
MATH 409 LECTURE 1
INTRODUCTION TO DISCRETE OPTIMIZATION

REKHA THOMAS

The set of all real numbers will be denoted as R and the set of all
integers by Z. A function f is said to be real valued if its values are real
numbers. For instance a vector c = (c1, . . . , cn) ∈ Rn defines the linear
function f : Rn → R such that x 7→ c · x := c1x1 + c2x2 + · · · + cnxn.
Linear programs always have linear objective functions f(x) = c · x as
above. Note that this is a real valued function since c · x ∈ R.

A polyhedron P ⊆ Rn is the set of all points x ∈ Rn that satisfy a
finite set of linear inequalities. Mathematically,

P = {x ∈ Rn : Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rn. A polyhedron can
be presented in many different ways such as P = {x ∈ Rn : Ax =
b, x ≥ 0} or P = {x ∈ Rn : Ax ≥ b}. All these formulations are
equivalent. A polyhedron is called a polytope if it is bounded, i.e.,
can be enclosed in a ball of finite radius.

Definition 1. A set Q ⊆ Rn is convex if for any two points x and y in
Q, the line segment joining them is also in Q. Mathematically, for every
pair of points x, y ∈ Q, the convex combination λx + (1− λ)y ∈ Q
for every λ such that 0 ≤ λ ≤ 1.

Definition 2. A convex combination of a finite set of points v1, . . . , vt

in Rn, is any vector of the form
∑t

i=1 λivi such that 0 ≤ λi ≤ 1 for

all i = 1, . . . , t and
∑t

i=1 λi = 1.The set of all convex combinations of
v1, . . . , vn is called the convex hull of v1, . . . , vn.

Let conv(v1, . . . , vn) denote the convex hull of v1, . . . , vn.

Theorem 3. Every polytope P is the convex hull of a finite number of
points. If P = conv(v1, . . . , vn) but P 6= conv(v1, . . . , vi−1, vi+1, . . . , vn),
then we say that vi is a vertex or extreme point of P .

A linear program is the problem of maximizing or minimizing a
linear function of the form

∑n
i=1 cixi over all x = (x1, . . . , xn) in a
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polyhedron P . Mathematically, it is the problem

min/max
n∑

i=1

cixi : Ax ≤ b

for some matrix A and vector b.

Definition 4. A discrete optimization problem is the problem of
optimizing (maximizing or minimizing) a real valued objective function
over a discrete (as opposed to continuous) set of points.

Example 5. (a) A continuous optimization problem:

maximize x1 + x2

subject to 2x1 + x2 ≤ 12
x2 ≤ 11/2
x1, x2 ≥ 0

This is an example of a linear program. The feasible region of this
linear program is the polytope

P = {(x1, x2) ∈ R2 : 2x1 + x2 ≤ 12, x2 ≤ 11/2, x1, x2 ≥ 0}.
The objective or cost function is the real valued function f(x1, x2) =
x1 + x2 and the optimal solution is the point (13/4, 11/2) which is a
vertex of the feasible region P .

(b) A discrete optimization problem:
Now consider the integer program associated to the above linear
program:

maximize x1 + x2

subject to 2x1 + x2 ≤ 12
x2 ≤ 11/2
x1, x2 ≥ 0 x1, x2 integer

The feasible region of this optimization problem is the set of all lattice
points that lie in the polyhedron P from (a). In particular, the feasible
region is finite. This integer program has two optimal solutions: (4, 4)
and (3, 5).

Definition 6. The convex hull of the integer points in a polyhedron
P ⊆ Rn is called the integer hull of P and is typically denoted as PI .

Exercise 7. Let PI be the integer hull of the feasible region P in
Example 5 (a). In other words, PI is the convex hull of the feasible
solutions to the integer program in Example 5 (b).
(i) Describe PI using linear inequalities.
(ii) List the vertices of PI .



MATH 409 LECTURE 1 INTRODUCTION TO DISCRETE OPTIMIZATION 3

(iii) Describe how the integer program in Example 5 (b) can be solved
as a linear program using PI .

Let X be a finite set called the ground set and let 2X denote the
power set of X which is the set of all subsets of X. Recall that 2X has
2|X| elements. If the feasible region of a discrete optimization prob-
lem is a subset of the power set 2X then we have a combinatorial
optimization problem.

Example 8. Consider the graph G below with the three edges 1, 2, 3.
(Graph drawn in class). Let X be the set containing the three edges of
G. Therefore, X = {1, 2, 3}. We also assign weights to the three edges
as follows: w1 = 5, w2 = 4 and w3 = 1. Now consider the problem
of finding the maximum weight acyclic subgraph of G. An acyclic
subgraph of G is a subgraph of G with no cycles.

The feasible region of the above problem is the set

S = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}

which a subset of the power set 2{1,2,3}. The weight of a subgraph
is the sum of the weights of its edges. This problem can be solved
by first completely enumerating the set of feasible solutions S as we
have done above and then calculating the weights of the solutions and
picking the one with largest weight. Check that the optimal solution
is the subgraph {1, 3}. In larger problems the method of complete
enumeration followed by sorting may not be practical.

We now turn the above problem into an algebraic/geometric problem
and solve it using linear programming.

Definition 9. If T ⊆ X, then the incidence or characteristic vector
of T is the 0, 1-vector v(T ) of length |X| defined as follows:

v(T )x =

{
1 if x ∈ T
0 if x 6∈ T

Example 8 continued. The incidence vectors of the feasible solutions
are:

T v(T )

∅ (0, 0, 0)
{1} (1, 0, 0)
{2} (0, 1, 0)
{3} (0, 0, 1)
{1, 3} (1, 0, 1)
{2, 3} (0, 1, 1)
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The convex hull of these six vectors is the polyhedron

PS = {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, 1 ≥ x3 ≥ 0, x1 + x2 ≤ 1}.
We can now solve this combinatorial optimization problem by solving
the linear program max {5x1 + 4x2 + x3 : (x1, x2, x3) ∈ PS}. The op-
timal solution of this linear program is the vertex (1, 0, 1) of PS which
is the incidence vector of the acyclic subgraph {1, 3}. �

The above example shows how one can solve a combinatorial opti-
mization problem by first enumerating its feasible solutions, the set of
which is denoted as S. Then we compute an inequality representation
of PS = conv(S). Finally we solve the linear program max {c ·x : x ∈
PS}. The feasible region of this linear program is PS .

Definition 10. Consider the linear program

max{c · x : Ax ≤ b} (I)

and the associated integer program

max{c · x : Ax ≤ b, x integer} (II).

Then (I) is called the linear programming (LP) relaxation of (II).

Exercise 11. (i) Why did the linear program

max {5x1 + 4x2 + x3 : (x1, x2, x3) ∈ PS}
solve the combinatorial optimization problem in Example 8?
(ii) Construct an integer program in two variables whose LP-relaxation
does not have the same optimal solution as the integer program.
(iii) Find the feasible region of the following integer program:

max 5x1 + 4x2 + x3

s.t. 1 ≥ x1 ≥ 0
1 ≥ x2 ≥ 0
1 ≥ x3 ≥ 0
x1 + x2 − x3 ≤ 1
x1 + x2 + x3 ≤ 2
(x1, x2, x3) ∈ Z3

(iv) Solve the LP-relaxation of the integer program in (iii). Does it
solve the integer program in (iii)?

The point of the above exercise is to illustrate that a combinato-
rial optimization problem can be formulated as an integer program
max {c ·x : Ax ≤ b, x integer} in many different ways (i.e., by choos-
ing different sets of inequalities Ax ≤ b). However, the different LP-
relaxations they yield may have different optima. Some are tighter
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relaxations than others. The inequalities that cut out the convex hull
of the feasible region S of the combinatorial optimization problem yield
the tightest linear programming relaxation of the integer program.

Exercise 12. A vertex packing of a graph G is a set of vertices F
of G with no edges of G connecting two vertices in F . A vertex pack-
ing is sometimes also called an independent set or a stable set in G.

(i) Find all vertex packings of the graph G whose vertex set is V =
{1, 2, 3, 4} and edge set is E = {{1, 4}, {1, 3}, {1, 2}, {2, 4}, {2, 3}}.
Calculate their incidence vectors. Let S be the set of incidence vectors
of the vertex packings of G.

(ii) Verify that S is the feasible region of both the following systems:
(a) 2x1 + 2x2 + x3 + x4 ≤ 2, 0 ≤ x1, x2, x3, x4 ≤ 1, xi ∈ Z i = 1, . . . , 4
(b) x1 + x2 + x3 ≤ 1, x1 + x2 + x4 ≤ 1, x1, x2, x3, x4 ≥ 0, xi ∈ Z, i =
1, . . . , 4.

(iii) Can you write down a tighter system of inequalities that cut out
a polyhedron P whose set of lattice points is S? (Hint: What is the
inequality presentation of conv(S)?)


