
MATH 409 LECTURE 7

PRIM’S ALGORITHM FOR MINIMUM SPANNING

TREES

REKHA THOMAS

Prim’s Algorithm (Jarnik (1930), Dijkstra (1959), Prim (1957))

Input: A connected graph G with edge costs ce ∈ R, ∀ e ∈ E(G).
Output: A MST T of G.

(1) Choose v ∈ V (G). Set T = ({v}, ∅).
(2) While V (T) 6= V (G) do

Choose an edge e ∈ δ(V (T)) of minimum cost.
Set T = T + e. figure to be added

Theorem 1. The graph T found by Prim’s algorithm is an MST of G.

Proof. We need to check the following facts about T :
1. T is a spanning subgraph of G,
2. T is a tree,
3. T is a minimum spanning tree of G.

1. T is a spanning subgraph of G since the “while” loop in the algorithm
does not quit until V (T) = V (G).
2. T is a tree at all intermediate steps of the algorithm. In Step 1, it
is clearly a tree. During each step of the while loop, we add an edge
e ∈ δ(V (T)) to the current tree T which does not create any cycles
since one end point of e is always outside V (T).

Date: April 16, 2010.
1

2 REKHA THOMAS

3. T is a minimum spanning tree of G by Theorem 7 (3) of Lecture 6
which says that if ∀ e ∈ E(T), e is a minimum cost edge of δ(V (C)),
where C is a connected component of T\e, then T is a MST. Let us
make sure that this property is satisfied by the T of Prim’s algorithm.
Pick e ∈ T and consider T\e and its two connected components C and
C ′. The edge e was added to T at some stage of the while loop. At this
stage, we had a partial tree which is one entire connected component
of T\e — say C. The algorithm chooses e to be the min cost edge in
δ(V (C)). Since e was an arbitrary edge of T , Theorem 3 (3) is true for
all edges e ∈ T . �

We now analyze the complexity of Prim’s algorithm. We will assume
that G = (V, E) has O(m) nodes and O(n2) vertices when |V | = n and
|E| = m. Why is this reasonable ? Remember we are doing worst-case
complexity analysis. If |V | = n then the maximum number of edges

possible in G is
(

n

2

)

= n!
(2!)(n−2)!

= n(n−1)
2

= O(n2). If |E| = m then

G has at most 2m = O(m) vertices as each edge has two vertices as
endpoints. Note that if G had parallel edges or loops we could delete
them at the start and so we can assume that G is a simple graph.
When deleting parallel edges, we would retain one of minimum cost.

Theorem 2. Prim’s algorithm has a running time of O(n2) where

n = |V (G)|.

Proof. We use the following data structure: At each stage of the al-
gorithm, maintain for all v 6∈ V (T), the cheapest edge ev from v to a
vertex in T . These will be the candidates for the new e in each loop of
the algorithm. We analyze the algorithm in steps.

(i) At the start of the algorithm we need to initialize this data struc-
ture. How do we do this? We have picked a vertex v = v0 to be in the
initial tree T . Therefore for each vertex v 6= v0, either there is an edge
in G between v and v0 or not. Since G is simple, for each v 6= v0, such
that {v0, v} ∈ E(G) there is a unique such edge. We maintain these
edges. This takes O(n) work since there are at most n neighbors of v0.

(ii) At each step of the while loop we need to choose an edge e to
add to the current tree. This takes O(n) work since we are maintaining
only the cheapest edge to the current tree from a vertex outside the
tree which means that we are maintaining at most O(|V | = n) edges.
It takes O(n) work to look through these edges and pick an e.

(iii) After we have picked an e in step k of the while loop we need
to update our special data structure for step k + 1. How much work is
that?

MATH 409 LECTURE 7PRIM’S ALGORITHM FOR MINIMUM SPANNING TREES3

a

q

g

h

f

d

p

v

b

15

7

17

11

14

9

5

10
8

16

12

6
2

13

4 3

Figure 1. Figure for Exercise 3

Suppose we just added w to V (T). The cheapest edge ev from a ver-
tex v 6∈ V (T) can change only if vw ∈ E. Therefore, we scan through
all edges wv ∈ E(G) such that v 6∈ V (T) and update ev if cwv is strictly
smaller than the old ev that was maintained in the data structure. This
takes O(n) time as w has at most O(n) neighbors and we need to do
at most O(n) comparisons.

Final tally. There are n−1 iterations in Step (2) of Prim’s algorithm.
Therefore the total work taken is O(n) + (n − 1)(O(n) + O(n)) =
O(n2). �

The following exercises are taken from Section 2.1 of [1].

Exercise 3. Find a MST in the graph in Figure by using Prim’s
algorithm. The starting vertex v is indicated.

Exercise 4. Show that the following algorithm finds an MST of a
connected graph G. Begin with H = G. At each step, find (if one
exists) a maximum cost edge e such that H\e is connected, and delete
e from H . (Try this algorithm on the graphs we have worked with so
far to check if it works.)

References

[1] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial

Optimization. Wiley-Interscience Series in Discrete Mathematics, 1998.

