
MATH 409 LECTURE 6
MINIMUM SPANNING TREES

REKHA THOMAS

In this lecture we look at the problem of finding a minimum cost
spanning tree in a graph. You can read about this problem in either
Chapter 6 of [2] or Chapter 2 of [1].

We start by establishing some basic properties of a spanning tree.
Assume throughout the next few lectures that G is a connected graph.
Recall that a spanning tree T of G is a spanning connected acyclic
subgraph of G.

Exercise 1. Let T be a spanning tree of G, e be an edge of T and
consider the graph T\{e} obtained by deleting the edge e from T .
Prove that T\{e} is a disconnected graph consisting of two connected
components T1 = (V1, E1) and T2 = (V2, E2) such that T1 and T2 are
spanning trees on the subgraphs of G induced by V1 and V2 respectively.

Lemma 2. Let T be a spanning connected subgraph of a graph G with
n vertices. Then T is a spanning tree of G if and only if T has n − 1
edges.

Proof. This involves proving P ⇔ Q where P is the statement T is
a spanning tree of G and Q is the statement T has n − 1 edges. In
both statements we are allowed to add on the fact that T is a spanning
connected subgraph of G. This addition is implicit in P but is a crucial
addition needed for Q if the lemma is to be true.

(Q ⇒ P ): Suppose T is a spanning connected subgraph of G with
n − 1 edges. We need to show that T is acyclic which we will prove
by the method of contradiction. So suppose there is a circuit C in T
using the vertices v1, v2, . . . , vk. This circuit contains k edges which are
all in T . There are n− k vertices remaining in G and each of them is
touched by at least one edge of T since T is a spanning and connected
subgraph of G. None of these edges can come from the circuit C since
the remaining n− k vertices are not vertices of C. Therefore, T has at
least n−k more edges which implies that T has at least k+(n−k) = n
edges which contradicts our assumption Q. Therefore, T is acyclic and
is a spanning tree of G.
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(P ⇒ Q): We prove this by induction on n = |V (G)|.

Base case: n = 1: If G has only one vertex, then T = G and
|E(T )| = 0 = 1− 1. Therefore the implication is true when n = 1.

Induction hypothesis: Assume that P ⇒ Q whenever |V (G)| ≤
k − 1. (This is strong induction.)

Induction step: We need to argue that when T is a spanning tree
in a graph G with |V (G)| = k then T has k − 1 edges. Pick an edge
e ∈ T and consider the graph T\{e} obtained by deleting the edge e
from T . By Exercise 1, T\{e} has two components T1 = (V1, E1) and
T2 = (V2, E2) which are spanning trees on the subgraphs of G induced
by V1 and V2 respectively. Since |V1|, |V2| ≤ k − 1, by our induction
hypothesis, T1 has |V1| − 1 edges and T2 has |V2| − 1 edges. Since
T is obtained by connecting T1 and T2 by e, we conclude that T has
|V1| − 1 + |V2| − 1 + 1 = |V | − 1 = k − 1 edges. �

Exercise 3. Let T = (V,E(T )) be a spanning tree of G, let e = {i, j}
be an edge of G but not of T , and f = {k, l} be an edge of a path in
T from i to j. Then prove that T ′ = (V, (E(T )\{k, l}) ∪ {i, j}) is a
spanning tree of G. Hint: Does there exist two different paths in a
spanning tree T between two different vertices?

The number of spanning trees in Kn is nn−2. How does this number
compare to the number of traveling salesman tours in Kn. Which is
larger?

Lemma 4. Let T be a spanning tree in G and e ∈ E(T ). Let C be one
of the components of T\{e} and define

δ(V (C)) := {f = {x, y} ∈ E(G) : either x or y ∈ V (C) but not both}.

In other words δ(V (C)) is the collection of edges leaving C. By con-
struction, e ∈ δ(V (C)). Then δ(V (C)) does not have any other edges
of T besides e.

Proof. We will prove this lemma by the method of contradiction. Sup-
pose δ(V (C)) contains a second edge of T — call it h. Let e = {i, j}
and h = {k, l}. Let C and C ′ be the two components of T\e. We may
assume that i, k ∈ C and j, l ∈ C ′. Then there is an (i, k)-path P1 in
C since C is a spanning tree on the vertices of G in C and there is
also a (j, l)-path P2 in C ′. This implies that P1, e, P2, h form a circuit
of G that lies in T which contradicts that T is acyclic. Therefore we
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conclude that our assumptions are wrong. The only part of the as-
sumption that could be wrong is our assumption that the conclusion
of the lemma was false (since the hypothesis of the lemma cannot be
false unless this lemma is actually entirely false). Thus there is only
one edge of T in δ(V (C)). �

Suppose we have a connected graphG = (V,E) and edge costs ce ∈ R
for all edges e ∈ E. The cost of a subgraph H of G is the sum∑
{ce : e ∈ H}. We will denote this sum as c(H).

Definition 5. The Minimum Spanning Tree (MST) Problem:
Find the minimum cost spanning tree in a connected graph G = (V,E)
with edge costs ce ∈ R for all e ∈ E.

Exercise 6. Show that any MST problem can be reduced to an MST
problem with positive edge costs.

We will describe and analyze two algorithms to solve this problem.
Both algorithms rely on the following theorem.

Theorem 7. Let T be a spanning tree in a connected graph G with edge
costs ce for all e ∈ E(G). Then the following statements are equivalent:

(1) T is a minimum spanning tree (MST).
(2) For all f = {x, y} ∈ E(G)\E(T ) no edge on the (x, y)-path in

T has higher cost than f .
(3) For all e ∈ E(T ), e is a minimum cost edge of δ(V (C)) where

C is a connected component of T\e.
Proof. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2) : We prove this by contradiction. Assume that T is a MST and
that (2) is false – i.e., there exists an edge e in the (x, y)-path in
T with ce > cf , where f = {x, y} ∈ E(G)\E(T ). By Lemma 3,
T ′ = (V,E(T )∪{f}\{e}) is also a spanning tree of T . However,
T ′ has lower cost than T since ce > cf which contradicts that
T was an MST. Therefore, we conclude that (1) ⇒ (2).

(2) ⇒ (3) : We prove this by proving the contrapositive statement which
is that ∼ (3) ⇒∼ (2). Suppose (3) is false — i.e., there exists
f = {x, y} ∈ δ(V (C)) such that cf < ce. By Lemma 4, f 6∈
T . (Otherwise, both e and f would be edges in T that lie in
δ(V (C)) which contradicts Lemma 4.) But e lies on the (x, y)-
path in T and ce > cf which violates (2). Thus ∼ (3) ⇒∼ (2)
which is equivalent to (2) ⇒ (3).

(3) ⇒ (1) : We prove this last implication by a direct argument. So as-
sume (3) is true for a spanning tree T . Let T ∗ be a MST of G
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such that E(T ) ∩ E(T ∗) is as large as possible. We will show
that T = T ∗ which will establish (1).

Suppose there exists f = xy ∈ E(T )\E(T ∗). Then adding
f to T ∗ creates a circuit D. Let C be a connected component
of T\f . Then there exists some edge g ∈ D ∩ E(T ∗) such that
g also lies in δ(V (C)). Since T ∗ is a MST, cg ≤ cf . Since T
satisfies (3), cf ≤ cg which implies that cf = cg. (Note that
g 6∈ T .)

Consider T ′ = (V (G), E(T ∗) ∪ {f}\{g}). By Lemma 3, T ′

is a spanning tree of G. Since c(T ′) = c(T ∗), T ′ is actually an
MST of G. However, T ′ has one more edge in common with
T than T ∗ which contradicts our choice of T ∗. This implies
that there does not exist f ∈ E(T )\E(T ∗) which implies that
T = T ∗.

�
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