
MATH 409 LECTURE 11
THE MOORE-BELLMAN-FORD ALGORITHM

REKHA THOMAS

We now study a second algorithm for finding shortest paths in a di-
graph that works for any edge costs (possibly negative). The digraph
will however still have all the assumptions from Lecture 9, which in
particular assumes that the graph has no negative cost cycles. This
material is taken from [2].

Moore-Bellman-Ford Algorithm

Input: a digraph G without negative cycles, edge costs ce ∈ R for all
e ∈ E(G) and a start vertex r ∈ V (G).
Output: for all v ∈ V (G),

— l(v) – the length of a shortest path from r to v
— p(v) – the previous node to v on such a path

If v is not reachable from r, then get l(v) =∞ and p(v) is undefined.

(1) Set l(r) := 0 and l(v) =∞ for all v ∈ V (G)\{r}.
(2) For i = 1, . . . , n− 1 do

For each vw ∈ E(G) do:
if l(w) > l(v)+cvw then set l(w) = l(v)+cvw and p(w) := v.

Theorem 1. The Moore-Bellman-Ford Algorithm runs in O(nm)-time.

Proof. The outer loop takes O(n) time since there are n− 1 iterations.
The inner loop takes O(m) time as it checks the l-value at the head
vertex of every edge in the graph. This gives an O(nm)-algorithm.
(Convince yourself that all the other work done such as comparing
l(w) to l(v) + cvw only contribute constant factors to the complexity of
the algorithm.) �

Theorem 2. The Moore-Bellman-Ford algorithm works correctly.

Proof. At any stage of the algorithm let R := {v ∈ V (G) : l(v) <∞}
and F := {xy ∈ E(G) : x = p(y)}. Recall that l(v) < ∞ just means
that l(v) is finite. Also note that F may not include all the edges of G.
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Further, every vertex x ∈ R has a unique previous vertex p(x) assigned
to it by the algorithm even though there maybe many vertices y in
V (G) such that yx ∈ E(G).

We first argue the following:

(a) l(y) ≥ l(x) + cxy for all xy ∈ F .
(b) If F contains a circuit C, then C has a negative cost.
(c) If G has no negative cost cycles then R and F together form an

arborescence rooted at r.

(a) Note that throughout the algorithm, no l-value ever increases. If
xy ∈ F then at some stage of the algorithm, p(y) is set to x and l(y)
is set to l(x) + cxy. As the algorithm proceeds, l(x) never increases
and although l(y) maybe set to l(x) + cxy again, l(y) is always at least
l(x) + cxy.

(b) Suppose at some stage, a circuit C in F was created by setting
p(y) := x. Then before that insertion we had l(y) > l(x) + cxy as
well as l(w) ≥ l(v) + cvw for all vw ∈ E(C)\{xy} by (a). Summing
these inequalities as you go around the edges of C, shows that C has
negative total cost. More elaborately, if the vertices in C (in order)
are y, x, x1, x2, . . . , xk, then we have l(y) > l(x) + cxy, l(x) ≥ l(x1) +
cx1x, l(x1) ≥ l(x2) + cx2x1 , . . . , l(xk) ≥ l(y) + cyxk

. If you sum these
inequalities then all the l(·) terms cancel and we get 0 > cxy + cx1x +
cx2x1 + . . . + cyxk

= c(C).
(c) Since our graph has no negative cost cycles, (b) implies that F

has no directed circuits. Further, x ∈ R\{r} implies that p(x) ∈ R
since x ∈ R implies that l(x) is finite which means that l(p(x)) is
also finite and p(x) ∈ R. So R and F together form a directed graph
rooted at r where every node has precisely one previous node which
implies that every node in R has at most one entering edge. This last
property implies that the underlying graph of (R, F ) is acyclic: We
have already ruled out a directed circuit, so if there was a circuit in the
undirected graph, then some node in R would have two edges entering
it. A connected acyclic digraph (i.e., the underlying undirected graph
is connected and acyclic) in which every node has at most one entering
edge is called an arborescence. So we have shown that (R, F ) is an
arborescence with root r.

We are now ready to prove the theorem. Before we start, note that
l(x) is at least the length of the (r, x)-path in (R, F ) for any x ∈
R at any stage of the algorithm. This is because, l(x) = l(p(x)) +
cp(x)x = l(p(p(x)))+ cp(p(x))p(x) + cp(x)x = . . . = the length of the(r, x)−
path in (R, F ).
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We now prove the following statement by induction:

After k iterations of the algorithm, l(x) is at most the length of a
shortest (r, x)-path with at most k edges.

Why does this help? Suppose we can prove this. Then this statement
will hold for k = n−1 and we will have that at the end of the algorithm
(which has n − 1 iterations), l(x) is at most the length of a shortest
(r, x)-path with at most n − 1 edges. However, as we noted before,
l(x) is also at least the length of the (r, x)-path in (R, F ) at the end of
the algorithm and the algorithm gives us an (r, x)-path of length l(x).
Putting this together with the observation that no shortest path has
more than n− 1 edges, we will obtain the correctness of the algorithm.

Proof of the statement: First check that the statement is true for
k = 0 and then assume that its true up to k − 1. Let P be a shortest
(r, x)-path with at most k edges and wx be the last edge of P . Then
P[r,w] must be a shortest (r, w)-path with at most k − 1 edges, and by
the induction hypothesis we have l(w) ≤ c(P[r,w]) after k−1 iterations.
But in the k-th iteration, wx is also examined, after which l(x) ≤
l(w) + cwx ≤ c(P[r,w]) + cwx = c(P ).

�

Exercise 3. Run the Moore-Bellman-Ford algorithm on the digraph
in Exercise 5 of Lecture 10.
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