
MATH 409 LECTURE 16
APPLICATIONS OF MAX FLOW

REKHA THOMAS

Elimination of Sports Teams [1]
Suppose we have several teams playing against each other in a sports
season and we wish to determine at intermediate points in the season
whether certain teams have no chance of winning at the end of the
season – i.e., whether certain teams can be eliminated from the running
for the winner. For instance, here are two tables that both tell you that
team B has no chance of winning the series at the end of the season.
This is clear in the first table and perhaps less clear in the second table.

Teams Wins so far Games left to play
A 33 8
B 28 4

Note that team B can win a max of 32 games at the end of the season
but team A already has 33 wins showing that B is eliminated.

Teams Wins so far A B C D
A 33 − 1 6 1
B 29 1 − 0 3
C 28 6 0 − 1
D 27 1 3 1 −

We first work out a condition that guarantees that team B will be
eliminated. Define the following notation:

• T – the set of teams other than B
• for all i ∈ T , let wi := the number of wins that team i has so

far
• for all i, j ∈ T, i 6= j let rij := the number of games remaining

between i and j
• P := {{i, j} ⊆ T : i 6= j, rij > 0}. I.e., P consists of all pairs

of teams in T that have a positive number of games to play
against each other.
• M = number of wins for B at the end of the season if B wins

all remaining games
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Proposition 1. Team B is eliminated if there exists S ⊆ T such that

w(S) +
∑

(rij : i, j ∈ S, {i, j} ∈ P ) > M |S|

where w(S) =
∑

(wi : i ∈ S).

Proof. Note that
∑

(rij : i, j ∈ S, {i, j} ∈ P ) is the total number of
games that are played by pairs of teams in S which equals the total
number of wins within S since if a pair within S plays r games then
at least one team wins each game. Thus the left hand side of the
expression is the total number of wins for teams in S at the end of the
season. Bringing |S| to the denominator on the left hand side, we will
get that M is strictly smaller than the average number of wins for
teams in S which means that at least one team in S has more than M
wins at the end of the season. Since M was the best that team B can
do at the end of the season, we conclude that B is eliminated. �

Remark 2. In our examples, check that in Table 1, S = {A} works
and in Table 2, S = {A,C} works. Note that if S has only one element
then the sum

∑
(rij : i, j ∈ S, {i, j} ∈ P ) is zero as there are no pairs

of teams in S.

If team B is not eliminated at this point, then there exists a set of
possible outcomes for the remaining teams so that team B finishes with
the most number of wins. Let yij be the possible number of wins of
team i over team j in the remaining games between the two teams. If
B is not eliminated then there is a set of yijs that make the following
system (∗) feasible. (Why?)

yij + yji = rij ∀ {i, j} ∈ P
wi +

∑
(yij : j ∈ T, j 6= i) ≤ M ∀ i ∈ T

yij ≥ 0, integral ∀ {i, j} ∈ P

We now set up a networkG = (V,E) as follows. Let V = T∪P∪{s, t}
and the arc set E be as follows:

• for each i ∈ T , si ∈ E with capacity M − wi

• for each i, j ∈ T with {i, j} ∈ P , the arcs i{i, j} and j{i, j} are
in E with inifinite capacities

• for each {i, j} ∈ P , the arc {i, j}t ∈ E with capacity rij

Proposition 3. An integral (s, t)-flow in G of value
∑

(rij : {i, j} ∈
P ) corresponds to a feasible solution to (∗) and vice versa.
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Proof. Suppose there is an integral (s, t)-flow in G of value
∑

(rij :
{i, j} ∈ P ). Then if we choose yij to be the flow value on the arc
i{i, j} then we get a feasible solution to (∗). Check. Conversely, a
solution to (∗) yields an integral (s, t)-flow in G by assigning flow yij

to arc i{i, j} and defining the flows on the remaining arcs incident to
s and t to satisfy flow conservation. Check this and that the flow has
value

∑
(rij : {i, j} ∈ P ). �

This discussion shows that if B is not eliminated then (∗) has a
solution which in turn implies that there is an integral (s, t)-flow in
G of value

∑
(rij : {i, j} ∈ P ). Note that such a flow will be a max

flow in G by looking at the capacities on the arcs of G incident to
t. Moreover, this max flow will determine a set of outcomes for the
remaining games (the yijs) such that team B finishes first. Conversely,
if there is a max flow in G of value

∑
(rij : {i, j} ∈ P ), then (∗) has a

solution which shows that B is not eliminated at this point.
Now we show that if B is eliminated then a minimum cut in G yields

a set S as in Proposition 1. Let δ(R) be a min cut in G. By the max
flow min cut theorem, its capacity is less than

∑
(rij : {i, j} ∈ P ).

Let S = T\R. We first show that R = {s} ∪ (T\S) ∪ {{i, j} ∈ P :
i or j 6∈ S}. If i or j is not in S = T\R then i or j in R. If further,
{i, j} 6∈ R, then this means that δ(R) has an edge of infinite capacity
(leaving the node i or j that is in R ∩ T to the node {i, j} 6∈ R) which
is a contradiction. If {i, j} ∈ R but i and j are not in R (which means
they are both in S), then deleting {i, j} from R decreases the capacity
of the cut by rij which contradicts that δ(R) is a min cut. Therefore,
R has the above description. Now capacity(δ(R)) =

M |S|−w(S)+
∑

(rij : {i, j} ∈ P, {i, j} 6⊆ S) <
∑

(rij : {i, j} ∈ P ).

Rewriting this inequality we get

(w(S)+
∑

(rij : {i, j} ∈ P )) > M |S|+
∑

(rij : {i, j} ∈ P, {i, j} 6⊆ S)

or equivalently,

w(S) +
∑

(rij : {i, j} ∈ P, {i, j} ⊆ S) > M |S|

which is the condition from Proposition 1. This shows that B is elim-
inated and the set S = T\R is the witness.

Exercise 4. [1, 3.31] Suppose we want to know whether it is possible
for Team B to finish first or second, that is, so that at most one team
has more total wins. How can this be done?
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Exercise 5. In this exercise we look at another application of the
max-flow min-cut theorem called optimal closure in a digraph.

Suppose V is a list of projects that have the following conditions.
Each project v ∈ V has a benefit bv ∈ R and there are certain “closure”
restrictions on the projects: if project v is done then project w must
also be done. Suppose our goal is to choose a set of projects from the
list V such that all closure conditions are satisfied and the total benefit
is maximized. There is no limit on the number of projects chosen.

We solve this problem by modeling it as a max flow problem. Con-
struct a digraph G = (V,E) where V is the list of projects and directed
edges in E model the closure conditions: if vw ∈ E then project w has
to be chosen if project v is chosen. Then our problem is to choose a
max benefit A ⊆ V such that the cut δ(A) = ∅. Such a set A is called
a closure of V .

A classical example of this problem is in the design of an open-
pit mine. Here the region under consideration is divided into three
dimensional blocks. For each block v there is an estimated net profit
bv associated with excavating it. If block v is to be excavated, then
we must first excavate the block w “above” it. This is modeled by the
arc vw which says that if v is chosen to be excavated, we must also
excavate w.

Note that we have two extreme situations: if bv ≥ 0 for all v ∈ V
then we would choose A = V . If bv ≤ 0 for all v ∈ V then we would
choose A = ∅.

Given the digraph G with numbers bv for all v ∈ V , we create a
network G′ as follows. The vertex set of G′ is V ′ = V ∪ {s, t} and the
edge set of G′ is E ′ defined as follows. For all v ∈ V such that bv > 0
put sv ∈ E ′ with usv = bv. For all v ∈ V such that bv < 0 put vt ∈ E ′

with uvt = −bv. Further add E(G) to E ′ with infinite capacities.
(a) Let R = {s} ∪ A such that δ′(R) is a finite capacity cut of G′.

Then argue that A is a closure of V . In particular, a min cut works.
(b) If A ⊆ V is a closure of V then show that the (s, t)-cut δ′(R) has

capacity ∑
{bv : v 6∈ A, bv > 0} −

∑
{bv : v ∈ A, bv < 0}.

(c) Prove that to find a max benefit closure, it suffices to find a min
cut δ′({s} ∪ A) of G′. Hint: Adding

∑
{bv : v ∈ A, bv ≥ 0} to both

sides of the above expression changes the expression to∑
{bv : v ∈ V, bv ≥ 0} − b(A).
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(d) [1, 3.28] Solve the optimal closure problem in the following exam-
ple. There are 8 jobs to be done with the following names and benefits:

Jobs: a b c d e f g h
Benefits: 4 2 -7 3 -1 -3 2 -1

The closure relations are:
If b is done then c has to be done.
If a is done then b and d have to be done.
If d is done then e and g have to be done.
Jobs e and g both need job f to be done.
If h is done then g has to be done.
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