
MATH 409 LECTURE 2
PROBLEMS AND ALGORITHMS

REKHA THOMAS

In this lecture we consider two important combinatorial optimization
problems that can both be stated in terms of an undirected graph with
weights on its edges. If V is the set of vertices of a graph G and E the
set of edges of G, we typically denote the graph as G = (V,E). The
graph is undirected if there are no directions on the edges of G.

The Traveling Salesman Problem (TSP).
Data: We are given n points v1, . . . , vn and

(

n
2

)

numbers cij where cij

is the cost of traveling between vi and vj.
Problem: Find the shortest tour through the n points. (A tour is a
closed path that visits each point exactly once.)

We can model this problem using a graph. A graph on n vertices is
called complete if every two vertices in the graph are connected by an
edge. The abstract complete graph on n vertices is typically denoted as
Kn. Consider the complete graph on the vertex set v1, . . . , vn and let eij

be the undirected edge between vi and vj. The edge eij is assigned cost
cij. Then the problem is to find a closed simple path in this complete
graph of minimum cost. (A path in a graph G = (V,E) is a sequence
of edges e1, . . . , ek such that ei is incident to ei+1. It is closed if the
path returns to the starting vertex. It is simple if each vertex in the
path has exactly two edges incident to it.)

In this graph interpretation, we usually embed the points v1, . . . , vn

in the plane R
2 with coordinates (xi, yi) for the point vi. This problem

fits many applications. The usual one takes v1, . . . , vn to be n cities
and the cost cij to be the Euclidean distance between vi = (xi, yi) and
vj = (xj, yj). In this case,

cij =
√

(xi − xj)2 + (yi − yj)2.

Alternately, v1, . . . , vn could be holes that need to be drilled on a circuit
board and cij could be the time taken by the drill to travel from vi to
vj. In this case, we are looking for the fastest way to drill all holes on
the circuit board if the drill traces a tour through the locations that

Date: March 31, 2010.

1



2 REKHA THOMAS

need to be drilled. Yet another application might be that v1, . . . , vn are
n celestial objects that need to be imaged by a satellite and cij is the
amount of fuel needed to change the position of the satellite from vi

to vj. In this case, the optimal tour allows the satellite to complete its
job with the least amount of fuel. These and many other applications
of the TSP as well as the state-of-the-art on this problem can be found
on the web page http://www.tsp.gatech.edu/.

Algorithms to solve the TSP.
Later in this course we will see sophisticated methods to solve the TSP
but for now we list two simple algorithms that attempt to solve the
problem.
(a) Complete enumeration: In this method, we list all possible tours
through the n cities, calculate the cost of each tour and output the
cheapest tour. How many tours are there through n cities? Starting
at a city, there are n − 1 ways to pick the second city. Then there are
n−2 ways to pick the third city, n−3 ways to pick the fourth city and
so on giving us

(n − 1)! = (n − 1)(n − 2) · · · 2 · 1

tours. Note that it did not matter where we started as every city has
to be visited and so we can call any city the first city. However, we
have double counted since the tour 1, 2, . . . , n − 1, n, 1 is the same as
the tour 1, n, n − 1, . . . , 2, 1 as far as cost is concerned, and we have
counted them as different tours in our analysis. Therefore, in reality

there are (n−1)!
2

tours. Unfortunately, this number grows incredibly

fast. For instance if n = 50, then (n−1)!
2

= 3.0414× 1062. If a computer
could enumerate a tour in 10−9 seconds (a nanosecond), it would still
take 9.64425 × 1043 centuries to enumerate all the tours of this TSP.
If we wanted to find the shortest tour through the capitals of the 50
states in the U.S., complete enumeration would not be the way to go.

Exercise 1. Compare the functions n!, nn, 2n, 2n/2, nlog n, n2000, n2, n log n

and log n as n increases (assume n is a non-negative integer). Can you
arrange the functions in increasing order of their values for large n and
give an argument to justify your arrangement?

(b) The nearest neighbor algorithm for the TSP: This is a simple
minded heuristic that does not guarantee the optimal tour but tries
to get close. The idea is that at every point in a partial tour we pick
as the next city, the one that is closest to the last city in our current
partial tour. This method is locally optimal — i.e., at each intermediate



MATH 409 LECTURE 2 PROBLEMS AND ALGORITHMS 3

step we cannot do better but may not yield the globally optimal tour.

Optimal perfect matchings.
Data: We are given the complete graph Kn = (V,E) where n is even
and, costs ce on the edges e ∈ E.
Problem: Find the cheapest perfect matching in Kn.

Definition 2. A matching in a graph G = (V,E) is a collection of
edges of G such that no two edges in the matching share a vertex. The
matching is perfect if all vertices of the graph are contained in the
matching. (Note that we need an even number of vertices in the graph
for a perfect matching to exist.)

Algorithms.
We will see very efficient algorithms for this problem during the course
but let us examine how complete enumeration might fare on this prob-
lem. Enumerating all possibilities we see that there are

(

n

2

)(

n − 2

2

)(

n − 4

2

)

· · ·

(

2

2

)

matchings in Kn when n is even. Unraveling this expression we get,
(

n
2

)(

n−2
2

)(

n−4
2

)

· · ·

(

2
2

)

= n(n−1)
1·2

(n−2)(n−3)
1·2

· · ·
(n−(n−2))(n−(n−1))

1·2
= n!

2n/2
. How

fast does this function grow with n?

The matching problem also has many applications.

(1) A first example could be the problem of assigning teachers to
class periods in a given quarter. Each teacher is assigned to a
specific class period and each class period to a specific teacher.
The cost cij of pairing teacher i to class j could be the will-
ingness of teacher i to teach class j. We would like to find an
assignment where the happiness factor is maximized. This is
an example of an assignment problem which is a special case of
matching.

(2) More to come ...

We will see that the matching problem has extremely efficient algo-
rithms for solving it while the TSP is one of the hardest problems in
combinatorial optimization. This will be made precise later.


