
MATH 409
WEEK TWO EXERCISES

Solution to Exercise 3, Lecture 4.

(i) 1025 = 210 + 1 = 1 · 210 + 0 · 29 + 0 · 28 + 0 · 27 + 0 · 26 + 0 · 25 +
0 ·24 +0 ·23 +0 ·22 +0 ·21 +1 ·20 so the binary representation of
1025 is 10000000001, plus the sign-bit (to record that the num-
ber is positive). Its bit complexity is = 1 + dlog2(1025 + 1)e =
1 + d10.003e = 1 + 11 = 12.
The binary representation of 1024 is 10000000000 plus the
sign-bit in 0 because it is positive. Its bit complexity is =
1 + dlog2(1024 + 1)e = 1 + d10.001e = 1 + 11 = 12.
For -1023 the binary representation is 1111111111 plus the
sign-bit in 1 because it is negative, and its bit complexity is
= 1 + dlog2(1023 + 1)e = 1 + d10e = 1 + 10 = 11.
Notice that dlog2(number +1)e is the number of bits necessary
to write down the binary representation of the corresponding
number.

(ii)

11100101 −→ 229
+ 11001 −→ + 25

11111110 −→ 254

(iii)

425 · 213 = 90525
↓ ↓ ↓

110101001 · 11010101 = 10110000110011101
110101001

000000000
110101001

000000000
110101001

000000000
110101001

110101001

�

1

2 MATH 409 WEEK TWO EXERCISES

Solution to Exercise 3, Lecture 5.

(i) An m×n matrix has m rows and n columns, and for simplicity
we will assume that n ≤ m.

The arithmetic model. To eliminate the first element of the
second row we need: one division, n−1 multiplications and n−
1 subtractions, i.e., to make one row elimination we need O(n)
operations. To eliminate all the first column below the diagonal
we need (m−1)∗O(n) = O(mn) operations. To clear any other
column we need roughly the same number of operations, so the
whole Gaussian elimination requires O(mn2) many operations.
Is necessary to observe that sometimes we may need to switch
rows when a zero appears in the diagonal. To make a switch
of rows takes constant time (of course it depends on your data
structure, but in the worst case it takes O(n) operations), and
at most we need n switches, i.e. a complexity of O(n2), so this
does not increases the complexity. (If n > m the complexity
will be O(m2n)).
The bit complexity model. In this case we need to keep track

of the size of the numbers. Let M be the maximum bit com-
plexity of the integers of the matrix. In order to avoid divisions
(which will make the complexity even higher) we will do the
elimination of the second row in the following way, replace the
second row by: (first row times a2,1) - (second row times a1,1).
This requires 2n products and n subtractions. Each prod-
uct has complexity O(M2) and the result are numbers of bit
complexity 2M ; the subtractions will take O(2M) = O(M).
Therefore one row elimination has complexity O(nM2), and
the elimination of the whole first column will have complexity
O(mnM2). Now we need to do the elimination of the second
column, but we need to observe that the bit complexity of the
integer now is 2M . It might be tempting to say that this is
just O(M) and keep ahead ignoring the increment on the bit
complexity of the numbers. But after a second column elim-
ination the bit complexity of the numbers will be 4M , after
three column eliminations it will be 8M , and so on. After
j column eliminations the bit complexity of the numbers will
be 2jM , so the multiplication of two numbers at that step
has complexity O(22jM2). The worst case is when j = n,
at that point the bit complexity of the numbers can be 2nM .

MATH 409 WEEK TWO EXERCISES 3

Since we consider the worst case for our complexity compu-
tations we will consider all multiplications to have complex-
ity O(22nM2) and for subtractions we assume a complexity of
O(2nM). This gives a complexity of O(22nM2) for each oper-
ations. The Gaussian elimination requires O(mn2) operations
(from the arithmetic model), so the complexity for the binary
case is O(mn222nM2) = O(m22nM2). (If n > m the complex-
ity will be O(n22mM2)).

(ii) To do the Gauss-Jordan elimination we first do the elimination
downwards and then we do it upwards. This requires at most
twice the number of operations, which does not change the
complexity.

(iii) If A is a non-singular matrix then n = m. To compute the
inverse of A we augment the n×n identity matrix to the right
of A and do Gauss-Jordan elimination to the enlarged matrix;
since Gauss-Jordan elimination is equivalent to left multipli-
cation by A−1, the inverse of A will appear augmented to the
identity matrix. We now have n′ = 2m′(n′ > m′ = m = n), our
previous analyses apply and the complexity of computing the
inverse in the arithmetic model will be O((m′)2n′) = O(n3).
In the bit complexity model it will be O(24nM2).

(iv) One way of computing the rank of a matrix is just by do-
ing Gaussian elimination and counting the number of non-zero
rows. This has the complexity computed in part (i). �

Solution to Exercise 1, Lecture 6. Assume that T\{e} is connected.
Let e = {vi, vj}; since T \ {e} is connected, there exists some path
e0, e1, . . . , en, from vj to vi in T \ {e}. Then the path e0, . . . , en, e is
a cycle, contradicting that T is a tree. We conclude that T \ {e} is
disconnected; in particular, we have shown that there is no path from
vi to vj.

Now we want to prove that T \{e} is a forest of two trees. Since T is
connected, for each vertex v ∈ V (T), there is a path from v to vi, say
e1, . . . , en. This path is unique because T is acyclic. Let V1 consist of
those vertices v of T such that this path does not contain e; let V2 be
those vertices v of T such that this path does contain e. This partitions
the set V (T). Any edge of T \ {e} joining a vertex v1 ∈ V1 and v2 ∈ V2

yields a path from vi to v1 to v2 to vj in T \ {e}; this is absurd. Thus
we may let E1 be all of those edges of T \ {e} between vertices of V1

and let E2 be those edges between vertices of V2.
It remains only to show that (Vi, Ei) is connected, i = 1, 2. Choose

any two vertices u, v ∈ V1. By construction, we have a path pu from

4 MATH 409 WEEK TWO EXERCISES

u to vi and pv from v to vi. Then pup
−1
v is a path from u (to vi) to v.

The case of V2 is similar. �

Solution to Exercise 3, Lecture 3. We will prove that T ′ = (V,E(T)\
{k, l}∪{i, j}) is a tree; by Lemma 2 of lecture 6, it is sufficient to show
that T ′ is a spanning connected subgraph of G with n− 1 edges (n is
the number of vertices of G).

It is clear that T ′ is spanning because its node set is V . Since T is
a spanning tree, we know that it has n− 1 edges; removing f := {k, l}
(which is in T) and adding e := {i, j} (which is not in T) preserves
this number of edges. It remains only to prove that T ′ is connected.

We first fix a path Q from i to j in T . This path is unique since T
is a tree. We can factor this path Q as Q = Qi · f · Qj from i to k to
l to j. Now choose any two vertices u, v ∈ V (T ′). Find a path in P
from u to v in T . Observe that f cannot appear in Qi, Qj. If f is not
in P , then P is also a path in T ′, and so u and v are connected in this
case. Otherwise, f is in P . This means that P = Pu · f · Pv is a path
from u to (say) k to l to v; we know that f does not appear in Pu or
Pv, so these are also paths in T ′. It follows that

PuQ
−1
i · e ·Q−1j Pv

is a path in T ′ from u to v, so that T ′ is connected. Thus T ′ is a tree.
The number of TSP tours in Kn is (n− 1)!/2, this number is much

smaller that nn−2, actually (n− 1)!/2nn−2 → 0 whenever n→∞. �

Solution to Exercise 6, Lecture 3. Suppose that G is a graph with
possibly negative edge weights. Since there are finitely many edges,
there exists a minimal edge weight, w ∈ R. For each edge e ∈ E(G),
replace the edge weight ce with ce + |w| + 1. This construction yields
a new weighted graph G′, for which all edge weights are positive.

Observe that the two sets of spanning trees for G and G′ are identical;
furthermore, we know that each spanning tree contains n − 1 edges.
Let tot be the function that gives the sum of the edge weights for any
spanning tree of G, and tot′ be the same function for G′. It is easy to
see that

tot(T) + (n− 1)(|w|+ 1) = tot′(T)

for every subgraph T . It follows that a minimal spanning tree T of
G, i.e. a minimum of tot, is also a minimum for tot′ since these two
functions differ by a constant, and so is a minimal spanning tree for
G′, and conversely. �

