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Solution to Exercise 1.

(i) Note that we are minimizing. Observe that at branch 7, we are
given that z ≤ 31, which is the smallest of the upper bounds
given. Similarly, at branch 5 we have that z ≥ 27, which is the
smallest of the lower bounds given. Thus the optimal value
satisfies 27 ≤ z ≤ 31.

(ii) Branch 8 can be pruned because it is infeasible. Branch 7
can be pruned because its optimal value is 31. Branch 8 can
be pruned because its lower bound is greater than the upper
bound at 7.

We must explore the branches at 5 and 3. We should explore
5 first, since its smallest possible optimum value is less than
that at 3. �

Solution to Exercise 2. We find the following (nonzero) vertices for
the polyhedron:

(1, 0), (
59

11
,
16

11
), (6,

1

2
), (6, 0).

Since the objective function f has positive coefficients, we only need
to compare f(6, 1/2) = 56.5 with f(59/11, 16/11) = 55.5. Thus, the
maximum occurs at (6, 1

2
); we then branch at x2 = 1/2, creating two

new polyedrons S1 and S2. The first has the additional constraint
x2 ≥ d1/2e = 1, and the second has the constraint x2 ≤ b1/2c = 0.

We calculate the vertices of S1 as (4, 1), (17/3, 1), (59/11, 16/11),
with objective values 41, 56, and 55.545, respectively. Thus the opti-
mum value 56 occurs at (17/3, 1).

We calculate the vertices of S2: (1, 0) and (6, 0). Thus the optimum
occurs at (6, 0) and is 54. Since (6, 0) is integral, we do not need to
further explore this branch.

Since the optimum value of S1 is greater than the optimum value of
S2, we need to continue exploring S1. So we branch S1 at x1 = 17/3,
creating two new polyedrons S11 an S12, with additional constraints
x1 ≥ d17/3e = 6, and x1 ≤ b17/3c = 5. Observe that S11 is infeasible,
so we prune this branch. We calculate the vertices of S12 as (4, 1), (5, 1)
and (5, 4/3), with objective values 41, 50, and 51.67. The optimum
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occurs at (5, 4/3); however, the optimum value is 51.67 is less than the
optimum value of S2; thus we can prune S12.

This proves that the integer program has optimum (6, 0) with opti-
mal value 54. �

Solution to Exercise 3.

(i) The basic idea is that we can rescale the xis and obtain an
equivalent linear program with an obvious solution. So let
yi = aixi; and let di = ci/ai. Then the objective function∑

i diyi is equal to
∑

i aixi; and similarly

n∑
i=1

aixi ≤ b ⇐⇒
n∑

i=1

yi ≤ b.

Also, the constraint xi ≤ 1 is equivalent to yi ≤ ai.
Now suppose that d1 ≥ d2 ≥ · · · ≥ dn > 0, and observe that

the cost of each yi is the same (it is 1). Thus, we cannot do
better than including as much of y1 as possible, since it has
the highest profit. So we set y1 = min{a1, b1 := b}.

We have b2 := b1 − a1 left to “spend,” so as before we set
y2 = min{a2, b2}. We proceed inductively. Observe that bi =

b−
∑i−1

i=1 ai. Then if r is the smallest integer such that br+1 < 0,
then min{ai, bi} = ai for 1 ≤ i ≤ r − 1, and min{ai, br} = br.
Thus the optimum solution is yi = ai for i = 1, . . . , r − 1,
yr = br = b−

∑r−1
i=1 ai, and yj = 0 for j > r.

This means that the equivalent solution xi = 1 for i =

1, . . . , r− 1, xr =
b−

∑r−1
i=1 ai
ar

, and xj = 0 for j > r is optimal for
the original problem.

(ii) We solve this using the branch and bound method, knowing
from the previous part a very quick method for finding the
solution to (each) LP relaxation. Let S be the LP relaxation
of the problem. Then choosing r = 3 the solution for S is
1 = x1 = x2, x3 = 12−8

8
= 1/2, x4 = 0 with optimal value 39.5.

So we branch at x3 = 1/2. Let S1 and S2 be the problems
given by the additional constraints x3 ≤ 0 and x3 ≥ 1. In
particular, this means that x3 = 0 or x3 = 1.

We first explore S1: (x3 = 0) the constraint equation is

5x1 + 3x2 + 7x4 ≤ 12.

We still have the condition that c1/a1 ≥ c2/a2 ≥ c4/a4 > 0. So
choosing r = 3 gives the optimum 1 = x1 = x2, and x4 = 4/7,
with optimal value 36.71.
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Now we explore S2: (x3 = 1) the constraint equation is

5x1 + 3x2 + 7x4 ≤ 4.

So choosing r = 1, we have the optimum at x1 = 4/5, x2 =
x4 = 0 with optimal value 38.6.

None of these optimums are integral solutions, so we must
branch again. We first explore S11: (x4 = 0 = x3). The
constraint equation is

5x1 + 3x2 ≤ 12.

Choosing r = 3, we get the optimum 1 = x1 = x2, with optimal
value 27.

Now we explore S12: (x4 = 1, x3 = 0). The constraint is

5x1 + 3x2 ≤ 5.

Choosing r = 2, we find the optimum x1 = 1 and x2 = 0, with
optimal value 34.

S21: (x1 = 0, x3 = 1). The constraint equation is

3x2 + 7x4 ≤ 4.

Choosing r = 2, we have the optimum at 1 = x2 and x4 = 1/7,
with optimal value 37.4.

S22: (x1 = 1, x3 = 1). The constraint equation is

3x2 + 7x4 ≤ −1.

This is not feasible, so we prune this branch.
We still must explore S21, since its optimal value is greater

than any of the integral optimal values obtained.
S211: (x4 = 0, x1 = 1, x3 = 1). The constraint equation is

3x2 ≤ 4.

This has optimum at x2 = 1, with optimal value 35.
S212: (x4 = 1, x1 = 1, x3 = 1). The constraint equation is

3x2 ≤ −3.

This is not feasible, so we prune this branch.
So now we compare the optimal values, and we see that

(0, 1, 1, 0) is the solution to the integral problem with optimal
value 35. �

Solution to Exercise 4. There are three vertices defining the mini-
mal boundary of the unbounded polytope, namely

(0, 4), (15/4, 1/4), (5, 0).
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These have objective values 8, 17/4 and 5, respectively. Thus the
optimum 17/4 (the minimum) occurs at x∗ := (15/4, 1/4).

The idea next is to find an additional constraint which every inte-
ger solution must satisfy, but one which (15/4, 1/4) does not satisfy.
Observe that our constraints can be re-written as

1

2
x1 +

1

2
x2 ≥ 2

1

2
x1 +

5

2
x2 ≥

5

2
.

If we add these together, we obtain

x1 + 3x2 ≥
9

2
.

If x1, x2 are integers, then x1 + 3x2 ≥ 9/2 implies that x1 + 3x2 ≥ 5.
Thus we impose this additional constraint. Now observe that

15

4
+ 3 · 1

4
= 9/2 < 5,

so that x∗ does not satisfy the new constraint. �


