠ(y) ∈ C , tI +AḠ(y) º J} > ϑ(G).

It was recently shown in [15] that the improvement ϑC(G) is in fact equal to the

fractional chromatic number χ f (G). Another version to model the chromatic num-

ber was recently proposed by Gvozdenovic and Laurent, see [21, 22].

These results indicate that the modeling power of copositive programs is stronger

than SDP. Burer [8] shows the following general result.

Theorem 18.14. Let c and a j be vectors from Rn, b∈Rk, Q∈Sn and I ⊆{1, . . . ,n}.

The optimal values of the following two problems are equal.

min{xT Qx+ cT x : aT
j x = b j, x > 0, xi ∈ {0,1} ∀i ∈ I},

min{tr(QX)+ cT x : aT
j x = b j,a

T
j Xa j = b2

j , Xii = xi ∀i ∈ I,

(
1 xT

x X

)
∈ C

∗}.

This result shows that it would be extremely interesting to have a better understand-

ing of the cone of completely positive matrices. Outer approximations of C ∗, or

equivalently, inner approximations of C would result in relaxations of the underly-

ing optimization problem. First systematic attempts in this direction were proposed

by Parrilo [63] and De Klerk and Pasechnik [11] who introduced hierarchies of re-

laxations based on sum of squares relaxations of polynomials. These relaxations are

formulated as SDP of increasing dimension. A summary of this approach, which is

far beyond the scope of this article, can be found in [46].

Inner approximations of C ∗ can be used as starting points for primal heuristics

to combinatorial optimization problems. This is an area open for current research.

References

1. K.M. Anstreicher and H. Wolkowicz, On Lagrangian relaxation of quadratic matrix con-

straints, SIAM Journal on Matrix Analysis 22 (2000) 41–55.
2. S. Arora, E. Chlamtac, and M. Charikar, New approximation guarantee for chromatic number,

Proceedings of the 38th STOC, Seattle, USA, 2006, pp. 215–224.



724 Franz Rendl

3. D. Avis and J. Umemoto, Stronger linear programming relaxations for max-cut, Mathematical
Programming 97 (2003) 451–469.

4. E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1

programs, Mathematical Programming 58 (1993) 295–324.
5. F. Barahona, M. Jünger, and G. Reinelt, Experiments in quadratic 0-1 programming, Mathe-

matical Programming 44 (1989) 127–137.
6. A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization, MPS-SIAM Series

on Optimization, 2001.
7. S. Berkowitz, Extrema of elementary symmetric polynomials of the eigenvalues of the matrix

P∗KP+L, Linear Algebra Appl. 8 (1974) 273–280.
8. S. Burer, On the copositive representation of binary and continuous nonconvex quadratic pro-

grams, Mathematical Programming 120 (2009) 479–495.
9. E. Chlamtac, Non-local analysis of sdp based approximation algorithms, Ph.D. thesis, Prince-

ton University, USA, 2009.
10. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a large scale traveling salesman

problem, Journal of the Operations Research Society of America 2 (1954) 393–410.
11. E. de Klerk and D.V. Pasechnik, Approximatin of the stability number of a graph via copositive

programming, SIAM Journal on Optimization 12 (2002) 875–892.
12. M. Deza, V.P. Grishukhin, and M. Laurent, The hypermetric cone is polyhedral, Combinator-

ica 13 (1993) 397–411.
13. W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs, IBM Journal of

Research and Developement 17 (1973) 420–425.
14. R.J. Duffin, Infinite programs, Ann. Math. Stud. 38 (1956) 157–170.
15. I. Dukanovic and F. Rendl, Semidefinite programming relaxations for graph coloring and

maximal clique problems, Mathematical Programming 109 (2007) 345–365.
16. D.V. Pasechnik, E. de Klerk, and J.P. Warners, On approximate graph colouring and MAX-

k-CUT algorithms based on the ϑ -function, Journal of Combinatorial Optimization 8 (2004)
267–294.

17. I. Fischer, G. Gruber, F. Rendl, and R. Sotirov, Computational experience with a bundle

method for semidefinite cutten plane relaxations of max-cut and equipartition, Mathematical
Programming 105 (2006) 451–469.

18. A. Frieze and M. Jerrum, Improved approximation algorithms for MAX k-cut and MAX BI-

SECTION, Algorithmica 18 (1997) 67–81.
19. M.X. Goemans, Semidefinite programming in combinatorial optimization, Mathematical Pro-

gramming 79 (1997) 143–162.
20. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995)
1115–1145.

21. N. Gvozdenović and M. Laurent, Computing semidefinite programming lower bounds for the

(fractional) chromatic number via block-diagonalization, SIAM Journal on Optimization 19
(2008) 592–615.

22. N. Gvozdenović and M. Laurent, The operator Ψ for the chromatic number of a graph, SIAM
Journal on Optimization 19 (2008) 572–591.

23. S.W. Hadley, F. Rendl, and H. Wolkowicz, A new lower bound via projection for the quadratic

assignment problem, Mathematics of Operations Research 17 (1992) 727–739.
24. E. Halperin and U. Zwick, A unified framework for obtaining improved approximation al-

gorithms for maximum graph bisection problems, Lecture notes in Computer Science 2081,
IPCO 2001, Springer Berlin, 2001, pp. 210–225.

25. P.L. Hammer, Some network flow problems solved with pseudo-Boolean programming, Oper-
ations Research 13 (1965) 388–399.

26. C. Helmberg, Fixing variables in semidefinite relaxations, SIAM J. Matrix Anal. Appl. 21
(2000) 952–969.

27. C. Helmberg, Semidefinite programming, European Journal of Operational Research 137
(2002) 461–482.



18 Semidefinite Relaxations for Integer Programming 725

28. C. Helmberg, Numerical validation of SBmethod, Mathematical Programming 95 (2003) 381–
406.

29. C. Helmberg, K.C. Kiwiel, and F. Rendl, Incorporating inequality constraints in the spectral

bundle method, Integer Programming and combinatorial optimization (E.A. Boyd R.E. Bixby
and R.Z. Rios-Mercado, eds.), Springer Lecture Notes in Computer Science 1412, 1998,
pp. 423–435.

30. C. Helmberg and F. Oustry, Bundle methods to minimize the maximum eigenvalue func-

tion, Handbook of semidefinite programming: theory, algorithms and applications (R. Saigal
H. Wolkowicz and L. Vandenberghe, eds.), Kluwer, 2000, pp. 307–337.

31. C. Helmberg, S. Poljak, F. Rendl, and H. Wolkowicz, Combining semidefinite and polyhe-

dral relaxations for integer programs, Integer Programming and combinatorial optimization
(E. Balas and J. Clausen, eds.), Springer Lecture Notes in Computer Science 920, 1995,
pp. 124–134.

32. C. Helmberg and F. Rendl, Solving quadratic (0,1)-problems by semidefinite programming

and cutting planes, Mathematical Programming 82 (1998) 291–315.
33. C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM

Journal on Optimization 10 (2000) 673–696.
34. C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, An interior-point method for

semidefinite programming, SIAM Journal on Optimization 6 (1996) 342–361.
35. J.B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms (vol. 1

and 2), Springer, 1993.
36. A.J. Hoffman and H.W. Wielandt, The variation of the spectrum of a normal matrix, Duke

Math. Journal 20 (1953) 37–39.
37. D. Jibetean and M. Laurent, Semidefinite approximations for global unconstrained polynomial

optimization, SIAM Journal on Optimization 16 (2005) 490–514.
38. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon, Optimization by simulated an-

nealing: An experimental evaluation. I: Graph partitioning, Operations Research 37 (1989)
865–892.

39. D. Karger, R. Motwani, and M. Sudan, Approximate graph colouring by semidefinite program-

ming, Journal of the ACM 45 (1998) 246–265.
40. S.E. Karisch and F. Rendl, Semidefinite programming and graph equipartition, Fields Institute

Communications 18 (1998) 77–95.
41. B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Sys-

tem techn. Journal 49 (1970) 291–307.
42. S. Khanna, N. Linial, and S. Safra, On the hardness of approximating the chromatic number,

Combinatorica 20 (2000) 393–415.
43. M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite lin-

ear complementarity problem in symmetric matrices, SIAM Journal on Optimization 7 (1997)
86–125.

44. J.B. Lasserre, A sum of squares approximation of nonnegative polynomials, SIAM Journal
Optimization 16 (2006) 751–765.

45. M. Laurent, S. Poljak, and F. Rendl, Connections between semidefinite relaxations of the max-

cut and stable set problems, Mathematical Programming 77 (1997) 225–246.
46. M. Laurent and F. Rendl, Semidefinite programming and integer programming, Discrete Opti-

mization (K. Aardal, G.L. Nemhauser, and R. Weismantel, eds.), Elsevier, 2005, pp. 393–514.
47. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.), The traveling sales-

man problem, a guided tour of combinatorial optimization, Wiley, Chicester, 1985.
48. C. Lemaréchal, An extension of davidon methods to nondifferentiable problems, Mathematical

Programming Study 3 (1975) 95–109.
49. C. Lemaréchal, Nonsmooth optimization and descent methods, Tech. report, International In-

stitute for Applied Systems Analysis, 1978.
50. A. Lisser and F. Rendl, Graph partitioning using linear and semidefinite programming, Math-

ematical Programming 95 (2002) 91–101.
51. L. Lovász, On the shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979) 1–7.



726 Franz Rendl

52. L. Lovász, Semidefinite programs and combinatorial optimization, Recent advances in al-
gorithms and combinatorics (B.A. Reed and C.L. Sales, eds.), CMS books in Mathematics,
Springer, 2003, pp. 137–194.

53. L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM
Journal on Optimization 1 (1991) 166–190.

54. C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Pro-
ceedings of the 25th ACM STOC, 1993, pp. 286–293.

55. M. Marcus, Rearrangement and extremal results for Hermitian matrices, Linear Algebra Appl.
11 (1975) 95–104.

56. R.J. McEliece, E.R. Rodemich, and H.C. Rumsey Jr., The lovasz bound and some generaliza-

tions, Journal of combinatorics and System Sciences 3 (1978) 134–152.
57. R.D.C. Monteiro, Primal-dual path-following algorithms for semidefinite programming,

SIAM Journal on Optmization 7 (1997) 663–678.
58. T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of turan,

Canadian Journal of Mathematics 17 (1965) 533–540.
59. K.G. Murty and S.N. Kabadi, Some np-complete problems in quadratic and nonlinear pro-

gramming, Mathematical Programming 39 (1987) 117–129.
60. Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization, Tech.

report, CORE, 1997.
61. Y. Nesterov and A.S. Nemirovski, Interior point polynomial algorithms in convex program-

ming, SIAM Publications, SIAM, Philadelphia, USA, 1994.
62. M. Padberg, The quadric Boolean polytope: some characteristics, facets and relatives, Math-

ematical Programming 45 (1989) 139–172.
63. P. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robust-

ness and optimization, Ph.D. thesis, California Institute of Technology, USA, 2000.
64. J. Povh and F. Rendl, Approximating non-convex quadratic programs by semidefinite and

copositive programming, Proceedings of the 11th international conference on operational re-
search (L. Neralic V. Boljuncic and K. Soric, eds.), Croation Operations Research Society,
2008, pp. 35–45.

65. F. Rendl and H. Wolkowicz, Applications of parametric programming and eigenvalue maxi-

mization to the quadratic assignment problem, Mathematical Programming 53 (1992) 63–78.
66. F. Rendl and H. Wolkowicz, A projection technique for partitioning the nodes of a graph,

Annals of Operations Research 58 (1995) 155–179.
67. H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth func-

tion: Conceptual idea, convergence analysis, numerical results, SIAM Journal Optimization
2 (1992) 121–152.

68. A. Schrijver, A comparison of the delsarte and lovasz bounds, IEEE Transactions on Informa-
tion Theory IT-25 (1979) 425–429.

69. H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the continuous and convex

hull representations for zero-one programming problems, SIAM Journal on Discrete Mathe-
matics 3 (1990) 411–430.

70. H.D. Sherali and W.P. Adams, A hierarchy of relaxations and convex hull characterizations

for mixed-integer zero-one programming problems, Discrete Applied Mathematics 52 (1994)
83–106.

71. C. De Simone, The cut polytope and the Boolean quadric polytope, Discrete Mathematics 79
(1990) 71–75.

72. J. von Neumann, Some matrix inequalities and metrization of matrix space (1937), John von
Neumann: Collected Works, Vol 4, MacMillan, 1962, pp. 205–219.

73. A. Widgerson, Improving the performance guarantee for approximate graph colouring, Jour-
nal of the ACM 30 (1983) 729– 735.

74. H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite program-

ming, Kluwer, 2000.



Chapter 19

The Group-Theoretic Approach in Mixed
Integer Programming

Jean-Philippe, P. Richard and Santanu S. Dey

Abstract In this chapter, we provide an overview of the mathematical founda-

tions and recent theoretical and computational advances in the study of the group-

theoretic approach in mixed integer programming. We motivate the definition of

group relaxation geometrically and present methods to optimize linear functions

over this set. We then discuss fundamental results about the structure of group re-

laxations. We describe a variety of recent methods to derive valid inequalities for

master group relaxations and review general proof techniques to show that candi-

date inequalities are strong (extreme) for these sets. We conclude by discussing the

insights gained from computational studies aimed at gauging the strength of group-

theoretic relaxations and cutting planes for mixed integer programs.

19.1 Introduction

In 1957, Dantzig [28] introduced the idea that numerous practical decision prob-

lems could be adequately modeled as linear optimization problems in which some

or all the variables are restricted to be integer. Specifically, Dantzig highlighted the

value of studying mixed integer programs (MIPs), i.e., optimization problems of the

form:

Jean-Philippe P. Richard
Department of Industrial and Systems Engineering, University of Florida, Gainesville, USA
e-mail: richard@ise.ufl.edu

Santanu S. Dey
Center for Operations Research and Econometrics, Université Catholique de Louvain, Belgium
e-mail: Santanu.Dey@uclouvain.be

727M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0_19, © Springer-Verlag Berlin Heidelberg 2010 



728 J.-P. P. Richard and S. S. Dey

min ∑
j∈M

c jx j (19.1)

(MIP) s.t. ∑
j∈M

A jx j = d (19.2)

x j ∈ Z+∀ j ∈ I (19.3)

x j ∈ R+∀ j ∈C, (19.4)

where M = {1, . . . ,m}, (I,C) is a partition of M with I 6= /0, d ∈ Rl×1, c ∈ R1×m,

A ∈ Rl×m is a full row rank matrix and A j is used to denote the jth column of A for

j ∈ M. Vectors x ∈ Rm are considered to be feasible solutions for (MIP) if (i) they

satisfy the linear constraints (19.2), (ii) the components of the vector x indexed by I

are nonnegative integers, and (iii) the components of the vector x indexed by C are

nonnegative real numbers. We refer to the set of all feasible solutions to (MIP) as F .

A feasible solution x is said to be optimal for (MIP) if no other feasible solution

in F yields a lower objective value for the linear objective function (19.1).

Although the formulation of practical problems as mixed integer programs is

often simple, solving these problems to provable optimality can be computation-

ally challenging. In fact, since the general mixed integer programming problem is

NP-complete, see Schrijver [90] pages 245–247 for a proof, it is unlikely that an

efficient algorithm will ever be designed to solve this problem. However since new

applications of mixed integer programming are constantly being developed and are

growing ever more complex, the quest for newer and faster algorithms has been an

enduring area of research.

The first nontrivial algorithms for solving general IPs were proposed by Go-

mory [54] and Land and Doig [77] in 1958 and 1960 respectively; see Sections 12.4

and 12.5 for a historical perspective of these developments. These algorithms, al-

though fundamentally different, both rely heavily on linear programming relax-

ations of (MIP). Linear programming relaxations are optimization problems ob-

tained by removing the restrictions (19.3) that variables x j for j ∈ I are integer-

valued. They are therefore linear programming problems, for which efficient solu-

tion algorithms can be used; see Vanderbei [96] for a textbook description of solu-

tion methodologies for linear programs. More generally, relaxations are optimiza-

tion problems obtained by enlarging the feasible set F and/or decreasing the value

of the objective function (19.1) over F . The concept of relaxation is important since

it allows the substitution of mixed integer programs, which are typically difficult

to solve, for optimization problems for which good solution algorithms are known.

Clearly, if an optimal solution x∗ to a relaxation of (MIP) belongs to F , then x∗ is an

optimal solution to (MIP). Land and Doig’s and Gomory’s algorithms differ in how

they handle situations where x∗ does not belong to F .

In Land and Doig’s algorithm, the feasible region F of (MIP) is divided into

subregions whenever the optimal relaxation solution x∗ does not belong to F .

The division is performed in such a way that the LP relaxations of the subre-

gions do not contain x∗. For example, if x∗j /∈ Z for j ∈ I, one possible way

to perform this division is to consider F = F1 ∪ F2 where F1 = {x ∈ F | x j ≤

⌊x∗j⌋} and F2 = {x ∈ F | x j ≥ ⌈x∗j⌉}. It is easy to see that an optimal solution



19 The Group-Theoretic Approach in Mixed Integer Programming 729

to (MIP) can be directly obtained from the optimal solutions of min{cx | x ∈ F1}

and min{cx | x ∈ F2}, problems that can be solved recursively. Over the years, dif-

ferent strategies have been developed following these lines. The resulting methods

are grouped under the general vocable of branch-and-bound algorithms; see Achter-

berg et al. [2] for a recent description.

In Gomory’s algorithm, an improved mixed integer programming formulation

of (MIP) is created whenever x∗ does not belong to F . This improved formulation

is obtained through the addition of a new linear constraint that is satisfied by all

solutions of F but not by the current linear programming solution x∗. We will refer

to such an inequality as a cut in the remainder of this chapter. Gomory [54] showed

that, if all variables are integer and bounded, optimal solutions of (MIP) can be ob-

tained by sequentially adding a finite number of inequalities from a specific family

of cuts. Over the years, different strategies have been proposed to generate cuts.

The resulting methods are grouped under the general vocable of cutting-plane algo-

rithms; see Marchand et al. [80] for a recent survey.

Fifty years after the publication of these seminal papers, the use of mixed integer

programming as a modeling tool for practical optimization problems has become

widespread. Successful commercial software have been developed that incorporate

branch-and-bound and cutting-plane approaches. Further, new and stronger cutting

planes have been developed, better branching strategies have been investigated, and

stronger relaxations have been uncovered. One such relaxation that is applicable

to all mixed integer programs is the group relaxation. This relaxation, introduced

by Gomory [57], is particularly well-structured. As a result, it can be used as a

substitute for LP relaxations in branch-and-bound procedures since there are simple

algorithms to optimize linear functions over its feasible region and it can be used as

a source of cuts in cutting plane approaches since its polyhedral structure is simple.

In this chapter, we provide an overview of the mathematical foundations and re-

cent advances in the study of group relaxations of mixed integer programs. This

overview is by no means exhaustive. However, we hope that it illustrates that, al-

though the group approach is about as old as integer programming itself, its study is

still swarming with open questions, computational possibilities and theoretical puz-

zles that might hold the key to future breakthroughs in the solution of mixed integer

programs. The large growth of interest in this topic over the last years attests that

this potential is currently being vigorously investigated.

In Section 19.2, we present a numerical example from which we provide an intu-

itive derivation of the corner relaxation that lays the foundation for the concepts that

will be formalized in later sections. We then formally introduce Gomory’s corner

relaxation. In Section 19.3, we describe a method to optimize linear functions over

Gomory’s corner relaxation. We discuss conditions under which solving this relax-

ation is sufficient to solve the initial integer program. We also describe a hierarchy of

extended group relaxations for integer programs and present algebraic results about

their structure. In Section 19.4, we describe generalizations of corner relaxations

that have been used for the generation of cutting planes in mixed integer program-

ming. We discuss the properties and characteristics of the valid inequalities of these

master corner relaxations. In particular, we present a hierarchy of valid inequalities



730 J.-P. P. Richard and S. S. Dey

of group relaxations based on their strength. In Section 19.5, we review recent ap-

proaches to derive candidate inequalities for master group relaxations and describe

methods to prove that these candidate inequalities are strongest possible (extreme)

among valid inequalities. We also present relationships that exist between the ex-

treme inequalities of different master group relaxations. We conclude this section

by providing a taxonomy of known extreme inequalities for master group problems.

In Section 19.6, we discuss theoretical and computational studies that are aimed at

evaluating the strength of group cuts. We conclude in Section 19.7 with a discus-

sion of extensions of the group-theoretic approach, open questions related to group

relaxations, and possible avenues of research.

19.2 The corner relaxation

In this section, we first review basic results about linear programming in Sec-

tion 19.2.1. We then motivate, on a numerical example, the definition of Gomory’s

corner relaxation in Section 19.2.2. We conclude in Section 19.2.3 by formally

defining Gomory’s corner relaxation for both pure and mixed integer programs.

19.2.1 Linear programming relaxations

As LP relaxations are used in the cutting plane algorithm described in Sec-

tion 19.1 and because optimal solutions of these relaxations are repeatedly obtained,

we first review fundamental results in linear programming that we will use in the re-

mainder of this chapter. Consider a linear programming problem of the form

(LP) : min
{

∑
j∈M

c jz j

∣∣∣ ∑
j∈M

A jz j = d, z ∈ Rm
+

}

where A = [A1|A2| · · · |Am] ∈ Rl×m is a matrix such that rank(A) = l ≤ m, c ∈ R1×m

and d ∈ Rl×1. The feasible region of (LP) is a polyhedron. It can be verified that,

when (LP) has an optimal solution, it has an optimal solution that is a vertex of

this polyhedron. To simplify the description of vertices, we introduce the follow-

ing notation. Given a subset T of M, we refer to the submatrix of A obtained by

selecting the columns whose indices belong to T as AT and refer to the vector ob-

tained from c by selecting those components whose indices belong to T as cT . For

any partition (B,N) of M, the linear constraints defining (LP) can be rewritten as

ABzB +ANzN = d. Further, if B is chosen in such a way that the matrix AB is square

and invertible, then B is said to form a basis of (LP) and (LP) can be reformulated

as

min
{

cBA−1
B d +(cN − cBA−1

B AN)zN

∣∣ zB +A−1
B ANzN = A−1

B d, z ∈ Rm
+

}
. (19.5)



19 The Group-Theoretic Approach in Mixed Integer Programming 731

We refer to the above formulation of (LP) as the simplex tableau associated with

basis B. We refer to the variables with indices in B as basic while we refer to the

variables with indices in N as nonbasic. It is apparent from simplex tableau (19.5)

that the solution z̃B = A−1
B d, z̃N = 0 is feasible to (LP) whenever z̃B ≥ 0. Such a

solution is referred to as a basic feasible solution of (LP). Further, if c̄N = cN −

cBA−1
B AN ≥ 0, it is clear that the corresponding basic feasible solution (z̃B, z̃N) is

optimal for (LP). A fundamental theorem of linear programming establishes that,

if (LP) has an optimal solution, it has a basic feasible optimal solution with c̄N ≥ 0;

see Section 3 of Chvátal [22] for a more detailed discussion.

Theorem 19.1. If (LP) has an optimal solution, then there exists a basis B for which

c̄N ≥ 0 and the associated basic solution is feasible for (LP) .

Various solution methodologies have been proposed to solve linear programs;

see Vanderbei [96] for an exposition of existing methods. Among them, the sim-

plex algorithm, introduced by Dantzig, is of particular interest to this chapter. This

algorithm systematically examines bases of the linear programming problem until

it discovers one that satisfies the conditions of Theorem 19.1. Although the sim-

plex algorithm can be fooled into performing an exponential number of iterations,

see Klee and Minty [75], it typically obtains optimal solutions of practical linear

programs rapidly and is very well suited for re-optimization, which is of crucial im-

portance in branch-and-cut techniques. When solving (MIP) using cutting planes,

it is therefore natural to assume that a simplex tableau associated with an optimal

basic solution of the LP relaxation of (MIP) will be known at each iteration of the

algorithm. Therefore, tableau information can be used in the derivation of cuts. In

the remainder of this section, we denote the rows of an optimal simplex tableau by

xi + ∑
j∈N

āi jx j = d̄i, ∀i ∈ B, (19.6)

where B represents the set of basic variables, N represents the set of nonbasic vari-

ables, ā. j = A−1
B A j and d̄ = A−1

B d. We also assume that d̄ /∈Zl×1 since otherwise the

basic feasible solution associated with simplex tableau (19.6) is optimal for (MIP).

19.2.2 Motivating example

To develop intuition on how the information contained in a simplex tableau can

be used to generate a cut, we now consider the following simple example without

continuous variables:



732 J.-P. P. Richard and S. S. Dey

min −2x1 − x2

s.t. 1x1 − 3x2 ≤ −3

35x1 + 5x2 ≤ 258

5x1 + 5x2 ≤ 63 (19.7)

−10x1 + 120x2 ≤ 771

−215x1 − 135x2 ≤−1071

x1,x2 ∈ Z+.

Although this problem does not directly fit the form of (MIP) since its linear con-

straints are not equalities, a nonnegative variable, called slack, can be added to each

constraint to achieve this form. We denote by xi+2 the slack added to the ith con-

straint of (19.7) to make it an equality.

The polytope associated with the linear inequalities of (19.7) is the non-shaded

polytope represented in Figure 19.1a. The feasible region F of the integer program-

ming problem (19.7) consists of the integer points that lie within the polytope.

Its convex hull conv(F), i.e., the smallest convex set containing all points of F ,

is the polytope that is shaded in Figure 19.1a. It can be verified that the solution

x∗ = (6.5,6.1)′ highlighted with a star is optimal for the LP relaxation of (19.7)

while the solution x̄ = (6,6)′ is optimal for (19.7). Since x∗ is not optimal for (19.7),

it is our goal to derive a valid inequality that improves the problem formulation and

cuts x∗ off.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

(β) (γ) (α)

Fig. 19.1 LP relaxation, conv(S) and cuts for (19.7).

We know from Theorem 19.1 that there is a basic feasible solution of (19.7)

representing x∗. The corresponding simplex tableau is:



19 The Group-Theoretic Approach in Mixed Integer Programming 733

min −19.1 + 1/30x4 + 5/30x5

s.t. x1 + 1/30x4 − 1/30x5 = 6.5

x2 − 1/30x4 + 7/30x5 = 6.1

x3 − 4/30x4 + 22/30x5 = 8.8 (19.8)

x6 + 130/30x4 − 850/30x5 = 104

x7 + 80/30x4 + 730/30x5 = 1150

where B = {1,2,3,6,7} and N = {4,5}. Observe that the basic solution associated

with this tableau is fractional. In particular the first three rows of (19.8) have integer

infeasibilities that we will try to correct with the addition of a cutting plane.

From the first row of (19.8), we conclude that there is no solution of (19.7) in

which the nonbasic variables x4 and x5 are both equal to zero. This is because, in

this case, the basic variables x1, x2 and x3 assume fractional values. This observation

can be translated into the valid inequality x4 + x5 ≥ 1 since the nonbasic variables

x4 and x5 are known to be integer and nonnegative. Although this inequality is ex-

pressed in terms of slack variables x4 and x5, it can be transformed back to the space

of original variables x1, x2 to yield the cut:

4x1 + x2 ≤ 32. (19.9)

The arguments underlying the above derivation apply to the generic tableau row

(19.6) and yield the cut:

∑
j∈N

x j ≥ 1. (19.10)

This cutting plane was proposed by Dantzig [29], and is commonly known as

Dantzig Cut (DC). To evaluate the strength of the inequality (19.9), we represent it

as inequality (α) in Figure 19.1b. In this figure, we observe that although (19.9) cuts

off the current fractional solution, the portion of the LP relaxation that it removes is

very small. Improved cuts can be obtained by observing that nonbasic variables with

(i) zero or (ii) integer coefficients do not help in restoring the integrality of the row

and therefore can be omitted from the summation in (19.10). These observations,

due to Charnes and Cooper [19] and Ben-Israel and Charnes [14] respectively, yield

the following general cut:

∑
j∈N|āi j /∈Z

x j ≥ 1; (19.11)

see Rubin and Graves [87] for other improvements. Inequality (19.11) is called Mod-

ified Dantzig Cut (MDC) in Bowman and Nemhauser [18]. It is at least as strong

as DC. In our numerical example however, it reduces to (19.9) as all nonbasic vari-

ables in the first row of the simplex tableau (19.8) have fractional coefficients.

It is not surprising that DC and MDC typically remove only small portions of the

LP relaxation of (MIP) since they are insensitive to the particular values of the vari-



734 J.-P. P. Richard and S. S. Dey

able coefficients in (19.6). Therefore, they associate very different geometries with

the same inequality. We should therefore search for inequalities whose coefficients

are more strongly influenced by the coefficients of the variables in the tableau rows.

A possible way to generate such a cut is to use the following three-step pro-

cess implicitly used by Gomory [54] and explicitly proposed by Chvátal [21]; refer

to Section 11.4.1 for a more detailed description and analysis. Starting from the

first row of the simplex tableau (19.8), we round down the coefficients of all the

variables. Since variables are nonnegative, this operation yields the valid inequality

x1 − x5 ≤ 6.5, which can be strengthened to x1 − x5 ≤ 6 since the variables x1 and

x5 are integer. Substituting slack x5 with its definition, we obtain the cut:

6x1 +5x2 ≤ 69. (19.12)

More generally, starting from a row of a simplex tableau that has a fractional right-

hand-side d̄i, we obtain the inequality xi +∑ j∈N⌊āi j⌋x j ≤ ⌊d̄i⌋ or equivalently, after

subtracting this inequality from (19.6), the cut:

∑
j∈N

fi jx j ≥ fi (19.13)

where fi j = āi j −⌊āi j⌋ and fi = d̄i −⌊d̄i⌋. This cutting plane is the corner stone

of Gomory’s finitely convergent algorithm for bounded pure integer programming;

see Gomory [54]. It historically predates DCs and MDCs. It is known either as

Gomory’s fractional cut (GFC) or Chvátal-Gomory cut. We represent it as inequal-

ity (β ) in Figure 19.1b where we observe that it is slightly stronger than (19.9).

Investigating the reason for the weakness of DC, we observe in (19.8) that, in

order for the current basic solution to become integer, not only should one of the

integer variables x4 or x5 be nonzero, it also should be sufficiently large. In partic-

ular, we see that when x5 = 0, x4 must take a value of at least 15 and when x4 = 0,

x5 must take a value of at least 15. Since the variables x4 and x5 have coefficients

with opposite signs, it is easy to verify that the inequality 1
15 x4 + 1

15 x5 ≥ 1 is valid.

Substituting for the slacks, we obtain

40x1 +10x2 ≤ 306. (19.14)

We represent it as inequality (γ) in Figure 19.1b where it can be seen to provide

a definite improvement over DC and GFC. The idea underlying the generation of

this inequality can be extended to general tableau rows (19.6) as follows (we as-

sume that all coefficients āi j are fractional). Given any partition (N1,N2) of N, we

rewrite (19.6) as

xi + ∑
j∈N1

⌊āi j⌋x j + ∑
j∈N2

⌈āi j⌉x j −⌊d̄i⌋ = fi − ∑
j∈N1

fi j x̃ j + ∑
j∈N2

(1− fi j)x̃ j (19.15)

where x j = x̃ j for j ∈ N. Now consider the relaxation of (19.15) obtained by re-

moving the requirement that x̃ j = x j and by weakening the condition that x̃ j ∈ Z+

to x̃ j ≥ 0. As the left-hand-side of (19.15) is integral, the fractional part fi of the



19 The Group-Theoretic Approach in Mixed Integer Programming 735

right-hand-side must be “corrected” by the corresponding x̃ j variables. The mini-

mum value that variable x̃ j can take when all other nonbasic variables are set to zero

is given by

x̃ j ≥
fi

fi j

∀ j ∈ N1 and x̃ j ≥
1− fi

1− fi j

∀ j ∈ N2. (19.16)

Since it can easily be verified that any feasible solution (x, x̃) of this relaxation can

be expressed as a convex combination of feasible solutions of the form (x,s je j)
where e j is the jth unit vector in Rl , we obtain that

∑
j∈N1

fi j

fi

x̃ j + ∑
j∈N2

1− fi j

1− fi

x̃ j ≥ 1

is a valid inequality. Since the choice of N1 and N2 is arbitrary, we select these sets

optimally to obtain

∑
j∈N

min
{ fi j

fi

,
1− fi j

1− fi

}
x j ≥ 1 (19.17)

after the condition that x j = x̃ j is restored. This inequality is known as Gomory

Mixed Integer Cut (GMIC) and was first obtained by Gomory [55].

At this point, it probably seems that there are myriads of other ways of generating

cuts and so it is important to differentiate strong families of cuts from weak fami-

lies. One possible criterion is to determine whether the cuts in the family under study

are sufficiently strong to yield a finitely convergent cutting-plane algorithm. In this

respect, it was proven in Gomory and Hoffman [58] that cutting-plane algorithms

based on DCs are not always finitely convergent for pure integer programs. A variant

based on MDCs however can be shown to be finitely convergent; see Bowman and

Nemhauser [18]. GFCs can also be shown to yield a finitely convergent algorithm

for bounded integer pograms; see Gomory [54] and Nourie and Venta [84] for a sim-

plified proof. We note that although this algorithm is finitely convergent, the number

of its steps can be arbitrarily large, even for two-variables problems; see Jeroslow

and Kortanek [70]. As a result, finite convergence of cutting-plane algorithms is not

a very strong criterion.

Another approach to evaluate the strength of these cutting planes is to analyze

their commonalities and, in particular, to determine whether they are derived from

a common relaxation of (19.6). In fact, we can see that in the derivation of all four

inequalities (19.10), (19.11), (19.13) and (19.17), we used the fact that the basic

variable xi is integer, and that the nonbasic variables x j for j ∈ N are integer and

nonnegative. However, we never used the fact that the basic variable xi is nonnega-

tive. In the case of DC and MDC, we used the fact that the basic variable xi is integer

to detect that not all the nonbasic variables can be zero. Second we used the fact that

the nonbasic variables x j are nonnegative and integer to impose that their sum must

be greater or equal to 1. Similarly, to derive GFC, we used the fact that the basic

variable is integer to detect that row i of the simplex tableau is problematic. We also



736 J.-P. P. Richard and S. S. Dey

used the fact that nonbasic variables are nonnegative to ensure that rounding yields a

valid inequality. Finally, we used the fact that all variables are integer to round down

the right-hand-side. In the derivation of GMIC, we used the fact that all variables

were integer to conclude that the left-hand-side of (19.15) is integer. We also used

the fact that nonbasic variables are nonnegative to obtain (19.16).

Therefore, to judge whether or not the inequalities we derived are strong, we

could measure their strength with respect to the set of solutions to a single fractional

tableau row in which the nonbasic variables x j are assumed to be nonnegative and

integer and in which the basic variable xi is only assumed to be integer (and can take

negative values). Formally, given a row i of (19.6) where d̄ /∈ Zl , we define

Ci = conv
({

(xi,xN) ∈ Z×Z|N|
+

∣∣ xi + ∑
j∈N

āi jx j = d̄i

}
\
{
(0,0)

})
.

Note that the requirement that (0,0) is removed from the set is used in the case

where, although the tableau row i we consider has an integer right-hand-side, some

other rows have fractional right-hand-sides. In this situation, we want to remove the

point (0,0) from Ci because we know from the other tableau rows that it does not

yield an integer solution to (MIP). Note however that, if d̄i is fractional, explicitly

removing (0,0) from the set is redundant as this point does not belong to the set in

the first place. Since, in Ci, basic variable xi can be adjusted independently and since

the only requirement associated with it is that it is integer, we can also reformulate

this set without using the variable xi as

C′
i = conv

({
x ∈ Z|N|

+

∣∣ ∑
j∈N

āi jx j ≡ d̄i (mod 1)
}
\
{

0
})

.

Here the notation “mod 1” signifies that ∑ j∈N āi jx j − d̄i ∈ Z. In Figure 19.2a, we

shaded (in the space of x1 and x2 variables) the convex hull C′
1 of all points that are

obtained in this way when considering the first row of the simplex tableau (19.8)

of our numerical example. The reason for using two-tone shading will be discussed

later. From this figure, we observe that (19.14) is strong for the polyhedron C′
1. In

Figures 19.2b and 19.2c, we present the two relaxations C′
2 and C′

5 in the space of

x1 and x2 variables. We observe that not all the relaxations are as strong as each

other and that some of these relaxations can be very weak. In particular, we observe

that even if all the inequalities that can be generated from each of the relaxations C′
i

for i = 1,2,5 were added to the LP formulation of (19.7), the linear programming

relaxation solution would still not yield an optimal solution of the integer program.

The question of determining how to generate stronger cuts therefore remains.

A natural idea is to investigate whether the information inferred from several

rows of a tableau can be “combined” to obtain better cutting planes than those ob-

tained by considering a single row. For our numerical example, the relaxation ob-

tained by considering the convex hull of nonnegative integer solutions (x4,x5) for

which the corresponding variables x1 and x2 in (19.6) are (possibly negative) inte-

ger is shaded in Figure 19.3a (in the space of x1, x2 variables). A similar picture



19 The Group-Theoretic Approach in Mixed Integer Programming 737

is obtained in Figure 19.3b by considering the convex hull of nonnegative integer

solutions (x4,x5) for which x6 and x7 are integer (possibly negative). These relax-

ations C′
i j can be stronger than the intersection of the relaxations C′

i and C′
j. Further,

although C′
12 does not coincide with the convex hull of integer solutions to (19.7), we

note that if we were to add the defining inequalities of the relaxation of Figure 19.3a

to the initial LP relaxation, an optimal solution to (19.7) would be exposed.

The above argument can be pushed further by considering more than two rows of

the simplex tableau simultaneously. In this scheme, valid inequalities are obtained

for the relaxation obtained by considering all basic variables to be integer (possibly

negative) and nonbasic variables to be integer and nonnnegative. This relaxation is

known as Gomory’s corner relaxation or Gomory’s group relaxation. It is clearly

as strong as those obtained by considering rows individually. Further, it has a very

natural geometric interpretation. In fact, in the absence of degeneracy, i.e., when

all components of A−1
B d are positive, it corresponds to the set of integer points lo-

cated inside of the cone defined by all constraints that are active at the current basic

feasible solution of the LP relaxation. Referring back to our example, the corner re-

laxation would be composed of integer solutions in the cone defined by constraints

35x1 + 5x2 ≤ 258 and 5x1 + 5x2 ≤ 63. Using this geometrical intuition, we can ob-

serve that the relaxation depicted in Figure 19.3a that was obtained by considering

the first two rows of (19.8) is exactly the corner relaxation associated with basis

B = {1,2,3,6,7}. Therefore in this case, all cuts valid for the corner relaxation

can be obtained from considering the first two rows of the simplex tableau. In Fig-

ures 19.2 and 19.3 we use dark shading to highlight those points of the relaxations C′
i

or C′
i j that do not belong the corner polyhedron.

19.2.3 Gomory’s corner relaxation

As a generalization of the discussion given above, we now give a general defini-

tion of Gomory’s corner relaxation. We assume that the linear programming relax-

ation of (MIP) is feasible. We consider first the case where M = I, i.e., all variables

of the problem are integer. Given an optimal basis B of the LP relaxation of (MIP),

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

Fig. 19.2 One-row relaxations C′
1, C′

2 and C′
5.



738 J.-P. P. Richard and S. S. Dey

we reformulate the feasible set F as

F =
{

x ∈ Zm
+

∣∣ xB +A−1
B ANxN = A−1

B d
}
.

Relaxing the nonnegativity condition on the basic variables xB we obtain

cornerB(F) =
{

xN ∈ Z|N|
+

∣∣ A−1
B ANxN ≡ A−1

B d (mod 1)
}
. (19.18)

We refer to cornerB(F) as the corner relaxation associated with basis B. We also

define the corner polyhedron associated with basis B as the convex hull of solutions

of cornerB(F).
For mixed integer programs, we still want to consider the set of feasible mixed

integer solutions in the cone spanned by the current basis B. Given this basis B, we

reformulate the feasible set F as

F =
{
(xB,xNI ,xNC) ∈ Z|B|×Z|NI|

+ ×R|NC|
+

∣∣ xB +A−1
B ANxN = A−1

B d
}
,

where NI = N ∩ I and NC = N ∩C. We then relax the lower bound on the basic

variables. For basic variables that are continuous, relaxing the lower bound corre-

sponds to relaxing the corresponding constraint. So we may assume that B∩C = /0

by discarding constraints with continuous basic variables if necessary. The corner

relaxation associated with B then takes the form:

cornerB(F) =
{
(xNI ,xNC) ∈ Z|NI|

+ ×R|NC|
+

∣∣ A−1
B ANxN ≡ A−1

B d (mod 1)
}
. (19.19)

Although we motivated the introduction of the corner relaxation by our desire to

evaluate the quality of cutting planes, it follows trivially from its construction that it

provides a relaxation of mixed integer programs. Therefore, it can be used both as a

substitute to linear programming relaxations in branch-and-bound techniques and a

source of cuts in cutting-plane algorithms. Next we describe both of these uses. In

Section 19.3 we describe a family of methods to optimize over the corner relaxation.

In Sections 19.4 and 19.5 we describe how to derive strong cutting planes for the

corner polyhedron.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

Fig. 19.3 Two-row relaxations C′
12 and C′

67.



19 The Group-Theoretic Approach in Mixed Integer Programming 739

19.3 Group relaxations: optimal solutions and structure

In this section, we first focus on the problem of optimizing linear functions over

Gomory’s corner relaxation. Then we describe conditions under which an optimal

solution of the corner relaxation solves (MIP) and discuss techniques that can be

used to solve (MIP) when it does not. Finally, we present extended group relaxations

which are tightenings of the corner relaxation and describe algebraic results about

their structure.

19.3.1 Optimizing linear functions over the corner relaxation

The first methodology to optimize linear functions over the corner relaxation

was introduced by Gomory [56] in 1965. Although the corner relaxation had not

been formally introduced at the time, Gomory used a dynamic programming algo-

rithm to investigate relations between continuous and integer optimal solutions to

a linear program. This algorithm produces an optimal solution for the problem of

maximizing a linear function over the corner relaxation. The search for more effi-

cient solution algorithms experienced an explosion of activities in the late 1960s and

early 1970s. Shapiro [91] proposed a shortest path algorithm variant of the dynamic

programming algorithm of Gomory. Glover [52] and Hu [68] also developed algo-

rithms. Chen and Zionts [20] investigated improvements to these algorithms and

tested these variants computationally; see also Salkin and Morito [88]. We present

one of these algorithms next.

We assume that the constraint matrix of the problem (MIP) is integral, i.e.,

A ∈ Zl×m. We consider first a pure integer program, i.e., C = /0. The problem we

wish to solve is:

min
{

z∗ + c̄NxN

∣∣ A−1
B ANxN ≡ A−1

B d (mod 1),xN ∈ Z|N|
+

}
(19.20)

where z∗ = cBA−1
B d and c̄N = cN − cBA−1

B AN .

In order for the algorithm to be simple to perform, we need the constraint co-

efficients of (19.20) to have only integer entries. This requirement can easily be

achieved by multiplying all constraints by D, the determinant of the basis matrix AB.

However, a more efficient algorithm can be obtained if we consider an alternate rep-

resentation of the group minimization problem using the Smith Normal Form of

the basis matrix AB; see Smith [93]. This representation makes use of unimodular

matrices, i.e., matrices U ∈ Zk×k for which det(U) = ±1.

Theorem 19.2 ([93]). Let F ∈ Zl×q be such that rank(F) = q ≤ l. There exist

unimodular matrices U1 ∈ Zl×l and U2 ∈ Zq×q for which U1FU2 =
(Λ

0

)
where

Λ = diag(λ1, . . . ,λq) ∈ Zq×q
+ is a diagonal matrix such that λi divides λi+1 for

i = 1, . . . ,q−1.



740 J.-P. P. Richard and S. S. Dey

In Theorem 19.2, the matrix Λ can be shown to be unique although the unimod-

ular matrices U1 and U2 are not. Matrices U1, Λ and U2 can be computed using a

variation of Gaussian elimination. In particular, they can be obtained as the product

of permutation matrices and of matrices corresponding to integer elementary row

and column operations. Further, matrices U1, Λ and U2 can be obtained in polyno-

mial time; see Kannan and Bachem [73] for such an algorithm.

We now derive an equivalent form of (19.20). Consider an optimal basis B of the

LP relaxation of (MIP). The group minimization problem associated with B is

min
{

z∗ + c̄NxN

∣∣ ABxB +ANxN = d,(xB,xN) ∈ Z|B|×Z|N|
+

}
. (19.21)

Using Theorem 19.2, we know there exist unimodular matrices U1 and U2 such that

U1ABU2 = Λ . Since the matrices U1 and U2 are unimodular and AB is a basis matrix,

then 0 6= |det(AB)| = |det(U1)||det(Λ)||det(U2)| = ∏l
i=1 λi, i.e., all the diagonal

entries of Λ are nonzero. Problem (19.21) can be reformulated as:

min
{

z∗ + c̄NxN

∣∣ ΛU−1
2 xB +U1ANxN = U1d,(xB,xN) ∈ Z|B|×Z|N|

+

}
(19.22)

after multiplying the defining constraint of (19.21) by U1. It can be easily verified

that U2 being unimodular implies that U−1
2 is unimodular. Further, it can be shown

that if w = U−1
2 xB then w ∈Zl if and only if xB ∈Zl . Therefore, formulation (19.22)

ultimately reduces to

min
{

z∗ + c̄NxN

∣∣ U1ANxN ≡U1d (mod Λ),xN ∈ Z|N|
+

}
. (19.23)

In formulation (19.23), the “mod” notation is taken to mean that the two vectors

U1ANxN and U1d differ by a vector z which is an integer multiple of Λ , i.e., z = ΛxB

for some xB ∈ Zl . As the matrix Λ is diagonal, it also signifies that the ith row of the

formulation is considered modulo λi.

Example 19.1. For the numerical example of Section 19.2, it can be computed that,

if

U1 =




1 0 0 0 0

−5 5 −32 1 0

5 2 28 0 1

5 −1 6 0 0

0 −1 7 0 0




, U2 =




1 0 0 −1 5

0 0 0 0 1

0 0 0 1 −2

0 1 0 5 −10

0 0 1 −5 10




and Λ =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 5 0

0 0 0 0 30




then U1ABU2 = Λ where AB is the basis matrix associated with B = {1,2,3,6,7}.

Using the representation (19.23), the group minimization problem can therefore be

restated as



19 The Group-Theoretic Approach in Mixed Integer Programming 741

min −19.1 + 1/30x4 + 1/6x5

s.t. 0x4 + 0x5 ≡ −3 (mod 1)

5x4 − 32x5 ≡ 60 (mod 1)

2x4 + 28x5 ≡ 1194 (mod 1)

−1x4 + 6x5 ≡ 105 (mod 5)

−1x4 + 7x5 ≡ 183 (mod 30).

In the above formulation, the first three constraints are trivially satisfied and can be

omitted, yielding

min −19.1 + 1/30x4 + 1/6x5

s.t. 4x4 + 1x5 ≡ 0 (mod 5)

29x4 + 7x5 ≡ 3 (mod 30) (19.24)

where the constraint coefficients and right-hand-sides have been reduced using the

congruence relation.

We now focus on a methodology that reduces the solution of the group mini-

mization problem (19.23) to that of a shortest path problem on an adequately de-

fined network. A network (or directed graph) N consists of a finite set V (set of

vertices) along with A (set of arcs) which is subset of directed pairs of vertices, i.e

the set {(u,v) | u ∈ V ,v ∈ V }. We define a dipath in N to be a sequence v1, a1,

v2, . . ., vk−1, ak, vk such that ai = (vi,vi+1) for all i = 1, . . . ,k−1. We refer to v1 as

the origin of the dipath while we refer to vk as the destination of the dipath. In the

preceding definition, the dipath can visit the same vertices several times. Given a

cost vector c that associates a real value ca to each arc a ∈ A , we define the cost of

dipath P to be ∑k
i=1 cai

. Given a cost vector c ∈ Rn, and given origin and destination

vertices s and t, the shortest dipath problem is the problem of finding a dipath in N

from origin s to destination t that has smallest cost.

We now describe how the group minimization problem described in (19.23) can

be solved as a shortest dipath problem. In the ensuing discussion, we say that a vec-

tor a ∈ Zl is lexicographically positive if a j∗ > 0 where j∗ = min{i ∈ {1, . . . , l} |

ai 6= 0}. We also say that a ∈ Zl is lexicographically smaller than ā ∈ Zl , and write

a ≺ ā if ā− a is lexicographically positive. Let G = {(a1,a2, . . . ,al) ∈ Zl
+ | 0 ≤

ai ≤ λi − 1,∀i = 1, . . . , l} and D = ∏l
i=1 λi. Clearly |G| = D. We sort the elements

of G in lexicographically increasing order. We denote the sorted elements as gk

for k = 0, . . . ,D− 1. From now on, we refer to an element g of G and the vertex

that it represents interchangeably. The network we create has one vertex for each

element of G. We set the origin vertex s = 0 and the destination vertex t = U1d.

For each column j of N and for each vertex k = 0, . . . ,D− 1, we create a directed

arc between the vertex corresponding to element gk and the vertex corresponding

to element (gk +U1A j) (mod Λ). The cost associated with this directed arc is set

to c̄ j. We refer to this network as a group network, a terminology first employed

by Shapiro [91]. The above construction might create parallel arcs between vertices



742 J.-P. P. Richard and S. S. Dey

when there are two different columns j 6= j′ ∈ N for which U1A j′ = U1A j. We claim

that the dipaths from s to t correspond to feasible solutions of the group minimiza-

tion problem (19.23) and that solutions to the group minimization problem can be

extended into dipaths from s to t. To see this, consider any dipath P from s to t

of cost c∗. For j ∈ N, let x̃ j be the number of arcs of type U1A j that the dipath P

contains. It is easy to verify that the solution x̃N = (x̃ j) j∈N is feasible for the corner

relaxation and that its objective function value equals c∗. Similarly, given any so-

lution to the corner relaxation, x̃N , we can create a dipath of cost c∗ from vertex 0

to vertex U1d by following a sequence of x̃ j arcs of type U1A j for j ∈ N. It is clear

however that the above dipath is not the unique dipath corresponding to x̃N and that

re-orderings of its arcs could yield new dipaths from s to t of cost c∗. As a result of

the above discussion, we conclude that it is possible to solve the group minimization

problem (19.23) as a shortest dipath problem on the group network from vertex s to

vertex t.

Example 19.2. In Figure 19.4 we represent (part of) the network that is created for

solving (19.24) as a shortest path problem. As mentioned above, it is sufficient to

consider the last two equations of (19.24). In the figure, the elements g = (i, j)
of G are represented to have x-coordinate i and y-coordinate j. For each ver-

tex, there are two types of outgoing arcs, resulting in a graph with 300 arcs. To

avoid overloading the picture with lines, the arcs {(0, j);(4, j − 1 (mod 30)} and

{(4, j);(0, j + 7 (mod 30)} are not represented. The first type of arcs, represented

with continuous lines, corresponds to column (4,29)′ of (19.24) and has cost 1/30.

The second type of arcs, represented with dashed lines, corresponds to column

(1,7)′ of (19.24) and has cost 1/6. In this network, we are looking for a shortest

dipath from (0,0) to (0,3). These vertices are indicated with a double diamond.

Fig. 19.4 Shortest path problem.



19 The Group-Theoretic Approach in Mixed Integer Programming 743

We now describe an algorithm that solves the group minimization problem in

time O(nD2) where n = |N|. First, we assume for simplicity that the problem is not

infeasible. We add an artificial arc (s, t) with very large cost so that the problem is

feasible. Second, we assume that all components of the vector c̄N are nonnegative

for otherwise, the problem is unbounded from below. To see this, assume that c̄ j is

negative for some j ∈ N. Since there is an arc of type j emanating from every vertex

of the network, we can build an arbitrarily long dipath using only arcs of type j.

Since the number of vertices in the network is finite, this implies the existence of a

negative cost directed cycle, which proves the claim. Third, we assume that there is

no more than one arc between any directed pair of vertices. This is because although

parallel arcs might exist when U1A j = U1A j′ for j 6= j′ ∈ N, there always exists an

optimal solution in which only one of these arcs (one with minimum cost c̄ j) is

used. Finally, we remove all loops, i.e., arcs of the form (gk,gk) for some k, since

they only add to the cost of dipaths.

We next describe the algorithm of Shapiro [91] as it achieves best computational

results in the study of Chen and Zionts [20]. We define Γi+1(gk) as the cost of the

shortest dipath from s to gk uncovered after the i + 1st iteration of the algorithm.

This cost can be obtained using the recurrence:

Γi+1(gk) = min





min j∈N

{
c̄ j +Γi+1(gk −U1A j)

}
, if gk ≻ gk −U1A j,

min j∈N

{
c̄ j +Γi(gk −U1A j)

}
, if gk −U1A j ≻ gk,

Γi(gk),

with Γi(g0) = 0 and Γ0(gk) = ∞ for i = 0, . . . ,D − 1 and k = 1, . . . ,D − 1. It is

proven in Shapiro [91] that ΓD−1(t) is the optimal value of the group minimiza-

tion problem with right-hand-side t. The algorithm runs in time O(nD2), which can

be improved upon. For example, using a Fibonacci heap implementation of Dijk-

stra’s algorithm, see Ahuja et al. [3], shortest paths problems can be solved in time

O(|A |+ |V | log |V |). Since in our case |A | = nD, and |V | = D, we obtain the

following result.

Theorem 19.3. The group minimization problem (19.23) associated with basis B

can be solved in time O(nD+D logD) where n is the number of nonbasic variables

and D = det(AB).

Theorem 19.3 does not take into consideration the time necessary to obtain the

Smith Normal Form of AB. The above algorithm is clearly not polynomial as D

can be large even if the entries of AB are small. In particular Hadamard [63] proved

that for any complex k× k matrix A whose entries satisfy |ai j| ≤ 1, |det(A)| ≤ kk/2.

Even for (0,1) matrices, determinants can be large as
(k+1)(k+1)/2

2k , an upper bound

that is attained. Next, we discuss on an example the output of the algorithm.

Example 19.3. Solving the shortest path problem using the algorithm above, we ob-

tain a shortest path from (0,0) to (0,3) that visits the following sequence of vertices

(0,0), (1,7), (2,14), (3,21), (2,20), (1,19), (0,18), (4,17), (3,16), (2,15), (1,14),
(0,13), (4,12), (3,11), (2,10), (1,9), (0,8), (4,7), (3,6), (2,5), (1,4), (0,3), where



744 J.-P. P. Richard and S. S. Dey

the first 3 arcs correspond to nonbasic column (1,7)′ and the last 18 arcs correspond

to nonbasic column (4,29)′. This solution is represented with heavy continuous

lines in Figure 19.4. We conclude that an optimal solution to the group minimization

problem is x5 = 3 and x4 = 18. Using (19.8), we deduce that the value of variables

x1 = 6, x2 = 6, x3 = 9, x6 = 111 and x7 = 1029. This solution is feasible for the

initial integer program (19.7) as all of its components are nonnegative. Therefore, it

is optimal for (19.7).

When the group minimization problem to solve contains continuous variables,

Wolsey [98] proposed to discretize its continuous variables so as to transform the

problem into a purely integer group minimization problem. This method relies on

the following result (which is valid for general mixed integer programs). Recall that

we assumed that the constraint matrix of (MIP) has full row-rank.

Theorem 19.4 ([98]). For (MIP), define U = {Bi}i∈B to be the set of dual feasible

bases involving only columns of AC. Also define D̄ = l.c.m.{|det(ABi
)| |Bi ∈U }. All

optimal solutions to (MIP) can be obtained from the solution of the integer program

min ∑
j∈I

c jx j + ∑
j∈C

c j

D̄
s j

s.t. ∑
j∈I

D̄A jx j + ∑
j∈C

A js j = D̄d

x j ∈ Z+∀ j ∈ I

s j ∈ Z+∀ j ∈C,

obtained by substituting s j = D̄x j for j ∈C and constraining s to be a nonnegative

integer.

The magnitude of the multiplier D̄ can be reduced when specifically dealing with a

corner relaxation; see Lemma 3 in Wolsey [98].

19.3.2 Using corner relaxations to solve MIPs

In our numerical example, we observed that the solution to the group minimiza-

tion problem is also an optimal solution to the initial integer program. Clearly, this

is not always the case as the next example illustrates.

Example 19.4. Consider the variant of (19.7) where d =(−3,258,63, 771,−1071)′

has been replaced with d2 = (8,193,28,756,−1097)′. The right-hand-side of the

simplex tableau (19.8) becomes (5.5,0.1,2.8,799,99)′ showing that the basis B =
{1,2,3,6,7} is still optimal for the LP relaxation of (19.7) and that the correspond-

ing solution is fractional. Further since U1d2 = (8,785,113,15,3)′ ≡ (0,0,0,0,3)′)
(mod Λ) where Λ = diag(1,1,1,5,30) we conclude that the shortest path problem

to solve remains exactly that of Example 19.3. Therefore, an optimal solution to the

group minimization problem is x5 = 3 and x4 = 18. Using (19.8), we deduce that the



19 The Group-Theoretic Approach in Mixed Integer Programming 745

value of variables x1 = 5, x2 = 0, x3 = 3, x6 = 806 and x7 =−22. The corresponding

solution is not feasible as x7 < 0.

Next we study sufficient conditions under which an optimal solution to the corner

relaxation also solves the initial integer program. In view of Theorem 19.4, it is suf-

ficient to consider the pure integer case; see Wolsey [98] for an explicit translation

of the following results to the mixed integer case.

19.3.2.1 The asymptotic theorem

Consider an optimal solution x̄N to the group minimization problem. Since

the group minimization problem is a relaxation of (MIP), x̄N will be optimal

for (MIP) when the basic variables x̄B corresponding to x̄N are nonnegative i.e.,

x̄B = A−1
B d −A−1

B AN x̄N ≥ 0. Further if (x̄B, x̄N) is optimal for (MIP), then x̄N might

remain optimal for the corner relaxation associated with B when d is changed, and

(A−1
B d−A−1

B AN x̄N , x̄N) might be optimal for (MIP), as it is the case in Example 19.4.

For this to be true for a particular right-hand-side d∗, we need (i) A−1
B d∗ ≥ 0, i.e.,

the basis B remains optimal for the LP relaxation and so the optimal corner for

d∗ matches that for d, (ii) U1d∗ = U1d, i.e., the destination of the shortest dipath

remains unchanged, and (iii) x̄B(d∗) ≥ 0 where x̄B(δ ) = A−1
B δ − A−1

B AN x̄N . The

above conditions are very dependent on the knowledge of an optimal solution x̄N

to the group minimization. To obtain conditions that are easier to apply, we study

the characteristics of optimal solutions to the group minimization problem.

Since all costs c̄N are nonnegative, there always exists a shortest dipath in the

group network that will not visit any vertex more than once. In fact, when a vertex

is visited more than once, a directed cycle is created. Removing this cycle yields a

new dipath whose cost is at least as small as before. Since the longest dipaths in the

group network that do not repeat vertices have D−1 arcs, we obtain the following

result.

Proposition 19.1 ([56], [91]). If the group minimization problem has a feasible so-

lution, it has an optimal solution x̄N that satisfies ∑ j∈N x̄ j ≤ D−1.

For optimal solutions x̄N of the group minimization problem, upper bounds can

also be obtained on individual variables x j for j ∈ N. Remember that, for j ∈ N,

there is a directed cycle composed only of arcs of type j. Denote by p j the smallest

length of a cycle using only arcs of type j in the group network. Clearly p j ≤ D. It

follows that if p j or more arcs of type j were to be used in a dipath from origin to

destination, one could create a new dipath from origin to destination by deleting p j

arcs of type j.

Proposition 19.2 ([91]). If the group minimization problem has a feasible solution,

then there exists an optimal solution x̄N that satisfies x̄ j ≤ p j −1 for all j ∈ N.

Using these results, we see that when d∗ ∈ K ′
B = {δ ∈ Rl | A−1

B δ ≥ (D −

1)|A−1
B AN |e} where e is the vector (1,1, . . . ,1)′ in Rl and when (MIP) is fea-

sible for d∗, then d∗ satisfies Condition (i): A−1
B d∗ ≥ 0. Further, let x̄N be any



746 J.-P. P. Richard and S. S. Dey

optimal solution to the group minimization problem corresponding to basis B

that satisfies ∑ j∈N x̄ j ≤ D − 1. Then (ii) is not required and (iii) is satisfied as

x̄B(d∗) = A−1
B d∗−A−1

B AN x̄N ≥ (D−1)|A−1
B AN |e−A−1

B AN x̄N ≥ 0. It follows that all

optimal solutions to the corner relaxation that satisfy ∑ j∈N x̄ j ≤ D−1 solve (MIP).

Similarly when d∗ ∈ K ′′
B = {δ ∈ Rl | A−1

B δ ≥ |A−1
B AN |p} where p is the vector

(p1 −1, p2 −1, . . . , pn −1)′ and when (MIP) is feasible for d∗, then all optimal so-

lutions to the corner relaxation that satisfy x̄ j ≤ p j −1 for all j ∈ N solve (MIP).

Theorem 19.5 ([91]). Let B be an optimal basis of the LP relaxation of (MIP). As-

sume that d ∈ K ′
B or d ∈ K ′′

B and that (MIP) has a feasible solution. Then there is

an optimal solution to (MIP) that minimizes cx over the corner relaxation associated

with basis B.

The above conditions indicate that an optimal solution to the group minimization

problem from the corner associated with an optimal basis of the LP relaxation will

solve the integer program provided that its right-hand-side d is sufficiently inside

of the cone KB = {δ ∈ Rl | A−1
B δ ≥ 0}. For a fixed cost vector c, KB is the cone

of right-hand-side vectors for which the dual feasible basis B is optimal for the

LP relaxation. The difference between cone KB and cones K ′
B and K ′′

B describes

the “fat” around KB for which the result might not hold. A condition similar to

that of Theorem 19.5 was given earlier by Gomory [56]. We present it next. Given

the cone KB, we denote the set of points belonging to KB that are at a Euclidean

distance of d or more from the boundary of KB by KB(d). Clearly KB = KB(0)
and KB(d) ⊆ KB.

Theorem 19.6 ([56]). Let B be an optimal basis of the LP relaxation of (MIP). As-

sume that d ∈ KB(lmax(D−1)) where D = det(AB) and lmax is the Euclidian length

of the longest nonbasic column of (MIP). Assume also that (MIP) has a feasible so-

lution. Then there is an optimal solution to (MIP) that minimizes cx over the corner

relaxation associated with basis B.

The result of Theorem 19.6 is known under the name of Asymptotic Theorem.

Its conditions are very conservative and the result holds in situations where the

conditions do not. More generally, Balas [9] show that the sufficient condition of

Theorem 19.6 (and in fact an even more general set of conditions) are so restric-

tive that they are never satisfied for 0-1 integer programs. Although it was believed

for some time that corner relaxations would often be sufficient to solve IPs (see

Hu [67]) the early large-scale study of group-theoretic approaches in IP conducted

by Gorry et al. [63] concluded that “Computation has in fact revealed that solving

the asymptotic problem does not solve the original problem for most real life IP

problems of any size, say problems with more than 40 rows.”

The derivation of the asymptotic theorem has an interesting consequence. Con-

sider a basis B that is optimal for the LP relaxation of (MIP) for some right-

hand-side d. Construct the group network associated with this basis, and for ev-

ery one of its vertices gk for which there exists a dipath from 0 to gk, compute

a shortest path from vertex 0 to vertex gk that satisfies the conditions of Propo-

sition 19.1. Denote the solutions of the corner relaxation corresponding to these



19 The Group-Theoretic Approach in Mixed Integer Programming 747

dipaths as x̄k
N for k ∈ {0, . . . ,D − 1}. It follows from our derivation of Theo-

rem 19.5 that for all right-hand-side vectors d∗ in the cone K ′
B for which (MIP)

has a feasible solution, one of the “corrections” x̄k
N for k ∈ {0, . . . ,D− 1}, say k∗,

will be optimal for the corner relaxation and therefore the corresponding solution

(A−1
B d∗−A−1

B AN x̄k∗

N , x̄k∗

N ) will be optimal for (MIP). Therefore, there is a finite set

of corrections x̄k
N , k ∈ {0, . . . ,D− 1} from which we can build an optimal solution

to each one of the feasible (MIP) (infinite in number) whose right-hand-sides d∗ are

sufficiently inside of the cone KB. This fact was observed by Gomory [56] and the

idea of tabulating the values of x̄N to solve (MIP) with different right-hand-sides

was proposed by Gomory [57]. We record this result next.

Theorem 19.7. Let B be an optimal basis of the LP relaxation of (MIP) for some

right-hand-side d′. There exists a finite list of nonnegative integer vectors {xk
N}k∈QB

with the following property. For each d ∈ K ′
B , the set

Qd = {k ∈ QB | xk
B = A−1

B d −A−1
B ANxk

N ≥ 0 and integer }.

is such that

1. Qd = /0 implying that (MIP) is infeasible, or

2. Qd 6= /0 implying that if c̄Nxk∗
N = mink∈Qd

{c̄Nxk
N}, the vector (xk∗

B ,xk∗

N ) is an op-

timal solution for (MIP).

We will see in the following section that this result holds true even when the

right-hand-sides d do not lie deep inside of the cone KB. To prove this result, first

derived by Wolsey [100], it is not sufficient to tabulate shortest dipaths to every

vertex in group networks. Instead, it is necessary to consider solutions to tighter

relaxations.

19.3.2.2 When corner relaxations fail

Consider now an optimal solution of the corner relaxation of the problem ob-

tained using the shortest path algorithm of Section 19.3.1 and assume that this solu-

tion is not feasible to (MIP). We describe next two families of approaches that can

be used to obtain an optimal solution of (MIP).

Divide-and-conquer

Since the group minimization problem is a relaxation of (MIP), an optimal solu-

tion of (MIP) can be found among its feasible solutions. More precisely, given (MIP)

and a corner relaxation based on basis B, one can obtain an optimal solution to

(MIP) by enumerating all nonnegative integer vectors x̄N of cornerB(F) for which

x̄B = A−1
B d −A−1

B AN x̄N is nonnegative and integer, and then choosing among them

one that has lowest objective value. This exhaustive search might however be time-

consuming and an implicit enumeration scheme would likely be more efficient in



748 J.-P. P. Richard and S. S. Dey

practice. In particular, one could think about using bounds obtained by solving the

group minimization problem to trim down the search space.

One early idea along these lines was proposed by Shapiro [92]. When an optimal

solution to the group minimization problem does not solve (MIP), its feasible re-

gion is divided into subsets, each one defined by imposing a different lower bound

vector lN on the nonbasic variables xN . To obtain bounds on the best objective value

achieved in each one of these subsets, the following optimization problem is solved

z̃ = min
{

z∗ + c̄NxN

∣∣ xN ∈ cornerB(F),xN ≥ lN
}
. (19.25)

Although this problem differs from the traditional group minimization problem, it

is easy to see that its feasible solutions can still be considered to be dipaths from s

to t in the group network. Further, this problem can be interpreted as that of finding

a shortest dipath from origin s to destination t that uses at least l j arcs of type j.

Therefore, one simple way to solve this problem is to create a dipath from the ori-

gin by following l j arcs of type j for all j ∈ N. This dipath leads to a new vertex

that we call o′. It then remains to complete this dipath to reach destination vertex t.

Therefore (19.25) can be interpreted as a shortest dipath problem from vertex o′ to

vertex t. Due to the symmetry of the group network, this problem reduces to find-

ing a shortest dipath from vertex o to vertex t − o′. Solving this problem is simple

as the dynamic programming algorithm we presented for solving the group mini-

mization problem not only finds the shortest dipath from 0 to t (ΓD−1(t)) but also

from vertex 0 to every other vertex g (ΓD−1(g)). Therefore, a solution to (19.25) can

be easily found by re-using the previous dynamic programming table. A large-scale

implementation of the above branch-and-bound algorithm, together with several im-

provements is described in Gorry et al. [63]. This algorithm also takes advantage of

binary variables, when they are present in the problem. We refer to Nemhauser and

Wolsey [83] pages 445–447 for a numerical example.

Feasible solutions to the corner relaxation can be seen as dipaths in the group

network. Therefore, the branch-and-bound algorithm described above can be seen

as a way to search the s-t dipaths in the group network for a shortest dipath that

corresponds to a feasible solution to the integer program. In the case where the

corner relaxation does not solve the integer program, this dipath is not a shortest

dipath in the group network but is probably a “short” dipath in the group network.

This suggests that one could find an optimal solution to the problem by developing

algorithms that find the K shortest dipaths in the group network for K sufficiently

large. This idea was first introduced by Wolsey [99] where a dynamic programming

algorithm for finding the K best solutions to an integer program is described. This

algorithm works directly on the solution of the corner relaxation rather than the as-

sociated group network as there can be many different dipaths in the group network

that correspond to a single solution of the corner relaxation.



19 The Group-Theoretic Approach in Mixed Integer Programming 749

Relaxation improvement

When the group relaxation is not sufficiently strong to solve (MIP), we could

search to produce a new, stronger, relaxation that does not contain the undesirable

optimal solution. One way to achieve such stronger relaxation is to embed the prob-

lem into a finer group. The first algorithm based on this idea was proposed by Bell

and Shapiro [13]. In this approach, the set of constraints of the problem is first

duplicated. The first set is transferred to the objective with a penalty weight, follow-

ing traditional Lagrangian relaxation principles. The feasible region associated with

the second set is replaced with a group relaxation based on a group G. The resulting

problem is therefore a relaxation of the initial integer program. The Lagrangian dual

problem is solved using a combination of subgradient and primal-dual methods. If

the solution to this relaxation is feasible to the initial integer program and satisfies

optimality conditions, it is optimal for (MIP) and the algorithm is terminated. Other-

wise a new group relaxation is produced using a group G′ which is supergroup of G.

This group G′ is produced from optimal solutions of the primal-dual algorithm. The

process is then iterated until an optimal solution to (MIP) is found. This procedure

is proven to be finitely convergent for 0-1 problems in Bell and Shapiro [13]. We

refer to Nemhauser and Wolsey [83] for a simplified version of the algorithm.

Another idea to strengthen the relaxation is to improve it directly where it is

known to be weak. In particular, if the group minimization problem associated with

basis B has an optimal solution x̄N whose associated vector x̄B is such that x̄ j < 0

for j ∈ B, an improved relaxation of the integer program could be produced by

requiring that the nonnegativity of basic variable x j is not relaxed in the group re-

laxation. This idea, first proposed by Wolsey [97], leads to the concept of extended

group relaxations. This concept has many ramifications. We devote the next section

to its study.

19.3.3 Extended group relaxations

As mentioned above, a possible way to overcome situations where the corner

relaxation is not sufficiently strong to solve (MIP) is to generate stronger relaxations

by relaxing nonnegativity for only a subset of the basic variables. Wolsey [97] first

proposed this idea in 1971. Again, assume that B is an optimal basis for the LP

relaxation of (MIP) and let (T, T̄ ) be a partition of the basic variables B. We are

interested in solving extended group minimization problems of the form

min
{

z∗ + c̄NxN

∣∣ ABxB +ANxN = d,xT ∈ Z|T |,(xT̄ ,xN) ∈ Z|T̄ |+|N|
+

}
(19.26)

in which the nonnegativity of basic variables in T̄ is maintained. We refer to the

feasible regions of extended group minimization problems as extended group relax-

ations and denote them by EGB,T (F), i.e.,



750 J.-P. P. Richard and S. S. Dey

EGB,T (F) =
{
(xT ,xT̄ ,xN) ∈ Z|T |×Z|T̄ |+|N|

+

∣∣ ABxB +ANxN = d
}
.

It is clear that the strength of the extended group relaxation increases as the

size of |T | decreases. In particular, if an extended group relaxation is sufficiently

strong to solve (MIP), then any of the extended group relaxations EGB,T ′(F) with

T ′ ⊆ T will also solve (MIP). Further, since when T = /0, the extended group relax-

ation corresponds to (MIP), there always exists an extended group relaxation that

solves (MIP). It is therefore expected that extended group relaxations will become

harder to solve as the size of |T | decreases.

There are different ways of solving extended group relaxations. A first method,

introduced by Wolsey [99], is an extension of the approach that was presented to

solve group relaxations in Section 19.3.1. We again use the Smith Normal Form

of a matrix, but this time, we compute the SNF of matrix AT . Let U1 and U2 be

unimodular matrices such that U1ATU2 =
(Λ

0

)
. After multiplying the constraints of

(19.26) throughout by matrix U1, we obtain the following equivalent formulation of

the problem:

min



 z∗ + c̄NxN

(
Λ
0

)
U−1

2 xT +U1AT̄ xT̄ +U1ANxN = U1d

xT ∈ Z|T |,(xT̄ ,xN) ∈ Z|T̄ |+|N|
+



 (19.27)

which reduces to

min





z∗ + c̄NxN

(U1AT̄ ) jxT̄ +(U1AN) jxN ≡ (U1d) j (mod λ j), for j ∈ [T ]

(U1AT̄ ) jxT̄ +(U1AN) jxN = (U1d) j, for j ∈ [T̄ ]

(xT̄ ,xN) ∈ Z|T̄ |+|N|
+





,

(19.28)

where [T ] = {1, . . . , |T |}, [T̄ ] = {|T |+ 1, . . . , l} and A j is used to describe the jth

row of matrix A. Wolsey [99] proposes to use a dynamic programming algorithm

to solve (19.28). This algorithm is similar to that described in Section 19.3.1 and

is therefore not repeated here. Extended group minimization problems can also be

expressed as lattice programming problems, i.e., optimization problems of the form

min{cx | x≡ d (mod L ),x∈Zn
+} where c∈Rn, L is a sublattice of Zn and d ∈Zn

+.

In particular, the extended group minimization problem (19.27) can be expressed as

the lattice programming problem

min
{

πT (c− cBA−1
B A)xT̄

∣∣ xT̄ ≡ πT (u) (mod LT ),xT̄ ∈ Z|T̄ |
}

where u is a feasible solution to (MIP), πT is the operator that takes a vector v in Rm

and maps it to the vector ṽ in R|T̄ | obtained by deleting from v all components whose

indices are in T and LT = πT (L ) where L is the lattice {x ∈ Zn | Ax = 0}; see

Thomas [95] for more detail. Lattice programming problems can be solved using

Gröbner bases; see Sturmfels et al. [94].



19 The Group-Theoretic Approach in Mixed Integer Programming 751

Extended group relaxations can therefore be used to help solve integer programs

when their corner relaxations do not. Further, by carefully selecting finite sets of

points in these extended group relaxations, it is possible to generalize the result of

Theorem 19.7 to right-hand-sides not deeply inside of the cones KB. In particular,

Wolsey [100] first proved that there is a finite number of corrections x̄N from which

an optimal solution to each of the feasible integer programs

IP(d) : min{cx | Ax = d, x ∈ Zm
+}

can be deduced. Formally,

Theorem 19.8 ([100]). Assume {u ∈ Rl | u′A ≥ c} 6= /0. Then there exists a finite

list of nonnegative integer vectors {x
q
N}q∈QB

for each dual feasible basis B with the

following property: Let

Qd = {q ∈ QB | x
q
B = A−1

B d −A−1
B ANx

q
N ≥ 0 and integer }.

Either Qd = /0 implying that IP(d) is infeasible, or Qd 6= /0 implying that if c̄Nx
q∗
N =

minq∈Qd
{c̄Nx

q
N}, the vector (xq∗

B ,xq∗

N ) is an optimal solution for IP(d).

Although the proof given in Wolsey [100] is constructive, it produces an over-

abundance of corrections and generates these corrections from all extended group

relaxations. A more detailed characterization is obtained by Hoşten and Thomas [65]

using algebraic arguments. In particular, they determine a minimal set of extended

group relaxations that solves all feasible integer programs in IP(d). We next present

some of these results. The presentation is in line with that given in Thomas [95].

Recall that we are now interested in the family of problems IP(d) in which the

constraint matrix A and objective coefficients c are fixed but right-hand-sides d are

allowed to take any value in Zl . We remove right-hand-sides d for which IP(d) is

infeasible by requiring that d ∈ D = {δ ∈ Rl | δ = Az for z ∈ Zm
+}. We also assume

that the vector c is generic, i.e., for all d ∈ D , problem IP(d) has a unique optimal

solution. Further, instead of focusing solely on those extended group relaxations

coming from an optimal basis of the LP relaxation of IP(d), we consider extended

relaxations from various sets of columns T that are not necessarily part of an optimal

basis of the LP relaxation for d. As a result, we now refer to extended relaxations

directly as EGT (F) instead of EGB,T (F). This extension allows some problems that

otherwise would only be solved by trivial extended group relaxations to be solved

by nontrivial extended group relaxations.

We define a cone complex ∆ to be a collection of polyhedral cone called cells (or

faces) for which (i) every face of a cell of ∆ is a cell of ∆ and (ii) the intersection of

two cells of ∆ is defined to be their common face. For nonempty cone complexes,

the empty set is a cell of ∆ since it is a face of every polyhedral cone.

Definition 19.1. The regular subdivision ∆c of cone(A) is defined as the cone com-

plex whose cells are all cones of the form cone(AS) with S ⊆ M for which there

exists a vector y ∈ Rl for which yA j = c j for j ∈ S and yA j < c j for j ∈ M\S.



752 J.-P. P. Richard and S. S. Dey

Although the elements of ∆c are cones, we will refer to them simply through the

index set S that they are defined from. The regular subdivision ∆c is relevant to

the study of extended relaxations as it defines the sets T for which extended group

minimization problems are bounded.

Theorem 19.9 ([95]). The extended group minimization defined on T for IP(d) has

a finite optimal solution if and only if T ⊆ M is a face of ∆c.

As we mentioned above, if a relaxation EGT (F) solves IP(d) then every ex-

tended group relaxation with T ′ ⊆ T also solves the problem. Therefore, we are

interested in those relaxations that solve the problem with |T | as large as possible.

This motivates the following definition.

Definition 19.2. A face T of the regular subdivision ∆c is an associated set of IP(d)

if, for some d ∈ D , the extended group minimization problem based on T solves

IP(d) but the extended group minimization problem based on T ′ does not solve

IP(d) for any face T ′ of ∆c for which T ⊂ T ′.

The fact that there is a finite number of associated sets does not imply Theo-

rem 19.8, since it is conceivable that for each d solved by a particular associated set,

a different correction vector x̄T (d) would have to be created. However, only a finite

number of corrections x̄N are needed to obtain the optimal solution of all problems

in IP(d) for d ∈ D as we will see. First we denote by Oc the set of all optimal solu-

tions of the problem IP(d) that are obtained as d varies in D . Since we assume that

the family of problems is generic, there is a single solution for each d ∈ D . Further,

it can be proven that Oc is a down set, i.e., if u ∈ Oc, v ≤ u and v ∈ Z+, then v ∈ Oc.

We are trying to show that the solutions of Oc can be explained by a finite num-

ber of carefully selected corrections. These corrections are underlying the following

definition where we use the notation S(u,T ) to denote the set {u+Nei | i ∈ T}.

Definition 19.3. For T ∈ ∆c and u ∈ Oc, (u,T ) is called an admissible pair of Oc if

1. the support of u is contained in T̄ and

2. S(u,T ) ⊆ Oc.

Further, an admissible pair (u,T ) is a standard pair of Oc if S(u,T ) is not properly

contained in S(v,T ′) for some other admissible pair (v,T ′).

Standard pairs help characterize what corrections and what extended group relax-

ations are needed to solve all problems IP(d). For d ∈NA and a standard pair (u,T ),
the system AT x = d −AT̄ πT (u) can be solved uniquely for x as T is a face of ∆c. In

other words, the vectors u can be thought of as one the correction vectors that can be

used to obtain optimal solutions for IP(d) as d varies in D . Hoşten and Thomas [65]

present an algorithm to compute standard pairs in a more general setting. Next, we

describe a characterization of standard pairs using the concept of standard poly-

tope. This notion arises from the reformulation of the extended group minimization

problems as follows. Given a solution u in IP(d) and assuming that T = B, we can

reformulate the group minimization problem as



19 The Group-Theoretic Approach in Mixed Integer Programming 753

min{cx | x−u ∈ L ,x ∈ Zm
+} ⇐⇒ min{cx | x−u = −Lz,x ≥ 0,z ∈ Zm−l}

⇐⇒ min{(−cL)z | Lz ≤ u,z ∈ Zm−l}

where L is the lattice {x ∈ Zm | Ax = 0} and L is a matrix whose columns generate

the lattice L . Similarly, general extended group relaxations can be reformulated as

min{(−cL)z | LT z ≤ πT (u),z ∈ Zm−l}.

where LT is the matrix obtained from L by deleting all of its rows indexed by T .

Definition 19.4. Given a face T of ∆c and a point u ∈ Zm
+, we define the polytope

QT̄
u = {z ∈ Rm−l | LT z ≤ πT (u),(−cL)z ≤ 0} to be a standard polytope of IP(d) if

QT̄
u ∩Zm−l = {0} and all relaxations of QT̄

u obtained by removing one inequality of

LT z ≤ πT (u) contain one non-zero point in Zm
+.

The following result establishes the relations between standard pairs, standard

polytopes and associated sets.

Theorem 19.10 ([65], [95]). The admissible pair (u,T ) is a standard pair of Oc if

and only if the face T of ∆c is associated to IP(d) if and only if the polytope QT̄
u is

a standard polytope of IP(d).

The set Oc is covered by the sets S(u,T ) corresponding to its standard pairs. It

follows that the standard pair decomposition of Oc is unique since the standard pairs

of Oc are obtained directly from standard polytopes. Further, since there is a finite

number of standard polytopes of the form QT̄
u for all associated sets T , there is only a

finite number of standard pairs. Associated sets induce a poset structure on the faces

of the regular triangulation ∆c with respect to set inclusion. Although the maximal

elements of this poset are the maximal faces of ∆c, its structure is complicated.

However, the following important structural result holds.

Theorem 19.11 ([65], [95]). If T ∈∆c is an associated set of IP(d) and |T |< l, then

there exists a face T ′ ∈ ∆c that is also an associated set of IP(d) with the property

that T ⊂ T ′ and |T ′\T | = 1.

The characterization of standard pairs opens various new lines of research. For

example, we could search to determine families of integer programs IP(d) that are

solved by the simplest extended group relaxations (those that correspond to maximal

faces of ∆c) for all d ∈ D . Such a family of integer programs IP(d) is called a Go-

mory family. We refer to Hoşten and Thomas [66] for an analysis of these programs.

In particular, the following result can be established.

Theorem 19.12 ([66], [95]). The family of integer programs IP(d) is a Gomory

family if and only if its standard polytopes are simplices.



754 J.-P. P. Richard and S. S. Dey

19.4 Master group relaxations: definitions and inequalities

Although it is simple to optimize linear functions over corner relaxations using

shortest path algorithms, it is more difficult to study their polyhedral structure. In

particular, although corner relaxations have a nice geometrical interpretation, they

depend heavily on the actual instance of the mixed integer programming problem at

hand. This suggests that results obtained from their polyhedral study would be very

specific and therefore would have to be performed for every basis B and for every

feasible set F , a dantesque task. Gomory [57] however pointed out that the polyhe-

dral structure of conv(cornerB(F)) can be deduced from the study of more general

master relaxations that are less dependent on the structure of the initial problem. We

focus on these master relaxations and their structure in this section.

19.4.1 Groups

The master relaxations are based on the algebraic notion of a group. We therefore

introduce first some basic definitions.

Definition 19.5. A group (G,⊕) is a set G with a binary operation ⊕ that satisfies

the following four properties:

i. For all g1, g2 in G, g1 ⊕g2 belongs to G.

ii. For all g1, g2, g3 in G, (g1 ⊕g2)⊕g3 = g1 ⊕ (g2 ⊕g3).
iii. There exists ḡ ∈ G (unique zero element) such that g⊕ ḡ = ḡ⊕ g = g for all g

in G.

iv. For all g1 in G, there exists g2 in G such that g1 ⊕g2 = g2 ⊕g1 = ḡ.

The definition of group does not require the binary operation to be commutative,

i.e., g1⊕g2 is not necessarily equal to g2⊕g1. However, the groups that we will use

in the remainder of this chapter satisfy this property. Given g in G and given n ∈Z+,

we define the element ng as g⊕g⊕·· ·⊕g︸ ︷︷ ︸
n times

. The following definition ensues.

Definition 19.6. The order of an element g of a finite group G is the smallest positive

integer n such that ng = ḡ.

We define (G′,⊕) to be a subgroup of (G,⊕) if G′ ⊆ G and (G′,⊕) satisfies the

definition of group. If G′ is a subgroup of G, we use the notation G′ 4 G. Among

all groups, we will focus on those that are subgroups of the group Im that is defined

next.

Definition 19.7. We refer to the group of real m-dimensional vectors with the addi-

tion modulo 1 componentwise as the infinite group Im. We refer to m as the dimen-

sion of Im.



19 The Group-Theoretic Approach in Mixed Integer Programming 755

Among the subgroups of Im, the following are important both historically and

practically.

Definition 19.8. Given a vector K of m positive integers, we refer to the group of

real m-dimensional vectors whose components i are integer multiples of 1
Ki

with

the addition modulo 1 componentwise as the finite group Cm
K . We refer to m as the

dimension of Cm
K . The subgroup C1

k 4 I1 is called the cyclic group of order k.

As we will often switch from coefficients of the simplex tableau (19.6) (coeffi-

cients in Rm) to their representative in the corner relaxation cornerB(F) (coefficients

in Im), we define F : Rm → Im to be the function that maps a vector of real num-

bers to the vector of their fractional parts. Similarly we define F−1 : Im → Rm to be

the function that maps the element v of Im to the element v′ of Rm that is such that

F (v′) = v and 0 ≤ vi < 1 for i = 1, . . . ,m.

We next give the definitions of group homomorphism and automorphism that

play an important role in the study of relations between inequalities of various mas-

ter group relaxations as we shall see in Section 19.5.

Definition 19.9. Given two groups (G1,⊕) and (G2,⊗), a function λ : G1 → G2 is

said to be a homomorphism if λ (g1 ⊕g2) = λ (g1)⊗λ (g2) for all g1, g2 ∈ G1.

For I1, it is easy to see that λ (x) = nx (mod 1) where n ∈ Z\{0} is a homo-

morphism of I1 onto itself. This homomorphism can be easily extended to Im by

defining λ (x) = (n1x1,n2x2, . . . ,nmxm) where (n1, . . . ,nm) 6= 0. We refer to λ (x) as

multiplicative homomorphism. An important characteristic of homomorphisms is

their kernels.

Definition 19.10. We define the kernel of a homomorphism λ : G1 → G2 as the set

of elements of G1 that are mapped to the zero of G2, i.e., Kern(λ ) := {g ∈ G1 |

λ (g) = 0}.

Among homomorphisms, those that are bijective are particularly interesting; see

Section 19.5.

Definition 19.11. Given two groups (G1,⊕) and (G2,⊗), a function ω : G1 → G2

is said to be an isomorphism if ω is a homomorphism and if ω is also a bijection.

We say that G1 is isomorphic to G2.

Given two groups (G1,⊕) and (G2,⊗), we define the group G1 ×G2 as the set

{(u1,u2) | u1 ∈ G1,u2 ∈ G2} together with the group operation between elements

(u1,u2) and (v1,v2) taken as (u1 ⊕ u2,v1 ⊗ v2). It is easily established that C1
k1
×

C1
k2
× . . .×C1

km
is isomorphic to the group Cm

K , where K = (k1,k2, . . . ,km).
Isomorphisms establish links between groups that are stronger than those derived

through homomorphisms. We will be particularly interested in isomorphisms of Im

onto itself.

Definition 19.12. An automorphism φ : G → G is an isomorphism of a group to

itself.



756 J.-P. P. Richard and S. S. Dey

For I2, it is easy to see that rotations (i.e., ρ : I2 → I2, ρ(x,y) = (1−y,x)), reflec-

tions (i.e., ς : I2 → I2, ς(x,y) = (1− x,y)) and their combinations form automor-

phisms. This observation naturally extends to Im.

19.4.2 Master group relaxations of mixed integer programs

In this section, we further relax cornerB(F) in such a way that results apply to

a larger number of problems. We proceed in two steps. In the first step, we aggre-

gate all nonbasic variables whose column coefficients fractional parts F (A−1
B A j)

are identical. After this operation, all the variables in the relaxation have different

coefficient vectors. In the second step, we obtain a subgroup G of Im (G can be

Im itself) that contains all of the coefficient vectors F (A−1
B A j) for j ∈ N and also

r := F (A−1
B d). We then relax the problem to a higher dimensional space by adding

one variable for each element of the group G in the modular relation (19.18). We

obtain

mastercorner(F) =
{

t ∈ Z|G|
+

∣∣∣ ∑
g∈G

gtg = r
}

(19.29)

which we refer to as master corner relaxation or master group relaxation. In (19.29)

and wherever groups are used, the equality must be interpreted as modulo 1. Clearly,

the set obtained is a relaxation of cornerB(F). Further, the polyhedral structures

of cornerB(F) and mastercorner(F) are intimately related; see Theorem 19.19 and

Section 19.4.3. Observe also that, in the above definition of mastercorner(F), we

did not specify the nature of the group that must be used. In particular, the group

can be chosen to be finite or infinite. We now give a formal definition of the master

group relaxation based on G. We denote the 0 element of G as o.

Definition 19.13. Let G be a subgroup of Im and let r ∈ G\{o}. The master group

problem MG(G, /0,r) is defined as the set of functions t : G → Z such that
i. ∑u∈G ut(u) = r,

ii. t(u) is a non-negative integer for u ∈ G,

iii. t has a finite support, i.e., t(u) > 0 for only a finite subset of G.

In Definition 19.13, each feasible solution to the group relaxation is thought of as a

function t on G since a variable is associated with every group element of G. The

last condition of Definition 19.13 helps in ensuring that the expression ∑u∈G ut(u) is

well-defined, even if the group used contains an infinite number of elements. When

the group G used in the relaxation is finite, this last requirement is trivially satis-

fied. In Definition 19.13, we require that r 6= o as we wish to generate cuts from

tableaux whose basic solutions are fractional. It is however possible, as pointed out

by Gomory [57] to define MG(G, /0,r) analogously for r = o. The only difference

is that the function that is identically zero is removed from consideration. This def-

inition is motivated by situations where we wish to generate cuts from a subset of

tableaux rows whose basic variables are currently integer, but other tableaux rows



19 The Group-Theoretic Approach in Mixed Integer Programming 757

(not considered in the group relaxation) have basic variables that are fractional. We

will assume in the remainder of this chapter that r 6= o. We refer to Gomory [57] for

a discussion of the case r = o.

We also mention that Gomory and Johnson [59] and Johnson [71] investigated

variants of Definition 19.13 in which G is not chosen to be a subgroup of Im but

simply a subset of Im. However, the results obtained under these less stringent con-

ditions are less appealing and more difficult to apply.

Example 19.5. Consider the corner relaxation obtained for the simplex tableau

(19.8). Introducing the notation g1 = ( 1
30 , 29

30 , 26
30 , 10

30 , 20
30 )′, g2 = ( 29

30 , 7
30 , 22

30 , 20
30 , 10

30 )′

and r = ( 15
30 , 3

30 , 24
30 ,0,0)′ and relabeling the variables x4 as tg1

and x5 as tg2
, we can

rewrite (19.8) as

g1tg1
+g2tg2

≡ r (mod 1). (19.30)

Master group relaxations of (19.30) are obtained by identifying a subgroup of I5 that

contains elements g1 and g2. One such group is G = C5
(30,30,30,30,30). After adding

one variable for each element of the group G not already present in the modular

expression (19.30), we obtain

29

∑
i=0

29

∑
j=0

29

∑
k=0

29

∑
l=0

29

∑
m=0

(
i

30
,

j

30
,

k

30
,

l

30
,

m

30
)′t

( i
30 , j

30 , k
30 , l

30 , m
30 )

≡ r (mod 1), (19.31)

which is the defining inequality of the master relaxation based on G. Note that

(19.31) defines an integer program that has 305 variables. Another master group

relaxation could be obtained for (19.8) by using I5 itself as group G to obtain

∑
g∈I5

gtg ≡ r (mod 1). (19.32)

The set of feasible solutions to (19.32) is clearly a relaxation of (19.30) since fea-

sible solutions to (19.30) satisfy (19.32) after all variables tg corresponding to ele-

ments of I5\{g1,g2} are padded with zeros.

The main advantage of master group relaxations over the more natural corner

relaxation is that they are more general and therefore their study applies to a larger

class of problems. As an example, valid inequalities for MG(Im, /0,r) apply to all

problems whose right-hand-side fractional values equal r while valid inequalities

for cornerB(F) apply only for those problems that have the same coefficient vectors

fractional parts and right-hand-side fractional values as cornerB(F).
We now extend the definition of master group relaxation to the mixed integer

case. We perform the following relaxation steps. First we aggregate all integer vari-

ables whose column coefficient fractional parts are identical, i.e., F (A−1
B A j) =

F (A−1
B Ak) for j and k ∈ NI. We also define r := F (A−1

B d). Second, we aggregate

the continuous variables. Since all continuous variables are assumed to be nonneg-

ative without explicit upper bounds, a column A−1
B A j is essentially the same as any



758 J.-P. P. Richard and S. S. Dey

other column A−1
B Ak provided that A−1

B A j = αA−1
B Ak for some α > 0 and j, k ∈ NC.

Therefore, for continuous variables, we aggregate all variables whose coefficients

are proportional to each other. To streamline the representation of the set, it is cus-

tomary to perform an additional normalization of the continuous variables that en-

sures that their coefficient vectors belong to the boundary Sm of the m-dimensional

hypercube [−1,1]m. Formally, we define Sm as the set of real m-dimensional vectors

w = (w1,w2, . . . ,wm), such that max{|wi| | 1 6 i 6 m} = 1. We then relax the prob-

lem to a higher-dimensional space as follows. First, we identify G, a subgroup of Im

that contains all the coefficient columns of integer variables. Second, we identify a

subset S of Sm that contains all the (scaled) coefficient columns of the continuous

variables in cornerB(F). We obtain

mastercorner(F) =
{
(t,s) ∈ Z|G|

+ ×R|S|
+

∣∣∣ ∑
g∈G

gtg +F (∑
v∈S

vsv) ≡ r (mod 1)
}

which we refer to as master corner relaxation or master group relaxation.

Although the theory of Johnson [71] was established to handle cases where G

is simply a subset of Im, we restrict our presentation to those cases where G is a

subgroup of Im.

Definition 19.14. Let G be a subgroup of Im, let S be a subset of Sm and let r ∈

Im\{0}. The mixed integer master group problem, MG(G,S,r), is defined as the set

of functions t : G → R and s : S → R that satisfy

i. ∑u∈G ut(u)+F (∑v∈S vs(v)) = r,

ii. t(u) is a non-negative integer for u ∈ G, s(v) is a non-negative real number for

v ∈ S,

iii. t and s have finite supports. 1

In Definition 19.13, we assumed that r ∈ G. This requirement was necessary

to ensure that MG(G, /0,r) is not empty. In contrast, we do not require that r ∈ G

in Definition 19.14. However, when r /∈ G, it is implicitly assumed that the set of

columns of S is sufficiently rich to make the group problem feasible.

In Definition 19.13 and Definition 19.14 we introduced master group relaxations

of integer and mixed integer programs. These relaxations can be “customized”

through the choice of the subgroup G of Im and the subset S of Sm. Remember

that we have introduced these relaxations with the goal of obtaining cutting planes

that are strong for mixed integer programs. However, we have not yet considered

one of the main practical questions which is the ease with which valid inequalities

can be described/derived for these relaxations.

1 Note that in Definition 19.14 we used t and s to denote integer and continuous variables respec-
tively. We chose this convention since it is classical and since it highlights the fact that the corner
relaxation and the master corner relaxation have different sets of variables. We mention however
that it is also common to choose x and y to represent integer and continuous variables when study-
ing specific master group problems. In particular, we will use this later convention in Section 19.5.



19 The Group-Theoretic Approach in Mixed Integer Programming 759

19.4.3 A hierarchy of inequalities for master group problems

The beauty of the master relaxations of Gomory’s corner polyhedron lies in the

fact that, although the polyhedral structure of general integer programs can be ex-

tremely complicated, the structure of master group problems is surprisingly simple.

We present these structural results next.

19.4.3.1 Valid inequalities: definition & representation

As is usual, we define a valid inequality to be an inequality that is satisfied by all

solutions of the set considered. Among the valid inequalities of group relaxations,

trivial inequalities such as xi ≥ 0 do not typically yield useful cutting planes (as they

are already present in the problem formulation) and therefore, the focus is on those

inequalities that are nontrivial. It is proven in Gomory [57] that cut coefficients must

be nonnegative and right-hand-sides must be positive in all nontrivial inequalities of

finite master group relaxations. Therefore, nontrivial inequalities can always be re-

scaled so that their right-hand-sides equal 1 and it suffices to specify the coefficient

of every variable in a cut to completely describe it. Since in our case variables xg

exist for all g ∈ G, the coefficients of a valid inequality can be seen as forming a

function φ from G to R+. This motivates the following definition of valid inequality

for pure integer master group problems.

Definition 19.15. Let r 6= o. A function φ : G → R+ defines a valid inequality for

MG(G, /0,r) if ∑u∈G φ(u)t(u) > 1, ∀t ∈ MG(G, /0,r), φ(o) = 0 and φ(r) = 1.

When the group used is Im, the additional assumption that φ is continuous is

sometimes posed in the definition of valid inequality. This is for example the case in

Gomory and Johnson [61]. This additional requirement simplifies the derivation of

some results and is motivated by the belief that, in practice, functions that are con-

tinuous yield cutting plane algorithms that are more numerically stable. However,

since the continuity assumption is not strictly necessary in the definition of valid

inequality, we will not pose it here.

For mixed integer group relaxations, the notion of valid inequality is defined

similarly, except that additional coefficients must be specified for all continuous

variables whose coefficients are in S ⊆ Sm.

Definition 19.16. Let r 6= o. A pair of functions, φ : G→R+ and µ : S→R+ defines

a valid inequality for MG(G,S,r) if ∑u∈G φ(u)t(u) + ∑v∈S µ(v)s(v) > 1, ∀(t,s) ∈
MG(G,S,r), where φ(o) = 0.

In the above definition, we do not require that φ(r) = 1 as r might not belong to G.

However, for instances of the mixed integer group problem where r ∈ G, we will

assume implicitly that φ(r) = 1 in valid inequalities.

Since valid inequalities for master group problems can be thought of as functions

from G to R+ or (G,S) to R+, we will often refer to them as valid functions. Further,

we will also often represent them as functions.



760 J.-P. P. Richard and S. S. Dey

Example 19.6. In Section 19.2 we derived several valid inequalities for (19.8).

In particular, we argued that MDC, GFC and GMIC were valid for single rows

of the tableau with fractional right-hand-sides. This discussion also shows that

the functions φ MDC
r (u) = 1 when u 6= 0 and φ MDC

r (0) = 0, φ MDC
r (u) = u/r and

φ GMIC
r (u) = min{ u

r
, 1−u

1−r
} are valid for MG(C1

K , /0,r) for all K and r 6= 0. The same

arguments also show that these functions are valid for MG(I1, /0,r) for r 6= 0. In Fig-

ure 19.5a, we represent the function φ GMIC for MG(C1
11, /0, 6

11 ). To generate a valid

function for a two-dimensional group problem, say MG(I2, /0,r), one could use the

following simple argument. First we add up the two defining constraints and then

generate a GMIC from the combined row. Since the combined row defines a relax-

ation of the initial set and GMIC is valid for problems defined by a single constraint,

we obtain the function φ agg

(r1,r2)
(u,v) = φ GMIC

r1+r2
((u+v) (mod 1)) which is clearly valid

for MG(I2, /0,(r1,r2)). In Figure 19.5b, we represent φ agg

(r1,r2)
. The domain of defini-

tion for Figure 19.5a is finite while it is the entire I2 for Figure 19.5b. It is also

possible to represent the function µ describing the coefficients of continuous vari-

ables of a mixed integer master group cut in a similar manner.

Fig. 19.5 Valid inequalities for group problems.

Valid inequalities for master group problems are important in that they trans-

late into valid inequalities for mixed integer programs. However, valid inequalities

might not even support the feasible region of master group relaxations and it is there-

fore important to characterize strong valid inequalities. We distinguish three levels

of strength: subadditive inequalities, minimal inequalities and extreme inequalities.

The following three subsections discuss this classification in more detail. We refer

to Johnson [71] for a detailed discussion of this topic that contains the most general

results about master group relaxations. We note however that most of the concepts

presented in Johnson [71] had been introduced in various forms in the earlier work

of Gomory [57] and Gomory and Johnson [59, 60].



19 The Group-Theoretic Approach in Mixed Integer Programming 761

19.4.3.2 Subadditive inequalities

Before we give the definition of a subadditive inequality, we first provide some

motivation for this definition. We consider the case of a master group problem de-

fined on a finite group G. In order for an inequality φ to be strong, it is reasonable

to require that at least one of the feasible solutions of the master group problem

satisfies it at equality, i.e.,

∑
u∈G

φ(u)t(u) = 1 (19.33)

for t ∈ MG(G, /0,r). Clearly in order for the equality to hold, at least one of the

variables must be positive. Assume without loss of generality that t(w) ≥ 1. Now

consider any group element v ∈ G\{0} and assume for simplicity that w− v 6= v.

Clearly, we can create a new feasible solution for MG(G, /0,r) as follows:

t̃(u) =





t(u), if u 6= w,v,w− v,

t(u)−1, if u = w,

t(u)+1, if u = v,

t(u)+1, if u = w− v.

Since this solution belongs to MG(G, /0,r), it must satisfy the valid inequality φ . It

follows that

∑
u∈G

φ(u)t̃(u) ≥ 1. (19.34)

Subtracting equality (19.33) from inequality (19.34), we obtain that−φ(w)+φ(v)+
φ(w− v) ≥ 0. This line of ideas can be pushed further. In fact, one criterion for

strength is to require that for each w ∈ G, there exists a solution t for which t(w)≥ 1

and ∑u∈G φ(u)t(u) = 1, since otherwise the coefficient of t(w) in φ could be de-

creased. Therefore, it seems intuitive that strong inequalities for MG(G, /0,r) should

satisfy φ(v)+φ(w− v) ≥ φ(w) for all v,w ∈ G. The previous intuitive ideas can be

formalized; see Johnson [71] for a general description. Further, they can also be gen-

eralized so as to apply for situations where the underlying group is infinite and/or

where continuous variables are present. The following definition then follows.

Definition 19.17. A subadditive valid inequality for MG(G,S,r) is a valid inequal-

ity for MG(G,S,r) that is such that

i. φ(u)+φ(v) ≥ φ(u+ v),∀u,v ∈ G,

ii. φ(u)+∑v∈S µ(v)s(v)≥ φ(w),∀u,w∈G and S such that u+F (∑v∈S vs(v)) = w,

iii. ∑v6=w µ(v)s(v) ≥ µ(w),∀s such that w = ∑v6=w vs(v) and ∑v6=w vs(v) ∈ S.

Theorem 19.13 ([59]). Valid inequalities for master group problems are dominated

by subadditive valid inequalities.



762 J.-P. P. Richard and S. S. Dey

Example 19.7. For pure integer master group problems, it suffices to show that

φ(u) + φ(v) ≥ φ(u + v) for all u,v ∈ G to show that a function is subadditive. It

is easily verified that all three valid functions φ MDC
r , φ MDC

r and φ GMIC
r derived in

Section 19.4.3.1 are subadditive. For example, for u,v ∈ I1, φ MDC
r (u)+φ MDC

r (v) =
u
r
+ v

r
≥

(u+v)(mod 1)
r

= φ MDC
r (u+ v).

19.4.3.3 Minimal inequalities

Reconsidering the notion of strength for inequalities of master group problems, a

criterion stronger than subadditivity could be posed by requiring that the inequality

considered is not coefficient-wise dominated by any other valid inequality of the

master group problem. This naturally yields the following definition.

Definition 19.18. A valid inequality (φ ,µ) for MG(G,S,r) is said to be minimal

for MG(G,S,r) if there does not exist a valid inequality (φ ∗,µ∗) for MG(G,S,r)
different from (φ ,µ) such that φ ∗(u) 6 φ(u) ∀u ∈ G and µ∗(v) 6 µ(v) ∀v ∈ S.

The concept of minimal inequality is stronger than that of subadditive inequality

as recorded in the following theorem.

Theorem 19.14 ([71]). Minimal valid inequalities for MG(G,S,r) are subadditive

inequalities for MG(G,S,r).

The coefficients of minimal valid inequalities are well-characterized as we will

describe in Theorem 19.15 and Theorem 19.16. Next, we give an intuitive deriva-

tion of these conditions. For any u ∈ G, we could consider the subadditive relations

φ(u)+ φ(v) ≥ φ(u + v) for all v ∈ G. It is clear that for an inequality to be mini-

mal, it should be the case that there exists v for which φ(u)+ φ(v) = φ(u + v) for

otherwise, a new inequality could be created that is still subadditive by reducing the

coefficient φ(u). We therefore need to identify for each u, what v would make the

subadditive inequality an equality. Assume for an instant that this v is exactly equal

to r−u for each u.

This would yield a minimal inequality as any inequality obtained from it by re-

ducing one of the coefficients, say φ(u), by ε would be such that φ(u)+φ(r−u) =
1− ε . This is not possible as the solution t(u) = 1, t(r−u) = 1 and t(v) = 0 for all

other vs is feasible for MG(G, /0,r). Therefore φ(u)+φ(r−u)≥ 1. It can be proven

that this condition is also necessary. The proof is by contradiction, assuming that

φ(u)+ φ(r− u) = 1 + δ where δ > 0. The contradiction is obtained by observing

that the inequality

ρ(v) =

{
1

1+δ φ(v), if v = u,

φ(v), if v 6= u,

is valid for MG(G, /0,r) and dominates φ . The statement is clear for all solutions

that have t(u) = 0 or t(u) ≥ 1+δ
φ(u) . When 1 ≤ t(u) ≤ 1+δ

φ(u) , we have



19 The Group-Theoretic Approach in Mixed Integer Programming 763

∑
v∈G

ρ(v)t(v) =
(

∑
v∈G\{u}

φ(v)t(v)+φ(u)(t(u)−1)
)

+φ(u)−
δ

1+δ
φ(u)t(u)

≥ φ(r−u)+φ(u)−
δ

1+δ
φ(u)t(u) ≥ 1+δ −δ = 1

where the first inequality holds because φ is subadditive. We now record this result

in the following theorems. We start with the infinite group problem, as the notation

for the finite case is more cumbersome than that used for the infinite case.

Theorem 19.15 ([71]). Let (φ ,µ) form an inequality for MG(Im,S,r) where r 6= o

and S ⊆ Sm. The inequality (φ ,µ) is minimal for MG(Im,S,r) if and only if the three

following conditions hold:

i. φ(u)+φ(v) ≥ φ(u+ v), ∀u,v ∈ Im

ii. µ(v) = limh→0
φ(F (hv))

h
, ∀v ∈ S

iii. φ(u)+φ(r−u) = 1, ∀u ∈ Im.

Condition (ii) requires that coefficients of continuous variables be related to the

slope of the function φ at the origin in the direction of their coefficients. It is possible

to show that Conditions (i) and (ii) imply that the function (φ ,µ) is subadditive; see

Johnson [71].

We now describe the conditions that are required for inequalities to be minimal

when the underlying group is a finite subgroup G of Im. Although some conditions

will be reminiscent of those presented in Theorem 19.15, the statement of the theo-

rem is more technical.

Theorem 19.16 ([71]). Let G be a finite subgroup of Im and let W be a finite subset

of Sm such that each element w ∈ W has rational components. Let (φ ,µ) form an

inequality for MG(G,S,r) where r 6= o. Then (φ ,µ) is a minimal valid inequality if

and only if

i. φ(u)+φ(v) ≥ φ(u+ v),∀u,v ∈ G

ii. ∑w∈L µ(w)s(w) ≥ φ(v),whenever v = F (∑w∈L ws(w))
iii. ∑w∈L µ(w)s(w) ≥ µ(x),whenever x = ∑w∈L ws(w)
iv. φ(v)+∑w∈L µ(w)s(w) ≥ 1,whenever r = F (v+∑w∈L ws(w)),

where in (ii), (iii) and (iv) the set L is a linearly independent subset of W, s(w) ≥ 0,

and we can assume that there is no y ∈ W, y /∈ L, y 6= ∑w∈L ws(w) such that y =

∑w∈L ws′(w) for some s′(w) ≥ 0, w ∈ L. In (ii), we can assume there is no v′ ∈ G

and s′(w), 0 ≤ s′(w) ≤ s(w) for w ∈ L, such that v′ = F (∑w∈L ws′(w)). Let

U0 =

{
v ∈ G

φ(v)+∑w∈L µ(w)s(w) = 1

for some L and s(L) with r = v+∑w∈L ws(w)

}

and let

W0 =

{
ω ∈W

φ(v)+∑w∈L µ(w)s(w) = 1

for some v ∈U0 and L with ω ∈ L and s(ω) > 0

}
.



764 J.-P. P. Richard and S. S. Dey

For minimality, we need

v. for every u ∈ G, either u ∈U0 or there exists v ∈U0 such that φ(u)+φ(v−u) =
φ(v)

vi. for every w ∈ W, either µ(w) = 0 or w ∈ W0 or there exists ω0 ∈ W0 with

µ(ω0) = ∑ω∈L µ(ω)s(ω) where L is a linearly independent subset of W, w ∈ L,

s(w) > 0, and ω0 = ∑ω∈L ωs(ω).

Although the expression of Theorem 19.16 is involved, its statement simplifies

tremendously when considering pure integer group problems and when considering

one-row master group relaxations. We present these two subcases next because of

their relative simplicity and because of their historical significance. We consider first

the pure integer case. In this case, U0 = {r} and W0 = /0.

Corollary 19.1. Let G be a finite subgroup of Im and let r ∈ G\{0}. Let φ be a valid

inequality for MG(G, /0,r). Then φ is a minimal valid inequality if and only if

i. φ(u)+φ(v) ≥ φ(u+ v),∀u,v ∈ G

ii. φ(u)+φ(r−u) = φ(r),∀u ∈ G.

For a finite group G, the function φ can also be recorded as a vector since its

domain is finite. The result of Corollary 19.1 then states that the coefficients of

minimal inequalities for finite group problems are completely determined by a set

of linear constraints. In other words, minimal valid inequalities can be identified by

selecting feasible solutions in the polytope

P∗(G, /0,r) =





φ ∈ R|G|

φu +φv ≥ φu+v, ∀u,v ∈ G

φu +φr−u = φr, ∀u ∈ G

φr = 1,
φu ≥ 0, ∀u ∈ G





.

Example 19.8. Of the functions φ MDC
r , φ MDC

r and φ GMIC
r defined in Section 19.4.3.1,

we see that only φ GMIC
r is minimal for MG(C1

K , /0,r). In fact, for any u ∈C1
K\{o,r},

φ MDC
r (r − u) + φ MDC

r (u) = 2 > 1 = φ MDC
r (r). Further, when 0 < r < K−1

K
, then

φ MDC
r (1− 1

K
) + φ MDC

r (r + 1
K
) = r+1

r
> 1 = φ MDC

r (r). This proves that these two

functions are coefficient-wise dominated by other inequalities. This is indeed the

case as φ MDC
r (u)≥ φ GMIC

r (u) for all u∈C1
K and φ MDC

r (u)≥ φ GMIC
r (u) for all u∈C1

K .

We now consider MG(G,{−1,1},r) where G is the finite cyclic group of order n.

We only assume that r ∈ I1 since continuous variables make the master group re-

laxation nonempty even if r does not belong to G. We introduce the notation r− to

denote the element of G immediately to the left of r while we define r+ to denote

the element of G immediately to the right of r. If r ∈ G, r+ = r− = r. Applying

Theorem 19.16 with S = {−1,1}, we obtain the following characterization.

Corollary 19.2 ([59]). Let G be a finite cyclic subgroup of I1 and let r ∈ I1\{0}. Let

(φ ,µ) be a valid inequality for MG(G,{−1,1},r). Then (φ ,µ) is a minimal valid

inequality for MG(G,{−1,1},r) if and only if



19 The Group-Theoretic Approach in Mixed Integer Programming 765

i. φ(u)+φ(v) ≥ φ(u+ v)
ii. µ(+1) 1

n
≥ φ(u1) where u1 = F ( 1

n
)

iii. µ(−1) 1
n
≥ φ(un−1) where un−1 = F ( n−1

n
)

iv. φ(r−)+ µ(+1)|r− r−| = 1

v. φ(r+)+ µ(−1)|r+− r| = 1

vi. φ(u)+φ(r−−u) = φ(r−) or φ(u)+φ(r+−u) = φ(r+), for u ∈ G.

19.4.3.4 Extreme inequalities

Although minimal inequalities are not dominated by any other single valid in-

equality for the master group problem, they might still be obtained as a convex

combination of other valid inequalities. This motivates the following definition.

Definition 19.19. A valid inequality (φ ,µ) for MG(G,S,r) is said to be extreme

for MG(G,S,r) if whenever φ = 1
2 φ 1 + 1

2 φ 2 and µ = 1
2 µ1 + 1

2 µ2 for some valid in-

equalities (φ 1,µ1) and (φ 2,µ2) of MG(G,S,r) then φ = φ 1 = φ 2 and µ = µ1 = µ2.

The concept of extreme inequality is stronger than that of minimal inequality as

shown next.

Theorem 19.17 ([71]). Extreme valid inequalities for MG(G,S,r) are minimal valid

inequalities for MG(G,S,r).

Theorem 19.18 ([71]). Extreme minimal valid inequalities for MG(G,S,r) are ex-

treme valid inequalities for MG(G,S,r).

For pure integer finite master group problems, the result of Corollary 19.1 and

Theorem 19.18 yields a very elegant characterization of extreme valid inequalities.

Observe from Corollary 19.1 that the coefficients of all minimal valid inequalities

belong to the polytope P∗(G, /0,r). Therefore extreme valid inequalities correspond

to extreme points of P∗(G, /0,r). This result is recorded formally in Theorem 19.20

and will be discussed in detail in Section 19.5.

Example 19.9. The function φ GMIC
r defined in Section 19.4.3.1 is not only minimal

for MG(C1
K , /0,r), it is also extreme for this set. We refer to Section 19.5 for a proof

of this claim.

The main utility of master group problems resides in the fact that, although the

extreme inequalities present in a particular corner polyhedron are very dependent on

the actual problem from which this corner polyhedron is extracted, they can all be

obtained from the extreme inequalities of its master relaxations. Consider a corner

relaxation and any of its master relaxation. Consider also a valid inequality for the

master relaxation. We can construct an inequality for the initial corner relaxation by

associating with each variable in the corner relaxation the coefficient it receives in

the valid inequality of the master relaxation. The inequality so-created is valid for

the initial corner relaxation. Further, this simple procedure is sufficient to produce all

extreme inequalities of all corner relaxations as recorded in the following theorem.



766 J.-P. P. Richard and S. S. Dey

Theorem 19.19 ([57]). All extreme inequalities of cornerB(F) can be obtained from

the extreme inequalities of its master group relaxations.

It is not true however that every extreme inequality of a master relaxation yields

an extreme inequality of cornerB(F); see Gomory [57] for a discussion.

19.5 Extreme inequalities

It follows from the discussion in Section 19.4.3 that extreme inequalities play

a central role in the derivation of strong cuts for mixed integer programming. Al-

though the definition of extreme inequality is common to both finite and infinite

group problems, the tools that are used to prove that inequalities are extreme for

finite and infinite group problems differ. We discuss in Section 19.5.1 and Sec-

tion 19.5.2 extreme inequalities for finite and infinite master group problems re-

spectively.

19.5.1 Extreme inequalities of finite master group problems

Gomory [57] provided a characterization of extreme inequalities for finite group

problem that is presented in Theorem 19.20.

Theorem 19.20 ([57]). Let G be a finite subgroup of Im and let r 6= o. The extreme

inequalities of MG(G, /0,r) are ti ≥ 0 for i ∈ G and ∑i∈G φiti ≥ 1 where φ ∈ R|G|
+ are

the extreme points of P∗(G, /0,r), where

P∗(G, /0,r) =





φ ∈ R|G|

φu +φv ≥ φu+v, ∀u,v ∈ G

φu +φr−u = φr, ∀u ∈ G

φr = 1,
φu ≥ 0, ∀u ∈ G





.

Proving that an inequality is extreme using Theorem 19.20 is conceptually simple

as it reduces to proving that the vector of its coefficients corresponds to an extreme

point of P∗(G, /0,r). However, it is often cumbersome in practice. We next discuss

other options for deriving inequalities and proving they are extreme.

19.5.1.1 Results based on algebraic structure

Gomory [57] showed that the algebraic structure of groups can be used to explain

a particular extreme inequality of one group problem as a transformed version of an

extreme inequality for another group problem.



19 The Group-Theoretic Approach in Mixed Integer Programming 767

Theorem 19.21 ([57]). Let G1,G2 4 Im where G1 and G2 are finite, and let r ∈

G1 \{o}. Let ς : G1 → G2 be a surjective homomorphism. Assume that r /∈ Kern(ς)
and that φ : G2 → R+ is an extreme inequality for MG(G2, /0,ς(r)). Then φ ◦ ς is

extreme for MG(G1, /0,r).

A closely related result is presented next.

Theorem 19.22 ([57]). Let ω : G → G be an automorphism. Then φ is an extreme

inequality for MG(G, /0,r) iff φ ◦ω is extreme for MG(G, /0,ω−1(r)).

19.5.1.2 Specific results for cyclic groups

We first show how extreme inequalities of MG(I1, /0,r) give rise to extreme in-

equalities of MG(Cn, /0,r) for cyclic subgroups Cn of I1.

Theorem 19.23 ([59, 60]). If φ : I1 → R+ is an extreme function for MG(I1, /0,r)
that is continuous and piecewise linear, then for any cyclic G 4 I1 containing all the

points at which φ is non-differentiable, the valid function φ |G obtained by restrict-

ing φ to G is extreme for MG(G, /0,r).

We next provide an outline of the proof of Theorem 19.23. First, using the fact

that φ is minimal for MG(I1, /0,r), it can be seen that φ |G is minimal for MG(G, /0,r).
Then we assume by contradiction that φ |G is not an extreme point of P∗(G, /0,r).
Therefore there exist vectors φ̂1, φ̂2 ∈ P∗(G, /0,r) such that φ̂1 6= φ̂2 and φ |G = 1

2 φ̂1 +
1
2 φ̂2. For any u in I1, let u1 and u2 be the neighboring points to u in G. For i = 1,2,

we define the interpolation φi : I1 → R+ of φ̂i : G → R+ as

φi(u) =

{
φ̂i(u), if u ∈ G,
(F−1(u2)−F−1(u))φ̂i(u1)+(F−1(u)−F−1(u1))φ̂i(u2)

F−1(u2)−F−1(u1)
, if u /∈ G.

(19.35)

It can be verified that φ1 and φ2 are valid subadditive inequalities for MG(I1, /0,r)
using Proposition 19.3 which is discussed later. This is a contradiction to the fact

that φ is extreme for MG(I1, /0,r), since our construction yields φ = 1
2 φ1 + 1

2 φ2 with

φ1 6= φ2.

Given a subadditive valid inequality for MG(G, /0,r) where G is a cyclic subgroup

of I1, the interpolation construction (19.35) generates a valid subadditive function

for MG(I1, /0,r). However, the converse of Theorem 19.23 is not true, i.e., starting

from an extreme inequality for a finite group problem and interpolating to I1 does

not always yield extreme inequalities; see Dey et al. [40] for an example. More

generally, it is not well-understood how interpolation can be used to generate valid

inequalities for multi-dimensional infinite group problems from valid inequalities of

multi-dimensional finite group problems.

Tilting is another technique to generate extreme inequalities for group problems

corresponding to cyclic subgroups. This technique is from Aráoz et al. [8]. We begin

with a definition of a master knapsack polytope.



768 J.-P. P. Richard and S. S. Dey

Definition 19.20. The feasible region of a master equality knapsack problem of

size r, denoted as Kr is:

{
x ∈ Zr

+

∣∣∣
r

∑
i=1

ixi = r
}

. (19.36)

Extreme inequalities of the master knapsack polytope satisfy “partial” subaddi-

tive conditions. The following result is from Aráoz [7].

Theorem 19.24 ([7]). Extreme inequalities ∑r
i=1 ρixi > ρr of the master knapsack

polytope Kr are the extreme rays of the cone defined by

i. ρi +ρ j > ρi+ j ∀i, j, i+ j ∈ {1, ...,r}.

ii. ρi +ρr−i = ρr ∀i ∈ {1, ...,⌊ r
2⌋}.

We next present the key steps in constructing valid inequalities for MG(Cn, /0, r̃),
where r̃ = r

n
(r ∈ {1, ...,n}) using tilting. First we pick any extreme inequality ρ of

Kr (normalized so that ρr = 1) and construct the vector ρ̄ ∈ Rn
+ as

ρ̄i =

{
ρi, if i 6 r,
1− i

n

1− r
n
, if i > r.

(19.37)

Therefore ρ̄ satisfies the following conditions:

i. ρ̄i + ρ̄ j > ρ̄(i+ j)(mod(n)) if either all i, j, i + j ∈ {1, ...,r} or if all i, j, i + j ∈

{r, ...,n}.

ii. ρ̄i + ρ̄(r−i)(mod(n)) = ρ̄r ∀i ∈ {1, ...,n}.

Hence treating ρ̄ as a function over Cn, i.e., ρ̄ : Cn → R+ satisfies complementar-

ity and is “almost” subadditive. Second, we consider MG(Cn, /0, r̃) and the GMIC

inequality ξ defined as

ξi =

{
i
n
, if i 6 r,

1− i
n

1− r
n
, if i > r.

(19.38)

Since GMIC is minimal, ξ (u)+ξ (r−u) = 1 and ξ (u)+ξ (v) > ξ (u+v) ∀u,v ∈Cn.

Finally, we attempt to construct a convex combination of ξ and ρ̄ such that the

resulting vector satisfies subadditivity and complementarity conditions.

Lemma 19.1 ([8]). Set α ∈ R as

α = max





r
n
(ρk −ρi −ρ j), for 1 6 i, j,k 6 r,

r
n(k−r) ((−ρi +ρ j)(n− r)+(n− k)), for 1 6 i, j 6 r and r 6 k < n,
r
n
((ρk −ρi)

n−r
n− j

−1), for 1 6 i,k 6 r and r 6 j < n.

(19.39)

where k ≡ (i + j) (mod n). Let φ = ρ̄+αξ
1+α . Then φ : Cn → R+ is subadditive and

satisfies complementarity.



19 The Group-Theoretic Approach in Mixed Integer Programming 769

Note that if ρ is extreme for Kr, then it can always be assumed that ρi > 0 ∀i

and ρi′ = 0 for some i′ ∈ {1, ...,r}. This is because, given any vector ρ ∈ Rr that

represents an extreme inequality of Kr, any vector ρ ′ ∈ Rr defined as ρ ′
i = ρi + λ i

∀i ∈ {1, ...,r} also represents an extreme inequality of Kr for any λ ∈ R. Therefore,

the function φ defined in Lemma 19.1 is a valid inequality for the finite one-row

group problem. The following stronger result states that it is in fact extreme.

Theorem 19.25 ([8]). Let ρ be a facet of Kr such that ρ is nonnegative, ρr = 1 and

ρi′ = 0 for some i′ ∈ {1, ...,r}. If α given by (19.39) is positive, then the function φ
defined in Lemma 19.1 is extreme for MG(Cn, /0,r).

We refer to Aráoz et al. [8] for uses of Theorem 19.25 to derive extreme inequal-

ities for MG(Cn, /0,r).

19.5.2 Extreme inequalities for infinite group problems

For finite group problems, Theorem 19.20 gives a characterization of extreme

inequalities. Since this characterization does not apply for infinite group problems,

other techniques have been used to prove that candidate subadditive inequalities are

extreme.

Often, continuity of the valid functions plays an important role in the proof

that functions are extreme. We begin by formalizing the topology we use for the

space Im. All the results on continuity in this chapter are based on the topology

induced by the following metric.

Definition 19.21. For u,v ∈ Im, let d(u,v) =
√

∑m
i=1(d

′(ui,vi))2 where d′(ui,vi) =
min {|F−1(ui)−F−1(vi)|,1−|F−1(ui)−F−1(vi)|}.

We start with the presentation of a very common strategy that has been used to

prove that functions are extreme. This strategy is presented in an algorithmic fashion

in Table 19.1. Next we discuss some standard tools to handle the steps described in

Table 19.1. We first consider the question of proving that a function is subadditive.

Typically, this question is not simple to answer unless the function is piecewise

linear and continuous.

Definition 19.22. Let φ : Im → R+ be a piecewise linear and continuous function,

i.e., Im can be decomposed into finitely many polytopes with non-empty interiors

P1, ..., Pk, such that φ(u) = α ′
t u+βt , ∀u ∈ Pt , where αt ∈Rm,βt ∈R ∀t ∈ {1,2, ...k}.

For a continuous and piecewise linear function φ , we say that a point l belongs to

the boundary of φ , denoted B(φ), if l belongs to the intersection of two polytopes Pi

and Pj where i 6= j and the gradient of φ in Pi is not equal to the gradient of φ in Pj.

Proposition 19.3 ([62], [38]). Let φ be a continuous, piecewise linear and nonnega-

tive function over Im. The function φ is subadditive if and only if for all l1, l2 ∈ B(φ)

φ(l1)+φ(l2) > φ(l1 + l2) (19.40)

φ(l1)+φ(l2 − l1) > φ(l2). (19.41)



770 J.-P. P. Richard and S. S. Dey

0. Input: A function φ : Im → R+ and r 6= o such that φ(r) = 1 and φ(o) = 0.
i. Prove φ is subadditive, i.e., φ(u)+φ(v) > 1 ∀u,v∈ Im. This shows that φ is a valid inequality

for MG(Im, /0,r).
ii. Prove φ satisfies complementarity conditions, i.e., φ(u)+ φ(r− u) = 1 ∀u ∈ Im. By Theo-

rem 19.15, φ is a minimal valid inequality for MG(Im, /0,r).
iii. Assume by contradiction that φ is not extreme, i.e., φ = 1

2 φ1 + 1
2 φ2 such that φ1 6= φ2 and φ1,

φ2 are valid inequalities for MG(Im, /0,r). It follows from Theorem 19.18 that φ1 and φ2 can
be assumed to be minimal valid inequalities.

iv. Define the equality set of E(φ) = {(u,v) ∈ Im × Im | φ(u)+φ(v) = φ(u+ v)}. Since φ1 and
φ2 are minimal functions, they are subadditive. Thus E(φ1) ⊇ E(φ) and E(φ2) ⊇ E(φ).

v. Obtain a contradiction by showing that if E(φ1) ⊇ E(φ), then φ1 = φ .

Table 19.1 Proving a function φ : Im → R+ is extreme for MG(Im, /0,r).

When m = 1, Proposition 19.3 implies that it is sufficient to consider the finite

number of points at which the function φ is non-differentiable to prove that a contin-

uous piecewise linear function is subadditive. We refer to Gomory and Johnson [62]

and Dey and Richard [38] for more streamlined versions for Proposition 19.3 where

it is assumed that the function φ satisfies the condition φ(u) + φ(r − u) = 1, and

refer to Richard et al. [86] for a variant of Proposition 19.3 where φ is a general

piecewise linear function that is not necessarily continuous.

Next we consider Step ii in Table 19.1. This step is typically not very difficult to

verify and can be done with few calculations especially for piecewise linear func-

tions. Steps iii and iv in Table 19.1 do not require computation. Next consider Step v

in Table 19.1. For piecewise linear functions, a typical approach used is the follow-

ing. Using the fact that E(φ1) ⊇ E(φ) it is verified that φ1 is linear on polytopes

P1, . . . ,Pt , the same subsets of Im on which φ is linear. Then the problem reduces

to verifying that the gradients and constant terms in each of these subsets are equal

for φ and φ1. Results to prove that a function is linear in some polytope are usually

referred to as Interval Lemmas. One such result is presented next.

Lemma 19.2 ([61]). Let U ≡ [u1,u2] ⊂ I1, V ≡ [v1,v2] ⊂ I1 and U +V ≡ [u1 +
v1,u2 + v2] such that u1 6= u2 and v1 6= v2. If there exists a continuous real-valued

function φi defined over U, V and U +V such that φi(u)+ φi(v) = φi(u + v) ∀u ∈

U,v ∈V , then φi must be a straight line with constant slope s over U, V and U +V .

Observe that to use Lemma 19.2 for the function φ1, we must know that φ1 is

continuous. We present next a sufficient condition for φ1 to be continuous in some

interval.

Lemma 19.3 ([40]). Let φ : I1 → R+ be a piecewise linear, subadditive and valid

function such that φ(u) = cu ∀u ∈ U, where c > 0, U is an interval {u ∈ I1|0 6

F−1(u) 6 w} and w is a non-zero real number strictly less than 1. If φ = (1−
λ )φ 1 + λφ 2, where 0 < λ < 1 and φ 1 and φ 2 are subadditive valid functions for

MG(I1, /0,r), then φ 1 and φ 2 are continuous at all points at which φ is continuous.



19 The Group-Theoretic Approach in Mixed Integer Programming 771

Gomory and Johnson [62] and Dey and Richard [38] present different versions

of Lemmas 19.2 and 19.3 for functions defined on I1 and I2. We now illustrate the

framework presented in Table 19.1 on an example.

Example 19.10. Consider the GMIC introduced in Section 19.2. This inequality can

be expressed as

ξ (u) =

{
u
r
, if u ≤ r,

1−u
1−r

, if u > r,

or equivalently as ξ (u) = min{ u
r
, 1−u

1−r
}. We claim that ξ is extreme for MG(I1, /0,r).

Following the scheme proposed in Table 19.1, we begin by showing that ξ is sub-

additive. Observe that B(φ) = {o,r}. Thus by Proposition 19.3, ξ is subadditive.

Then we show that ξ (u)+ ξ (r− u) = 1 for all u ∈ I1. There are two cases. When

u ≤ r, then ξ (u) + ξ (r − u) = u
r
+ r−u

r
= 1. When u > r, then ξ (u) + ξ (r − u) =

1−u
1−r

+ 1−(1+r−u)
1−r

= 1. Assume now by contradiction that ξ can be expressed as a con-

vex combination of two other valid subadditive and minimal inequalities ξ1 and ξ2.

By Lemma 19.3, we know that these inequalities are continuous. As ξ satisfies

ξ (u)+ξ (v) = ξ (u+v) for all u,v∈ [0, r
2 ], we conclude that ξi(u)+ξi(v) = ξi(u+v)

for all u ∈ [0, r
2 ] and for i = 1,2. Using (Interval) Lemma 19.2 (we know the

functions ξi are continuous), we conclude that ξ1 and ξ2 are linear over the inter-

val [0,r]. However, we know that these functions are valid and therefore ξi(0) = 0

and ξi(r) = 1 for i = 1,2. Therefore, we obtain that ξ1(u) = ξ2(u) = ξ (u) for all

u ∈ [0,r]. Since ξ satisfies the additive relations ξ (u) + ξ (v) = ξ (u + v) for all

u,v ∈ [ 1+r
2 ,1], we conclude that ξi(u) + ξi(v) = ξi(u + v) for all u ∈ [ 1+r

2 ,1] for

all i = 1,2. It follows from (Interval) Lemma 19.2 that these functions are linear

over [r,1]. However, we know that these functions are valid and therefore ξi(r) = 1

and ξi(1) = 0 for i = 1,2. Therefore, we obtain that ξ1(u) = ξ2(u) = ξ (u) for all

u ∈ [r,1]. This is the desired contradiction.

Using the methodology of Table 19.1, the following Two-Slope Theorem can be

proven.

Theorem 19.26 ([59], [61]). Continuous, piecewise linear, subadditive and minimal

functions that have only two slopes are extreme for MG(I1, /0,r).

In the next sections, we discuss methods for obtaining and proving extreme in-

equalities for MG(Im, /0,r).

19.5.2.1 Results based on algebraic structure

Similar to finite group problems, extreme inequalities for infinite group problems

are also related through automorphisms and homomorphisms.

Theorem 19.27 ([71]). Let ω : Im → Im be an automorphism and let φ be an extreme

inequality for MG(Im, /0,r). Then φ ◦ω is extreme for MG(Im, /0,ω−1(r)).



772 J.-P. P. Richard and S. S. Dey

It is shown in Johnson [71] that the only automorphisms for MG(Im, /0,r) are

rotations, reflections and their combinations. It is also shown in [71] how automor-

phisms can be used for mixed integer group problems of the form MG(Im,Sm,r).
For homomorphisms, the following weaker result holds.

Proposition 19.4 ([71], [38]). Let ς : G1 → G2 be a surjective map that is a ho-

momorphism. The function φ is subadditive and minimal for MG(G1, /0,r) iff the

function φ ◦ ς(x) = φ(ς(x)) is subadditive and minimal for MG(G2, /0,v), for any v

such that ς(v) = r.

For the multiplicative homomorphism described in Section 19.4.1 the following

stronger result holds.

Theorem 19.28 ([61], [38]). Let ς be a multiplicative homomorphism. Then φ is

extreme for MG(Im, /0,r) iff φ ◦ ς is extreme for MG(Im, /0,v), where ς(v) = r.

19.5.2.2 Sequence of functions

It can be easily verified that the limit of a sequence of subadditive and minimal

functions is itself subadditive and minimal. This result was first proven by Dash and

Günlük [32, 33] for a specific family of functions and proven for general functions

in Dey et al. [40].

Proposition 19.5 ([38]). Let φi : Im → R+ be valid, subadditive and minimal func-

tions of MG(Im, /0,r) for i = 1,2, . . .. If the sequence of functions {φi}
∞
i=1 con-

verges to φ pointwise on Im, then φ is a valid, subadditive and minimal function

of MG(Im, /0,r).

In general, the limit of a converging sequence of extreme functions is not neces-

sarily extreme; see Dey et al. [40] for an example. However, it is possible to show

that, if the breakpoints of the functions φi are “compatible” with the breakpoints of

the function φ , then φ will be extreme.

Theorem 19.29 ([40]). Let φi : I1 → R+ be piecewise linear, continuous extreme

functions of MG(Im, /0,r) for i > 1. Assume that the sequence of functions {φi}
∞
i=1

converges pointwise to φ and that

i. φ is piecewise linear,

ii. The right-derivative of φ at zero, φ ′
+(0), exists and satisfies 0 < φ ′

+(0) < ∞,

iii. There exists a sequence of finite subgroups Cki
, where limi→+∞ki = +∞, that

satisfy

a. φi(u) = φ(u) ∀u ∈Cki
, and

b. all the points at which the function φi is non-differentiable belong to Cki
.

Then φ is an extreme function of MG(I1, /0,r).



19 The Group-Theoretic Approach in Mixed Integer Programming 773

19.5.2.3 Fill-in

Fill-in is a technique to obtain a valid subadditive inequality for MG(Im,Sm,r)
from a valid subadditive inequality for MG(G,S,r) where G is a subgroup of Im

and S ⊆ Sm. The fill-in procedure was first presented for one-row group problems in

Gomory and Johnson [59, 60] and it can be used to explain all two-slope extreme

inequalities for MG(I1,S1,r). The fill-in procedure is extended for the case of m-row

group problems in Johnson [71]. We motivate the fill-in procedure on the following

example.

Example 19.11. The key idea of the fill-in procedure is to express variables of a

“larger size” group problem as aggregations of variables of a “smaller size” group

problem in order to use the valid inequalities of the smaller size group problem as

building blocks for valid inequalities of the larger size group problem.

Consider the problem MG(C2×C2,S,(1/3,2/3)′), where S = {e1,−e1,e2,−e2},

i.e.,2

2

∑
i=0

2

∑
j=0

1

2

(
i

j

)
xi, j +

(
1

0

)
y1 +

(
−1

0

)
y2 +

(
0

1

)
y3 +

(
0

−1

)
y4 ≡

(
1
2
2
3

)
.(19.42)

Assume that

2

∑
i=0

2

∑
j=0

αixi, j +
4

∑
k=1

βkyk > 1. (19.43)

is a valid inequality for (19.42). Now suppose that we would like to construct a

valid inequality for the “larger size” problem MG(C6 ×C6, S̄, (1/3,2/3)′), where

S̄ = {e1,−e1,e2,−e2,(1,1)′} ) S. Also note that C2 ×C2 is a subgroup of C6 ×C6.

We proceed in two steps. In the first step, we consider the problem MG(C2 ×

C2, S̄,(1/3,2/3)′), i.e., we introduce a continuous variable with coefficient (1,1)′ in

(19.42). We can rewrite the extra column in this problem, (1,1)′y5, as (µe1 +(µ −

1)(−e1)+ γe2 +(γ −1)(−e2))y5. Thus MG(C2 ×C2, S̄,(1/3,2/3)′) becomes

2

∑
i=0

2

∑
j=0

1

2

(
i

j

)
xi, j +

(
1

0

)
(y1 + µy5)+

(
−1

0

)
(y2 +(µ −1)y5)+

(
0

1

)
(y3 + γy5)+

(
0

−1

)
(y4 +(γ −1)y5) ≡

(
1
3
2
3

)
.

Since (19.43) is a valid inequality for (19.42), we obtain the following valid cut for

MG(C2 ×C2, S̄,(1/3,2/3)′)

2 In the ensuing sections, integer variables in master group relaxations will be denoted by x while
continuous variables will be denoted by y.



774 J.-P. P. Richard and S. S. Dey

2

∑
i=0

2

∑
j=0

αixi, j +
4

∑
k=1

βkyk +(µβ1 +(µ −1)β2 + γβ3 +(γ −1)β4)y5 > 1, (19.44)

if we assume µ > 0, µ − 1 > 0, γ > 0, and γ − 1 > 0. To obtain the best possible

coefficient for y5 we solve β5 = min{(µβ1 +(µ −1)β2 + γβ3+ (γ −1)β4) | µ > 0,

µ −1 > 0,γ > 0,γ −1 > 0}. More generally, we can write

β5 = min
{ 4

∑
j=1

y jβ j

∣∣∣ e1y1 − e1y2 + e2y3 − e2y4 = (1,1)′,y j > 0
}

. (19.45)

In the second step, we introduce the integer variable x̄ corresponding to the col-

umn ( 1
6 , 1

6 )′ ∈ C6 ×C6 to the problem MG(C2 ×C2, S̄,(1/3,2/3)′). By rewrit-

ing the column, ( 1
6 , 1

6 )′x̄ as an aggregation of columns of the problem MG(C2 ×

C2, S̄,(1/3,2/3)′) we can easily verify that the cutting plane,

2

∑
i=0

2

∑
j=0

αixi, j +
5

∑
k=1

βkyk + ᾱ x̄ > 1. (19.46)

is valid when ᾱ is chosen as

ᾱ = min

{ 2

∑
i=0

2

∑
j=0

αi, jxi, j +
4

∑
k=1

βkyk

∣∣∣∣ xi, j ∈ Z+, yk > 0,

2

∑
i=0

2

∑
j=0

1

2

(
i

j

)
xi, j + e1y1 − e1y2 + e2y3 − e2y4 ≡

(
1
6
1
6

)}
. (19.47)

Adding the integer variables corresponding to the elements in the group C6×C6 one

at a time by solving (19.47) (i.e., by changing the right-hand-side of (19.47) each

time), we can build a valid inequality for MG(C6 ×C6, S̄, (1/3,2/3)′).

Now we generalize the ideas presented in Example 19.11. Let G be a subgroup

of Im and S ⊆ Sm. We assume that any w ∈Rm can be written as a non-negative com-

bination of elements in S. Let (φ ,θ) be a valid subadditive function for MG(G,S,r).
We can obtain a valid subadditive inequality (Φ ,Θ) for MG(Im,Sm,r) using the fill-

in procedure presented in Table 19.2.

Observe that the optimization problem (19.48) solved in the first step of the fill-

in procedure to obtain the function Θ : Sm → R+ is a generalization of (19.45).

Note here that (19.48) is feasible because of the assumption that any w ∈ Rm

can be written as a non-negative combination of elements in S. It is easily veri-

fied that Θ̃ : Rm → R+ constructed in Table 19.2 is subadditive over Rm. Next,

since φ : G → R+ is subadditive and Θ̃ : Rm → R+ is subadditive, a problem of

the form min{∑v∈G φ(v)x(v)+∑w∈L θ(w)y(w) | x(v) ∈ Z+,y(w) > 0,∑v∈G vx(v)+
F (∑w∈L wy(w)) = u} will reduce to the form min{φ(v∗) + Θ̃(w∗) | v∗ ∈ G,w∗ ∈

Rm,v∗+F (w∗) = u}. Therefore, (19.49), which is the optimization problem solved

in the second step of the fill-in procedure to obtain the function Φ : Im → R+, is a



19 The Group-Theoretic Approach in Mixed Integer Programming 775

i. Input: A subadditive valid function (φ ,θ) for MG(G,S,r), where S ⊆ Sm and G is a subgroup
of Im.

ii. Construct the function Θ : Sm → R+ as follows:

Θ(w) = min
{

∑
v∈L

θ(v)y(v)
∣∣∣ w = ∑

v∈L

vy(v),y(v) > 0
}

, (19.48)

where L is a linearly independent subset of S.
iii. Construct the function Φ : Im → R+ as follows:

• Let Θ̃ : Rm → R+ be the homogenous extension of Θ to Rm, i.e., (here) Θ̃(w) = λΘ(w′)
where w′ ∈ Sm, λ > 0, and w = λw′.

• Compute Φ : Im → R+ as follows:

Φ(u) = min
{

φ(v)+Θ̃(w)
∣∣∣ v ∈ G,w ∈ S,v+F (w) = u

}
. (19.49)

iv. Output: A subadditive valid function (Φ ,Θ) for MG(Im,Sm,r).

Table 19.2 Fill-in procedure.

generalization of (19.47). We refer to Johnson [71] for a rigorous proof of the valid-

ity of the fill-in procedure presented in Table 19.2.

An important question is that of determining whether the fill-in procedure is

strong. For one-dimensional group problems, fill-in reduces to building minimal

two-slope inequalities and is therefore a strong procedure; see Theorem 19.26. Un-

fortunately, for group problems with multiple rows, the fill-in procedure only guar-

antees the subadditivity of the resulting function (Φ ,Θ) for MG(Im,Sm,r) even if

(φ ,θ) is an extreme inequality for MG(G,S,r). We next present sufficient condi-

tions that guarantee the strength of functions obtained through fill-in.

Theorem 19.30 ([41], [42]). Let (φ ,π) be minimal for MG(G,Sm,r) where G is a

finite subset of Im and the homogenous extension of π to Rm is the gauge function

of a polytope. Then the fill-in inequality (Φ ,π) is extreme for MG(Im,Sm,r) if and

only if (φ ,π) is extreme for MG(G,Sm,r) and (Φ ,π) is minimal for MG(Im,Sm,r).

Theorem 19.30 implies that if we start with an extreme inequality for a group

problem where all the columns of continuous variables are available, and then apply

the fill-in procedure yielding a minimal inequality for the infinite group problem,

then this minimal inequality is also extreme for the infinite group problem. Theo-

rem 19.30 can be considered as the m-row version of the Two-Slope Theorem 19.26

for the one-row group problem. Since verifying minimality of a function is easier

than proving extremality, Theorem 19.30 can be a useful tool to verify that a valid

inequality is extreme for a group problem with multiple rows.



776 J.-P. P. Richard and S. S. Dey

19.5.2.4 Continuous group problem

Most of the results discussed in the previous sections focused on integer vari-

ables. In this section, we consider the problem MG({o},Sm,r). It is convenient

to work with the problem MG({o},Rm,r) here.3 The minimal inequalities for

MG({o},Rm,r) can be characterized in terms of maximal lattice-free convex sets.

Definition 19.23 ([79]). A full-dimensional set P ⊆ Rm is a maximal lattice-free

convex set if interior(P)∩Zm = /0 and ∄ a convex set P′ ⊆Rm such that interior(P′)∩
Zm = /0, P′ 6= P and P′ ⊇ P.

Theorem 19.31 ([79], [11]). A full-dimensional set P is a maximal lattice-free con-

vex set iff it is a lattice-free polyhedron with at least one integer point in the relative

interior of each facet.

The maximum number of inequalities required to define a m-dimensional maximal

lattice-free convex set is 2m; see Doignon [44], Bell [12], Scarf [89]. Suppose that

−r ∈ int(P) and P is maximal lattice-free convex set. The set P + r (obtained as

the Minkowski sum of P and r) is a polyhedron containing the origin in its interior.

Therefore, it may be written as {u ∈ Rm | (ai)′u 6 1, i ∈ {1, ..., l}} where l 6 2m.

Let πP be the function πP(w) = maxi∈{1,...l}{(a
i)′w}.

Basu et al. [11] start with a very general definition of valid inequality for

MG({o},Rm,r) of the form ∑w∈Rm π(w)y(w) > γ , where π : Rm → R. Using this

definition they show the following result.

Theorem 19.32 ([11]). Every nontrivial valid linear inequality for MG({o},Rm,r)
is dominated by a nontrivial minimal valid linear inequality for MG({o},Rm,r).
Every nontrivial minimal valid linear inequality for MG({o},Rm,r) is equivalent

to an inequality of the form ∑w∈Rm π(w)y(w) > 1 such that π(w) > 0 ∀w and the set

P(π) := {u ∈ Rm | π(u+ r) 6 1} is a maximal lattice-free set with −r in its interior.

Moreover, πP(π) = π .

The statement of Theorem 19.32 remains the same if we replace MG({o},Rm,r)
with MG({o},Qm,r), except for redefining P(π) = closure({u ∈ Qm | π(u + r) 6

1}). This result is proven in Borozan and Cornuéjols [17]. We refer to Johnson [71],

Andersen et al. [6], Zambelli [101] for variants of the above result.

The following result from Cornuéjols and Margot [27] characterizes the subset

of minimal inequalities that are extreme inequalities for MG({o},Q2,r).

Theorem 19.33 ([27]). Let r ∈ Q2 and π̃ : Q2 → R+ be a minimal valid inequality

for MG({o},Q2,r). Then π̃ : Q2 → R+ is extreme for MG({o},Q2,r) iff

• P(π̃) is of the form {(x1,x2) | c 6 a1x1 + a2x2 6 c + 1} where a1,a2,c ∈ Z and

gcd(a1,a2) = 1, or

3 In the rest of the section, we present results where the columns w corresponding to continuous
variables in the group problem are not assumed to be normalized so that max |wi| = 1. All the
definitions of Section 19.4 are suitably modified. For example, we define MG(G,W,r) where W ⊆

Rm as the set of (x,y) such that: x : G → Z+, y : W → R+, ∑u∈G ux(u)+ ∑w∈W wy(w) = r and x

and y have finite support.



19 The Group-Theoretic Approach in Mixed Integer Programming 777

• P(π̃) is a maximal lattice-free triangle, or

• P(π̃) is a maximal lattice-free quadrilateral that satisfies the “ratio test”, i.e.,

∄h ∈ R+ such that

|bi −ai|

|bi −ai+1|
=

{
h, if i = 1,3,
1
h
, if i = 2,4,

(19.50)

where the points a1, a2, a3, and a4 represent the vertices of the lattice-free quadri-

lateral P(π̃) and b1, b2, b3, and b4 represent integer points in the relative interior

of the sides a1a2, a2a3, a3a4 and a4a1 of the quadrilateral respectively.

Theorem 19.33 characterizes extreme inequalities for MG({o},Q2,r). We can

now apply the fill-in procedure discussed in Section 19.5.2.3 to obtain coefficients

for integer variables. If the resulting fill-in inequalities are minimal, they must also

be extreme by Theorem 19.30. We refer to Dey and Wolsey [41] for a characteriza-

tion of the subset of extreme inequalities for MG(I2,S2,r) that are obtained using

fill-in.

19.5.2.5 Simple structures

In this section, we illustrate a technique to obtain valid inequalities for group

problems by using valid inequalities for simple mixed integer sets. The prototypical

procedure has three steps. It consists of (i) analyzing a simple mixed integer set Q

(that typically has free integer variables and at least one non-negative continuous

variable) and generating a valid inequality for this set, (ii) using aggregation of

variables in the group problem/relaxation of the group problem to rewrite it in the

form of Q and (iii) using the valid inequality for Q to obtain a valid inequality for

the group problem.

This technique is similar to the fill-in procedure. To see the similarity, note that

in Example 19.11 no property of a group is used in constructing a valid inequality of

a larger size group problem from a valid inequality of a smaller size group problem.

The main difference between this technique and the fill-in procedure is that in the

fill-in process, we start from a valid inequality for a finite group problem, while here

we start with a valid inequality for a simple mixed integer set Q.

To illustrate this procedure, we derive the two-step MIR inequalities of Dash and

Günlük [33]. Consider the two-step MIR set defined as

Q2 = {(z1,z2,y) ∈ Z×Z+ ×R+ | z1 +αz2 + y > b}, (19.51)

where 0 < α < b−⌊b⌋ and 1
α >

⌈
b−⌊b⌋

α

⌉
. Assume for simplicity that 0 < b < 1, i.e.,

⌊b⌋ = 0.

The first step is to derive a valid inequality for (19.51). The following two-step

MIR inequality is proven to be valid (in fact facet-defining) for Q2 in Dash and

Günlük [33],



778 J.-P. P. Richard and S. S. Dey

⌈
b

α

⌉
z1 + z2 +

y

b−α⌊ b
α ⌋

>

⌈
b

α

⌉
. (19.52)

The name “two-step MIR inequality” is given to (19.52) because it can be derived

using a sequence of two MIR inequalities as follows:

i. Treating the term αz2 + y as a non-negative continuous variable, the MIR in-

equality for z1 +αz2 + y > b, the defining constraint of Q2, is

z1 +
αz2 + y

b
> 1. (19.53)

Multiplying the inequality z1 + αz2 + y > b by 1
α and (19.53) by b

α the valid

inequalities

1

α
z1 + z2 +

y

α
>

b

α
(19.54)

b

α
z1 + z2 +

y

α
>

b

α
(19.55)

can be obtained. By assumption, 1
α >

⌈
b
α

⌉
> b

α . Therefore there is a convex

combination of (19.54) and (19.55) that is of the form

(⌈
b

α

⌉
z1 + z2

)
+

y

α
>

b

α
. (19.56)

ii. Now by applying the MIR inequality to (19.56), the two-step MIR inequality

(19.52) is obtained.

Now (19.52) is used to obtain a valid inequality for the one-row mixed integer

group problem. Consider the one row group problem (we consider the pure integer

problem for simplicity)

x0 +
n−1

∑
i=1

i

n
xi = r, (19.57)

where x0 ∈Z and xi ∈Z+ ∀i = 1, . . . ,n−1. Suppose α > 0 is chosen such that r > α
and 1

α >
⌈

r
α

⌉
= 2. The following relaxation of (19.57) is constructed

(
x0 + ∑

i|i>nr

xi

)
+ α

(
∑

i|(r−α)n6i6nr

xi

)

+
(

∑
i|i<n(r−α)

i

n
xi + ∑

i|αn<i6nr

(
i

n
−α)xi

)
> r. (19.58)

The three terms in the left-hand-side of (19.58) satisfy the requirements on z1, z2

and y respectively. Therefore by applying inequality (19.52) to (19.58) and then

substituting out x0 using (19.57) a valid inequality for the group problem is obtained.



19 The Group-Theoretic Approach in Mixed Integer Programming 779

Using the arguments presented above, Dash and Günlük [33] prove the following

general result for the one-row infinite group problem.

Theorem 19.34 ([33]). Let 0 < α < r and 1
α > ⌈ r

α ⌉ > r
α . Then the function gr,α :

I1 → R+ defined as

gr,α(u) =

{
u(1−ρτ)−k(u)(α−ρ)

ρτ(1−r) , if u− k(u)α < ρ,
k(u)+1−τu

τ(1−r) , if u− k(u)α > ρ,
(19.59)

where ρ = r−α⌊ r
α ⌋, τ = ⌈ r

α ⌉, and k(u) = min{⌈ u
α ⌉,τ}− 1 represents a valid in-

equality for the one-row group problem with right-hand side r.

Kianfar and Fathi [74] observe that the above procedure can be generalized. Instead

of considering the two-step MIR set Q2, they consider the following n-step MIR set

Qn =
{
(z1,z2, ...,zn,y) ∈ Z×Zn−1

+ ×R+

∣∣∣
n

∑
i=1

αizi + y > b
}

, (19.60)

where αi > 0 ∀i ∈ {1, ...,n}, b
α1

< ⌈ b
α1
⌉, and bi−1

αi
< ⌈ bi−1

αi
⌉ 6

αi−1
αi

∀i ∈ {2, ...n}

and where bk is inductively defined as bk = bk−1 −αk⌊
bk−1

αk
⌋ with b0 = b. First a

n-step MIR inequality is proven to be facet-defining for Qn, which is derived by

the application of a sequence of n MIRs. We refer to Pochet and Wolsey [85] for

similar inequalities for a set closely related to Qn. Then using arguments similar to

those used in the derivation of the two-step MIR inequality for the one row group

problem, Kianfar and Fathi [74] present a real-valued function (in closed form) de-

fined over I1 that represents a valid inequality for the one-row group problem. They

show that the function is minimal, continuous and has two-slopes. Using Two-Slope

Theorem 19.26, the function can then be shown to be extreme.

19.5.2.6 Extreme inequalities for MG(Im, /0,r) using extreme inequalities for

MG(I1, /0,r)

In this section, we discuss some operations that can be used to create valid (and

often extreme inequalities) for the group problem with multiple rows using valid

inequalities for group problems with lesser number of rows. While the results are

presented in the context of the infinite group problem, they can be suitably adapted

for finite group problems.

If there exists a black-box algorithm to generate valid inequalities using one row

of a simplex tableau, a natural way to construct valid inequalities using multiple

rows of a simplex tableau is the following. First multiply each row of the tableau

with a suitable number. Then add the weighted rows together to obtain one valid

constraint. This constraint can then be used as an input for the black-box algorithm.

This procedure is known in integer programming as constraint aggegration and has

been shown to yield high quality cutting planes in practical implementations; see for



780 J.-P. P. Richard and S. S. Dey

example Marchand and Wolsey [81] and Andersen, Cornuéjols, and Li [4]. Interest-

ingly, this procedure can be used to generate extreme inequalities for multiple-row

group problems. We formally define this operation in the context of the group prob-

lem next.

Definition 19.24. Let φ : I1 → R+ be a valid inequality for MG(I1, /0,r) and let

λ = (λ1, ...,λm) ∈ Zm\{0}. We define the aggregation function φ λ : Im → R+ as

φ λ (x) = φ(∑m
i=1 λixi).

Clearly, if φ is a valid inequality for MG(I1, /0,r) then φ λ is a valid inequality for

MG(Im, /0,r′) where r′ ∈ Im satisfies (∑m
i=1 λir

′
i) (mod 1) = r.

Theorem 19.35 ([36, 40, 38]). If φ is an extreme inequality for MG(I1, /0,r), then φ λ

is an extreme inequality for MG(Im, /0,r′) where r′ ∈ Im satisfies (∑m
i=1 λir

′
i) (mod 1)

= r.

We refer to Dey and Richard [38], Dey et al. [40] and Dey [36] for proofs of this

result for different groups and different classes of functions φ . Similar to the ag-

gregation scheme, a procedure called sequential-merge can be used to generate in-

equalities for multiple-row group problems using inequalities for group problems

with lesser number of rows. The treatment here is from Dey and Richard [37, 39].

We begin by illustrating the key ideas of the sequential-merge procedure using

two rows of a simplex tableau and using GMICs. We will then generalize the proce-

dure.

i. Consider any two rows of a simplex tableau:

n

∑
i=1

a1
i xi +

m

∑
j=1

c1
jy j = b1 (19.61)

n

∑
i=1

a2
i xi +

m

∑
j=1

c2
jy j = b2 (19.62)

xi ∈ Z+,y j ∈ R+,

where b1 and b2 are fractional. As a first step, generate a MIR inequality from

the second row:

∑
{i| f 2

i 6r2}

⌊a2
i ⌋xi + ∑

{i| f 2
i >r2}

(
a2

i −
1− f 2

i

1− r2
r2

)
xi + ∑

{ j|c2
j60}

c2
j

1− r2
y j 6 ⌊b2⌋, (19.63)

where rk = bk −⌊bk⌋, f k
i = ak

i −⌊ak
i ⌋ and k ∈ {1,2}. The typical form of GMIC

for the second row is essentially
(19.62)−(19.63)

r2 . We will generalize this relation-

ship between GMIC and MIR inequalities in Definition 19.25 to present the

sequential-merge procedure for general group cuts and an arbitrary number of

rows.

ii. Next add MIR inequality (19.63) to the first row of the simplex tableau (19.61)

to obtain



19 The Group-Theoretic Approach in Mixed Integer Programming 781

∑
{i| f 2

i <r2}

(
a1

i + ⌊a2
i ⌋

)
xi + ∑

{i| f 2
i >r2}

(
a1

i +a2
i −

1− f 2
i

1− r2
r2

)
xi

+ ∑
{ j|c2

j60}

(
c1

j +
c2

j

1− r2

)
y j + ∑

{ j|c2
j>0}

c1
jy j 6 b1 + ⌊b2⌋. (19.64)

iii. Finally apply the MIR inequality to (19.64). The resulting MIR inequality is the

sequential-merge inequality using two GMICs. We denote it as

∑
i

[ξ♦ξ ]−1
(r1,r2)

(
a1

i

a2
i

)
xi +∑

j

[ξ♦ξ ]−1
(r1,r2)

(
c1

j

c2
j

)
y j 6 [ξ♦ξ ]−1

(r1,r2)

(
b1

b2

)
,

(19.65)

where ξ is used to denote the GMIC. The notation in (19.65) will become clear

at the end of the section.

iv. Similar to the MIR-GMIC relationship for one tableau row, the sequential-

merge inequality (19.65) can be rewritten as
(19.61)+(19.62)−(19.65)

r1+r2 . The coeffi-

cients in the inequality
(19.61)+(19.62)−(19.65)

r1+r2 depend now only on the fractional

parts of the coefficients in the tableau.

The idea of the sequential-merge inequality can be generalized to other inequal-

ities and to more rows as follows. First, derive a cut from a m-row group problem.

Rewrite this inequality in the “MIR” form; see Definition 19.25. Second, add this in-

equality to the remaining row. Third, generate an inequality from this new one-row

inequality constraint. Rewrite this inequality in a way that its coefficients depend

only on the fractional part of the columns; see Definition 19.25.

We begin with a definition generalizing the relationship between MIR and GMIC.

Definition 19.25. Given a valid inequality φ for MG(Im, /0,r), define the lifting-

space representation [φ ]r : Rm → R as [φ ]r(x) = ∑m
i=1 xi −∑m

i=1 riφ(F (x)). Given

a function ψ : Rm → R that satisfies ψ(x + ei) = ψ(x)+ 1, where ei is the ith unit

vector of Rm, define the group-space representation [ψ]−1
r : Im → R as [ψ]−1

r (x) =
∑m

i=1 xi−ψ(x)

∑m
i=1 r̃i

.

It is easily verified that applying MIR to a row of a simplex tableau yields [GMIC]r
where r is the fractional part of the right-hand-side of the simplex tableau. It can

also be verified that GMIC is [MIR]−1
r . The following proposition establishes rela-

tionships between the lifting-space and group-space representations of a function.

Proposition 19.6 ([39]). [φ ]r is superadditive iff φ is subadditive. Moreover, if φ is

valid function for MG(Im, /0,r), then given a simplex tableau ∑n
i=1 aixi = b, x ∈ Zn

+

where ai ∈ Rm, b ∈ Qm \Zm and r = F (b), the inequality ∑n
i=1[φ ]r(ai)xi 6 [φ ]r(b)

is valid.

Now we present the general version of the sequential-merge procedure in Ta-

ble 19.3.



782 J.-P. P. Richard and S. S. Dey

i. Input: (1) The group problem MG(Im+1, /0,(r1,r2)′) where r1 ∈ I1, r2 ∈ Im and r1 6= o, r2 6= o.
(2) h : Im →R+, a valid subadditive inequality for MG(Im, /0,r2). (3) g : I1 →R+ a valid sub-
additive inequality for MG(I1, /0,r1) such that [g]r1 : R1 → R+ is a nondecreasing function.

ii. Construct the inequality [h]r2 based on Definition 19.25.
iii. Add the inequality [h]r2 to the first row of the group problem. We obtain the inequality,

∑
u=(u1,u2)∈(I1×Im)

(u1 +[h]r2(u2))x(u) 6 r1 +[h]r2(r2). (19.66)

iv. Apply the inequality [g]r1 to (19.66) as follows:

∑
u=(u1,u2)∈(I1×Im)

[g]r1(u1 +[h]r2(u2))x(u) 6 [g]r1 (r1 +[h]r2(r2)) (19.67)

v. Apply the operation [.]−1
r1,r2 to the coefficients of (19.67). The resulting inequality is the

sequential-merge inequality denoted as

∑
u∈Im+1

(g♦h)(u)x(u) > 1. (19.68)

Table 19.3 Sequential-merge procedure.

By Proposition 19.6, the function [g]r1 yields a valid inequality when applied to

one row of a simplex tableau, i.e., a constraint with equality sign. However (19.67)

is obtained by applying [g]r1 to (19.66) which is a constraint with less than or equal

to sign. Therefore, the condition that [g]r1 is a non-decreasing function is required

to prove the validity of (19.67) and (19.68).

The sequential-merge procedure can be used to obtain extreme inequalities. The

following result describes sufficient conditions for sequential-merge inequalities to

be extreme.

Theorem 19.36 ([39]). Assume that g and h are continuous, piecewise linear valid

functions for MG(I1, /0,r1) and MG(Im, /0,r2) respectively. Assume also that g and

h are unique solutions of E(g) and E(h) respectively and that [g]r1 and [h]r2 are

nondecreasing. Then g♦h is an extreme inequality for MG(Im+1, /0,(r1,r2)′).

19.5.2.7 Approximate lifting

Richard et al. [86] and Miller et al. [82] propose an approximate lifting scheme

to build inequalities for MIPs that can be proven to produce strong inequalities for

master group relaxations. In particular, the inequalities that are produced can be

shown to be extreme over a simpler (and smaller) set of functions. Among others,

they consider CPLn functions that are defined as follows.

Definition 19.26. Let K∈ R+ and r ∈ (0,K). Let n ∈ Z+, z = (z1,z2, · · · ,zn) ∈ Rn
+,

and γ = (γ1,γ2, · · · ,γn) ∈ Rn
+ be such that ∑n

j=1 z j = K−r
2 and ∑n

j=1 γ jz j = 1
2 . A



19 The Group-Theoretic Approach in Mixed Integer Programming 783

function ψ : R1 →R+ is said to be a CPLn(K;r;z;γ) function if, when u is restricted

to [0,K),

ψ(u) =





0, if u ∈ [0,r],

Γi−1 + γi(u− r−Zi−1), if u ∈ (r +Zi−1,r +Zi),

Γi, if u = r +Zi,

1−Γi, if u = K −Zi,

1−Γi−1 − γi(K −u−Zi−1), if u ∈ (K −Zi,K −Zi−1),

for i = 1, . . . ,n where Z0 = 0, Γ0 = 0, Zi = ∑i
j=1 z j and Γi = ∑i

j=1 γ j for i = 1, . . . ,n.

For the sake of brevity, we call a CPLn(K;r;z;γ) function a CPLn function.

Superadditive CPLn functions translate into valid inequalities for master group

problems if the transformation φ(u) = u−ψ(Ku)
r
K

is used. It can be shown in this case

that φ is subadditive, φ( r
K
) = 1, φ(0) = 0 and φ(u) ≥ 0 for all u ∈ I1. Further, the

parameters that describe superadditive CPLn functions belong to a polyhedron that

is reminiscent of P∗(G, /0,r).

Corollary 19.3 ([86]). Let z ∈ Rn
+ be such that Zn = K−r

2 . Parameter γ defines a

superadditive CPLn function if and only if γ belongs to the polyhedron

PΘn(z) = {γ ∈ Rn−1
+ | Γi +Γj ≤ ψ(2r +Zi +Z j), 0 6 i, j 6 n−1,

Γi −Γj ≤ ψ(r +K +Zi −Z j)−1, 0 6 i, j 6 n−1,

Γi +Γj ≥ ψ(r +Zi +Z j), 0 6 i, j 6 n−1}.

The CPLn functions and inequalities that correspond to the extreme points

of PΘn(z) are extreme within their family. We refer to these functions as CPLn-

extreme functions and inequalities. It is clear that the resulting inequalities φ are not

necessarily extreme among all valid inequalities of master group problems. How-

ever, we will show next, by considering the simplest case where n = 2, that many

of them yield extreme inequalities for master group problems. This example is from

Richard, Li and Miller [86]. Similar conclusions have been drawn for larger values

of n; see Miller et al. [82].

Consider the case where n = 2. We can use Corollary 19.3 to derive the ex-

treme points of PΘ2(z1) so as to derive the corresponding CPL2-extreme inequali-

ties. Clearly

PΘ2(z1) = {γ1 ∈ R+ | φ(r +2z1) ≤ 2γ1 ≤ φ(2r +2z1)}.

Depending on the magnitude of z1 with respect to the other parameters of the prob-

lems, we distinguish three cases. We only present the proof of the third case as

the other two cases can be proven similarly. When K−2r
2 ≤ z1 ≤

K−r
2 , we have that

2r+2z1−K ∈ [0,r] and so φ(2r+2z1) = 1. We now distinguish two subcases. First,

when z1 > K−r
3 , then r+2z1 ∈ [K−z1,K] and φ(r+2z1) = 1−γ1 + γ1

z1
(r+3z1−K).

Since r+2z1 ≤K, we have that z1
K−r

≤ 1
2 and that PΘ2(z1) = [ z1

K−r
, 1

2 ]. Second, when



784 J.-P. P. Richard and S. S. Dey

z1 ≤
K−r

3 , we have r +2z1 ∈ [r + z1,K − z1] and φ(r +2z1) = γ1 + 1−2γ1
K−2z1−r

z1. Since

r +2z1 ≤ K, we have that z1
K−r

≤ 1
2 and that PΘ2(z1) = [ z1

K−r
, 1

2 ].
As a result, we obtain the following theorem.

Theorem 19.37 ([86]). The following are the only extreme points of PΘ2(z1):

γ1
1 =

{
z1

K−r
, z1 ∈ [0, K−r

2 ],

γ2
1 =





z1+r
K+r

, z1 ∈ [0, K−2r
3 ),

z1
K−2r

, z1 ∈ [K−2r
3 , K−2r

2 ),
1
2 , z1 ∈ [K−2r

2 , K−r
2 ].

It can be observed that PΘ2(z1) has exactly two extreme points for every ad-

missible value of z1. The CPL2 inequalities generated by these points may however

be dominated by other inequalities whose superadditive functions ψ(a) do not be-

long to CPL2. However, most of the CPL2 inequalities are strong inequalities for the

group problem as shown in the next theorem.

Theorem 19.38 ([86]). Let φ(u) be the subadditive function induced by an extreme

point given in Theorem 19.37. The vector π defined by π j = φ( j) for j = 1, ...,K−1

satisfies the following properties:

a) For the extreme point γ1
1 = z1

K−r
, πx > 1 is a 2-slope extreme inequality for

MG(CK , /0, r
K
).

b) For the extreme point γ2
1 = z1+r

K+r
, πx > 1 is a 3-slope extreme inequality for

MG(CK , /0, r
K
) when K ≥ 3r +4z1.

c) For the extreme point γ2
1 = z1

K−2r
, πx > 1 is a 2-slope extreme inequality

for MG(CK , /0, r
K
) when K = 2r + 2z1 and a 3-slope extreme inequality for

MG(CK , /0, r
K
) when r = 1 and K = 3r +2z1.

d) For the extreme point γ2
1 = 1

2 , πx > 1 is a 2-slope extreme inequality for

MG(CK , /0, r
K
).

19.5.3 A compendium of known extreme inequalities for finite and

infinite group problems

In this section, we present a taxonomy of the extreme inequalities that have been

proposed for finite and infinite master group problems. Deriving an exhaustive tax-

onomy is not a trivial task as one may simply run a shooting experiment (see Sec-

tion 19.6) with a group of large size and find a new inequality for that particular

group that has not been described previously. So, in this section, we will focus on

those inequalities that have been generalized into parameterized families that apply

to various group sizes and/or right-hand-sides. We mention that extreme inequali-

ties for some finite pure integer group problems are given in Gomory [57]. Extreme



19 The Group-Theoretic Approach in Mixed Integer Programming 785

inequalities of one-dimensional finite mixed integer group problems up to order

n = 7 are listed in Gomory and Johnson [60]. Similar results were also obtained

in Evans [46]. Some families of filled-in inequalities are also presented in John-

son [71].

In Table 19.4, we present families of extreme inequalities. The table is divided

in two parts. The first part presents those inequalities that are described from a

specific constructive procedure that does not require the knowledge of another ex-

treme inequality (constituent functions), while the second part describes

those inequalities that are described through a generic constructive procedure, start-

ing from another extreme inequality (procedure). In this table, Name describes

the common name of the corresponding inequality, Finite/Infinite describes

whether it applies for finite (F) and/or infinite (I) group problems, Dimension de-

scribes the number of rows in the group problem for which this inequality is defined,

Slopes/Gradients describes the number of slopes or gradients the inequality

has (for one-dimensional finite group problems, this characteristic is computed from

the linear interpolation of the inequality), Continuous/Discontinuous re-

ports whether the corresponding inequality is continuous (C) or discontinuous (D)

(this applies only for infinite group problems), Method describes the method that

was used to obtain this inequality (as classified in Section 19.5: analysis of the sub-

additive polytope P∗(G, /0,r) (AS), group relations (GR), approximate lifting (AL),

simple sets (SS), simple procedures (SP), continuous problem (CP)), Discovered

records the reference where the corresponding inequality was first described while

Proven refers to the reference where the inequality was first proven to be extreme.

19.6 On the strength of group cuts and the group approach

In this section, we present different lines of results regarding the strength of the

group-theoretic approach. In Section 19.6.1, we discuss the evaluation of the abso-

lute strength of group cuts. In particular, we describe studies aimed at evaluating

how much of the integrality gap can be closed using group cutting planes. In Sec-

tion 19.6.2, we discuss the evaluation of the relative strength of different families of

group cutting planes. In particular, we present simple measures to judge the strength

of a group cutting plane, and we report the results of experiments aimed at deter-

mining if there are families of group cutting planes that are computationally more

important than others. We make concluding remarks in Section 19.6.3.

19.6.1 Absolute strength of group relaxation

Since the group cutting planes used in practice are most often extreme inequali-

ties of the convex hull of solutions to the master group relaxation (or the related cor-

ner relaxation), a study of the strength of the corner relaxation provides insight into



786 J.-P. P. Richard and S. S. Dey

Name Finite/ Dimension Slopes/ Continuous/ Method Discovered Proven
Infinite Gradients Discontinuous

Constituent Functions

GMIC F 1 2 - AS [55] [57]
GMIC I 1 2 C AS [55] [60]
GJ’s 2-Slope F/I 1 2 -/C AS [61] [60]
2-Step MIR F/I 1 2 -/C SS [33] [60]
n-Step MIR F/I 1 2 -/C SS [74] [60]
Forward 3-Slope F/I 1 3 -/C AS [61] [61]
Backward 3-Slope F 1 3 - AS [8] [8]
Backward 3-Slope I 1 3 C GR [40] [40]
Improved GFC I 1 1 D CA [78, 33] [40]
2-Step MIR Limit I 1 1 D SS [78, 33] [40]
GJ’s 2-Slope Limit I 1 1 D GR [40] [40]
3-Slope Limit I 1 2 D GR [40] [40]
3-Gradient I 2 3 C AS [38] [38]
Continuous
Group Problem F/I 2 2-4 C CP [17, 6] [6, 27]

Procedures

Homomorphism F/I 1 - - - [57] [57]
λ -Homomorphism I n - - - [38] [38]
Automorphism F/I n - - - [57] [57]
Aggregation I n - - - [38] [38]
Sequential-Merge I n - - - [39] [39]
Interpolation I 1 - - - [60] [40]∗

Fill-in I n - - - [60, 71] [42]∗

∗ (Under some conditions)

Table 19.4 Taxonomy of extreme inequalities for group problems.

the strength of general group cutting planes. Fischetti and Monaci [49] conducted a

set of computational experiments to gauge the strength of the group relaxation and

of the related corner relaxation. We begin with the definition of a corner relaxation

they used, as it differs slightly from that we presented before.

Definition 19.27 ([49]). For A ∈ Qm×n, c ∈ Qn, and b ∈ Qm, let x∗ be an optimal

solution to the LP relaxation of the problem min{c′x | Ax 6 b, x j ∈ Z for j ∈ J}.

Let K be the set of inequalities that are binding at x∗, i.e., (ak)′x∗ = bk ∀k ∈ K. The

FM-corner relaxation is defined as the problem min{c′x | (ak)′x 6 bk for all k ∈ K,

x j ∈ Z, for all j ∈ J}.

Observe that the definition of the FM-corner relaxation is independent of the

basis of the optimal LP simplex tableau and depends only on the optimal solution

of the LP relaxation. The traditional corner relaxation depends on the basis selected

and therefore is not unique in the presence of primal degeneracy. The experiment

conducted in [49] consists of the following steps:

i. Solve the LP relaxation of given MIP instance (considered to be a minimization

problem).

ii. Obtain lower bounds on the objective function value of the MIP by the fol-

lowing five methods: (a) Add Gomory mixed integer cuts obtained from each



19 The Group-Theoretic Approach in Mixed Integer Programming 787

fractional row to the LP relaxation and resolve. (b) Add K-cuts (Cornuéjols [26]

et al.) obtained from each fractional rows to the LP relaxation and resolve. (c)

Add single-row interpolated group cuts (Fischetti and Saturni [50]) from each

fractional rows to the LP relaxation and resolve. (d) Solve the FM-corner relax-

ation. (e) Solve the traditional corner relaxation.

iii. Using the lower bounds, compute the percentage of integrality gap closed in

each case as:
Lower bound−LP bound

Optimal MIP solution−LP bound
.

The test bed consists of instances from MIPLIB 2003 and 3.0 [15] that have known

optimal solutions and instances from Atamtürk [1]. Fischetti and Monaci [49] make

the following observations:

• On an average, approximately 79% and 34% of the integrality gap was closed by

the FM-corner relaxation for the Atamtürk [1] and the MIPLIB instances respec-

tively.

• Compiling data from Tables 1 and 2 in [49], we observe that the average gap

closed by the FM-corner relaxation, among the MIPLIB instances tested in [49],

is 25% for pure 0-1 IPs, and is 39% for problems having either continuous or

general integer variables (or both). If only instances with general integer variables

are considered, the FM-corner relaxation closes 56% of the gap. Therefore, the

FM-corner relaxation seems to be significantly less strong for pure 0-1 IPs than

for general MIPs. This corroborates the early observation made by Balas [9].

• When the LP relaxation is highly degenerate, the corner relaxation is weaker than

the FM-corner relaxation. The value of the gap closed by the corner relaxation

is 21% for pure 0-1 IPs, and is 25% for problems having either continuous or

general integer variables. It is 37% for instances with general integer variables.

• Remarkably, the lower bound obtained by adding only GMICs to the LP relax-

ation is better than the lower bound obtained by the FM-corner relaxation, espe-

cially in the case of 0-1 IPs. This is not paradoxical, since this implies that once

GMICs are added, the inequalities not binding at the current vertex of the LP

relaxation become more important. Therefore in practice it can be expected that

the integrality gap closed by the application of group cutting planes is larger than

the integrality gap closed by the corner relaxation. We discuss this point in more

detail in Section 19.6.2.2.

One of the most essential observations made by Fischetti and Monaci is that group

cuts are most useful when some of the integer variables of the problems are not 0-1.

Moreover, in cases where there is significant primal degeneracy, group cuts may

not be very strong. However, given the fact that very few families of cutting planes

are known for general mixed integer problems, the ease with which group cutting

planes can be obtained, and the fact that group relaxations are relatively strong for

general MIPs, there still seems to be an incentive to study new families of extreme

inequalities for group relaxations.



788 J.-P. P. Richard and S. S. Dey

19.6.2 Relative strength of different families of group cuts

In Section 19.5.3, we gave a list of known families of extreme inequalities for fi-

nite and infinite group problems. In this list, a number of extreme inequalities for the

infinite group problems belonged to parameterized families and therefore provided

a large number of valid inequalities for MIPs. Moreover, Gomory and Johnson [60]

show that the number of extreme inequalities can increase exponentially as the size

of the finite master group problem increases.

Example 19.12 ([60]). The number of two-slope extreme inequalities is at least
(2k)!
k!k!

for the finite group problems MG(C20k, /0, 1
10 ) where k ∈ Z and k > 1. As k becomes

large, this number approaches 22k
√

πk
.

From a theoretical standpoint, this large number of inequalities suggests that it is

probably very difficult to explain and document all the extreme inequalities of mas-

ter group problems. From a practical standpoint, it also suggests that it is important

to understand the relative strengths of different families of group cuts so as to focus

only on those that are most useful computationally.

For a given polytope, various measures have been proposed to predict the relative

importance of different extreme inequalities in a branch-and-bound framework; see

Hunsaker [69] for details.

i. Best-case improvement in objective function value when the cut is added to a

given relaxation: This measure was originally proposed by Goemans [53] for

measuring the strength of facet-defining inequalities of the graphical Traveling

Salesman Problem. Let E be the valid half-space defined by the inequality under

study and let P be some relaxation of the problem. This measure is defined as

supc∈Rn
+

max{c′x | x ∈ P}

max{c′x | x ∈ P∩E}
.

Larger values of this measure correspond to better cuts with respect to relax-

ation P.

ii. Shooting experiment: The shooting experiment was first proposed by Kuhn [76]

for the Traveling Salesman Problem. To compute this measure, we select a point

and shoot rays in random directions from this point. The first inequality hit is

recorded. Inequalities receiving more shots are expected to be more important

as they subtend a larger solid angle to the point from which the rays were shots.

Observe however that the choice of point from which the rays are shot may yield

different results and is of crucial importance when designing the experiment.

iii. Facet volume: As facets of polytopes are themselves polytopes in lower dimen-

sion, their volume can be computed as a measure of their importance. The larger

the volume of a facet is, the more important it is considered.

iv. Chvátal-Gomory rank: Given a system of inequalities (ak)′x 6 bk, the Chvátal-

Gomory procedure involves first taking a nonnegative combination to obtain

the inequality, ∑i(∑k λ kak
i )xi 6 ∑k λ kbk. Then both sides are rounded down to



19 The Group-Theoretic Approach in Mixed Integer Programming 789

obtain the valid inequality, ∑i

⌊
∑k λ kak

i

⌋
xi 6

⌊
∑k λ kbk

⌋
. Such inequalities are

added for all nonnegative weights λ to obtain the first Chvátal-Gomory clo-

sure; see Section 11.8 for a more detailed exposition of this procedure. This

process can be repeated to obtain the second closure and so forth. The Chvátal-

Gomory rank of an inequality is the smallest integer k such that it is valid for

the kth Chvátal-Gomory closure. Another related measure is the split rank; see

Cornuéjols and Li [25] for details.

v. Empirical testing of cuts by measuring the size of the resulting branch-and-cut

tree. This has the disadvantage of including factors other than cutting planes

strength, such as branching strategies, . . .

vi. Number of subadditive relations binding of the extreme inequality. This mea-

sure is specific to group problems and their relatives.

Hunsaker [69] computes each of the above measures for extreme inequalities of the

master knapsack polytope: {maxc′x | ∑n
i=1 ixi 6 n,x ∈ Zn

+}. The author observes

that the size of the branch-and-bound tree is most strongly correlated to the results

of the shooting experiment and the best-case improvement measure; see [69] for

details of implementation. While the correlation between these measures may differ

for different underlying problems, there are reasons to believe that the correlations

obtained in these experiments are meaningful also for group relaxations since the

master knapsack polytope is a facet of the finite master group problem; see Section

19.5.1.2 for a discussion on tilting and see Aráoz [8] for details.

In Section 19.6.2.1, we present the shooting method applied to the group cutting

planes as a measure of their relative importance. We then present a related mea-

sure called the merit index. In Section 19.6.2.2, we outline some computational ap-

proaches that have been used to measure the relative importance of different group

cutting planes.

19.6.2.1 Shooting experiment and the merit index

As discussed above, the shooting approach requires that all extreme inequalities

of the polyhedron be known prior to shooting the rays. Since its extreme inequal-

ities are well-characterized, there is a way of performing the shooting experiment

for the finite master group problem without knowing all of its extreme inequalities

explicitly.

Theorem 19.39 ([62]). The extreme inequalities of MG(G, /0,r) hit first by a random

ray v (when shot from the origin) are the extreme inequalities π∗ that correspond to

optimal solutions of the following linear program:

min v′π

s.t. π(r) = 1

π(gi)+π(g j) > π(gi +g j) ∀gi,g j ∈ G (19.69)

π(gi)+π(r−gi) = 1 ∀gi ∈ G

π(gi) > 0 ∀gi ∈ G.



790 J.-P. P. Richard and S. S. Dey

Gomory et al. [62] conduct the shooting experiment as follows. First they generate a

random vector and then solve (19.69) to obtain the corresponding extreme inequal-

ity. Since the point of shooting is the origin, which lies outside the group problem,

there is a possibility that some large facets of the group problem are tilted in such

a way that their projection on the unit sphere is small. However, it is empirically

argued in Gomory et al. [62] that this is unlikely. The experiments in [62] are con-

ducted for group problems where the order of underlying cyclic group is at most 30.

The key observations are:

• Less than 10% of all the extreme inequalities are hit. Further, 50% of the hits are

collected by a very small number of extreme inequalities.

• The extreme inequalities that receive the most hits are: GMIC, homomorphisms

and automorphisms of the GMIC, and other two-slope inequalities. Given a

cyclic group with non-trivial proper subgroups (i.e., a cyclic group whose or-

der is not a prime), the most frequently occurring extreme inequalities are typ-

ically the inequalities obtained by “lifting up” inequalities for group problems

corresponding to the subgroups. In other words, these inequalities are obtained

using multiplicative homomorphisms; see Section 19.5.2.1. In a related result,

Cornuéjols et al. [26] prove that for pure integer programming problems k-cuts

which are homomorphisms of GMICs perform better variable-wise than GMIC

with a probability of 50%.

• In addition to the structure corresponding to subgroups, there is significant per-

sistence in the shape of extreme inequalities for group problems corresponding to

different sizes. For example, the two extreme inequalities that are hit most often

for MG(C13, /0,12/13) are similar in shape to the extreme inequalities that are hit

most often for MG(C19, /0,18/19).

The most important observation of this study is that finite group problems have

a very small list of extreme inequalities that play a dominant role in defining the

convex hull of integer feasible points; see Gomory et al. [62] and Evans [46] for

more detail.

The results of the shooting experiment are extended in Dash and Günlük [34].

In particular, the authors consider group problems with underlying cyclic groups

of much larger order. For group problems where the order of the underlying cyclic

group is less than 90, they conduct the same experiment as Gomory et al. [62].

For larger size problems (with underlying cyclic group of order up to 200) they

conduct a simpler experiment, which they call partial shooting. In this set of exper-

iments, given a random vector v, they first enumerate all the MIR based inequalities

(such as GMIC, k-cuts, two-step MIRs [33]) to determine which inequality, π̄ , mini-

mizes v′π̄ . Then they verify if π̄ is a solution of (19.69). Thus this approach is faster

than the original shooting experiment which makes it suitable for larger problems.

The experiments in Dash and Günlük [34] with the much larger group problems

reaffirm the results of Gomory et al. [62]. In particular, they observe that the ex-

treme inequalities with the largest number of hits are typically k-cuts, GMICs and

two-step MIRs. Dash and Günlük [34] also generalize the result of Cornuéjols et

al. [26], proving that any two functions obtained by interpolation from extreme in-



19 The Group-Theoretic Approach in Mixed Integer Programming 791

equalities of the same finite group problem will outperform each other with equal

probability, when compared on a row of a simplex tableau variable-wise.

For the infinite group problem, it is not possible to perform the shooting exper-

iment. Gomory and Johnson [61] and Evans [46] however empirically observe that

the number of subadditive relations that are binding for a group inequality has a

strong correlation with the results of the shooting experiment. This is not surprising

since the number of subadditive relations that are binding for a group inequality is

directly related to the number of integer feasible points of the master group problem

binding at the inequality; see Path Lemma in Gomory and Johnson [61]. Motivated

by these observations, Gomory and Johnson [61] define the merit index to evaluate

the importance of extreme inequalities of the infinite master group problem.

Definition 19.28 ([61]). Let π : I1 → R+ be a valid inequality for the infinite group

problem MG(I1, /0,r). Let S2 be the unit square in two dimensions. The merit index

is twice the area of points p = (u1,u2) in S2 for which π(u1)+π(u2) = π(u1 +u2)
holds.

Since the area referred to in Definition 19.28 is a measure of the number of

subadditive relations binding for a given inequality, the merit index is expected to

strongly correlate to the results of the shooting experiment. Note that the definition

of merit index can easily be generalized for a m-row group cut, by replacing S2 with

the unit cube in 2m dimensions.

The merit index for GMIC is 2r2 − 2r + 1, where r is the right-hand-side of the

group problem. In many cases, for a given right-hand-side it is possible to create

a homomorphism of GMIC (starting with a different right-hand-side) which has a

larger merit index. Recently some discontinuous extreme inequalities for the one-

row infinite group problem were found to have larger merit index than GMIC; see

Dey et al. [40]. One interesting property of the merit index is that it is invariant

under homomorphism; see [61].

19.6.2.2 Computational experiments

We now present results from computational studies aimed at evaluating the rela-

tive strength of different group cuts. The results are organized around three themes:

i) comparison of the performance of specific one-row group cuts with the perfor-

mance of GMICs, ii) comparison of the performance of general one-row group cuts

with the performance of GMICs, and iii) performance of multi-row group cuts.

We begin this section by mentioning that although GMIC was proposed by

Gomory [55] in 1960, it was not considered practical or computationally useful

for a very long time. However, in 1996, this perception changed when Balas et

al. [10] showed that by adding GMICs corresponding to all the rows with fractional

variables, the performance of these cutting planes was significantly improved; see

Cornuéjols [24] for an account of the dramatic turn-around on the perception of

GMICs in the 1990’s. Bixby and Rothberg [16] present a performance report on



792 J.-P. P. Richard and S. S. Dey

various general-purpose inequalities in CPLEX, showing that GMIC is one of the

most useful cutting planes used; see Section 16.2.1.2 for a more detailed discussion.

Performance of specific cuts vs GMIC:

Cornuéjols et al. [26] considered inequalities that they call k-cuts (multiplicative

homomorphism of GMICs). They tested these cuts on randomly generated 0-1 and

bounded knapsack problems. Their approach is the following. First, they solve the

LP relaxation. Second, they add k-cuts derived from all the rows of the simplex

tableau. Third, they resolve and compute the amount of integrality gap closed. They

observe that when k-cuts are applied for different values of k separately, GMIC (i.e.,

k-cut with k = 1) is not exceptionally better than other k-cuts. In fact, when all k-cuts

for 2 6 k 6 10 are simultaneously added, the gap closed is better than the gap closed

with GMICs only. However, when the experiment is repeated on integer programs

with multiple rows, k-cuts appear to be significantly less effective than GMICs.

Finally, when k-cuts are applied to mixed integer knapsacks, the performance of

k-cuts deteriorates as the value of k-increases. This is expected since increasing k

leads to a weakening of the coefficients of continuous variables.

Letchford and Lodi [78] present some families of discontinuous group cuts that

can be seen as a strict improvement of Gomory’s fractional cuts; see also Dash and

Günlük [32, 33], Richard et al. [86], Dey et al. [40] for related inequalities. Letch-

ford and Lodi [78] test their class of inequalities on randomly generated multi-row

0-1 knapsack problems. They compare the cuts with GFCs which are not mini-

mal for the one-row group problem. They observe that these cuts perform better

than GFCs when used inside a branch-and-bound tree. However, it is believed that

these inequalities may be more susceptible to numerical difficulties as the underly-

ing function is discontinuous.

Dash and Günlük [33] analyze two-step MIR (Theorem 19.34) and present an

algorithm for selecting optimal parameters of the two-step MIR inequalities for a

given row of the simplex tableau. In their computational study, Dash et al. [31] com-

pare the two-step MIR inequalities and the scaled MIR inequality with the Mixed

Integer Rounding cuts/GMICs. The test set includes instances from MIPLIB 3.0

and 2003 [15], Atamtürk [1], Fischetti and Lodi [48], Fischetti et al. [47], and prac-

tical two-dimensional cutting stock problems arising in the steel industry. Their

main conclusions are: (i) the two-step MIR inequalities perform very well on the

Atamtürk [1] instances; on average, MIR inequalities, two-step MIR inequalities

used along with MIR inequalities, and scaled MIR inequalities used along with MIR

inequalities respectively close approximately 57%, 83% and 78% of the integrality

gap on these instances, (ii) among the other instances, once MIR inequalities are

added, no violated two-step MIR cuts can be found for 74% of the instances and

(iii) if there exists a violated one-row group cut, then for most of these instances

there exists a violated two-step MIR cut.



19 The Group-Theoretic Approach in Mixed Integer Programming 793

Performance of one-row group cuts vs GMIC:

Dash and Günlük [35] use the following procedure to determine the strength of

general one-row group cutting planes with respect to GMIC. First, the LP relax-

ation is solved. Second, GMICs based on the rows of the optimal tableau are added.

Third, the LP is resolved to obtain an optimal LP solution (v∗,x∗). Finally it is

determined whether there exists a one-row group cut based on the original optimal

tableau that cuts off (v∗,x∗). This step involves solving a separation LP for each row.

The size of the LP depends on the fractional values in the simplex tableau. Dash and

Günlük [35] present results regarding the size of the smallest possible LP for ex-

act separation, techniques for relaxing the separation LP, methods to obtain lower

bound on the separation problem, and heuristics for solving the separation problem.

Based on the order of the cyclic group underlying the separation LP, heuristics and

lower bounds are used to check if there exists a violated group cutting planes; see

Section 5 of Dash and Günlük [35] for details. The test bed used are instances from

MIPLIB 3.0 and 2003 [15], Fischetti and Lodi [48], and Fischetti et al. [47]. The key

findings of this study are: (i) for 35% of the instances, GMICs are the only relevant

one-row group cutting planes. Less than 20% of the pure integer instances fall in

this category, while this behavior is found in more than 40% of the problems with

continuous variables. Therefore, it appears that one crucial reason for the strength of

GMICs is the strong coefficient of its continuous variables. (ii) whenever a violated

one-row group cut exists, typically a violated two-step MIR inequality exists. Con-

versely, if no violated two-step MIR inequality is found, then in 75% of the cases,

no other violated group inequality is found.

Since the underlying group in the master group relaxation can be very large

in practice, Fischetti and Saturni [50] consider the problem of obtaining the most

violated “interpolated subadditive function”. However, constructing the separation

problem with a smaller underlying cyclic subgroup becomes complicated. We re-

fer the readers to [50] for details on how to determine the coefficients of the cut.

The following procedure was used to determine the relative strength of different

one-row group cutting planes. First, the LP relaxation is solved and an optimal so-

lution x∗ is obtained. Second, the tableau rows are stored. Third, from each row

of the optimal simplex tableau, the most violated interpolated subadditive cut is

generated and added to the LP relaxation, up to 200 cuts in one round. Cuts are

added until no more cut can be separated. Fourth, the procedure is repeated for

k-cuts and GMIC separately. The test bed in [50] is composed of instances from

MIPLIB 3.0 and 2003 [15], Atamtürk [1], and randomly generated bounded and

0-1 single-constraint knapsack problems. The key observations of this study are: (i)

although the interpolated subadditive cuts improve the quality of the LP relaxation,

they rarely beat the performance of GMICs for MIPLIB instances. This confirms the

theoretical findings in Dash and Günlük [34]. As the number of rows of the problem

increases, the performance of the interpolated subadditive cuts decreases, (ii) for

the instances of Atamtürk [1] the interpolated subadditive cutting planes perform

better than GMICs. For single-constraint knapsack instances, very few interpolated

subadditive cuts are able to improve GMIC bounds significantly, (iii) As the size



794 J.-P. P. Richard and S. S. Dey

of the underlying cyclic group used to generate the interpolated subadditive func-

tion is increased, the gap closed increases, although the improvement is not very

significant.

Performance of multi-row group cuts vs GMIC:

All the studies presented above considered one-row group cutting planes. How-

ever, some valuable results can be found in Fischetti and Monaci [49] regarding

multi-row group cuts. As mentioned earlier, traditional corner relaxation and FM-

corner relaxations are both solved in [49] to determine their strength. A measure

called GMI′ is computed for each instance. This measure represents the gap closed

by considering a problem with all the original constraints defining the group relax-

ation (i.e., “the LP relaxation” of the group problem, in place of all the original

constraints of the problem) and one round of GMIC cuts for each of the tableau

rows. The difference between the parameter GMI′ and the bounds obtained by the

solution of the group relaxation indicates the marginal benefit of exploiting group

cutting planes (including multiple-row group cuts) other than GMICs. We present

these parameters in Table 19.5 for the MIPLIB instances. These figures were ob-

tained by compiling results in Tables 1 and 2 of [49]. For each of the categories,

we see that the addition of general group cuts can potentially double or even triple

the improvement in the gap closed by addition of GMICs only. This is significantly

better than the performance obtained by the application of only one-row group cuts.

Recently, Espinoza [45] conducted experiments using cuts based on multiple-row

group relaxations. These cuts are generated as follows. First the non-basic integer

variables are relaxed to be continuous. Second, minimal group cuts of the problem

MG({o},Qm,r) are used to obtain cutting planes for the resulting relaxation of the

simplex tableau. These cuts are derived using maximal lattice-free convex sets; see

Section 19.5.2.4. Espinoza [45] uses two classes of lattice-free convex sets. The test

bed used in this study is composed of a subset of MIPLIB 3.0 and 2003 instances (87

instances). Multiple-row group cuts are added after the CPLEX 10.2 default cutting

planes are added at the root node. Gap closed at the root node and time to reach

provable optimal solution in the branch-and-bound tree are compared with CPLEX

defaults. The results of these experiments are encouraging. A geometric average

speed-up over CPLEX 10.2 of 31% is observed for instances in which optimality

was reached using the additional group cuts. CPLEX is faster by at least 5% on 10

instances. Interestingly, the performance of the group cuts, in terms of integrality

gap closed, improves when these cuts are based on a larger number of rows of the

simplex tableau. Moreover, if more rows are used to generate the cuts, a smaller

number of cuts is required.

These experiments indicate that the use of multiple row group cutting planes

may hold some potential. Observe however that very little is known about important

non-GMIC extreme inequalities for multiple-row group problems. More extensive

experiments must be conducted to determine if the improvements that can be ob-

tained by using non-GMIC cutting planes can be harnessed.



19 The Group-Theoretic Approach in Mixed Integer Programming 795

Problem Type Gap closed by GMI’ Gap closed by Group relaxation
- Gap closed by GMI’

Pure 0−1 10% 11%

Problems with continuous/ 11% 14%
general integer variables

Problems with general 14% 22%
integer variables

Table 19.5 Gap closed by GMI’ and group relaxation; Averages obtained from Fischetti and
Monaci [49].

19.6.3 Summary on strength of group cuts

Among the one-row group cutting planes, GMIC is clearly the most effective

cut. Other group cutting planes that may be useful in practice are k-cuts and two-

step MIR inequalities. However, it appears that the efficacy of these cutting planes

reduces as the number of rows in the original problem increases and/or the number

of continuous variables in the problem increases. The strength of GMIC may there-

fore be attributed to the following reasons: (i) GMIC has a very high merit index and

therefore a large number of points involving only the integer variables of the group

relaxation that are binding, (ii) GMIC gives the best possible coefficient for contin-

uous variables among all one-row group cutting planes. Observe that the shooting

experiment/merit index does not really consider the effect of the coefficients of the

continuous variables. In fact, as pointed out in Section 19.6.2.1, the merit index is

invariant under homomorphism, and therefore the k-cut and GMICs have the same

merit index as GMICs while k-cuts have weaker coefficients of continuous variables

than GMICs when k > 1. Therefore, the merit index can be intuitively thought of as

a parameter to judge the strength of the integer coefficients.

While general one-row group cutting planes may not yield much improvement on

the performance of GMIC, the experiments conducted in Fischetti and Monaci [49]

and Espinoza [45] give hope that multi-row group cuts could be useful. However,

this may heavily depend on whether a small subset of group cutting planes based on

multiple rows are “important”, since otherwise a very large library of cuts would be

needed to provide any significant reduction in integrality gaps.

19.7 Conclusion and perspectives

The group-theoretic approach to the generation of cutting planes in mixed inte-

ger programming dates back to the early days of integer programming. Although

the theoretical foundations of this approach were laid in the 1960s, its computa-

tional promise remained unfulfilled until the 1990s, when GMIC made a spectacu-

lar comeback in both theoretical research and computer implementations. Over the

last decade, the group-theoretic approach has been the subject of an intense and re-



796 J.-P. P. Richard and S. S. Dey

newed interest and the amount of literature on the subject has grown tremendously.

However, many questions remain open.

On the theoretical front, many questions remain open. A number of techniques

used to prove inequalities are extreme (especially for infinite group problems) are

technical in nature. Better methods to search and prove that inequalities are extreme

are needed. Given the large number of extreme inequalities, new methods, other than

based on merit index or strength of continuous variables coefficients, are needed to

predict the usefulness of extreme inequalities for group problems.

For group problems with single constraints, many families of extreme inequali-

ties are known. Moreover, computational studies indicate that most of the important

families are probably already known. However, constructive procedures to derive

many of these inequalities are not known. In particular, simple constructive proce-

dures now explain subfamilies of the two-slope inequalities, but none of the families

of three-slope inequalities have constructive derivations.

For group problems with multiple constraints, very few families of extreme in-

equalities are known and many research questions are open. Recent computational

studies suggest that stronger cutting-plane algorithms can be built by considering

several rows. However, it is not clear which inequalities are most important for

multi-row group problems. In particular, we are not aware of studies presenting the

results of shooting experiments for multi-row group problems. The derivation of

multi-row inequalities using lattice-free convex sets and the fill-in procedure yields

a promising generic constructive procedure for extreme inequalities. The relation of

this approach to disjunctive programming is an interesting research direction.

On the numerical front, the use of group cuts and especially those based on multi-

row group problems open many research avenues. First, it is important to determine

the contexts in which multi-row group cuts are most appropriate to apply. Second,

it is also important to determine the best subsets of the tableau rows to generate

cuts from and the optimal number of rows to use in these situations. Third, com-

putational studies indicate that primal degeneracy can reduce the strength of group

cuts. Methods for improving group cuts under such circumstances should be inves-

tigated. Fourth, numerical stability of group cuts is a computational problem that

has been discussed much. Related to this question is that of generating low-density

group cuts. Recently Cook et al. [23] have presented methods for numerically accu-

rate implementations of GMIC. Whether such implementations for other group cuts

are possible is another interesting question.

Finally, there is potential in considering extensions of the concept of group relax-

ations. For example, Dash et al. [30] analyzed a generalization of the master cyclic

group polyhedron. There is also a possibility of improving group cutting planes

by analyzing valid inequalities for extended group relaxations and by considering

bounds on the variables. These directions of research, especially in the context of

continuous group relaxations, are an active area of research; see Johnson [72], Dey

and Wolsey [43], Basu et al. [11], Fukasawa and Günlük [51] and Andersen et al. [5].

Further analysis of these and related problems may yield stronger cutting planes for

general mixed integer programs.



19 The Group-Theoretic Approach in Mixed Integer Programming 797

We believe the research related to group problems that is currently under way

will not only answer these questions and many more, but also hold the key to new

breakthrough and computational advances in MIP.

Acknowledgements The authors thank an anonymous referee for suggestions that helped broaden
the scope of the exposition and improved its presentation.

References

1. A. Atamtürk, On the facets of the mixed-integer knapsack polyhedron, Mathematical Pro-
gramming 98 (2003) 145–175.

2. T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Operation Research Letters
33 (2005) 42–54.

3. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, algorithms, and applica-

tions, Prentice Hall, 1993.
4. K. Andersen, G. Cornuéjols, and Y. Li, Reduce-and-split cuts: Improving the performance of

mixed integer Gomory cuts, Management Science 51 (2005) 1720–1732.
5. K. Andersen, Q. Louveaux, and R. Weismantel, Geometric study of mixed-integer sets from

2 rows of 2 adjacent simplex bases, Manuscript, 2009.
6. K. Andersen, Q. Louveaux, R. Weismantel, and L.A. Wolsey, Cutting planes from two rows of

a simplex tableau, Proceedings 12th Conference on Integer and Combinatorial Optimization
(M. Fischetti and D. P. Williamson, eds.), Springer-Verlag, 2007, pp. 30–42.

7. J. Aráoz, Polyhedral neopolarities, Ph.D. thesis, University of Waterloo, Department of
Computer Sciences, Waterloo, Canada, 1974.

8. J. Aráoz, L. Evans, R.E. Gomory, and E.L. Johnson, Cyclic groups and knapsack facets,
Mathematical Programming 96 (2003) 377–408.

9. E. Balas, A note on the group-theoretic approach to integer programming and the 0-1 case,
Operations Research 21 (1973) 321–322.

10. E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, Gomory cuts revisited, Operations Research
Letters 19 (1996) 1–9.

11. A. Basu, M. Conforti, G. Cornuéjols, and G. Zambelli, Minimal inequalities for an infinite

relaxation of integer programs., Manuscript, 2009.
12. D.E. Bell, A theorem concerning the integer lattice, Studies in Applied Mathematics 56

(1977) 187–188.
13. D.E. Bell and J.F. Shapiro, A convergent duality theory for integer programming, Operations

Research 25 (1977) 419–434.
14. A. Ben-Israel and A. Charnes, On some problems of diophantine programming, Cahiers du

Centre d’Études de Recherche Opérationelle 4 (1962) 215–280.
15. R.E. Bixby, E.A. Boyd, and R.R. Indovina, MIPLIB: A test set of mixed integer programming

problems, SIAM News 25:2 (1992).
16. R.E. Bixby and E.E. Rothberg, Progress in computational mixed integer programming -

A look back from the other side of the tipping point, Annals of Operations Research 149
(2007) 37–41.

17. V. Borozan and G. Cornuéjols, Minimal inequalities for integer constraints,
http://integer.tepper.cmu.edu, 2007.

18. V.J. Bowman and G.L. Nemhauser, A finiteness proof for modified Dantzig cuts in integer

programming, Naval Research Logistics Quarterly 17 (1970) 309–313.
19. A. Charnes and W.W. Cooper, Management models and industrial applications of linear

programming, ii, Wiley, New York, 1961.
20. D.-S. Chen and S. Zionts, Comparison of some algorithms for solving the group theoretic

integer programming problem, Operations Research 24 (1976) 1120–1128.



798 J.-P. P. Richard and S. S. Dey

21. V. Chvátal, Edmonds Polytopes and a Hierarchy of Combinatorial Problems, Discrete Math-
ematics 4 (1973) 305–337.

22. V. Chvátal, Linear programming, W. H. Freeman and Company, New York, NY, 1983.
23. W. Cook, S. Dash, R. Fukasawa, and M. Goycoolea, Numerically accurate Gomory mixed-

integer cuts, INFORMS Journal of Computing (To appear).
24. G. Cornuéjols, Revival of the Gomory cuts in the 1990’s, Annals of Operations Research 149

(2007) 63–66.
25. G. Cornuéjols and Y. Li, On the rank of mixed 0-1 polyhedra, Mathematical Programming

91 (2002) 391–397.
26. G. Cornuéjols, Y. Li, and D. Vandenbussche, K-cuts: a variation of Gomory mixed integer

cuts from the LP tableau, INFORMS Journal of Computing 15 (2003) 385–396.
27. G. Cornuéjols and F. Margot, On the facets of mixed integer programs with two integer vari-

ables and two constraints, Mathematical Programming 120 (2009) 429–456.
28. G.B. Dantzig, Discrete-variable extremum problems, Operations Research 5 (1957) 266–277.
29. G.B. Dantzig, Note on solving linear programs in integers, Naval Research Logistics Quar-

terly 6 (1959) 75–76.
30. S. Dash, R. Fukasawa, and O. Günlük, On a generalization of the master cyclic group polyhe-

dron, Proceedings 12th Conference on Integer and Combinatorial Optimization (M. Fischetti
and D. P. Williamson, eds.), Springer-Verlag, 2007, pp. 197–209.

31. S. Dash, M. Goycoolea, and O. Günlük, Two step MIR inequalities for mixed integer pro-

grams., http://www.optimization-online.org/DBHTML/2006/07/1422.html, 2006.
32. S. Dash and O. Günlük, Valid inequalities based on simple mixed-integer sets., Proceedings

10th Conference on Integer Programming and Combinatorial Optimization (D. Bienstock and
G. Nemhauser, eds.), Springer-Verlag, 2004, pp. 33–45.

33. S. Dash and O. Günlük, Valid inequalities based on simple mixed integer set, Mathematical
Programming 106 (2006) 29–53.

34. S. Dash and O. Günlük, Valid inequalities based on the interpolation procedure, Mathemat-
ical Programming 106 (2006) 111–136.

35. S. Dash and O. Günlük, On the strength of Gomory mixed integer cuts as group cuts, Math-
ematical Programming 115 (2008) 387–407.

36. S.S. Dey, Strong cutting planes for unstructured mixed integer programs using multiple con-

straints, Ph.D. thesis, Purdue University, West Lafayette, IN, USA, 2007.
37. S.S. Dey and J.-P.P. Richard, Sequential-merge facets for two-dimensional group problems,

Proceedings 12th Conference on Integer and Combinatorial Optimization (M. Fischetti and
D. P. Williamson, eds.), Springer-Verlag, 2007, pp. 30–42.

38. S.S. Dey and J.-P.P. Richard, Facets of the two-dimensional infinite group problems, Mathe-
matics of Operations Research 33 (2008) 140–166.

39. S.S. Dey and J.-P.P. Richard, Some relations between facets of low- and high-dimensional

group problems, Mathematical Programming (To appear).
40. S.S. Dey, J.-P.P. Richard, Y. Li, and L.A. Miller, Extreme inequalities for infinite group prob-

lems., Mathematical Programming 121 (2010) 145–170.
41. S.S. Dey and L.A. Wolsey, Lifting integer variables in minimal inequalities corresponding to

lattice-free triangles, Proceedings 13th Conference on Integer and Combinatorial Optimiza-
tion (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Springer-Verlag, 2008, pp. 463–475.

42. S.S. Dey and L.A. Wolsey, Two row mixed integer cuts via lifting, Tech. Report CORE DP
30, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2008.

43. S.S. Dey and L.A. Wolsey, Constrained infinite group relaxations of MIPs, Tech. Report
CORE DP 33, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2009.

44. J.P. Doignon, Convexity in crystallographic lattices, Journal of Geometry 3 (1973) 71–85.
45. D. Espinoza, Computing with multiple-row Gomory cuts, Proceedings 13th Conference on In-

teger Programming and Combinatorial Optimization (A. Lodi, A. Panconesi, and G. Rinaldi,
eds.), Springer-Verlag, 2008, pp. 214–224.

46. L.A. Evans, Cyclic group and knapsack facets with applications to cutting planes, Ph.D.
thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2002.



19 The Group-Theoretic Approach in Mixed Integer Programming 799

47. M. Fischetti, F. Glover, and A. Lodi, The feasibility pump, Mathematical Programming 104
(2005) 91–104.

48. M. Fischetti and A. Lodi, Local branching, Mathematical Programming 98 (2003) 23–47.
49. M. Fischetti and M. Monaci, How tight is the corner relaxation?, Discrete Optimization 5

(2007) 262–269.
50. M. Fischetti and C. Saturni, Mixed integer cuts from cyclic groups, Mathematical Program-

ming 109 (2007) 27–53.
51. R. Fukasawa and O. Günlük, Strengthening lattice-free cuts using non-negativity,

http://www.optimization-online.org/DBHTML/2009/05/2296.html, 2009.
52. F. Glover, Integer programming over a finite additive group, SIAM Journal on Control 7

(1969) 213–231.
53. M.X. Goemans, Worst-case comparison of valid inequalities for the TSP, Mathematical Pro-

gramming 69 (1995) 335–349.
54. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of

the American Mathematical Society 64 (1958) 275–278.
55. R.E. Gomory, An algorithm for the mixed integer problem, Tech. Report RM-2597, RAND

Corporation, 1960.
56. R.E. Gomory, Some relation between integer and non-integer solutions of linear program,

Proceedings of National Academy of Science 53 (1965) 250–265.
57. R.E. Gomory, Some polyhedra related to combinatorial problems, Linear Algebra and its

Application 2 (1969) 341–375.
58. R.E. Gomory and A.J. Hoffman, On the convergence of an integer programming process,

Naval Research Logistics Quarterly 10 (1963) 121–124.
59. R.E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra, part

I, Mathematical Programming 3 (1972) 23–85.
60. R.E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra, part

II, Mathematical Programming 3 (1972) 359–389.
61. R.E. Gomory and E.L. Johnson, T-space and cutting planes, Mathematical Programming 96

(2003) 341–375.
62. R.E. Gomory, E.L. Johnson, and L. Evans, Corner polyhedra and their connection with cut-

ting planes, Mathematical Programming 96 (2003) 321–339.
63. G.A. Gorry, W.D. Northup, and J.F. Shapiro, Computational experience with a group theo-

retic integer programming algorithm, Mathematical Programming 4 (1973) 171–192.
64. J. Hadamard, Résolution d’une question relative aux déterminants, Bulletin des Sciences

Mathématiques 17 (1893) 30–31.
65. S. Hoşten and R.R. Thomas, Standard pairs and group relaxations in integer programming,

Journal of Pure and Applied Algebra 139 (1999) 133–157.
66. S. Hoşten and R.R. Thomas, Gomory integer programs, Mathematical Programming 96

(2003) 271–292.
67. T.C. Hu, Integer programming and network flows, Addison-Wesley, Reading, MA, 1969.
68. T.C. Hu, On the asymptotic integer algorithm, Linear Algebra and its Applications 3 (1970)

279–294.
69. B. Hunsaker, Measuring facets of polyhedra to predict usefulness in branch-and-cut algo-

rithms, Ph.D. thesis, Georgia Institute of Technology, Atlanta, USA, 2003.
70. R.G. Jeroslow and K.O. Kortanek, On an algorithm of Gomory, SIAM Journal on Applied

Mathematics 21 (1971) 55–60.
71. E.L. Johnson, On the group problem for mixed integer programming, Mathematical Program-

ming Study 2 (1974) 137–179.
72. E.L. Johnson, Characterization of facets for multiple right-hand side choice linear programs,

Mathematical Programming Study 14 (1981) 112–142.
73. R. Kannan and R. Bachem, Polynomial time algorithms for computing Smith and Hermite

normal forms of an integer matrix, SIAM Journal on Computation 8 (1979) 499–507.
74. K. Kianfar and Y. Fathi, Generalized mixed integer rounding valid inequalities: Facets for

infinite group polyhedra, Mathematical Programming 120 (2009) 313–346.



800 J.-P. P. Richard and S. S. Dey

75. V. Klee and G.J. Minty, How good is the simplex algorithm?, Inequalities (O. Shisha, ed.),
vol. III, Academic Press, New York, 1972, pp. 159–175.

76. H.W. Kuhn, On the origin of the Hungarian method, History of Mathematical Programming:
A collection of personal Reminiscences (J.K. Lenstra, K. Rinnooy, and A.H.G. Schrijver,
eds.), Elsevier Science Publisher, 1991, pp. 77–81.

77. A.H. Land and A.G. Doig, An automatic method for solving discrete programming problems,
Econometrica 28 (1960) 497– 520.

78. A.N. Letchford and A. Lodi, Strengthening Chvátal-Gomory cuts and Gomory fractional

cuts, Operations Research Letters 30 (2002) 74–82.
79. L. Lovász, Geometry of numbers and integer programming, Mathematical Programming:

Recent Developments and Applications (1989) 177–210.
80. H. Marchand, A. Martin, R. Weismantel, and L.A. Wolsey, Cutting planes in integer and

mixed integer programming, Discrete Applied Mathematics 123 (2002) 397–446.
81. H. Marchand and L.A. Wolsey, Aggregation and mixed integer rounding to solve MIPs, Op-

erations Research 49 (2001) 363–371.
82. L.A. Miller, Y. Li, and J.-P.P. Richard, New facets for finite and infinite group problems from

approximate lifting, Naval Research Logistics 55 (2008) 172–191.
83. G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimization, Wiley-Inter-

science, New York, NY, 1988.
84. F.J. Nourie and E.R. Venta, An upper bound on the number of cuts needed in Gomory’s

method of integer forms, Operations Research Letters 1 (1982) 129–133.
85. Y. Pochet and L.A. Wolsey, Integer knapsacks and flow covers with divisible coefficients:

polyhedra, optimization and separation, Discrete Applied Mathematics 59 (1995) 57–74.
86. J.-P.P. Richard, Y. Li, and L.A. Miller, Valid inequalities for MIPs and group polyhedra from

approximate liftings, Mathematical Programming 118 (2009) 253–277.
87. D.S. Rubin and R.L. Graves, Strengthened Dantzig cuts for integer programming, Operations

Research 20 (1972) 178–182.
88. H.M. Salkin and S. Morito, Integer programming by group theory: Some computation-

al results, Tech. report, Defense Technical Information Center OAI-PMH Repository
[http://stinet.dtic.mil/oai/oai] (United States), 1975.

89. H.E. Scarf, An observation on the structure of production sets with indivisibilities, Proceed-
ings of the National Academy of Sciences USA 74 (1977) 3637–3641.

90. A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, Chichester,
1986.

91. J.F. Shapiro, Dynamic programming algorithms for the integer programming problem - i:

The integer programming problem viewed as a knapsack type problem, Operations Research
16 (1968) 103–121.

92. J.F. Shapiro, Group theoretic algorithms for the integer programming problem - ii: Extension

to a general algorithm, Operations Research 16 (1968) 928–947.
93. H.J.S. Smith, On systems of indeterminate equations and congruences, Philosophical Trans-

actions of the Royal Society of London (A) 151 (1861) 293–326.
94. B. Sturmfels, R. Weismantel, and G. Ziegler, Gröbner bases of lattices, corner polyhedra

and integer programming, Beiträge zur Algebra und Geometrie 36 (1995) 281–298.
95. R.R. Thomas, The structure of group relaxations, Handbooks in Operations Research and

Management Science (R. Weismantel K. Aardal, G. Nemhauser, ed.), Elsevier, 2005, pp. 19–
49.

96. R.J. Vanderbei, Linear programming: Foundations and extensions, Kluwer Academic Pub-
lishers, 2001.

97. L.A. Wolsey, Extensions of the group theoretic approach in integer programming, Manage-
ment Science 18 (1971) 74–83.

98. L.A. Wolsey, Group theoretic results in mixed integer programming, Operations Research 19
(1971) 1691–1697.

99. L.A. Wolsey, Generalized dynamic programming methods in integer programming, Mathe-
matical Programming 4 (1973) 222–232.



19 The Group-Theoretic Approach in Mixed Integer Programming 801

100. L.A. Wolsey, The b-hull of an integer program, Discrete Applied Mathematics 3 (1981) 193–
201.

101. G. Zambelli, On degenerate multi-row Gomory cuts, Operations Research Letters 37 (2009)
21–22.



M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008, 

DOI 10.1007/978-3-540-68279-0, © Springer-Verlag Berlin Heidelberg 2010 
803

Part IV

DVD-Video / DVD-ROM



The enclosed DVDs can be played on any DVD player without national restrictions.

They contain more than 4 hours of video, including the talks of Gérard Cornuéjols,

William Cook, and Laurence Wolsey (Part I), the introduction of the pioneer panel

consisting of Egon Balas, Michel Balinski, Jack Edmonds, Ralph E. Gomory, Arthur

M. Geoffrion, Richard M. Karp, and Susan Powell, who represented Ailsa H. Land,

by George Nemhauser andWilliam Pulleyblank and, as a special highlight, the panel

discussion (Part II).

The DVD “Part I” can also be used as a DVD-ROM on a computer to view the

slides of the talks and some selected photos taken during the conference.


