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Exercise 7, Lecture 1. PI is the convex hull of the integer points
inside the polyhedron P , i.e. to obtain PI we first have to consider the
set of integer points inside P and then take the convex hull of that
set.

The set A = {(x1, x2) ∈ Z2 : 2x1 + x2 ≤ 12, x2 ≤ 11/2, x1, x2 ≥ 0} is
the set of integer points inside P , it is important to notice the difference
between A and PI which is the convex hull of A. How to obtain PI?.
If we draw P and mark the integer points inside it we can see that the
vertices of PI should be (0, 0), (6, 0), (4, 4), (3, 5) and (0, 5) (this is the
answer to part (ii)). Using these points we get the inequalities defining
PI to be (sol. to part (i)):

PI = {(x1, x2) ∈ R2 : 2x1 + x2 ≤ 12, x2 ≤ 5, x1 + x2 ≤ 8, x1, x2 ≥ 0}.
(iii) We first observe that the integer points inside P and inside PI are

the same, so in order to solve the integer program of Example 5(b) we
can instead solve the integer program max{x1+x2 : (x1, x2) ∈ PI ;x1, x2
integer }. But if we just solve the linear program

maximize x1 + x2
subject to 2x1 + x2 ≤ 12

x2 ≤ 5
x1 + x2 ≤ 8
x1, x2 ≥ 0

we know that the optimum is attained at one vertex (at least), but
all the vertices of PI are integer so the integrality condition will be
satisfied automatically.

In this case the two vertices (4, 4) and (3, 5) of PI are solutions of
the integer program above. �

Exercise 11, Lecture 1.

(i) It is clear that there is a one-to-one correspondence between 0-1
incidence vectors (x1, x2, x3) and subgraphs of G. In addition,
a subgraph of G will be acyclic if and only if at most one of
the two first edges is present, which is the same as saying that
for the corresponding incidence vector (x1, x2, x3) only one of
the two first variables can be 1. If we only allow the values 0
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or 1 for the xi variables then the equation x1 + x2 ≤ 1 gives
exactly that constraint.

Therefore the set of incidence vectors of the acyclic sub-
graphs of G is

A = {(x1, x2, x3) ∈ Z3 : 0 ≤ x1, x2, x3 ≤ 1, x1 + x2 ≤ 1}.

Now observe that if (x1, x2, x3) is the incidence vector of a
subgraph of G then its weight is exactly f(x) = 5x1+4x2+x3 =
sum of the weights of the present edges. Therefore, finding
the maximum weight acyclic subgraph of G means to find the
incidence vector in A that maximizes f(x).

Observe that PS is exactly the convex hull of A, so its ver-
tices will belong to A. This implies that the same is true for
(at least) one optimal solution of max{5x1 + 4x2 + x3 : 0 ≤
x1, x2, x3 ≤ 1, x1 + x2 ≤ 1}, and this solution will maximize
f(x) in A, so it corresponds to the incidence vector of a maxi-
mal weight acyclic subgraph of G.

(ii) Here is an example. The vector (0,0) is the unique feasible
solution of the integer program

max{x1 + x2 : 0 ≤ x1, x2 ≤ 0.5;x1, x2 integer }.

So x1 = x2 = 0 is the optimal solution of that integer pro-
gram. But it is easy to see that the optimal solution of the
LP-relaxation is x1 = x2 = 0.5.

(iii) First, we only have integer variables because (x1, x2, x3) ∈ Z3.
The first three constraints say that the variables can only take
values 0 or 1. Now analyze by cases: if x3 = 0 inequality four
gives that only one of x1, x2 can be 1; if x3 = 1 the fifth con-
straint also gives that only one of x1, x2 can be 1. In summary,
the variables can takes values 0 or 1 and the variables x1 and
x2 cannot be both one at the same time, so the feasible set is
the same set A described in (i). By extension

A = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}.

(iv) The solution to the LP-relaxation is (1, 0.5, 0.5) which is not
a solution of the integer problem in (iii) (not feasible because
it is not integer).

�

Exercise 12, Lecture 1.
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(i) All the vertex packings are:

∅, {1}, {2}, {3}, {4}, {3, 4}

and their corresponding incidence vectors are

S = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1)}.

(ii) For part (a) and (b) it is easy to see from the constraint that
the variables can only take values 0 or 1. We just need to
check that the vectors in S satisfy the equations and that any
other vector of 0-1’s do not satisfy them. This can be done by
inspection.

(iii) The ”boundaries” of P are the 3-dim hyperplanes through 4
points of S and which does not split S (just as in R2 the
boundaries of PI where the lines -1-dim hyperplanes- that goes
through 2 points and left all the integer points at one side).
By checking all such possible hyperplanes we get that P is
described by the linear inequations of (ii)(b), i.e.

P = {(x1, x2, x3, x4) ∈ R2 : x1+x2+x3 ≤ 1, x1+x2+x4 ≤ 1;x1, x2, x3, x4 ≥ 0}.

Just as a remark, it is not difficult to check that the equations
of (ii)(b) are tighter that the ones in (ii)(a): the equations
of (ii)(b) readily implies that the variables are between 0 and
1 and the addition of the first and second equation of (ii)(b)
gives the first equation of (ii)(a), therefore, a vector satisfying
equations (ii)(b) also satisfies the equations (ii)(a). i.e. (ii)(b)
is a tighter system than (ii)(a), and strictly tighter because
if we drop the integer restriction then the point (0.5, 0, 1, 0)
satisfies (ii)(a) but not (ii)(b).

Try to do a similar argument to conclude that the equations
of (ii)(b) are tighter than the equations

x1, x2, x3, x4 ≥ 0, x1+x2 ≤ 1, x1+x3 ≤ 4, x1+x4 ≤ 1, x2+x3 ≤ 1, x2+x4 ≤ 1

�

Exercise 1, Lecture 2. We claim that the order is

log(n) < n log(n) < n2 < n2000 < nlog(n) < 2
n
2 < 2n < n! < nn.

We will start at the beginning. From calculus, we know that log(n) < n;
it is enough to show limn→∞ log(n)/n = 0 (use L’Hôpital’s rule). We
have that log(n) < n log(n) for n > 1; it follows that n log(n) < n2 for
n ≥ 1. Clearly, n2 < (n2)1000 = n2000 whenever n2 > 1.
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Now we move to the end. For the last two inequalities,

nn = n n n ... n n n n terms)
n! = n n− 1 n− 2 ... 3 2 1 n terms)
2n = 2 2 2 ... 2 2 2 n terms)

so that 2n < n! < nn for n > 3. Since n/2 < n for n > 0, and 2x is an
increasing function, we have that 2n/2 < 2n.

It remains to show that n2000 < nlog(n) < 2
n
2 . If we choose n > e2000,

then
n2000 = nlog(e2000) < nlog(n).

The second inequality, nlog(n) < 2
n
2 , is more delicate. Taking logs, we

want to show log(n)2 < n
2

log(2) for n sufficiently large. It is easiest to
take the limit of the ratio and apply L’Hôpital’s rule. Indeed,

lim
n→∞

log(n)2

log(2)
2
n

= lim
n→∞

2 log(n) · 1
n

log(2)
2

= 0. �

Solution: Exercise 5, Lecture 3.

(i)
∫

log(x) dx = x log(x)− x+C, for some C ∈ R. [This formula
holds for log(x) = loge(x) = ln(x).]

(ii) First, we recall some calc 1. Suppose that f is a strictly increas-
ing differentiable function. Then we know that that any left-
endpoint Riemann sum approximation to the integral

∫
f(x) dx

is going to be smaller than the integral, and any right-endpoint
Riemann sum approximation will be greater than the integral.
Now, f(x) = log(x) is a strictly increasing differentiable func-
tion for x > 0. Thus,

n∑
k=1

log(k) ≤
∫ n+1

1

log(x) dx

∫ n

1

log(x) dx ≤
n∑

k=2

log(k).

Of course, log(1) = 0, so we can combine these inequalities and
get∫ n

1

log(x) ≤
n∑

k=1

log(k) = log(n!) ≤
∫ n+1

1

log(x) dx.

Integrating using part (a), we have

n log(n)− n+ 1 ≤ log(n!) ≤ (n+ 1) log(n+ 1)− n.
From the previous problem, we know that n log(n) > n, so
that n log(n) − n + 1 = θ(n log(n)). Thus it suffices to show
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that (n + 1) log(n + 1) − n = θ(n log(n)). Just calculate the
limit of the quotient by L’Hôpital’s rule:

lim
n→∞

(n+ 1) log(n+ 1)− n
n log(n)

= lim
n→∞

log(n+ 1) + 1
n+1

log(n) + 1

= lim
n→∞

n

n+ 1
= 1.

(iii) We rewrite n log(n)−n+1 = n log(n/e)+1, and (n+1) log(n+
1)−n = (n+1) log(n+1

e
)+1. Then exponentiating the inequal-

ity in (b), we obtain

exp(n log(n/e) + 1) ≤ n! ≤ exp((n+ 1) log(n/e) + 1)

⇐⇒ e
(n
e

)n
≤ n! ≤ e

(n
e

)n+1

.

(iv) We can rewrite that n! = Ω(
(
n
e

)n
), and n! = O(

(
n
e

)n+1
).

(v) Notice that
(
n
e

)n+1
>
(
n
e

)n
, i.e. these functions are not as-

ymptotic. Stirling’s formula gives us a nice function in be-
tween these two approximations, which (one can show) more

accurately approximates n!. Indeed,
√

2πn
(
n
e

)n
= θ(

(
n
e

)n+.5
),

which is clearly between the previous bounds. �


