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REKHA THOMAS

Recall that the general integer program is the optimization problem:
max{cx : Az <b, z € Z"}
where we may assume that ¢ € Z", A € Z"*" and b € Z™. The linear
relaxation of this integer program is the problem:
max{cz : Az < b}.

Let P :={x € R" : Az < b} be the feasible region of the linear relax-
ation. Then recall that P is called a polyhedron and if it is bounded,
it is called a polytope. The integer hull of P is the convex hull of all
the integer points in P and we will denote it as

Pl = conv {z € Z" : Az < b}.

If P = P! then clearly we can solve the integer program given above
with respect to any cost vector ¢ by simply solving the linear relaxation.
Therefore, a very good question to ask is whether we can tell up front
that P = P! for an integer program. In this lecture we will see a result

that answers this question in a stronger way than we are asking. This
material is taken from [1].

Definition 1. A matrix A is totally unimodular (TU) if every square
submatrix of A has determinant 0,1 or —1.

Note that A itself does not have to be square. We just need all the
square submatrices of A to have 0, £1 determinant. However, if A is
totally unimodular, then every entry of A has to be 0,+£1 since every
entry is a 1 X 1 submatrix of A.

Exercise 2. Show that A is TU & AT is TU & (A, I) is TU &
(A,—A,I)is TU.

We now prove a result that allows us to find families of TU matrices.

Proposition 3. A matriz A is TU if the following conditions hold:
(1) a;; =0,%1 for all i, .
(2) each column of A contains at most two nonzero entries.

Date: May 19, 2010.



2 REKHA THOMAS

(3) there is a partition (My, Ms) of the set M of rows of A such
that for each column j of A containing two nonzero entries,

ZiEMl ai»j = Zi€M2 ai’j'

Proof. We will prove this proposition by the method of contradiction.
Suppose conditions (1)-(3) hold and A is not TU. Then pick a smallest
square submatrix B of A such that det(B) # 0,£1. Then first note
that no column of B is entirely zero since then det(B) = 0. Further, no
column of B has exactly one nonzero entry since in that case, comput-
ing det(B) by expanding along this column shows that there is a smaller
submatrix of B whose determinant is not 0,£1 which contradicts our
choice of B. Therefore, every column of B has at least two non-zero
entries. On the other hand, condition (2) says that all columns of A
have at most two nonzero entries. This means that each column of B
has exactly two nonzero entries. Therefore, the nonzero entries in a
column of A that that passes through B are in B. Therefore, by con-
dition (3) sum of the rows of B indexed by M; equals the sum of the
rows of B indexed by My which implies that the rows of B are linearly
dependent and so det(B) = 0 which is a contradiction. O

Definition 4. (1) The incidence matrix Mg of an undirected
graph G = (V, E) is the 0/1 matrix with rows indexed by V
and columns by E such that

[0 ifké¢{i g}
(Mg )k gijy = { 1 if ke {i,j}

(2) The incidence matrix Mg of a directed graph G = (V, F) is
the 0/ £ 1 matrix with rows indexed by V' and columns by F

such that
0 itk {ij}
1 iftk=y

The above proposition immediately proves the first of the following
results.

Proposition 5. (1) Incidence matrices of directed graphs are TU.
(2) The incidence matriz of an undirected graph G is TU if and
only if G s bipartite.
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Exercise 6. [1, Problem 1] Are the following matrices TU or not?

10101 -1010 -1 00

01110 0101 1 01

A = , Ao=]| -1 1.00 O 0O
00011

11000 0010 0 11

0001 0 —-10

We now come to the connection between TU and the question of
when P = P!,

Theorem 7. (1) For a fized A, and integral vector b, let P, =
{r e R" : Az < b, x > 0}. Then P, = P} for all b € Z™ if
and only if A is TU.

(2) If Ais TU and b € Z™ then P :={x € R" : Az <b} = P

Exercise 8. [1, Problem 2] Prove that the polyhedron
P={(z1,...,¢p,y) >0 :y<lx; <yVi=1,...,m}

has the property that P = PI.
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