
MATH 409 LECTURE 8
KRUSKAL’S ALGORITHM FOR MINIMUM SPANNING

TREES

REKHA THOMAS

Kruskal’s Algorithm

Input: A connected graph G with edge costs ce ∈ R, ∀ e ∈ E(G).
Output: A MST T of G.

(1) Sort the edges such that ce1 ≤ ce2 ≤ · · · ≤ cem .
(2) Set T = (V (G), ∅)
(3) For i from 1 to m do

If T + ei contains no circuit then set T = T + ei.

(Note that T + ei will not have circuits if and only if the end points
of ei are in different components of T .)

Exercise 1. Find an MST for the graph in Exercise 3 of Lecture 7
using Kruskal’s algorithm.

Theorem 2. The graph T found by Kruskal’s algorithm is an MST of
G.

Proof. Let T be the output of Kruskal’s algorithm. We need to first
show that T is a spanning tree of G.
(i) T is a spanning subgraph of G since all intermediate graphs in
Kruskal’s algorithm are spanning subgraphs of G.
(ii) By construction, T is acyclic since we only add edges during the
algorithm if they do not create cycles.
(iii) Suppose T is not connected. Then T has at least two non-empty
components. Let C be such a component and consider δ(V (C)). Since
G is connected, there is at least one edge e = xy ∈ δ(V (C)). When
this edge was checked by Kruskal’s algorithm, it was not added to the
current forest T since it created a circuit D in T . Note that This means
that both end points x and y of e were in the same component of T
which means they are both in C. This contradicts that e ∈ δ(V (C)).
Therefore, T is a spanning tree in G.

Date: April 14, 2010.
1

2 REKHA THOMAS

We now argue that T satisfies property (2) of Theorem 7 from Lec-
ture 6: for all e = xy ∈ E(G)\E(T) no edge on the (x − y)-path in
T has higher cost than e which will prove that it is an MST. Take an
edge e = xy ∈ E(G)\E(T). Then this edge was checked at some step
of the algorithm and it was not added since it would have created a
cycle in the current T . This means that there was an (x − y)-path in
the current tree T . Since all the edges in this path were chosen before
e, none of them are more expensive than e as we are checking edges in
increasing order of their costs. �

Theorem 3. Kruskal’s algorithm has a running time of O(mlog n)
where n = |V (G)| and m = |E(G)|.
Proof. • In Step (1) we need to sort m numbers. This can be done in
O(mlog2m) time. However, in our case, O(mlog2m) = O(mlog2 n

2) =
O(m 2log2 n) = O(mlog2 n). (Recall that m = |E(G)| = O(n2) when
n = |V (G)|.)
• Step (2) takes a constant amount of time, so we ignore it.
• Now we analyze Step (3) which consists of m iterations of the same
task. In iteration i, we check whether the endpoints of ei = vw are in
the same connected component of T . If not, set T = T + ei.

We use a special data structure. Maintain each connected component
of T as a tree with a unique root and at most one entering edge at each
vertex. The union of all these directed graphs is called a branching.
Call it B.

To check whether adding ei = vw creates a cycle, find the root
rv of the component containing v and the root rw of the component
containing w. The time needed to do this is roughly the sum of the
lengths of the (rv, v)-path in B and the (rw, w)-path in B. If rv 6= rw,
insert ei into T and coalesce the components of v and w by adding an
edge connecting them. We need to do this cleverly, so that what results
is again a branching.

Let h(r) = max length of a path from r in B. If h(rv) ≥ h(rw)
then add (rv, rw) to B directed from rv to rw. Else, add (rw, rv) to B
directed from rw to rv. Why? By this rule, if h(rv) = h(rw) then rv is
the root of the coalesced component and new h(rv) = old h(rv) + 1.
If h(rv) > h(rw) then again rv is the root of the coalesced component
and new h(rv) = old h(rv). If h(rv) < h(rw) then we use this last

MATH 409 LECTURE 8KRUSKAL’S ALGORITHM FOR MINIMUM SPANNING TREES3

argument again but with the roles of v and w reversed. In all cases, you
see that the h-values can be easily updated by this procedure. Initially,
B = (V (G), ∅) – i.e., each vertex is its own connected component and
there are no edges in any of the components. This means that h(v) = 0
for all v ∈ V (G).

Claim: A connected component of B with root r contains at
least 2h(r) vertices.

Before we prove the claim, we argue that the claim will give us the
result we are looking for. If the claim is true then n = |V (G)| ≥ 2h(r)

for any root vertex r in B and hence h(r) ≤ log2 n for any r. This
means that the sum of the lengths of the (rv, v)-path in B and the
(rw, w)-path in B is at most 2 log2 n. Since there are m iterations in
Step (3), we have a total of O(m(2 log2 n)) work in Step (3). Adding
this to the O(mlog2 n) work in Step (1) we see that Kruskal’s algorithm
runs in O(mlog2 n) time.

Proof of the claim: At the start, B = (V (G), ∅) which means that
there are n connected components, h(v) = 0 for all v ∈ V (G), and each
connected component has at least 20 = 1 vertex.

Suppose the property of the claim holds up to a certain stage of the
algorithm and in this stage we add the directed edge xy, directed from
x to y, to B to coalesce two components. We saw above that either h(x)
remains the same with this addition or it increases by one. If h(x) does
not change, the new coalesced component has at least 2h(x) vertices
since the old component with root x already had at least that many
vertices by our assumption. Otherwise, h(x) = h(y) before adding xy
and each component had at least 2h(x) vertices by assumption. This
implies that the new coalesced component has at least 2 ·2h(x) = 2h(x)+1

vertices. However, the h-value of the new root is also h(x) + 1 which
proves the claim. �

Exercise 4. [1, Exc 2.16] Suppose that instead of the sum of the costs
of edges of a spanning tree, we wish to minimize the maximum cost
of an edge of a spanning tree. That is, we want the most expensive
edge of the tree to be as cheap as possible. This is called the minmax
spanning tree problem. Prove that every MST is actually a minmax
spanning tree.

Recall that a cut in a graph G is a collection of edges defined as
follows. Let V1 be a subset of V (G) and let G1 be the graph induced
by V1 in G. Then δ(G1), the set of edges in G with exactly one end

4 REKHA THOMAS

point in V1, is called a cut in G. Removing the edges in δ(G1) would
disconnect G.

Exercise 5. [2, Exc 6, pp 132] Consider the following coloring algo-
rithm for a connected graph G with edge costs ce for all e ∈ E(G).
Initially all edges are uncolored. Then apply the following rules in ar-
bitrary order until all the edges are colored:
Blue rule: Select a cut containing no blue edge. Among the uncolored
edges in the cut, select one of minimum cost and color it blue.
Red rule: Select a circuit containing no red edge. Among the uncolored
edges in the circuit, select one of maximum cost and color it red.
Show that one of the rules is always applicable as long as there are
uncolored edges left. Then show that there always exists a MST con-
taining all blue edges but no red edge. Can you see Kruskal’s and
Prim’s algorithms as special cases of this coloring algorithm?

References

[1] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics, 1998.

[2] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.

