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The Transportation Problem [1] The transportation problem is the
problem of finding the cheapest way to transport goods from a set of
factories P to a set of retailers Q. All factories may not be able to
ship to all retailers. Factory p ∈ P can supply ap units of goods while
retailer q ∈ Q has a demand for bq units of goods. We ignore shipping
costs and consider the simpler problem of finding a feasible shipment of
goods so that the total amount of goods sent from a factory p does not
exceed its supply ap and the total amount of goods received by retailer
q ∈ Q is exactly bq.

Consider the bipartite graph G = (P ∪Q,E) where E consists of all
arcs pq between factories p ∈ P and retailers q ∈ Q such that p can
ship to q. We need to find xpq : pq ∈ E such that∑

(xpq : q ∈ Q, pq ∈ E) ≤ ap ∀p ∈ P∑
(xpq : p ∈ P, pq ∈ E) = bq ∀q ∈ Q

xpq ≥ 0, integral ∀pq ∈ E
Let us call this mathematical formulation (∗).
We need the total supply to exceed the total demand for this problem

to have a feasible solution. I.e., this problem needs∑
(ap : p ∈ P ) ≥

∑
(bq : q ∈ Q).

Convert the above problem to a network flow problem as follows.
Let G′ = (V ′, E ′) where V ′ = P ∪ Q ∪ {s, t} and E ′ consists of the
following arcs.

• all arcs pq ∈ E with infinite capacities
• for each p ∈ P , the arcs sp with capacity ap

• for each q ∈ Q, the arc qt with capacity bq
Note that the system (∗) has a feasible solution if and only if there

exists an integral feasible (s, t)-flow in G′ of value
∑

(bq : q ∈ Q) which
is then a max flow in this network. Thus we can decide if (∗) has a
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solution by running the max flow algorithm in G′ and checking whether
the flow has value equal to or less than

∑
(bq : q ∈ Q).

We analyze this problem a bit further. The max flow min cut theo-
rem tells us that (∗) has a solution if and only if every (s, t)-cut in G′

has capacity at least
∑

(bq : q ∈ Q). Consider an arbitrary (s, t)-cut
in G′. It has the form δ′({s}∪A∪B) where A ⊆ P and B ⊆ Q. What
is the capacity of such a general cut? If the capacity of the cut is finite,
there does not exists an edge pq ∈ E such that p ∈ A and q ∈ Q\B.
In this case,

capacity(δ′({s} ∪ A ∪B)) =
∑

(ai : i ∈ P\A) +
∑

(bj : j ∈ B).

Else the cut has infinite capacity. Therefore, (∗) has a solution if and
only if every finite (s, t)-cut in G′ has capacity at least

∑
(bq : q ∈ Q)

which written mathematically says∑
(ai : i ∈ P\A) +

∑
(bj : j ∈ B) ≥

∑
(bj : j ∈ Q).

Cancelling the common terms on both sides we get∑
(ai : i ∈ P\A) ≥

∑
(bj : j ∈ Q\B).

Thus (∗) has a solution if and only if, for all A ⊆ P , B ⊆ Q such
that δ′({s} ∪ A ∪B) has finite capacity,∑

(ai : i ∈ P\A) ≥
∑

(bj : j ∈ Q\B).

Suppose there was a node p in P\A that was not adjacent to a
node in Q\B. Then if we enlarge A to A′ := A ∪ {p}, the capacity of
δ′({s} ∪ A′ ∩ B) lowers since the arc sp is now no longer a cut edge
and all other outgoing edges in the new cut were also outgoing edges
in the old cut. This means that the left-hand-side in the inequality
above lowers making the new inequality stronger than the inequality
from the old cut.

Therefore, in order to check the inequality, we can always assume
that every node in P\A is adjacent to some node in Q\B. For a subset
of nodes C in an undirected graph, define the neighborhood of C to be
the node set N(C) = {w : {v, w} ∈ E for some v ∈ C}. Therefore, the
previous paragraph shows that in order to check the inequality we only
need to consider sets A ⊆ P and B ⊆ Q such that N(Q\B) = P\A.
In the language of neighborhood sets we see that (∗) has a solution if
and only if a(N(C)) ≥ b(C) for all node sets C ⊆ Q.

What does this mean in the context of the original problem? If
C ⊆ Q then b(C) is the total demand for the retailers in the set C and
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a(N(C)) is the total supply from the factories that can ship to C. So
we require that the total supply to the retailers in C exceeds the total
demand of the retailers in C ⊆ Q for our transportation problem to
have a feasible shipping assignment.
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