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The minimum cost network flow problem has the following inputs:

• a directed graph G = (V, E),
• edge capacities uij ≥ 0 ∀ {i, j} ∈ E,
• demands bi ∈ R ∀ i ∈ V , and
• unit flow costs cij ∀ {i, j} ∈ E.

The minimum cost network flow problem (MCFP) on this data is
the problem of finding a feasible flow in G of minimum cost. By a
feasible flow we mean a nonnegative flow that does not exceed the edge
capacity on every edge. If the flow has to be integral then we have the
integral MCFP. This lecture is taken from [1].

There are combinatorial algorithms to solve (MCFP) but in this
lecture our aim will be to use the results on TU matrices to solve this
problem. Let’s start by making a LP formulation of this problem.
Using xij to denote the flow in edge {i, j} we have the following LP:

min
∑
{i,j}∈E cijxij

s.t. −
∑
{i,k}∈E xik +

∑
{k,i}∈E xki = bi ∀i ∈ V

xij ≤ uij ∀{i, j} ∈ E
xij ≥ 0 ∀{i, j} ∈ E

The equality constraints say that for each vertex i ∈ V we need the
total inflow minus the total outflow to equal the “demand” bi. If bi > 0
then bi can be interpreted as the demand at vertex i (the amount of
material that needs to be stored at vertex i), while if bi < 0 then outflow
is more than inflow and bi is like the supply from vertex i. The word
“demand” is used in general to stand for our usual notion of supply
and demand.

Notice that if we write the constraints of MCFP in matrix notation,
then the problem is just

min
∑

cx
s.t. MGx = b

Ix ≤ u
x ≥ 0
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where MG is the incidence matrix of the digraph G. Rewriting again
so that all constraints are inequalities, we have:

min
∑

cx
s.t. MGx ≤ b

−MGx ≤ −b
Ix ≤ u
x ≥ 0

This shows that the feasible region of MCFP is of the form

P = {x ∈ RE : Ax ≤ d, x ≥ 0}
where

A =

 MG

−MG

I

 , and d =

 b
−b
u

 .

Since MG is TU, the matrix A above is also TU and by using Theorem
7 in Lecture 22 we will have that P = P I when d is integral. Therefore,
the integral MCFP can be solved by ignoring the integrality constraints
on the flow variables. The LP-relaxation has an integer optimum and
so is also the optimal solution of the integer program for all cost vectors
c.

Exercise 1. [1, Problem 4] Consider a scheduling problem in which
a machine can be switched on at most k times. Assume that we can
break the total duration of time into time periods indexed by t and let
yt = 1 if the machine is on in period t and zt = 1 if the machine is
switched on in period t.

(1) Argue that the following constraints model the above scheduling
problem: ∑

t zt ≤ k
zt − yt + yt−1 ≥ 0 ∀ t

zt ≤ yt ∀ t
0 ≤ yt, zt ≤ 1 ∀ t

(2) Show that the constraint matrix from above is TU.

We now recall some basic facts about linear programs to argue that
if A is TU and b is integral, then the linear program

max cx : Ax ≤ b, x ≥ 0

has an integer optimum no matter what c is. This will prove one
direction of Theorem 7 in Lecture 22.

Adding slack variables s we first transform the above LP to the form

max cx + 0s : Ax + Is = b, x, s ≥ 0.
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Now letting c̃ := (c, 0), Ã = (A I) and x̃ = (x, s), we have the LP:

max c̃x̃ : Ãx̃ = b, x̃ ≥ 0

At every step of the simplex method we have a dictionary or tableau
that records the current basic feasible solution. This involves parti-
tioning the variables x̃ into the basic variables x̃B and the nonbasic
variables x̃N where Ã = (B N) is the partition of the columns of Ã
into the basis B and nonbasis N . The cost vector c̃ also partitions into
c̃ = (c̃B, c̃N) and the problem becomes:

max c̃Bx̃B + c̃N x̃N

s.t. Bx̃B + Nx̃N = b
x̃B, x̃N ≥ 0

The basis B is always invertible which means that the problem can
be rewritten as:

max c̃Bx̃B + c̃N x̃N

s.t. x̃B = B−1b−B−1Nx̃N

x̃B, x̃N ≥ 0

Now substituting for x̃B in the cost function we have the formulation:

max c̃BB−1b + (c̃N − c̃BB−1N)x̃N

s.t. x̃B = B−1b−B−1Nx̃N

x̃B, x̃N ≥ 0

The basic feasible solution to the simplex method at this stage is:
x̃B = B−1b and x̃N = 0. In particular this is how the optimal basic
feasible solution looks.

Now if A was TU then Ã = (A I) is also TU. The basis matrix B is
an invertible square submatrix of Ã which means that its determinant is
±1. This implies that B−1 is an integral matrix which in turn implies
that the optimal solution x̃B = B−1b and x̃N = 0 is integral for all
integral b.

Now recall that we can read off the optimal solution to the dual LP
from the final dictionary of the primal LP. The dual LP is

min by : yA ≥ c y ≥ 0

and its optimal solution y∗ := c̃BB−1N where B is basis in the final
dictionary of the primal LP. Again, note that this y∗ is integral if A is
TU. Therefore, we arrive at the following result.

Proposition 2. If A is TU and b is integral both the LP

max cx : Ax ≤ b, x ≥ 0

and its dual LP
min by : yA ≥ c y ≥ 0
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have integral optimal solutions.
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