MATH 409 LECTURE 7
PRIM’S ALGORITHM FOR MINIMUM SPANNING
TREES

REKHA THOMAS

Prim’s Algorithm (Jarnik (1930), Dijkstra (1959), Prim (1957))

Input: A connected graph G with edge costs ¢, € R, V e € E(G).
Output: A MST T of G.
(1) Choose v € V(G). Set T = ({v},0).
(2) While V(T) # V(G) do
Choose an edge e € 6(V(7T')) of minimum cost.
Set T'="T + e.

Theorem 1. The graph T found by Prim’s algorithm is an MST of G.

Proof. We need to check the following facts about 7™
1. T is a spanning subgraph of G,

2. T is a tree,

3. T is a minimum spanning tree of G.

1. T is a spanning subgraph of GG since the “while” loop in the algorithm
does not quit until V(7') = V(G).

2. T is a tree at all intermediate steps of the algorithm. In Step 1, it
is clearly a tree. During each step of the while loop, we add an edge
e € §(V(T)) to the current tree 7" which does not create any cycles
since one end point of e is always outside V(T').

Date: April 16, 2010.

figure to be added

2 REKHA THOMAS

3. T is a minimum spanning tree of G by Theorem 7 (3) of Lecture 6
which says that if V e € E(T), e is a minimum cost edge of §(V (C)),
where C' is a connected component of T'\e, then T is a MST. Let us
make sure that this property is satisfied by the T" of Prim’s algorithm.
Pick e € T" and consider T'\e and its two connected components C' and
C'. The edge e was added to T" at some stage of the while loop. At this
stage, we had a partial tree which is one entire connected component
of T\e — say C. The algorithm chooses e to be the min cost edge in
d(V(C)). Since e was an arbitrary edge of T', Theorem 3 (3) is true for
all edges e € T O

We now analyze the complexity of Prim’s algorithm. We will assume
that G = (V, E) has O(m) nodes and O(n?) vertices when |V| = n and
|E| = m. Why is this reasonable 7 Remember we are doing worst-case
complexity analysis. If |[V| = n then the maximum number of edges

possible in G is () = (2!)(2!_2)! = "D — O(n?). If |E| = m then
G has at most 2m = O(m) vertices as each edge has two vertices as
endpoints. Note that if G had parallel edges or loops we could delete
them at the start and so we can assume that G is a simple graph.

When deleting parallel edges, we would retain one of minimum cost.

Theorem 2. Prim’s algorithm has a running time of O(n?*) where
n=[V(G).

Proof. We use the following data structure: At each stage of the al-
gorithm, maintain for all v € V(T'), the cheapest edge e, from v to a
vertex in T'. These will be the candidates for the new e in each loop of
the algorithm. We analyze the algorithm in steps.

(i) At the start of the algorithm we need to initialize this data struc-
ture. How do we do this? We have picked a vertex v = vy to be in the
initial tree T'. Therefore for each vertex v # vy, either there is an edge
in G between v and vy or not. Since G is simple, for each v # vy, such
that {vg,v} € E(G) there is a unique such edge. We maintain these
edges. This takes O(n) work since there are at most n neighbors of vg.

(ii) At each step of the while loop we need to choose an edge e to
add to the current tree. This takes O(n) work since we are maintaining
only the cheapest edge to the current tree from a vertex outside the
tree which means that we are maintaining at most O(|V| = n) edges.
It takes O(n) work to look through these edges and pick an e.

(iii) After we have picked an e in step k of the while loop we need
to update our special data structure for step £+ 1. How much work is
that?

MATH 409 LECTURE 7PRIM’S ALGORITHM FOR MINIMUM SPANNING TREES

Ficure 1. Figure for Exercise 3

Suppose we just added w to V(T). The cheapest edge e, from a ver-
tex v € V(T) can change only if vw € E. Therefore, we scan through
all edges wv € E(G) such that v ¢ V(T') and update e, if ¢, is strictly
smaller than the old e, that was maintained in the data structure. This
takes O(n) time as w has at most O(n) neighbors and we need to do
at most O(n) comparisons.

Final tally. There are n—1 iterations in Step (2) of Prim’s algorithm.
Therefore the total work taken is O(n) + (n — 1)(O(n) + O(n)) =
O(n?). O

The following exercises are taken from Section 2.1 of [1].

Exercise 3. Find a MST in the graph in Figure by using Prim’s
algorithm. The starting vertex v is indicated.

Exercise 4. Show that the following algorithm finds an MST of a
connected graph G. Begin with H = G. At each step, find (if one
exists) a maximum cost edge e such that H\e is connected, and delete
e from H. (Try this algorithm on the graphs we have worked with so
far to check if it works.)

REFERENCES

[1] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics, 1998.

