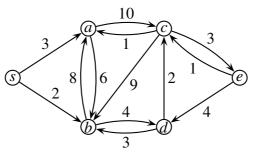
Problem Set 10 409 - Discrete Optimization

Winter 2019

Exercise 1

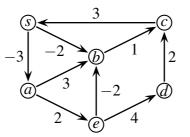
Run Dijkstra's algorithm in the following instance with source node s.



For each iteration give the set *R*, the node *v* that you use to update the labels as well as all the labels $\ell(u)$.

Exercise 2

Consider the following directed graph G = (V, E) (edges are labelled with edge cost c(e)).



- a) Use the Moore-Bellman-Ford algorithm to compute the distances from *s* to each other node *v* (call those values $\ell(v)$; you can use your favourite ordering for the edges).
- b) Use the labels $\ell(v)$ from *a*) as **potentials** $\pi(v)$. In the above graph, label the nodes with their potential and label the edges with their **reduced costs**. Are the potentials feasible? Is *c* conservative?
- c) Let $c_{\pi}(e)$ be the reduced cost of edge *e* that you computed in *b*). Now run Dijkstra's algorithm with cost function c_{π} and source node *a*. Use the symbol $\ell'(v)$ to denote the computed *a*-*v* distances.
- d) How do you translate the values $\ell'(v)$ from *c*) into the actual *a*-*v* distances w.r.t. to the original cost function *c*?

Exercise 3

In this problem, we consider the single-source shortest paths problem on an important class of directed graphs. Throughout this problem, G = (V, E) will denote a weighted directed graph containing **no directed cycles**. We say that an ordering v_1, \ldots, v_n of the vertex set *V* is a *topological sorted order* for *G* if *x* precedes *y* in the order whenever (x, y) is a directed edge of *G*.

- a) Give an O(|V| + |E|)-time algorithm for computing a topological sorted order of *G*. Prove that your algorithm is correct and runs in O(|V| + |E|) time. In order to attain the desired running time, you may assume that, for a node $u \in V$ of out-degree *d*, you can access *all* the outgoing edges and corresponding edge weights in total time O(d). (For example, this assumption holds when the input graph *G* is represented by adjacency lists.)
- b) Fix a source vertex *s*. Give an O(|V| + |E|)-time algorithm that computes $\ell(v)$ for all vertices $v \in V$, where $\ell(v)$ is the minimum possible total weight along a directed path from *s* to *v*. Again, prove that your algorithm is correct and has the desired running time. In order to attain the desired running time, you may assume that, for a node $u \in V$ of out-degree *d*, you can access *all* the outgoing edges and corresponding edge weights in total time O(d). **Hint:** Your algorithm should make "updates" similar to the updates in Moore-Bellman-Ford and Dijkstra. In order to prove that $\ell(v) = d(s, v)$, you might consider proving the two inequalities $\ell(v) \ge d(s, v)$ and $\ell(v) \le d(s, v)$ separately, as we did in the proof of the Moore-Bellman-Ford algorithm.