The set of all real numbers will be denoted as \mathbb{R} and the set of all integers by \mathbb{Z}. A function f is said to be real valued if its values are real numbers. For instance a vector $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ defines the linear function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $x \mapsto c \cdot x := c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$. Linear programs always have linear objective functions $f(x) = c \cdot x$ as above. Note that this is a real valued function since $c \cdot x \in \mathbb{R}$.

A polyhedron $P \subseteq \mathbb{R}^n$ is the set of all points $x \in \mathbb{R}^n$ that satisfy a finite set of linear inequalities. Mathematically, $P = \{ x \in \mathbb{R}^n : Ax \leq b \}$ for some matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^n$. A polyhedron can be presented in many different ways such as $P = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \}$ or $P = \{ x \in \mathbb{R}^n : Ax \geq b \}$. All these formulations are equivalent. A polyhedron is called a polytope if it is bounded, i.e., can be enclosed in a ball of finite radius.

Definition 1. A set $Q \subseteq \mathbb{R}^n$ is convex if for any two points x and y in Q, the line segment joining them is also in Q. Mathematically, for every pair of points $x, y \in Q$, the convex combination $\lambda x + (1 - \lambda)y \in Q$ for every λ such that $0 \leq \lambda \leq 1$.

Definition 2. A convex combination of a finite set of points v_1, \ldots, v_t in \mathbb{R}^n, is any vector of the form $\sum_{i=1}^t \lambda_i v_i$ such that $0 \leq \lambda_i \leq 1$ for all $i = 1, \ldots, t$ and $\sum_{i=1}^t \lambda_i = 1$. The set of all convex combinations of v_1, \ldots, v_n is called the convex hull of v_1, \ldots, v_n.

Let $\text{conv}(v_1, \ldots, v_n)$ denote the convex hull of v_1, \ldots, v_n.

Theorem 3. Every polytope P is the convex hull of a finite number of points. If $P = \text{conv}(v_1, \ldots, v_n)$ but $P \neq \text{conv}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$, then we say that v_i is a vertex or extreme point of P.

A linear program is the problem of maximizing or minimizing a linear function of the form $\sum_{i=1}^n c_i x_i$ over all $x = (x_1, \ldots, x_n)$ in a
polyhedron P. Mathematically, it is the problem
\[
\min/\max \sum_{i=1}^{n} c_i x_i : Ax \leq b
\]
for some matrix A and vector b.

Definition 4. A **discrete optimization problem** is the problem of optimizing (maximizing or minimizing) a real valued objective function over a **discrete** (as opposed to continuous) set of points.

Example 5. (a) *A continuous optimization problem:*

\[
\begin{aligned}
\text{maximize} & \quad x_1 + x_2 \\
\text{subject to} & \quad 2x_1 + x_2 \leq 12 \\
& \quad x_2 \leq 11/2 \\
& \quad x_1, x_2 \geq 0
\end{aligned}
\]

This is an example of a linear program. The **feasible region** of this linear program is the polytope

\[
P = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 12, \ x_2 \leq 11/2, \ x_1, x_2 \geq 0\}.
\]

The objective or cost function is the real valued function $f(x_1, x_2) = x_1 + x_2$ and the optimal solution is the point $(13/4, 11/2)$ which is a vertex of the feasible region P.

(b) *A discrete optimization problem:*

Now consider the **integer program** associated to the above linear program:

\[
\begin{aligned}
\text{maximize} & \quad x_1 + x_2 \\
\text{subject to} & \quad 2x_1 + x_2 \leq 12 \\
& \quad x_2 \leq 11/2 \\
& \quad x_1, x_2 \geq 0 \quad x_1, x_2 \text{ integer}
\end{aligned}
\]

The feasible region of this optimization problem is the set of all lattice points that lie in the polyhedron P from (a). In particular, the feasible region is finite. This integer program has two optimal solutions: $(4, 4)$ and $(3, 5)$.

Definition 6. The convex hull of the integer points in a polyhedron $P \subseteq \mathbb{R}^n$ is called the **integer hull** of P and is typically denoted as P_I.

Exercise 7. Let P_I be the integer hull of the feasible region P in Example 5 (a). In other words, P_I is the convex hull of the feasible solutions to the integer program in Example 5 (b).

(i) Describe P_I using linear inequalities.

(ii) List the vertices of P_I.
(iii) Describe how the integer program in Example 5 (b) can be solved as a linear program using P_I.

Let X be a finite set called the ground set and let 2^X denote the power set of X which is the set of all subsets of X. Recall that 2^X has $2^{\mid X \mid}$ elements. If the feasible region of a discrete optimization problem is a subset of the power set 2^X then we have a combinatorial optimization problem.

Example 8. Consider the graph G below with the three edges 1, 2, 3. (Graph drawn in class). Let X be the set containing the three edges of G. Therefore, $X = \{1, 2, 3\}$. We also assign weights to the three edges as follows: $w_1 = 5$, $w_2 = 4$ and $w_3 = 1$. Now consider the problem of finding the maximum weight acyclic subgraph of G. An acyclic subgraph of G is a subgraph of G with no cycles.

The feasible region of the above problem is the set

$\mathcal{S} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 3\}, \{2, 3\}\}$

which a subset of the power set $2^{\{1, 2, 3\}}$. The weight of a subgraph is the sum of the weights of its edges. This problem can be solved by first completely enumerating the set of feasible solutions \mathcal{S} as we have done above and then calculating the weights of the solutions and picking the one with largest weight. Check that the optimal solution is the subgraph $\{1, 3\}$. In larger problems the method of complete enumeration followed by sorting may not be practical.

We now turn the above problem into an algebraic/geometric problem and solve it using linear programming.

Definition 9. If $T \subseteq X$, then the incidence or characteristic vector of T is the 0, 1-vector $v(T)$ of length $\mid X \mid$ defined as follows:

$v(T)_x = \begin{cases}
1 & \text{if } x \in T \\
0 & \text{if } x \not\in T
\end{cases}$

Example 8 continued. The incidence vectors of the feasible solutions are:

<table>
<thead>
<tr>
<th>T</th>
<th>$v(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$(0, 0, 0)$</td>
</tr>
<tr>
<td>${1}$</td>
<td>$(1, 0, 0)$</td>
</tr>
<tr>
<td>${2}$</td>
<td>$(0, 1, 0)$</td>
</tr>
<tr>
<td>${3}$</td>
<td>$(0, 0, 1)$</td>
</tr>
<tr>
<td>${1, 3}$</td>
<td>$(1, 0, 1)$</td>
</tr>
<tr>
<td>${2, 3}$</td>
<td>$(0, 1, 1)$</td>
</tr>
</tbody>
</table>
The convex hull of these six vectors is the polyhedron
\[P_S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \geq 0, x_2 \geq 0, 1 \geq x_3 \geq 0, x_1 + x_2 \leq 1\}. \]

We can now solve this combinatorial optimization problem by solving the linear program \(\max \{5x_1 + 4x_2 + x_3 : (x_1, x_2, x_3) \in P_S\} \). The optimal solution of this linear program is the vertex \((1, 0, 1)\) of \(P_S\) which is the incidence vector of the acyclic subgraph \(\{1, 3\}\). □

The above example shows how one can solve a combinatorial optimization problem by first enumerating its feasible solutions, the set of which is denoted as \(S\). Then we compute an inequality representation of \(P_S = \text{conv}(S)\). Finally we solve the linear program \(\max \{c \cdot x : x \in P_S\}\). The feasible region of this linear program is \(P_S\).

Definition 10. Consider the linear program
\[\max\{c \cdot x : Ax \leq b\} \quad (I) \]
and the associated integer program
\[\max\{c \cdot x : Ax \leq b, \ x \text{ integer}\} \quad (II). \]

Then (I) is called the **linear programming (LP) relaxation** of (II).

Exercise 11.
(i) Why did the linear program
\[\max \{5x_1 + 4x_2 + x_3 : (x_1, x_2, x_3) \in P_S\} \]
solve the combinatorial optimization problem in Example 8?
(ii) Construct an integer program in two variables whose LP-relaxation does not have the same optimal solution as the integer program.
(iii) Find the feasible region of the following integer program:
\[
\begin{align*}
\max & \quad 5x_1 + 4x_2 + x_3 \\
\text{s.t.} & \quad 1 \geq x_1 \geq 0 \\
& \quad 1 \geq x_2 \geq 0 \\
& \quad 1 \geq x_3 \geq 0 \\
& \quad x_1 + x_2 - x_3 \leq 1 \\
& \quad x_1 + x_2 + x_3 \leq 2 \\
& \quad (x_1, x_2, x_3) \in \mathbb{Z}^3
\end{align*}
\]
(iv) Solve the LP-relaxation of the integer program in (iii). Does it solve the integer program in (iii)?

The point of the above exercise is to illustrate that a combinatorial optimization problem can be formulated as an integer program \(\max \{c \cdot x : Ax \leq b, \ x \text{ integer}\}\) in many different ways (i.e., by choosing different sets of inequalities \(Ax \leq b\)). However, the different LP-relaxations they yield may have different optima. Some are **tighter**
relaxations than others. The inequalities that cut out the convex hull of the feasible region \(S \) of the combinatorial optimization problem yield the tightest linear programming relaxation of the integer program.

Exercise 12. A vertex packing of a graph \(G \) is a set of vertices \(F \) of \(G \) with no edges of \(G \) connecting two vertices in \(F \). A vertex packing is sometimes also called an independent set or a stable set in \(G \).

(i) Find all vertex packings of the graph \(G \) whose vertex set is \(V = \{1, 2, 3, 4\} \) and edge set is \(E = \{\{1, 4\}, \{1, 3\}, \{1, 2\}, \{2, 4\}, \{2, 3\}\} \). Calculate their incidence vectors. Let \(S \) be the set of incidence vectors of the vertex packings of \(G \).

(ii) Verify that \(S \) is the feasible region of both the following systems:
(a) \(2x_1 + 2x_2 + x_3 + x_4 \leq 2, \ 0 \leq x_1, x_2, x_3, x_4 \leq 1, \ x_i \in \mathbb{Z}, i = 1, \ldots, 4 \)
(b) \(x_1 + x_2 + x_3 \leq 1, \ x_1 + x_2 + x_4 \leq 1, \ x_1, x_2, x_3, x_4 \geq 0, \ x_i \in \mathbb{Z}, i = 1, \ldots, 4. \)

(iii) Can you write down a tighter system of inequalities that cut out a polyhedron \(P \) whose set of lattice points is \(S \)? (Hint: What is the inequality presentation of \(\text{conv}(S) \)?)