Problem Set 8 409 - Discrete Optimization

Spring 2019

Exercise 1

- 1. Write down the max matching problem and the min vertex cover problems in a graph G = ([n], E) as integer programs using the vertex-edge incidence matrix A_G of G to express the constraints.
- 2. Argue that you do not need the upper bound of 1 on the variables in the max matching LP.
- 3. Write down the dual of an LP of the form $\max\{c^{\top}x : Ax \le b, x \ge 0\}$.
- 4. Write down the dual of the LP relaxation of the max matching problem.
- 5. Is this dual solving the min vertex cover problem?

Exercise 2

A stable set in a graph G = (V, E) is a subset $S \subseteq V$ such that for any two vertices $i, j \in S$, the pair $\{i, j\}$ is not an edge in E.

- 1. Formulate the problem of finding a stable set in *G* of maximum cardinality as an integer program. (You already did this in a previous homework.)
- 2. Let *P* denote the feasible region of the LP relaxation of the integer program in part 1. Prove that if *G* is bipartite, then *P* is an integral polytope (i.e., $P = P^{I}$).

Exercise 3

Let $A \in \{0, 1, -1\}^{m \times n}$ be a TU matrix, $b \in \mathbb{Z}^m$ and $c \in \mathbb{Z}^n$. Prove that the primal and dual LPs shown below both have integer optimal solutions.

$$\max\{c^{\top}x : Ax \le b\} = \min\{y^{\top}b : y \ge 0, y^{\top}A = c^{\top}\}.$$

Exercise 4

Give an example of an integer matrix A and integer vector b such that the polyhedron

$$P = \{x : Ax \le b\}$$

is integral but A is not TU.