Problem Set 7

409 - Discrete Optimization

Spring 2018

Exercise 1

A stable set in a graph G = (V, E) is a subset $S \subseteq V$ such that for any two vertices $i, j \in S$, the pair $\{i, j\}$ is not an edge in E.

- 1. Formulate the problem of finding a stable set in G of maximum cardinality as an integer program.
- 2. Let *P* denote the convex hull of incidence vectors of all stable sets in *G*. Prove that if *G* is bipartite, then *P* is an integral polytope (i.e., $P = P^I$).

Exercise 2

A *clique* in a graph G is a subgraph that is a complete graph.

- 1. Formulate the problem of finding the largest clique in a graph as an integer program.
- 2. Do you see a connection between the max stable set problem and the max clique problem in a general graph?

Exercise 3

Let $A \in \{0, 1, -1\}^{m \times n}$ be a TU matrix, $b \in \mathbb{Z}^m$ and $c \in \mathbb{Z}^n$. Prove that the primal and dual LPs shown below both have integer optimal solutions.

$$\max\{c^{\top}x : Ax \le b\} = \min\{y^{\top}b : y \ge 0, y^{\top}A = c^{\top}\}.$$

Exercise 4

Give an example of an integer matrix A and integer vector b such that the polyhedron

$$P = \{x : Ax \le b\}$$

is integral but A is not TU.