
MATH 409 LECTURE 13
NETWORK FLOWS

REKHA THOMAS

A network (G, u, s, t) consists of the following data:

• A digraph G,
• edge capacities ue ∈ R≥0 for all e ∈ E(G), and
• two specified notes s (source) and t (sink) in V (G).

The u in (G, u, s, t) is the vector u = (ue1 , . . . , uem) of edge capacities.
It is also sometimes written as u = (ue)e∈E(G).

Definition 1. • A flow is a vector f = (f(e1), . . . , f(em)) =
(f(e))e∈E(G) such that 0 ≤ f(e) ≤ ue for all e ∈ E(G).
• A flow f satisfies flow conservation at vertex v if∑

δ−(v)

f(e) =
∑
δ+(v)

f(e)

where δ−(v) = {wv ∈ E(G)} = { edges entering v } and
δ+(v) = {vw ∈ E(G)} = { edges leaving v }.
• Given a network (G, u, s, t), an s − t flow is a flow satisfying

flow conservation at all v ∈ V (G)\{s, t}.
• The value of an s− t flow f is

value(f) :=
∑
δ+(s)

f(e)−
∑
δ−(s)

f(e)

which is the total flow leaving the source node s minus the total
flow entering s.

The Max Flow Problem
Input: A network (G, u, s, t).
Output: An s− t flow in the network of maximum value.

The max-flow problem can be modeled as a LP as follows.

max
∑

e∈δ+(s) xe −
∑

e∈δ−(s) xe
s.t.

∑
e∈δ+(v) xe −

∑
e∈δ−(v) xe = 0 ∀ v ∈ V (G)\{s, t}

0 ≤ xe ≤ ue ∀ e ∈ E(G)

Date: April 26, 2010.
1



2 REKHA THOMAS

Since xe = 0 for all e ∈ E(G) is a solution to this LP, the max
flow problem is feasible. Further, the max value of a flow cannot ex-
ceed the sum of the capacities on the edges in δ+(s) which is finite
which means the max flow problem is bounded. Now recall that a fea-
sible bounded LP always has an optimal solution with finite optimal
value. So the max flow problem can be solved to optimality using an
algorithm for linear programming. Since linear programming can be
solved in polynomial time using interior point methods, we get that the
max flow problem can be solved in polynomial time. However, we will
see combinatorial algorithms that solve the max flow problem without
using the LP formulation given above and these algorithms are also
polynomial time.

Exercise 2. Write down the dual LP to the above LP formulation of
the max flow problem. (The dual of an LP was written down in the
previous lecture.)

Exercise 3. Write down a linear or integer programming formulation
of the minimum spanning tree problem in an undirected graph G. (i.e.,
Write down a linear or integer program whose optimal solution gives
a MST with respect to the costs on the edges of G.) Argue why your
formulation is correct. Look back at Lecture 1 if needed.

Note that we are using the variable xe instead of f(e) in the above
formulation as it’s more typical to use x for variables instead of f . Note
also that the max flow problem is a linear program. It is bounded if
we assume that all the edge capacities are bounded since all solutions
must lie in the box specified by the constraints 0 ≤ xe ≤ ue for all
e ∈ E(G). Further, since xe = 0 for all e ∈ E(G) is a feasible solution,
this LP is feasible. Then the theory of linear programming implies that
the max flow problem always has an optimal solution.

Definition 4. • An (s, t)-cut in G is a set of edges

δ+(X) := { edges ofGwith tail inX and head inV (G)\X}.

Here X ⊂ V (G) is such that s ∈ X and t ∈ V (G)\X.
• The capacity of an (s, t)-cut δ+(X) is the sum of the capacities

on the edges of the cut.
• A minimum (s, t)-cut is an (s, t)-cut of minimum capacity in

(G, u).

We now develop a combinatorial algorithm to solve this problem.
Our discussion is based on [1, Chapter 8.1]. Recall that we use both f
and x for flow.



MATH 409 LECTURE 13 NETWORK FLOWS 3

Lemma 5. For any A ⊆ V (G) such that s ∈ A, t 6∈ A and any (s, t)-
flow f ,

(a) value(f) =
∑

e∈δ+(A) f(e)−
∑

e∈δ−(A) f(e), and

(b) value(f) ≤
∑

e∈δ+(A) ue.

Proof. We prove both facts at one shot. Recall that value(f)

:=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

=

 ∑
e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

 +
∑

v∈A\{s}

 ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)


=

∑
v∈A

 ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)


=

∑
e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e) ≤
∑

e∈δ+(A)

f(e) ≤
∑

e∈δ+(A)

ue.

The first line is the definition of value(f). In the second line we can add
the second term to the value of f since all the components of the second
term are zero due to flow conservation. The third line aggregates the
sum in the second line and the first expression in the fourth line is the
final outcome of this aggregate after all the cancellations. The first
inequality in the fourth line comes from the fact that

∑
e∈δ−(A) f(e) is

a non-negative number. Lastly, since all f(e) ≤ ue, we get the second
inequality. �

Corollary 6. The max value of an (s, t)-flow in a network (G, u, s, t)
is less than or equal to the min capacity of an (s, t)-cut in the network.

Theorem 7. (Ford & Fulkerson 1956)
In a network (G, u, s, t) the max value of an (s, t)-flow equals the min
capacity of a (s, t)-cut in the network.

Note that because we already established Corollary 6, what we are
left with is to show the equality in the statement of the theorem. We
do this after describing the algorithm for solving max flows.

References

[1] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.


