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Recall that the general integer program is the optimization problem:

max{cx : Ax ≤ b, x ∈ Zn}
where we may assume that c ∈ Zn, A ∈ Zm×n and b ∈ Zm. The linear
relaxation of this integer program is the problem:

max{cx : Ax ≤ b}.
Let P := {x ∈ Rn : Ax ≤ b} be the feasible region of the linear relax-
ation. Then recall that P is called a polyhedron and if it is bounded,
it is called a polytope. The integer hull of P is the convex hull of all
the integer points in P and we will denote it as

P I := conv {x ∈ Zn : Ax ≤ b}.
If P = P I then clearly we can solve the integer program given above

with respect to any cost vector c by simply solving the linear relaxation.
Therefore, a very good question to ask is whether we can tell up front
that P = P I for an integer program. In this lecture we will see a result
that answers this question in a stronger way than we are asking. This
material is taken from [1].

Definition 1. A matrix A is totally unimodular (TU) if every square
submatrix of A has determinant 0,1 or −1.

Note that A itself does not have to be square. We just need all the
square submatrices of A to have 0,±1 determinant. However, if A is
totally unimodular, then every entry of A has to be 0,±1 since every
entry is a 1× 1 submatrix of A.

Exercise 2. Show that A is TU ⇔ AT is TU ⇔ (A, I) is TU ⇔
(A,−A, I) is TU.

We now prove a result that allows us to find families of TU matrices.

Proposition 3. A matrix A is TU if the following conditions hold:

(1) ai,j = 0,±1 for all i, j.
(2) each column of A contains at most two nonzero entries.
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(3) there is a partition (M1, M2) of the set M of rows of A such
that for each column j of A containing two nonzero entries,∑

i∈M1
ai,j =

∑
i∈M2

ai,j.

Proof. We will prove this proposition by the method of contradiction.
Suppose conditions (1)-(3) hold and A is not TU. Then pick a smallest
square submatrix B of A such that det(B) 6= 0,±1. Then first note
that no column of B is entirely zero since then det(B) = 0. Further, no
column of B has exactly one nonzero entry since in that case, comput-
ing det(B) by expanding along this column shows that there is a smaller
submatrix of B whose determinant is not 0,±1 which contradicts our
choice of B. Therefore, every column of B has at least two non-zero
entries. On the other hand, condition (2) says that all columns of A
have at most two nonzero entries. This means that each column of B
has exactly two nonzero entries. Therefore, the nonzero entries in a
column of A that that passes through B are in B. Therefore, by con-
dition (3) sum of the rows of B indexed by M1 equals the sum of the
rows of B indexed by M2 which implies that the rows of B are linearly
dependent and so det(B) = 0 which is a contradiction. �

Definition 4. (1) The incidence matrix MG of an undirected
graph G = (V, E) is the 0/1 matrix with rows indexed by V
and columns by E such that

(MG)k,{i,j} =

{
0 if k 6∈ {i, j}
1 if k ∈ {i, j}

(2) The incidence matrix MG of a directed graph G = (V, E) is
the 0/ ± 1 matrix with rows indexed by V and columns by E
such that

(MG)k,{i,j} =

 0 if k 6∈ {i, j}
−1 if k = i

1 if k = j

The above proposition immediately proves the first of the following
results.

Proposition 5. (1) Incidence matrices of directed graphs are TU.
(2) The incidence matrix of an undirected graph G is TU if and

only if G is bipartite.
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Exercise 6. [1, Problem 1] Are the following matrices TU or not?

A1 =


1 0 1 0 1
0 1 1 1 0
0 0 0 1 1
1 1 0 0 0

 , A2 =


−1 0 1 0 −1 0 0

0 1 0 1 1 0 1
−1 1 0 0 0 0 0

0 0 1 0 0 1 1
0 0 0 1 0 −1 0

 .

We now come to the connection between TU and the question of
when P = P I .

Theorem 7. (1) For a fixed A, and integral vector b, let Pb :=
{x ∈ Rn : Ax ≤ b, x ≥ 0}. Then Pb = P I

b for all b ∈ Zm if
and only if A is TU.

(2) If A is TU and b ∈ Zm then P := {x ∈ Rn : Ax ≤ b} = P I .

Exercise 8. [1, Problem 2] Prove that the polyhedron

P = {(x1, . . . , xm, y) ≥ 0 : y ≤ 1, xi ≤ y ∀ i = 1, . . . ,m}
has the property that P = P I .
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