MATH 409 LECTURE 1 INTRODUCTION TO DISCRETE OPTIMIZATION

REKHA THOMAS

The set of all real numbers will be denoted as \mathbb{R} and the set of all integers by \mathbb{Z} . A function f is said to be real valued if its values are real numbers. For instance a vector $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ defines the linear function $f : \mathbb{R}^n \to \mathbb{R}$ such that $x \mapsto c \cdot x := c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$. Linear programs always have linear objective functions $f(x) = c \cdot x$ as above. Note that this is a real valued function since $c \cdot x \in \mathbb{R}$.

A **polyhedron** $P \subseteq \mathbb{R}^n$ is the set of all points $x \in \mathbb{R}^n$ that satisfy a finite set of linear inequalities. Mathematically,

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}$$

for some matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^n$. A polyhedron can be presented in many different ways such as $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ or $P = \{x \in \mathbb{R}^n : Ax \ge b\}$. All these formulations are equivalent. A polyhedron is called a **polytope** if it is bounded, i.e., can be enclosed in a ball of finite radius.

Definition 1. A set $Q \subseteq \mathbb{R}^n$ is **convex** if for any two points x and y in Q, the line segment joining them is also in Q. Mathematically, for every pair of points $x, y \in Q$, the **convex combination** $\lambda x + (1 - \lambda)y \in Q$ for every λ such that $0 \leq \lambda \leq 1$.

Definition 2. A convex combination of a finite set of points v_1, \ldots, v_t in \mathbb{R}^n , is any vector of the form $\sum_{i=1}^t \lambda_i v_i$ such that $0 \leq \lambda_i \leq 1$ for all $i = 1, \ldots, t$ and $\sum_{i=1}^t \lambda_i = 1$. The set of all convex combinations of v_1, \ldots, v_n is called the **convex hull** of v_1, \ldots, v_n .

Let $\operatorname{conv}(v_1,\ldots,v_n)$ denote the convex hull of v_1,\ldots,v_n .

Theorem 3. Every polytope P is the convex hull of a finite number of points. If $P = \operatorname{conv}(v_1, \ldots, v_n)$ but $P \neq \operatorname{conv}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$, then we say that v_i is a vertex or extreme point of P.

A **linear program** is the problem of maximizing or minimizing a linear function of the form $\sum_{i=1}^{n} c_i x_i$ over all $\mathbf{x} = (x_1, \dots, x_n)$ in a

Date: April 5, 2010.

polyhedron P. Mathematically, it is the problem

$$\min/\max\sum_{i=1}^{n} c_i x_i : A\mathbf{x} \le b$$

for some matrix A and vector b.

Definition 4. A discrete optimization problem is the problem of optimizing (maximizing or minimizing) a real valued objective function over a *discrete* (as opposed to continuous) set of points.

Example 5. (a) A continuous optimization problem:

maximize
$$x_1 + x_2$$

subject to $2x_1 + x_2 \leq 12$
 $x_2 \leq 11/2$
 $x_1, x_2 \geq 0$

This is an example of a linear program. The **feasible region** of this linear program is the polytope

$$P = \{ (x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \le 12, \ x_2 \le 11/2, \ x_1, x_2 \ge 0 \}.$$

The objective or cost function is the real valued function $f(x_1, x_2) = x_1 + x_2$ and the optimal solution is the point (13/4, 11/2) which is a vertex of the feasible region P.

(b) A discrete optimization problem:

Now consider the **integer program** associated to the above linear program:

maximize
$$x_1 + x_2$$

subject to $2x_1 + x_2 \leq 12$
 $x_2 \leq 11/2$
 $x_1, x_2 \geq 0$ x_1, x_2 integer

The feasible region of this optimization problem is the set of all lattice points that lie in the polyhedron P from (a). In particular, the feasible region is finite. This integer program has two optimal solutions: (4, 4) and (3, 5).

Definition 6. The convex hull of the integer points in a polyhedron $P \subseteq \mathbb{R}^n$ is called the **integer hull** of P and is typically denoted as P_I .

Exercise 7. Let P_I be the integer hull of the feasible region P in Example 5 (a). In other words, P_I is the convex hull of the feasible solutions to the integer program in Example 5 (b).

(i) Describe P_I using linear inequalities.

(ii) List the vertices of P_I .

(iii) Describe how the integer program in Example 5 (b) can be solved as a linear program using P_I .

Let X be a finite set called the **ground set** and let 2^X denote the power set of X which is the set of all subsets of X. Recall that 2^X has $2^{|X|}$ elements. If the feasible region of a discrete optimization problem is a subset of the power set 2^X then we have a **combinatorial optimization problem**.

Example 8. Consider the graph G below with the three edges 1, 2, 3. (Graph drawn in class). Let X be the set containing the three edges of G. Therefore, $X = \{1, 2, 3\}$. We also assign weights to the three edges as follows: $w_1 = 5$, $w_2 = 4$ and $w_3 = 1$. Now consider the problem of finding the maximum weight **acyclic** subgraph of G. An acyclic subgraph of G is a subgraph of G with no cycles.

The feasible region of the above problem is the set

 $\mathcal{S} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\}\}$

which a subset of the power set $2^{\{1,2,3\}}$. The weight of a subgraph is the sum of the weights of its edges. This problem can be solved by first completely enumerating the set of feasible solutions S as we have done above and then calculating the weights of the solutions and picking the one with largest weight. Check that the optimal solution is the subgraph $\{1,3\}$. In larger problems the method of complete enumeration followed by sorting may not be practical.

We now turn the above problem into an algebraic/geometric problem and solve it using linear programming.

Definition 9. If $T \subseteq X$, then the **incidence** or **characteristic** vector of T is the 0, 1-vector v(T) of length |X| defined as follows:

$$v(T)_x = \begin{cases} 1 & \text{if } x \in T \\ 0 & \text{if } x \notin T \end{cases}$$

Example 8 continued. The incidence vectors of the feasible solutions are:

T	v(T)
Ø	(0, 0, 0)
$\{1\}$	(1, 0, 0)
$\{2\}$	(0, 1, 0)
$\overline{3}$	(0, 0, 1)
$\{1, 3\}$	(1, 0, 1)
$\{2,3\}$	(0, 1, 1)

REKHA THOMAS

The convex hull of these six vectors is the polyhedron

$$P_{\mathcal{S}} = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \ge 0, x_2 \ge 0, 1 \ge x_3 \ge 0, x_1 + x_2 \le 1 \}.$$

We can now solve this combinatorial optimization problem by solving the linear program max $\{5x_1 + 4x_2 + x_3 : (x_1, x_2, x_3) \in P_S\}$. The optimal solution of this linear program is the vertex (1, 0, 1) of P_S which is the incidence vector of the acyclic subgraph $\{1, 3\}$. \Box

The above example shows how one can solve a combinatorial optimization problem by first enumerating its feasible solutions, the set of which is denoted as S. Then we compute an inequality representation of $P_S = conv(S)$. Finally we solve the linear program max $\{c \cdot x : x \in P_S\}$. The feasible region of this linear program is P_S .

Definition 10. Consider the linear program

 $\max\{c \cdot x : Ax \le b\} \quad (I)$

and the associated integer program

4

 $\max\{c \cdot x : Ax \le b, x \text{ integer}\} \quad (II).$

Then (I) is called the **linear programming (LP) relaxation** of (II).

Exercise 11. (i) Why did the linear program

 $\max \{ 5x_1 + 4x_2 + x_3 : (x_1, x_2, x_3) \in P_{\mathcal{S}} \}$

solve the combinatorial optimization problem in Example 8? (ii) Construct an integer program in two variables whose LP-relaxation does not have the same optimal solution as the integer program. (iii) Find the feasible region of the following integer program:

$$\begin{array}{ll} \max & 5x_1 + 4x_2 + x_3 \\ \text{s.t.} & 1 \ge x_1 \ge 0 \\ & 1 \ge x_2 \ge 0 \\ & 1 \ge x_3 \ge 0 \\ & x_1 + x_2 - x_3 \le 1 \\ & x_1 + x_2 + x_3 \le 2 \\ & (x_1, x_2, x_3) \in \mathbb{Z}^3 \end{array}$$

(iv) Solve the LP-relaxation of the integer program in (iii). Does it solve the integer program in (iii)?

The point of the above exercise is to illustrate that a combinatorial optimization problem can be formulated as an integer program max $\{c \cdot x : Ax \leq b, x \text{ integer}\}$ in many different ways (i.e., by choosing different sets of inequalities $Ax \leq b$). However, the different LPrelaxations they yield may have different optima. Some are *tighter* relaxations than others. The inequalities that cut out the convex hull of the feasible region \mathcal{S} of the combinatorial optimization problem yield the tightest linear programming relaxation of the integer program.

Exercise 12. A vertex packing of a graph G is a set of vertices \mathcal{F} of G with no edges of G connecting two vertices in \mathcal{F} . A vertex packing is sometimes also called an **independent set** or a **stable set** in G.

(i) Find all vertex packings of the graph G whose vertex set is $V = \{1, 2, 3, 4\}$ and edge set is $E = \{\{1, 4\}, \{1, 3\}, \{1, 2\}, \{2, 4\}, \{2, 3\}\}$. Calculate their incidence vectors. Let S be the set of incidence vectors of the vertex packings of G.

(ii) Verify that S is the feasible region of both the following systems: (a) $2x_1 + 2x_2 + x_3 + x_4 \leq 2$, $0 \leq x_1, x_2, x_3, x_4 \leq 1$, $x_i \in \mathbb{Z}$ $i = 1, \ldots, 4$ (b) $x_1 + x_2 + x_3 \leq 1$, $x_1 + x_2 + x_4 \leq 1$, $x_1, x_2, x_3, x_4 \geq 0$, $x_i \in \mathbb{Z}$, $i = 1, \ldots, 4$.

(iii) Can you write down a tighter system of inequalities that cut out a polyhedron P whose set of lattice points is S? (Hint: What is the inequality presentation of conv(S)?)