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Exercise 1

Consider the following network (G,u,s, t) (edges e are labelled with capacities u(e)):
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a) Run the Ford-Fulkerson algorithm to compute a maximum s-t flow. After each iteration draw

the current flow f and the corresponding residual graph G f . What is the optimum flow value?

b) For the optimum flow f that you computed, define S := {v ∈ V | v is reachable from s in G f}.

Which are the nodes in S and what is the value u(δ+(S)) of the cut?

Exercise 2

Consider the following network with a directed graph G = (V,E), capacities u(e) (the labels of the

edges), a source s and a sink t (assume that M > 1).
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a) Argue that the Ford-Fulkerson algorithm with a poor choice of augmenting paths might take M

or more iterations.

b) Run the Edmonds-Karp algorithm on this network and give the flow in each iteration.

Exercise 3

In this exercise, you will give another proof of the Max-flow Min-Cut Theorem based on Hoffman’s

Circulation Theorem.



Let G = (V,E) be a directed graph. A circulation on G is a function f : E → R such that conser-

vation of flow holds at every vertex v ∈V . That is, a circulation must satisfy

∑
e∈δ+(v)

f (e) = ∑
e∈δ−(v)

f (e)

for every vertex v ∈V .

Hoffman’s Circulation Theorem states the following: Suppose ℓ : E → R and u : E → R are func-

tions that satisfy ℓ(e)≤ u(e) for every edge e ∈ E. Then there exists a circulation f on G satisfying

ℓ(e)≤ f (e)≤ u(e)

for every edge e ∈ E if and only if

∑
e∈δ−(A)

ℓ(e)≤ ∑
e∈δ+(A)

u(e)

for every set A ⊆V .

Show that Hoffman’s Circulation Theorem implies the Max-flow Min-cut Theorem. To be precise,

you should prove that given a network (G = (V,E),c,s, t) (c(e) giving the capacity on e), there exists

a flow of value equal to the minimum capacity k of a cut in the network. You do not need to reprove

the fact that the maximum value of a flow is at most the minimum capacity of a cut.

Hint: Let G′ be obtained from G by adding a new edge e0 = (t,s). (It is possible that e0 runs in

parallel to an existing edge in G; this poses no problem.) Define functions ℓ,u : E → R by ℓ(e) = 0

and u(e) = c(e) for e ∈ E and ℓ(e0) = u(e0) = k. Now apply Hoffman’s Circulation Theorem to G′ to

argue that the original network G admits a flow of value k.

Exercise 4

Let (G,u,s, t) be a network with n = |V | nodes and m = |E| edges and u(e) ∈ Z≥0 for all e ∈ E.

Suppose that f ∗ is the optimum max-flow. In this exercise, we want to develope a faster version of

the Ford-Fulkerson algorithm. In fact, we want to modify the algorithm so that in each iteration the

algorithm chooses the path P that maximizes the bottleneck capacity γ = min{u f (e) | e ∈ P}. We call

that algorithm “smart FF”.

a) Show that in the first iteration, smart FF finds already a flow f with val( f )≥ 1
2m

val( f ∗).
Hint: The claim says essentially that even after we delete all edges e that have small capa-

city, say u(e) < 1
2m

val( f ∗), the network will not become disconnected. It might be helpful to

remember the MaxFlow=MinCut Theorem.

b) Now suppose we already computed some s-t flow f . Show that there exists a flow g in G f with

val(g)≥ val( f ∗)−val( f ).
Hint: This is somewhat the reverse process of augmenting a flow.

c) We want to generalize the claim in a). Consider any iteration of smart FF and say that f is

the flow that we computed so far. Show that there exists always a path P in G f on which the

bottleneck capacity min{µ f (e) | e ∈ P} is at least 1
2m

(val( f ∗)−val( f )).

d) Show that smart FF needs at most O(m · log(val( f ∗)) many iterations. Hint: Suppose that

f0, f1, . . . , fT is the sequence of flows that we compute in T iterations. Argue that after t ite-

rations, our flow has a value of at least val( f ∗) · (1− (1− 1
2m

)t).


