MATH 409 LECTURE 15 EDMONDS-KARP ALGORITHM FOR MAX FLOW

REKHA THOMAS

Last time we saw the Ford-Fulkerson algorithm for max flow in a network and saw an example in which the algorithm could take exponentially many augmentations in the size of the input. Therefore, the Ford-Fulkerson algorithm is not a polynomial time algorithm. However, it turns out that a minor modification results in a polynomial time algorithm as was pointed out by Edmonds and Karp in 1972. See [1, Section 8.3] for more details.

Definition 1. We say that an f-augmenting path in the residual graph G_f is **shortest** if it has the least number of edges among all f-augmenting paths in G_f .

In pratice, the residual graph is modeled as follows. If $e \in E(G)$ with $u_f^+(e) = u_e - f(e) > 0$ then $e \in E(G_f)$. If $e \in E(G)$ has $u_f^-(e) = f(e) > 0$ then put in an arc e' into $E(G_f)$ where e' is e with its direction reversed. Under this rule, any directed path from s to t in G_f will be an f-augmenting path. We no longer have to worry about making sure that all the forward edges in the path have $u_f^+(e) > 0$ and all backward edges have $u_f^-(e) > 0$.

A shortest path from s to any vertex v in G_f can be found by **breadth-first search** in O(m) time where m = |E(G)|. Check that any such shortest path from s to v has at most n - 1 edges where n = |V(G)|.

Edmonds and Karp algorithm for Max Flows

Input: A network (G, u, s, t).

Output: A max (s, t)-flow in the network.

- (1) Set f(e) = 0 for all $e \in E(G)$.
- (2) Find a shortest f-augmenting path P. If none exists then stop.
- (3) Compute γ as in the Ford Fulkerson algorithm and augment f along P by γ . Go to (2).

Date: May 3, 2010.

REKHA THOMAS

Theorem 2. The Edmonds-Karp algorithm requires at most $\frac{mn}{2}$ augmentations. This count is independent of the edge capacities.

We will prove this theorem shortly. Before that we derive a corollary which proves that the Edmonds-Karp algorithm runs in polynomial time in the size of the input.

Corollary 3. The max flow problem in a network (G, u, s, t) can be solved in $O(m^2n)$ time.

Proof. Each run of step (2) takes O(m) time since a shortest f-augmenting path can be found in O(m) time by breadth first search. Each run of step (3) also takes O(m) time. By the above theorem, there are at most $\frac{mn}{2}$ augmentations and so in total, the algorithm takes $O(m^2n)$ time.

We now prove the Edmonds-Karp theorem. The proof relies on the following lemma which is quoted below without proof. Please see Lemma 8.13 in [1] if you would like to see a proof.

Lemma 4. Let f_1, f_2, \ldots be a sequence of flows such that f_{i+1} is gotten from f_i by augmenting along path P_i where P_i is a shortest f_i -augmenting path. Then

- (1) $|E(P_k)| \le |E(P_{k+1})|.$
- (2) $|E(P_k)| + 2 \leq |E(P_l)|$ for all l > k such that there is some edge $e \in E(G)$ with the property that both e and its reverse edge are used in the union of P_k and P_l .

Proof of theorem. Let P_1, P_2, \ldots be the augmenting paths chosen during the Edmonds Karp algorithm. By the choice of γ in step (3), each P_i contains at least one bottleneck edge in the residual graph.

For a fixed e, let P_{i_1}, P_{i_2}, \ldots be the sequence of augmenting paths containing e as a bottleneck edge. Note that e could be an edge in E(G) or the reverse of an edge in E(G). Between P_{i_j} and $P_{i_{j+1}}$ there must exist an augmenting path P_k ($i_j < k < i_{j+1}$) containing e' the edge reverse to e. Now apply part (2) of the above lemma to the pairs of paths: P_{i_j}, P_k and $P_k, P_{i_{j+1}}$ to get for all j, the inequalities:

$$|E(P_{i_j})| + 4 \le |E(P_k)| + 2 \le |E(P_{i_{j+1}})|.$$

But now recall that the length of any P_i is at most n - 1. Combining this with the above inequalities which say that the number of edges in the paths P_{i_1}, P_{i_2}, \ldots increase by at least four in each step, we get that there are at most n/4 paths in the sequence P_{i_1}, P_{i_2}, \ldots that have a fixed e as bottleneck edge.

 $\mathbf{2}$

MATH 409 LECTURE 15 EDMONDS-KARP ALGORITHM FOR MAX FLOW 3

Since each edge or its reverse edge can play the role of e, we have that there are at most (2m)(n/4) = mn/2 augmenting paths in the algorithm.

References

[1] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.