Problem Set 7

409 - Discrete Optimization

Spring 2018

Exercise 1

A stable set in a graph $G=(V, E)$ is a subset $S \subseteq V$ such that for any two vertices $i, j \in S$, the pair $\{i, j\}$ is not an edge in E.

1. Formulate the problem of finding a stable set in G of maximum cardinality as an integer program.
2. Let P denote the convex hull of incidence vectors of all stable sets in G. Prove that if G is bipartite, then P is an integral polytope (i.e., $P=P^{I}$).

Exercise 2

A clique in a graph G is a subgraph that is a complete graph.

1. Formulate the problem of finding the largest clique in a graph as an integer program.
2. Do you see a connection between the max stable set problem and the max clique problem in a general graph?

Exercise 3

Let $A \in\{0,1,-1\}^{m \times n}$ be a TU matrix, $b \in \mathbb{Z}^{m}$ and $c \in \mathbb{Z}^{n}$. Prove that the primal and dual LPs shown below both have integer optimal solutions.

$$
\max \left\{c^{\top} x: A x \leq b\right\}=\min \left\{y^{\top} b: y \geq 0, y^{\top} A=c^{\top}\right\} .
$$

Exercise 4

Give an example of an integer matrix A and integer vector b such that the polyhedron

$$
P=\{x: A x \leq b\}
$$

is integral but A is not TU.

