MATH 409 LECTURE 1
INTRODUCTION TO DISCRETE OPTIMIZATION

REKHA THOMAS

The set of all real numbers will be denoted as R and the set of all
integers by Z. A function f is said to be real valued if its values are real
numbers. For instance a vector ¢ = (cy, ..., ¢,) € R" defines the linear
function f : R® — R such that x +— ¢z := c1x1 + coxg + -+ - + Ty,
Linear programs always have linear objective functions f(z) = ¢z as
above. Note that this is a real valued function since ¢ -z € R.

A polyhedron P C R" is the set of all points x € R” that satisfy a
finite set of linear inequalities. Mathematically,

P={xeR": Az < b}

for some matrix A € R™*" and a vector b € R"™. A polyhedron can
be presented in many different ways such as P = {z € R" : Az =
byr > 0} or P = {x € R* : Ax > b}. All these formulations are
equivalent. A polyhedron is called a polytope if it is bounded, i.e.,
can be enclosed in a ball of finite radius.

Definition 1. A set ) C R" is convex if for any two points z and y in
@, the line segment joining them is also in (). Mathematically, for every
pair of points z,y € @, the convex combination Az + (1 — \)y € Q
for every A such that 0 < X\ < 1.

Definition 2. A convex combination of a finite set of points vy, ..., v;
in R™ is any vector of the form 22:1 Aiv; such that 0 < \; < 1 for
allt=1,...,t and 22:1 A; = 1.The set of all convex combinations of
v1,...,0, is called the convex hull of vq,..., v,.

Let conv(vy,...,v,) denote the convex hull of vy, ..., v,.

Theorem 3. FEvery polytope P is the convex hull of a finite number of
points. If P = conv(vy,...,v,) but P # conv(vy, ..., 01, Vit1,- -, Up),
then we say that v; is a vertex or extreme point of P.

A linear program is the problem of maximizing or minimizing a
linear function of the form » !  ¢x; over all x = (z1,...,2,) in a
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polyhedron P. Mathematically, it is the problem
min/mazx Z cit;  Ax <b
i=1

for some matrix A and vector b.

Definition 4. A discrete optimization problem is the problem of
optimizing (maximizing or minimizing) a real valued objective function
over a discrete (as opposed to continuous) set of points.

Example 5. (a) A continuous optimization problem:

maximize 1z + Za
subject to 2xy + 1z < 12
X9 < 11/2
T1,T9 Z 0
This is an example of a linear program. The feasible region of this
linear program is the polytope

P ={(z1,15) € R?* : 221 + 15 <12, 25 < 11/2, 1,25 > 0}.

The objective or cost function is the real valued function f(x,zy) =
x1 + x9 and the optimal solution is the point (13/4,11/2) which is a
vertex of the feasible region P.

(b) A discrete optimization problem:
Now consider the integer program associated to the above linear
program:
maximize 1z + Zo
subject to 2xy +xo <12
T < 11/2
r1,T2 > 0 w1,y integer
The feasible region of this optimization problem is the set of all lattice
points that lie in the polyhedron P from (a). In particular, the feasible
region is finite. This integer program has two optimal solutions: (4,4)
and (3,5).

Definition 6. The convex hull of the integer points in a polyhedron
P C R" is called the integer hull of P and is typically denoted as P;.

Exercise 7. Let P; be the integer hull of the feasible region P in
Example 5 (a). In other words, P is the convex hull of the feasible
solutions to the integer program in Example 5 (b).

(i) Describe Py using linear inequalities.

(ii) List the vertices of P;.
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(iii) Describe how the integer program in Example 5 (b) can be solved
as a linear program using F;.

Let X be a finite set called the ground set and let 2% denote the
power set of X which is the set of all subsets of X. Recall that 2% has
21X1 elements. If the feasible region of a discrete optimization prob-
lem is a subset of the power set 2% then we have a combinatorial
optimization problem.

Example 8. Consider the graph G below with the three edges 1,2, 3.
(Graph drawn in class). Let X be the set containing the three edges of
G. Therefore, X = {1,2,3}. We also assign weights to the three edges
as follows: w; = 5, wy = 4 and wy = 1. Now consider the problem
of finding the maximum weight acyclic subgraph of G. An acyclic
subgraph of GG is a subgraph of G with no cycles.

The feasible region of the above problem is the set

S= {®7 {1}7 {2}7 {3}7 {17 3}7 {27 3}}

which a subset of the power set 21123} The weight of a subgraph
is the sum of the weights of its edges. This problem can be solved
by first completely enumerating the set of feasible solutions S as we
have done above and then calculating the weights of the solutions and
picking the one with largest weight. Check that the optimal solution
is the subgraph {1,3}. In larger problems the method of complete
enumeration followed by sorting may not be practical.

We now turn the above problem into an algebraic/geometric problem
and solve it using linear programming.

Definition 9. If T C X, then the incidence or characteristic vector
of T is the 0, 1-vector v(T") of length |X| defined as follows:

| ifzeT
U@%_{Oﬁng

Example 8 continued. The incidence vectors of the feasible solutions
are:

T o(T)

0 (0,0,0
{1} |(1,0,0
{2} 1 (0,1,0
{3} 1(0,0,1
{1,3} ] (1,0,1
{2,3}](0,1,1
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The convex hull of these six vectors is the polyhedron
PS = {(.’171,332,133) c Rg A Z O,SL’Q Z 071 Z XT3 Z 0,1’1 + X9 S 1}

We can now solve this combinatorial optimization problem by solving
the linear program max {5z +4xs + 3 : (21, x9,23) € Ps}. The op-
timal solution of this linear program is the vertex (1,0, 1) of Ps which
is the incidence vector of the acyclic subgraph {1,3}. O

The above example shows how one can solve a combinatorial opti-
mization problem by first enumerating its feasible solutions, the set of
which is denoted as §. Then we compute an inequality representation
of Ps = conv(S). Finally we solve the linear program max {c-z : z €
Ps}. The feasible region of this linear program is Pis.

Definition 10. Consider the linear program
max{c-x : Az <b} (I)
and the associated integer program
max{c-x : Ax <b, x integer} (II).
Then (I) is called the linear programming (LP) relaxation of (II).

Exercise 11. (i) Why did the linear program
max {bxry + 4wy + x5 1 (21,29, 23) € Ps}

solve the combinatorial optimization problem in Example 87
(ii) Construct an integer program in two variables whose LP-relaxation
does not have the same optimal solution as the integer program.
(iii) Find the feasible region of the following integer program:
max 5wy + 4wg + 13
s.t. 1 2 T 2 0
1 2 To Z 0
1 Z T3 Z 0
T1+ To — T3 S 1
T+ 29+ 23 <2
(71,29, 73) € 72
(iv) Solve the LP-relaxation of the integer program in (iii). Does it
solve the integer program in (iii)?

The point of the above exercise is to illustrate that a combinato-
rial optimization problem can be formulated as an integer program
max{c-z : Az <b, x integer} in many different ways (i.e., by choos-
ing different sets of inequalities Ax < b). However, the different LP-
relaxations they yield may have different optima. Some are tighter
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relaxations than others. The inequalities that cut out the convex hull
of the feasible region S of the combinatorial optimization problem yield
the tightest linear programming relaxation of the integer program.

Exercise 12. A vertex packing of a graph G is a set of vertices F
of G with no edges of G' connecting two vertices in F. A vertex pack-
ing is sometimes also called an independent set or a stable set in G.

(i) Find all vertex packings of the graph G whose vertex set is V' =
{1,2,3,4} and edge set is £ = {{1,4},{1,3},{1,2},{2,4},{2,3}}.
Calculate their incidence vectors. Let & be the set of incidence vectors
of the vertex packings of G.

(ii) Verify that S is the feasible region of both the following systems:
(a) 2I1+2$2+I3+Z‘4 < 2, 0< T1,X9,T3,T4 < 1, T; € Zi = ].,...,4
(b) 1+ zo+a23 <1, 1+ao+24 <1, 21,20,23,24 >0, 2, €Z, 1 =
1,....4.

(iii) Can you write down a tighter system of inequalities that cut out
a polyhedron P whose set of lattice points is S7 (Hint: What is the
inequality presentation of conv(S)?)



