
MATH 409

WEEK FOUR EXERCISES

Solution to Exercise 1, Lecture 10.

•a

•b

•c

2 −2

1

Beginning at a, we find that l(c) = 1 and l(b) = 2. The algorithm stops
here, despite the fact that the shortest path to from a to c is abc with
cost 0. �

Solution to Exercise 4, Lecture 10. There are many ways to solve
this problem, and we will describe one possibility. We assume that we
are given a directed graph G where edges represent streets and vertices
represent intersections. Suppose that for some vertex vi ∈ V (G), we
have some restrictions on the legal paths. Then we do the following:
initialize G := G \ {vi}, then

(i) for each edge e = xvi ∈ E(G) with target vi and cost ce, adjoin
a new vertex ue to G and add the edge αe := xue to G with
the same cost ce.

(ii) for each edge f = viy ∈ E(G) with source vi and cost cf , adjoin
a new vertex we to G and add the edge γf := wey to G with
the same cost cf .

(iii) if ef represents a legal path in G through vi, then adjoin an
edge βef := uewf to G with 0 cost.

By construction, every legal path ef in G through vi corresponds bi-
jectively with a path αeβefγf in G, and the cost of the new path is the
same as the old. �

Solution to Exercise 4, Lecture 12. The following is a table with
the l(v)’s values and p(v)’s vertices throughout the algorithm. The
node added to R in each iteration is in boldface. Observe that once a
vertex is added to R its l value does not change, neither does its parent
vertex; so once a vertex enters R I will stop writing this values for that
vertex on the following iterations.
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v l(·) p(·) l(·) p(·) l(·) p(·) l(·) p(·) l(·) p(·) l(·) p(·) l(·) p(·) l(·) p(·) l(·) p(·)
r 0

a ∞ 2 r
b ∞ 5 r 5 r
d ∞ ∞ 10 a 10 a 10 a 9 k
f ∞ ∞ 6 a 6 a
g ∞ ∞ ∞ ∞ 9 f 9 f 9 f
h ∞ ∞ ∞ ∞ ∞ 16 k 14 d 13 g 13 g
j ∞ ∞ ∞ ∞ 13 f 13 f 13 f 12 g
k ∞ 7 r 7 r 7 r 7 r

�

Solution to Exercise 3, Lecture 11.

v Pass 1 Pass 2
r (0, ∅) 7→ (0, ∅) (0, ∅) 7→ (0, ∅)
a (∞, ∅) 7→ (2, r) (2, r) 7→ (2, r)
b (∞, ∅) 7→ (5, r) (5, r) 7→ (5, r)
d (∞, ∅) 7→ (10, a) 7→ (9, k) (9, k) 7→ (9, k)
f (∞, ∅) 7→ (6, a) (6, a) 7→ (6, a)
g (∞, ∅) 7→ (9, f) (9, f) 7→ (9, f)
h (∞, ∅) 7→ (15, d) 7→ (13, g) (13, g) 7→ (13, g)
j (∞∅) 7→ (13, f) 7→ (12, g) (12, g) 7→ (12, g)
k (∞∅) 7→ (7, r) (7, r) 7→ (7, r)

Since there is no change during the second pass, there will not be any
changes for the other iterations. So the output is identical to the output
at the second pass, and we have found the shortest paths. �

Solution to Exercise 6, Lecture 12. Recall that Farkas lemma says
that P ⇐⇒ Q, where

P : There exists x such that Ax ≤ b;
Q : For all y ≥ 0, yA = 0 =⇒ yb ≥ 0.

It is useful to record the negation of these statements:

¬P : For all x, Ax > b;
¬Q : There exists y ≥ 0, such that yA = 0 and yb < 0.

Since we know P ⇐⇒ Q, we also know ¬P ⇐⇒ ¬Q. Recall that
the statement P ′ or Q′ is equivalent to ¬P ′ =⇒ Q′. This is what we
will prove below.

(i) The statement, there exists x such that Ax = b, is equivalent
to the statement, there exists x such that Ax ≤ b and Ax ≥ b;
this latter condition is the same as

P ′: there exists x such that
(

A

−A

)

x ≤

(

b

−b

)

.
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We need to prove that ¬P ′ =⇒ ¬Q. By Farkas’ lemmma,
¬P ′ implies that there exists y′ := (y1 y2) ≥ 0 such that

y′

(

A

−A

)

= 0 and y′

(

b

−b

)

< 0.

Define y := y1 − y2, so we have that

yA = 0 and yb < 0,

which verifies ¬Q.
(ii) Let P ′ be the statement there exists x ≥ 0 such that Ax ≤ b.

This is equivalent to the statement, there exists x such that
(

A

−I

)

x ≤

(

b

0

)

,

where I is the identity matrix. By Farkas’ lemma, ¬P ′ =⇒
¬Q′, so we see that there exists y := (y1, y2) ≥ 0 such that

(y1 y2)

(

A

−I

)

= 0 and (y1 y2)

(

b

0

)

< 0.

Equivalently, y1A = y2 ≥ 0 and y1b < 0.
(iii) Let P ′ be the statement there exists x ≥ 0 such that Ax = b.

Combining the strategies of the last two parts, we see that this
is equivalent to





A

−A

−I



 x ≤





b

−b

0



 ;

thus, by Farkas lemma, ¬P ′ implies that there exists (y1 y2 y3) ≥
0 such that

(y1 y2 y3)





A

−A

−I



 = 0 and (y1 y2 y3)





b

−b

0



 < 0.

Equivalently, if y := y1−y2, then yA = y3 ≥ 0, and yb < 0. �


