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EDMONDS-KARP ALGORITHM FOR MAX FLOW
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Last time we saw the Ford-Fulkerson algorithm for max flow in a
network and saw an example in which the algorithm could take expo-
nentially many augmentations in the size of the input. Therefore, the
Ford-Fulkerson algorithm is not a polynomial time algorithm. How-
ever, it turns out that a minor modification results in a polynomial
time algorithm as was pointed out by Edmonds and Karp in 1972. See
[1, Section 8.3] for more details.

Definition 1. We say that an f-augmenting path in the residual
graph G is shortest if it has the least number of edges among all
f-augmenting paths in Gy.

In pratice, the residual graph is modeled as follows. If e € E(G)
with u} (e) = ue. — f(e) > 0 then e € E(Gy). If e € E(G) has uj (e) =
f(e) > 0 then put in an arc €’ into E(G) where €’ is e with its direction
reversed. Under this rule, any directed path from s to ¢ in G will be
an f-augmenting path. We no longer have to worry about making sure
that all the forward edges in the path have u}r(e) > 0 and all backward
edges have u (e) > 0.

A shortest path from s to any vertex v in Gy can be found by
breadth-first search in O(m) time where m = |E(G)|. Check that
any such shortest path from s to v has at most n — 1 edges where
n = |V(G)].

Edmonds and Karp algorithm for Max Flows
Input: A network (G, u, s,t).
Output: A max (s,t)-flow in the network.

(1) Set f(e) =0 for all e € E(G).

(2) Find a shortest f-augmenting path P. If none exists then stop.

(3) Compute 7 as in the Ford Fulkerson algorithm and augment f
along P by 7. Go to (2).
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Theorem 2. The Edmonds-Karp algorithm requires at most ™ aug-
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mentations. This count is independent of the edge capacities.

We will prove this theorem shortly. Before that we derive a corollary
which proves that the Edmonds-Karp algorithm runs in polynomial
time in the size of the input.

Corollary 3. The max flow problem in a network (G,u,s,t) can be
solved in O(m?n) time.

Proof. Each run of step (2) takes O(m) time since a shortest f-augmenting
path can be found in O(m) time by breadth first search. Each run of
step (3) also takes O(m) time. By the above theorem, there are at

most 2% augmentations and so in total, the algorithm takes O(m*n)

time. 0

We now prove the Edmonds-Karp theorem. The proof relies on
the following lemma which is quoted below without proof. Please see
Lemma 8.13 in [1] if you would like to see a proof.

Lemma 4. Let fi, fo,... be a sequence of flows such that f;i 1 is got-
ten from f; by augmenting along path P; where P; is a shortest f;-
augmenting path. Then

(1) [E(P)| < [E(Peta)l

(2) |E(Py)| +2 < |E(B)| for alll > k such that there is some edge
e € E(G) with the property that both e and its reverse edge are
used in the union of P, and Pj.

Proof of theorem. Let P, P,... be the augmenting paths chosen
during the Edmonds Karp algorithm. By the choice of 7 in step (3),
each P; contains at least one bottleneck edge in the residual graph.
For a fixed e, let P, P,,,... be the sequence of augmenting paths
containing e as a bottleneck edge. Note that e could be an edge in
E(G) or the reverse of an edge in E(G). Between F;; and P, there
must exist an augmenting path P, (i; < k < ij41) containing e’ the
edge reverse to e. Now apply part (2) of the above lemma to the pairs

of paths: P;;, P, and Py, P, to get for all j, the inequalities:
E(P,)|+4 < |BE(P)| +2 < |E(P,,,).

But now recall that the length of any P; is at most n — 1. Combining
this with the above inequalities which say that the number of edges
in the paths P, P,,... increase by at least four in each step, we get
that there are at most n/4 paths in the sequence P, P,,, ... that have
a fixed e as bottleneck edge.
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Since each edge or its reverse edge can play the role of e, we have
that there are at most (2m)(n/4) = mn/2 augmenting paths in the
algorithm.
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