
MATH 409 LECTURES 19-21

THE KNAPSACK PROBLEM

REKHA THOMAS

We now leave the world of discrete optimization problems that can
be solved in polynomial time and look at the easiest case of an integer
program, called the knapsack problem.

The Knapsack Problem.
Given: c1, c2, . . . , cn, w1, w2, . . . , wn and W all nonnegative integers.
Find: a subset S ⊆ {1, . . . , n} such that

∑

j∈S wj ≤ W and
∑

j∈S cj is
maximum.

The physical interpretation is that we have a knapsack that can carry
a total weight of W and can be filled with n different items where the j-
th item has weight wj and value cj. We would like to find a collection of
items to put into the knapsack so that the total weight of the knapsack
is not exceeded and the total value of the knapsack is maximized.

The knapsack problem can be written as a 0/1 integer program as
follows.

maximize
∑n

j=1
cjxj

s.t.
∑

wjxj ≤ W
xj = 0, 1 ∀ j = 1, . . . , n

Relaxing the 0/1 constraint on the variables, we get the linear pro-
gramming relaxation of the knapsack problem that is usually called the
fractional knapsack problem.

maximize
∑n

j=1
cjxj

s.t.
∑

wjxj ≤ W
0 ≤ xj ≤ 1 ∀ j = 1, . . . , n

This linear program has a very easy solution that we show below.

Proposition 1. (Dantzig 1957) Order the variables so that

c1

w1

≥ c2

w2

≥ · · · ≥ cn

wn

Date: May 19, 2010.

1



2 REKHA THOMAS

and let

k := min {j ∈ {1, . . . , n} :

j
∑

i=1

wi > W}.

Then the optimal solution of the fractional knapsack problem is

x1 = 1, x2 = 1, . . . , xk−1 = 1, xk =
W − ∑k−1

j=1
wj

wk

, xj = 0 ∀ j > k.

Note that
cj

wj
is the value per unit length of the j-th item. So we

first order the items in decreasing order of value per unit length and
the optimal solution of the fractional knapsack problem is gotten by
simply putting items in this order from the most valuable down until
we cannot fit the next item, at which point we cut this last item to fit.

Exercise 2. Argue that Dantzig’s proposed solution is indeed an opti-
mal solution to the fractional knapsack problem. (First check that the
proposed solution is indeed a feasible solution and then argue that no
other solution has higher value for

∑n

j=1
cjxj.)

We now turn to the original knapsack problem. First note that
we can assume that wj ≤ W for all j = 1, . . . , n since otherwise,
the j-th item will not fit in the knapsack and we would never include
it in any solution making xj = 0 always. As a start, we show that
it is very easy to come up with a feasible solution of the knapsack
problem whose objective function value is at least half the optimal value
of the knapsack problem. This is an example of an approximation

algorithm where one is typically interested in finding solutions to
hard problems that come within a guaranteed factor of the optimal
solution in value and where this feasible solution can be found quickly
(in polynomial time).

Proposition 3. Suppose wj ≤ W for all j = 1, . . . , n,
c1

w1

≥ c2

w2

≥ · · · ≥ cn

wn

and

k := min {j ∈ {1, . . . , n} :

j
∑

i=1

wi > W}.

Then the better of the two solutions:

s1 : (x1 = 1, x2 = 1, . . . , xk−1 = 1, xj = 0 ∀ j ≥ k)

s2 : (xk = 1, xj = 0 ∀ j 6= k)

is a feasible solution of the knapsack problem whose objective function
value is at least half the optimal value of the knapsack problem.



MATH 409 LECTURES 19-21 THE KNAPSACK PROBLEM 3

Proof. From the optimal solution to the fractional knapsack problem,
note that C :=

∑k

j=1
cj is an upper bound on the optimal value of the

fractional knapsack problem and hence also for the knapsack problem.
Now note that C is the sum of the objective function value of s1 and the
objective function value of s2. Therefore, at least one of the summands
is half of C. This means that the better solution (with respect to
∑n

j=1
cjxj) has objective function value at least half of the optimal

value of the knapsack problem. ¤

Exercise 4. Let G = (V,E) be a graph and suppose we are interested
in the problem of finding a cut in G of largest size. This means that we
want a partition of V into two sets S and V \S such that the edges that
leave S and enter V \S are as many as possible. This is a very difficult
problem in discrete optimization called the max cut problem in G.
However, it is not hard to come up with a cut in the graph that is
guaranteed to have at least half as many edges as the max cut. This
exercise walks you through the approximation procedure.

Suppose you have two colors red and blue to color the vertices of G.
The coloring is done as follows. Start at any vertex and color it one of
the two colors. Call this vertex v1. To color the i-th vertex, we use the
following rule: let bi be the number of neighbors of vi colored blue and
ri be the number of neighbors of vi colored red. If bi ≥ ri then color vi

red and otherwise, color vi blue.
Argue that at the end, at least half the edges in the graph have the

property that one of their end points is red and the other is blue. This
produces a cut in G (induced by the partition of the vertices into red
vertices and blue vertices) of size at least half the total number of edges
in the graph.

We now write down an algorithm to compute the optimal solution
of the knapsack problem.

Dynamic Programming Knapsack Algorithm

Let C be an upper bound on the optimal value of the knapsack prob-
lem. For instance take C :=

∑n

j=1
cj.

(1) Set x(0, 0) := 0 and x(0, k) := ∞ for all k = 1, . . . C.

(2) For j = 1, . . . , n do
For k = 0, . . . , C do

set s(j, k) := 0 and x(j, k) := x(j − 1, k)
For k = cj, . . . , C do



4 REKHA THOMAS

If x(j − 1, k − cj) + wj ≤ min {W,x(j, k)} then
set x(j, k) := x(j − 1, k − cj) + wj and s(j, k) := 1

(3) Let k = max {i ∈ {0, . . . , C} : x(n, i) is finite }. Set S := ∅.
For j = n, . . . , 1 do

If s(j, k) = 1 then set S := S ∪ {j} and k := k − cj.
The optimal solution of the knapsack problem is given by choosing

the items in S.

Exercise 5. Run the above algorithm on the following problem.

max 3x1 + 2x2 + x3 + x4 + x5

s.t. x1 + 2x2 + 3x3 + 4x4 + 5x5 ≤ 13
x1, . . . , x5 = 0, 1

Theorem 6. The dynamic programming algorithm finds an optimal
solution to the knapsack problem in O(nC) time.

Proof. The algorithm takes O(nC) steps just by looking at all the for
loops.

To prove the algorithm, we interpret the variable x(j, k) as the min-
imum total weight of a subset S ⊆ {1, . . . , j} with

∑

i∈S ci = k. Check
that this is true in the example you did. The algorithm computes these
values by the following recursion:

x(j, k) =







x(j − 1, k − cj) + wj if cj ≤ k and x(j − 1, k − cj) + wj

≤ min {W,x(j − 1, k)}
x(j − 1, k) otherwise

for j = 1, . . . , n and k = 0, . . . , C. The variable s(j, k) indicates which
of the two cases happen.

The algorithm enumerates all subsets S ⊆ {1, . . . , n} that are feasible
and not dominated by others. A set S is dominated by a set S ′ if
∑

j∈S cj =
∑

j∈S′ cj and
∑

j∈S wj ≥ ∑

j∈S′ wj. In step (3) the best
feasible S is chosen.

¤

Note that the size of the input to the knapsack problem is O(n log C+
n log W ) and that O(nC) is not polynomial in the size of the input.

Definition 7. Let P be a decision problem or an optimization problem
such that each instance x consists of a list of integers. Denote by
largest(x) the largest of these integers. An algorithm for P is called
pseudopolynomial if its running time is bounded by a polynomial in
size(x) and largest(x).



MATH 409 LECTURES 19-21 THE KNAPSACK PROBLEM 5

The dynamic programming algorithm mentioned above is a pseu-
dopolynomial time algorithm since nC is a quadratic polynomial in
n and C and n is part of the input size and C is bounded above by
largest(x). A second example of a pseudopolynomial time algorithm
is the algorithm to test for the primality of an integer p by dividing p
with all integers from 2, . . . , ⌊√p⌋.


