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DIGRAPH

REKHA THOMAS

The algorithms we saw so far compute the shortest (r, v)-paths in
a digraph G from a start vertex r and v any vertex in G. These
algorithms require that G has no negative cost cycles, in which case we
say that the vector of costs, c, is conservative. In this lecture we see
how one can detect whether G has a negative cost cycle. This material
is taken from back Section 7.1 in [1].

Definition 1. Let G be a digraph with costs ce ∈ R for all e ∈ E(G).
Let π : V (G) → R be a function that assigns a real number π(v) to
every vertex v ∈ V (G).

(1) For an edge {x, y} ∈ E(G), define the reduced cost of {x, y}
with respect to π to be cxy + π(x)− π(y).

(2) If the reduced costs of all edges of G are nonnegative, we say
that π is a feasible potential on G.

Theorem 2. The digraph G with vector of costs c has a feasible po-
tential if and only if c is conservative.

Proof. (⇒): Suppose π is a feasible potential on (G, c). Then for every
circuit C in G, ∑

e∈E(C)

ce =
∑

xy∈E(C)

cxy + π(x)− π(y) ≥ 0

which implies that c is conservative.
(⇐): Suppose c is conservative. Augment G to a graph G̃ by adding

a new vertex s and putting in edges sv for all v ∈ V (G) and assigning
zero cost to all these new edges. Now run the Moore-Bellman-Ford
algorithm on G̃ with the new cost vector c̃ and start vertex s. The al-
gorithm terminates after |V (G)| steps with numbers l(v) on all vertices
v ∈ V (G). Since l(v) is the length of a shortest (s, v)-path in G̃, we
have that l(v) ≤ l(w) + cvw for all vw ∈ E(G) and hence the l-values
come from a feasible potential on G. �
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Corollary 3. Given (G, c), in O(nm) time we can find either a feasible
potential on G or a negative cost cycle in G.

Proof. Given (G, c) created the augmented digraph G̃ with vector of
costs c̃ exactly as above. Now run the Moore-Bellman-Ford algorithm
on G̃ with the new cost vector c̃ and start vertex s. The algorithm
terminates after |V (G)| steps with numbers l(v) on all vertices v ∈
V (G). If l comes from a feasible potential then we are done.

Otherwise, there is some edge vw ∈ E(G) such that l(w) > l(v)+cvw.
Recall that in each iteration of the Moore-Bellman-Ford algorithm we
check every edge xy and set l(y) := l(x) + cxy if l(y) > l(x) + cxy. So
the only way we end up with l(w) > l(v) + cvw is because, l(v) changed
in the last iteration of the algorithm. But this means that l(p(v))
had to change in the last two iterations of the algorithm which means
that l(p(p(v))) changed in the last three iterations and so on. Now
note that l(s) = 0 throughout the algorithm (s has no previous vertex
to modify its l-value) and so s cannot be among the set of vertices:
w, v, p(v), p(p(v)), · · · . Since the algorithm has n = |V (G)| iterations,
there are n + 1 elements in the list w, v, p(v), p(p(v)), · · · which must
mean that some vertex is repeated in this list since only n vertices can
take part. Therefore, there is a circuit among w, v, p(v), p(p(v)), · · · .
Now recall that in the proof of the Moore-Bellman-Ford algorithm we
had a set F := {xy : x = p(y)} at each stage of the algorithm.
The edges encountered in the sequence w, v, p(v), p(p(v)), · · · are in
F ∪ {vw}. Now using the same proof as in the proof of (a) and (b) in
the Moore-Bellman-Ford algorithm from the last lecture, we get that
the cost of this circuit has to be negative.

Since the Moore-Bellman-Ford algorithm runs on O(nm)-time, we
get the running time asserted. �

We now relate Theorem 2 to linear programming duality that you
know from Math 407. Recall that every linear program (P) has a dual
linear program (D) and we may assume that they are of the form:

(P ) : max cx : Ax ≤ b

and

(D) : min by : yA = c, y ≥ 0.

We say that a LP is feasible if it has a solution. Recall that the
dual of the dual of an LP is just the original LP. The most important
theorem about linear programs is the duality theorem which says the
following.
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Theorem 4. (Duality Theorem) Let (P ) and (D) are both feasible,
then they both have optimal solutions and the optimal values of these
programs are the same. Mathematically, if there exists x such that
Ax ≤ b and y ≥ 0 such that yA = 0 then

max{cx : Ax ≤ b} = min{by : yA = c, y ≥ 0}.

The duality theorem implies another famous result about linear in-
equality systems called the Farkas Lemma.

Theorem 5. (Farkas Lemma) There exists x such that Ax ≤ b if
and only if for all y ≥ 0 such that yA = 0 we get yb ≥ 0.

Proof. (⇒): Suppose there exists x such that Ax ≤ b. Then for all
y ≤ 0 such that yA = 0 we get

0 = (yA)x = y(Ax) ≤ yb.

(⇐): Consider the LP −min{
∑
wi : Ax − Iw ≤ b, w ≥ 0}. Let’s

write this LP in the form of the problem (P) in the duality theorem to
get

max

{
(0 − 1)

(
x
w

)
:

(
A −I
0 −I

)(
x
w

)
≤
(
b
0

)}
which has the solution x = 0, w = |b| which means wi = |bi| for each i.

The dual LP is

min

{
(b, 0)

(
y
z

)
: (y, z)

(
A −I
0 −I

)
=

(
0
−1

)
, y, z ≥ 0

}
which is equal to min{by : yA = 0, 0 ≤ y ≤ 1}. This dual LP is also
feasible since it has the solution y = 0. Therefore, by the duality the-
orem, both programs have optimal solutions and their optimal values
are the same.

If Ax ≤ b is feasible then the original LP has a solution with w = 0
which means the value of the LP is 0. Conversely, if the optimal value
of the LP is 0, then there is a solution with w = 0 which means Ax ≤ b
is feasible. Therefore, Ax ≤ b is feasible if and only if the optimal value
of the first LP is 0 which by the duality theorem is if and only if the
optimal value of the dual LP is 0.

Now suppose for all y ≥ 0 such that yA = 0, we have yb ≥ 0. Then
the min value of the dual LP is 0 (attained by setting y = 0) which
implies that the optimal value of the original LP is 0 which implies
that Ax ≤ b is feasible. �

An equivalent way of stating the Farkas Lemma is as follows:

Farkas Lemma: Either Ax ≤ b has a solution or there exists y ≥ 0
such that yA = 0 and yb < 0.
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Check that the “or” in the above statement is exclusive in the sense
that you cannot have both: suppose there was x such that Ax ≤ b and
y ≥ 0 such that yA = 0 and yb < 0. Then we get the contradiction:

0 = yAx ≤ yb < 0.

The second version of Farkas Lemma is an example of an alternative
theorem in mathematics. It says that either A happens or B happens
but not both.

Exercise 6. Using Farkas Lemma, establish the following alternative
theorems:

(1) Either Ax = b has a solution or there exists y such that yA = 0
and yb < 0. (We did this in class.)

(2) Either Ax ≤ b, x ≥ 0 has a solution or there exists a y such
that y ≥ 0, yA ≥ 0 and yb < 0.

(3) Either Ax = b, x ≥ 0 has a solution or there exists a y such
that yA ≥ 0 and yb < 0.

In each case, argue that the two situations are mutually exclusive.

Exercise 7. Show that Theorem 2 follows from Farkas Lemma applied
to an appropriate linear inequality system.
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