Math 409 Midterm Exam Spring 2010
Name: 5 O[_UT]ON S

1. There are FOUR questions in all. Answer all questions.

2. There is a blank sheet at the end that you can tear out and use for scratch work. This sheet
does not need to be submitted with the test. If you need extra sheets please ask.

3. READ THE QUESTIONS CAREFULLY. -

4. Show all your work to get full credit.

5. No notes are allowed during the test.

Problem #1 || Problem #2 i Problem #3 || Problem #4 || Total points




Problem 1 (8 points) Calculate the complexity of computing the square of the distance between

two points P and Q) in Z™ in the bit complexity model. Start by noting the size of the input.
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Problem 2 (10 points)
(a) Define a min-max spanning tree in an undirected graph.
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(b) Prove that every minimum spanning tree in an undirected graph is also a min-max spanning

tree.
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Problem 3 (10 points) (a) Use Dijkstra’s algorithm to find a shortest path in the following graph

from node r to all other nodes in the graph. For each node v , state clearly what the length of a

shortest (r,v) path is. -




(b) Write down Dijkstra’s algorithm and derive the complexity of its running time.
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Problem 4 (12 points) Are the statements below true or false? If false, write down the correction.
(a) Suppose G is the complete graph K,. Then Kruskal’s algorithm for finding a spanning tree in

this graph runs in O(nlogn) time.
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(b) The simplex algorithm for linear programming runs in polynomial time in the size of the input.
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(c) Dijkstra’s algorithm can be used to find shortest paths in a digraph only if all edge costs are

nonnegative while the Moore-Bellman-Ford algorithm can be used with arbitrary edge costs.
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(d) Farkas lemma states that either Az < b has a solution or there exists y < 0, yA < 0 such that

yb < 0.
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(e) If there is a negative cost cycle in a digraph with edge costs, then the graph has no feasible

potential but the converse may be false.
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(f) The function n!*9™ grows faster than the function n!.
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