
MATH 409 LECTURE 4
RUNNING TIMES OF ALGORITHMS (CONTINUED)

REKHA THOMAS

Theorem 1. The simplex method for linear programming is not a poly-
nomial time algorithm.

Proof. This theorem was proved by Klee and Minty in the seventies
by exhibiting an infinite family of linear programs (one in each dimen-
sion n ≥ 3) on which the simplex method takes 2n − 1 iterations. In
dimension three the Klee-Minty example is:

max 100x1 + 10x2 + x3

s.t. x1 ≤ 1
20x1 + x2 ≤ 100
200x1 + 20x2 + x3 ≤ 10, 000
x1, x2, x3 ≥ 0

The feasible region is a squashed cube with optimal vertex (0, 0, 10000).
The eight vertices of the feasible region are: (0, 0, 0), (0, 0, 10000),
(0, 100, 0), (0, 100, 8000), (1, 0, 0), (1, 0, 9800), (1, 80, 0), (1, 80, 8200).
Check that if we start at (0, 0, 0) and run the simplex method with the
largest coefficient rule as pivot rule, then the simplex path will visit
every vertex of the cube before reaching the optimum. Therefore, in
dimension 3 the simplex method takes 23 − 1 = 7 iterations. Since
the size of the instance is a polynomial function of n, the running time
function is exponential in the size of the instance.

The Klee-Minty linear program in dimension n is:

max
∑n

j=1 10n−jxj

s.t.
(

2
∑i−1

j=1 10i−jxj

)
+ xi ≤ 100i−1, i = 1, . . . , n

xj ≥ 0 j = 1, . . . , n.

The simplex method takes 2n−1 iterations on the n-dimensional mem-
ber of the family. �

Despite the above result, the simplex method works extremely well
in practice. Thus the measure of complexity we are studying has its
limitations and may not give a good feel for how an algorithm behaves

Date: April 6, 2010.
1

2 REKHA THOMAS

on the average (on most problems). It is a worst case model that com-
putes the complexity of an algorithm by considering its performance
on all instances of a fixed size. A few pathological examples can skew
the running time function considerably. Yet, we still get a pretty good
indication of the efficiency of an algorithm using this idea.

Interestingly, the simplex method with almost any pivot rule has a
Klee-Minty type family of linear programs on which it behaves badly.
It is a major open question in discrete optimization whether there is
some pivot rule for which the simplex method runs in time polynomial
in the input size. On the other hand, linear programs can be solved in
polynomial time using algorithms such as interior point methods and
the ellipsoid method. Both these algorithms were discovered around
1980 and use non-linear mathematics. They are quite complicated to
explain compared to the simplex method.

Now we look at a more sophisticated model of computational com-
plexity.

(2) The bit complexity model. This model for measuring complex-
ity takes into account the sizes of the numbers that need to be dealt
with during the algorithm. This makes sense as large numbers require
more storage space and we don’t get a very good measure of complexity
if we assume that all numbers are equal. So we begin by learning how
to measure the complexity of an integer x ∈ Z.

Recall that in the usual decimal notation of a number x ∈ Z, we
record the number as sums of powers of 10 starting with the highest
power of 10 in x and working our way down to 100. For instance,
101 = 1·102+0·10+1·100. The digits we see in 101 are the coefficients of
the powers of 10 present in the above decomposition gotten by greedily
recording the largest power of 10 in 101, then the largest power of 10
in the rest etc. Similarly we can compute the binary representation of
x ∈ Z by doing the same as above but with powers of 2. The largest
power of 2 in 101 is 26 = 64. Thus 101 = 26 + 37. The largest power
of 2 in 37 is 25 and so we have 101 = 26 + 25 + 5 = 26 + 25 + 22 + 20.
If we include all powers of 2 in this decomposition starting at 26, then

101 = 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 2 + 1 · 20.

The binary representation of 101 is the vector that records just the
coefficients: 1100101 starting with 26 and working down to 20. The
number of bits needed in this binary representation is 7 = dlog2(101 +
1)e. We also use one bit to record the sign of 101 and thus need
8 = 1 + dlog2(101 + 1)e bits in the binary encoding of 101.

MATH 409 LECTURE 4 RUNNING TIMES OF ALGORITHMS (CONTINUED) 3

Lemma 2. The number of bits needed to encode the binary represen-
tation of x ∈ Z is 1 + dlog2(|x|+ 1)e.

If x = p
q
, p, q ∈ Z, is a rational number then its bit complexity is

just the sum of the bit complexity of p and q. Real numbers are not
dealt with in this model. This is no huge loss since if we are inputting
a problem into a computer we always assume that the data is rational
since the computer has only a finite amount of precision.

Next we need to analyze the complexity of an algorithm which re-
quires us to account for the complexity of all elementary operations
such as addition, multiplication etc. Adding two numbers with O(M)
bits takes O(M) additions and O(M) carry overs and is thus an O(M)
operation. Subtraction is the same. How about multiplying two num-
bers with O(M) digits? Just as in decimal notation, this takes O(M2)
digit-to-digit multiplications, O(M) additions and O(M) carry overs.
So this is an O(M2) operation. Comparing two numbers of bit com-
plexity M is an O(M) calculation. How about taking the square root
of a number of bit complexity M ?

Exercise 3. (i) Compute the binary representation and then bit com-
plexity of 1025, 1024 and −1023.
(ii) Add the binary numbers 11100101 and 11001. Check your answer
by converting everything into decimal notation.
(iii) Multiply the numbers 213 and 425 in binary form and give the
answer in binary form.

Example 4. Example from Lecture 3 continued.
Recall the problem from Lecture 3 for computing the Euclidean dis-
tance between two points P and Q. Let us try to analyze the complex-
ity of this calculation in the bit complexity model with the assumption
that P, Q ∈ Zn. Let M be the maximum bit complexity of the coordi-
nates of P and Q. Then the size of a problem instance is 2nM since
there are 2n numbers p1, . . . , pn, q1, . . . , qn, each of size at most M , as
input. The algorithm takes the following steps:

• Compute (pi− qi) which is an O(M) calculation. The resulting
number has complexity O(M).
• Compute (pi − qi)

2 which is an O(M2) calculation and the re-
sulting number is O(2M) = O(M).
• The above calculations need to be done n times which take

O(n(M2 + M)) = O(nM2) work.
• Now we add the n numbers (pi − qi)

2 which is n additions of
O(M) numbers. This takes M additions each of which requires

4 REKHA THOMAS

adding n digits together with at most O(M) carry overs. This
takes O(nM + M) = O(nM) work. How big is the result-
ing number? Let r be a number of bit complexity M . Then
log2(r) ∼ M . This implies that log2(nr) ∼ log2(n) + M . The
sum of n numbers, each of bit complexity M is therefore roughly
O(log2(n) + M) in complexity.
• Finally we need a squareroot of this final sum. This is not an

easy operation to calculate the complexity of. In particular,
the square root of an integer could be an irrational number
which cannot even be defined in this model. So we abandon
the analysis at this point and hope that everywhere we need a
distance calculation between two points P and Q (as in the next
example) we will be satisfied with computing

∑n
i=1(pi − qi)

2.
This is surely enough if we only need to compare distances.

Example 5. The nearest neighbor algorithm for the TSP. The
data for this problem is the coordinates (xi, yi) for cities v1, . . . , vn.
Thus problem size in the bit complexity model is 2nM if we assume
that xi, yi are integers with maximum bit complexity M .

The algorithm can be executed by a for-loop.
The initialization step: The algorithm orders the n cities in a list,
records the n coordinates and marks city v1 with 1 and all the others
with 0. This takes O(2nM + n) steps: O(2nM) to list the coordinates
and O(n) steps to mark the cities.
The first step: Set cmin := c12, the distance between cities v1 and v2.
Then for each j = 3, . . . , n compute the distance c1j from city 1 to city
j and replace cmin by cij and record this j if cij < cmin. Mark the city
at minimum distance from v1 with mark 1.
The kth step: Let v be the city marked 1 in the previous step of the
algorithm and cmin be the distance between v and the first city in the
list marked 0. Run through all remaining cities marked 0, calculating
their distance from v and replacing cmin by this distance and recording
its index j if it is the least distance encountered thus far. Mark the
city that contibutes to cmin with 1 and go to the next step in the loop.

This kth step takes n calculations to check the city’s mark (whether
it’s 0 or 1). Then at most n − 1 distance calculations of the form
(xi−xj)

2 + (yi−yj)
2 each of which takes 3 additions, 2 multiplications

and 1 comparison. The additions are O(M) and the multiplications
O(M2). (You need to convince yourself that adding two numbers of
bit complexity M results in a number of bit complexity O(M) and
similarly, multiplying two such numbers results in a number of com-
plexity O(M).) Thus the kth step takes n + (n − 1)(2M2 + 4M)

MATH 409 LECTURE 4 RUNNING TIMES OF ALGORITHMS (CONTINUED) 5

calculations. Putting it all together the algorithm has complexity
O(2nM + n) + (n− 1)O(n + (n− 1)M2) = O(n2M2). Thus this algo-
rithm is polynomial time in the bit complexity model. Check that it is
also polynomial time in the arithmetic model.

Exercise 6. (i) Calculate the running time function for Gaussian elim-
ination on a m× n integer matrix A in both the arithmetic model and
the bit complexity model.
(ii) Does this differ from the complexity of Gauss-Jordan elimination?
(Gauss-Jordan elimination produces an identity matrix of rank equal
to rank(A) in the top left while Gaussian elimination produces an up-
per triangular matrix of rank rank(A) in the top left.)
(iii) Use the above to calculate the complexity of computing the inverse
of a non-singular matrix.
(iv) Write down the most efficient algorithm you know for computing
the rank of a matrix.

