
MATH 409 LECTURE 15
EDMONDS-KARP ALGORITHM FOR MAX FLOW

REKHA THOMAS

Last time we saw the Ford-Fulkerson algorithm for max flow in a
network and saw an example in which the algorithm could take expo-
nentially many augmentations in the size of the input. Therefore, the
Ford-Fulkerson algorithm is not a polynomial time algorithm. How-
ever, it turns out that a minor modification results in a polynomial
time algorithm as was pointed out by Edmonds and Karp in 1972. See
[1, Section 8.3] for more details.

Definition 1. We say that an f -augmenting path in the residual
graph Gf is shortest if it has the least number of edges among all
f -augmenting paths in Gf .

In pratice, the residual graph is modeled as follows. If e ∈ E(G)
with u+

f (e) = ue − f(e) > 0 then e ∈ E(Gf). If e ∈ E(G) has u−f (e) =
f(e) > 0 then put in an arc e′ into E(Gf) where e′ is e with its direction
reversed. Under this rule, any directed path from s to t in Gf will be
an f -augmenting path. We no longer have to worry about making sure
that all the forward edges in the path have u+

f (e) > 0 and all backward

edges have u−f (e) > 0.
A shortest path from s to any vertex v in Gf can be found by

breadth-first search in O(m) time where m = |E(G)|. Check that
any such shortest path from s to v has at most n − 1 edges where
n = |V (G)|.

Edmonds and Karp algorithm for Max Flows
Input: A network (G, u, s, t).
Output: A max (s, t)-flow in the network.

(1) Set f(e) = 0 for all e ∈ E(G).
(2) Find a shortest f -augmenting path P . If none exists then stop.
(3) Compute γ as in the Ford Fulkerson algorithm and augment f

along P by γ. Go to (2).

Date: May 3, 2010.
1

2 REKHA THOMAS

Theorem 2. The Edmonds-Karp algorithm requires at most mn
2

aug-
mentations. This count is independent of the edge capacities.

We will prove this theorem shortly. Before that we derive a corollary
which proves that the Edmonds-Karp algorithm runs in polynomial
time in the size of the input.

Corollary 3. The max flow problem in a network (G, u, s, t) can be
solved in O(m2n) time.

Proof. Each run of step (2) takesO(m) time since a shortest f -augmenting
path can be found in O(m) time by breadth first search. Each run of
step (3) also takes O(m) time. By the above theorem, there are at
most mn

2
augmentations and so in total, the algorithm takes O(m2n)

time. �

We now prove the Edmonds-Karp theorem. The proof relies on
the following lemma which is quoted below without proof. Please see
Lemma 8.13 in [1] if you would like to see a proof.

Lemma 4. Let f1, f2, . . . be a sequence of flows such that fi+1 is got-
ten from fi by augmenting along path Pi where Pi is a shortest fi-
augmenting path. Then

(1) |E(Pk)| ≤ |E(Pk+1)|.

(2) |E(Pk)|+ 2 ≤ |E(Pl)| for all l > k such that there is some edge
e ∈ E(G) with the property that both e and its reverse edge are
used in the union of Pk and Pl.

Proof of theorem. Let P1, P2, . . . be the augmenting paths chosen
during the Edmonds Karp algorithm. By the choice of γ in step (3),
each Pi contains at least one bottleneck edge in the residual graph.

For a fixed e, let Pi1 , Pi2 , . . . be the sequence of augmenting paths
containing e as a bottleneck edge. Note that e could be an edge in
E(G) or the reverse of an edge in E(G). Between Pij and Pij+1

there
must exist an augmenting path Pk (ij < k < ij+1) containing e′ the
edge reverse to e. Now apply part (2) of the above lemma to the pairs
of paths: Pij , Pk and Pk, Pij+1

to get for all j, the inequalities:

|E(Pij)|+ 4 ≤ |E(Pk)|+ 2 ≤ |E(Pij+1
)|.

But now recall that the length of any Pi is at most n− 1. Combining
this with the above inequalities which say that the number of edges
in the paths Pi1 , Pi2 , . . . increase by at least four in each step, we get
that there are at most n/4 paths in the sequence Pi1 , Pi2 , . . . that have
a fixed e as bottleneck edge.

MATH 409 LECTURE 15 EDMONDS-KARP ALGORITHM FOR MAX FLOW 3

Since each edge or its reverse edge can play the role of e, we have
that there are at most (2m)(n/4) = mn/2 augmenting paths in the
algorithm.

References

[1] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.

