
MATH 409 LECTURE 3
COMPLEXITY OF ALGORITHMS

REKHA THOMAS

Both the traveling salesman problem and the perfect matching prob-
lem are examples of (families of) problems. We will denote a problem
by the letter P . An instance of a problem is a specific member of the
family — one that is specified by actual data.

Example 1. (i) The problem of finding the optimal tour through all
the state capitals in the United States is an instance of the TSP. In this
case, n = 50 and the locations of the capitals and the distances between
them are known quantities which gives us coordinates for the points
v1, . . . , v50 and actual numbers for the costs cij, 1 ≤ i, j ≤ 50, i 6= j.
(ii) The problem max {5x1 + 4x2 : x1 + x2 ≤ 3, x1, x2 ≥ 0} is an
instance of a linear programming problem.

An algorithm to solve a problem P is a procedure (a sequence of
steps) that inputs instances of the problem and outputs their solutions.
For instance, the problem of finding the rank of a matrix can be solved
using the algorithm of Gaussian elimination. The simplex method is an
algorithm for solving a linear program. Note that both these problems
have several algorithms that solve them.

The size of an instance of a problem is the length of the encoding
of the instance. Roughly, it is the number of bits needed to store the
instance in the computer. The set of sizes of problem instances is a
subset of the set of non-negative integers, denoted as N.

The efficiency of an algorithm can be measured by computing upper
bounds for its running time on problem instances. To make this
independent of the particular computer that solves the problem we
need a mathematical notion of running time. To do this, we define the
running time of an algorithm A as a function fA from N to N such that
fA(s) equals the number of elementary operations algorithm A takes
on an instance of size s. The operations of addition, multiplication,
division, subtraction and comparison (of two numbers) are examples of
elementary operations. There are several models for measuring running
times of algorithms. We discuss two, on an example.

Date: April 2, 2010.
1



2 REKHA THOMAS

Example 2. Suppose our problem P is to compute the distance be-
tween two points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn). An algo-
rithm A to solve this problem is a computer code that will compute√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2.

An instance of this problem is given by specific data such as say n = 2
and p = (3, 2) and q = (5, 1).

(1) The arithmetic model. This is a simple model in which all
elementary operations are assumed to take unit time. The size of an
instance of the above problem P is 2n as the instance is specified by the
2n numbers that give the coordinates of p and q. In this model, we treat
all numbers as being equal and count each number as contributing one
bit to the length of encoding of the instance. The algorithm A needs
the following elementary operations:

• n subtractions: to compute (pi − qi), i = 1, . . . , n
• n multiplications : to compute (pi − qi)2, i = 1, . . . , n
• n − 1 additions: to sum the squares (p1 − q1)2 + (p2 − q2)2 +
· · ·+ (pn − qn)2

• one square root : to get
√

(p1 − q1)2 + · · ·+ (pn − qn)2

This gives a total of 2n+(n−1)+1 = 3n elementary operations. Thus
we say that the running time of our algorithm A is bounded above
by the polynomial 3n and fA(2n) = 3n = 3

2
(2n). Rewriting, we have

fA(s) = 3
2
s. Since fA(s) is a polynomial, A is a polynomial-time

algorithm. In fact, its running time is a linear function of the input
size and we say the algorithm is linear in the size of the input.

Computing the running times (complexity) of algorithms needs us
to compare functions. More precisely, if there are two algorithms A1

and A2 for problem P , we’d like to compare the running time func-
tions fA1(s) and fA2(s) to decide which algorithm is superior (if that’s
possible). We are also only interested in how the function fA grows as
s grows. Small instances can often be solved well by most algorithms.
The real strength of an algorithm surfaces when we look at how it be-
haves on instances of large size. The following definitions allow us to
compare functions.

Definition 3. If f(s) and g(s) are two positive real valued functions
on N, the set of non-negative integers, we say that
(i) f(n) = O(g(n)) if there is a constant k > 0 such that f(n) ≤ k ·g(n)
for all n greater than some finite n0,
(ii) f(n) = Ω(g(n)) if there is a constant k > 0 such that f(n) ≥ k ·g(n)



MATH 409 LECTURE 3 COMPLEXITY OF ALGORITHMS 3

for all n greater than some finite n0,
(iii) f(n) = Θ(g(n)) if there are two constants k, k′ > 0 such that
k′ · g(n) ≤ f(n) ≤ k · g(n) for all n greater than some finite n0.

Thus if f(n) = O(g(n), then the two functions maybe incomparable
for initial values of n (values before n = n0) but “eventually” (i.e., after
n0), f(n) is bounded above by a positive multiple of g(n).

Example 2 continued. The function 3n is O(n) since we can choose
k ≥ 3 which will make 3n ≤ k · n for all n. In this example, n0 = 0.
Thus we say that the algorithm A in the above example has running
time O(n). In fact the running time is also Ω(n) and Θ(n). It is also
O(n2), O(en) etc, but usually we want the smallest bound possible and
so it’s better to say that the running time is O(n). What would be
your choices for k to establish that 3n is also O(n2) and O(en)?

Definition 4. An algorithm A for problem P is said to be a polyno-
mial time algorithm if the running time function fA(s) is a polynomial
in s, where s is the size of the problem.

The complete enumeration algorithm for the TSP was O(n!) which
is far from being polynomial time.

The “big O \Ω\Θ” notation allows us to be approximate with calcu-
lating sizes of problems and measuring running times, in that it allows
us to ignore contributions from constants and other factors that do not
eventually affect the behavior of the function. For instance 3s3 + es

eventually looks like es and we can say that 3s3 + es = O(es).

Example 2 continued. Let us recast our example above in this light.
We saw that the problem size was 3n which is O(n). Similarly the
running time was 2n which is also O(n). Thus we could simply write
that the running time function of the above algorithm is fA(n) = O(n)
and still get a good sense of how this running time function behaves
on large instances of the problem.

Exercise 5. This exercise is all about estimating n!. We will use log
to denote the natural logarithm ln so as to not confuse all the n’s that
appear below.
(a) Look up the formula for

∫
log x dx.

(b) Prove that log n! = Θ(n log n).
Hint: log n! =

∑n
x=1 log x. Use some simple integral calculus to bound

this sum from above and below.
(c) From the computation in (b) deduce that e

(
n
e

)n ≤ n! ≤ e
(

n+1
e

)n+1
.



4 REKHA THOMAS

(d) What does (c) imply about the complexity of n! itself? i.e., use
O,Ω,Θ notation to express n! in the best way you can.
(e) Stirling’s formula says that n! ≈

√
2πn

(
n
e

)n
and in fact, it can be

shown that n! >
√

2πn
(

n
e

)n
. How does this compare to your result in

(d)?


