
Convex Algebraic Geometry
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CAG = study of convex hulls of real algebraic varieties

• I ⊆ R[x1, . . . ,xn] =: R[x] ideal

• VR(I) := {p ∈ Rn : f (p) = 0 ∀ f ∈ I}

real variety of I , closed, semi-algebraic

• conv(VR(I)) convex hull of VR(I)

convex, semi-algebraic I = 〈x2y−1〉

conv(VR(I)) open

(1) S⊆ Rn is (basic) semi-algebraic if

S= {p ∈ Rn : f1(p)�1 0, . . . , fs(p)�s 0},

fi ∈ R[x], �i ∈ {≥,≤,=, 6=}

(2) semi-algebraic set = union of basic semi-algebraic sets



I. Why should anyone care?

(1) univariate ideals: I = 〈 f 〉

conv(VR( f )) – min and max real roots of f

(2) VR(I) finite:

• conv(VR(I)) is a polytope

• allows linear optimization over VR(I)

contains 0/1 integer programming: max{c·x : Ax ≤ b,x ∈ {0,1}n}

Ex: G = ([n],E) graph on n nodes

(i) max stable set problem in G

(ii) max cut problem in G



(3)Polynomial Optimization: p∗ := inf{p(x) : x ∈ K}, K semi-algebraic

p(x) = ∑
α∈S

pαxα, |S| = s, pα ∈ R

• K = Rn (unconstrained poly optimization):

φ : Rn −→ Rs, t 7→ (tα1, . . . , tαs) toric variety

p∗ = min{∑ pαyα : y∈ conv(φ(Rn))} linear objective!

n = 1 & deg(p) = d: ⇒

φ(t) = (1, t, t2, . . . , td)

rational normal curve

• Constrained Optimization:

similar, extensive applications −1
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II. Representing conv (VR(I))

⋆ finite real varieties:

conv(VR(I)) = {x ∈ Rn : Ax ≤ b} polytope

• linear programming (polynomial time)

• duality theory / seperation theorem (Farkas lemma)

• projection algorithms (Fourier-Motzkin elimination)

• well developed computational methods

What is a useful representation in other cases?

Driven by available algorithms & their inputs



Semidefinite programming

• A,B∈ Symm(Rn×n), A·B := trace(AB)

• A� 0 (positive semi-definite)
⇔ all eigenvalues of A are non-negative
⇔ vtAv ≥ 0 ∀ v ∈ Rn

⇔ all principal subdeterminants ≥ 0
⇔ A = BBt for some B∈ Rn×m

PSD cone

O

L

semidefinite program (sdp):

sup{C ·X : A j ·X = b j , j = 1, . . . ,m, X � 0}

• convex optimization, polynomial time algorithms

• Linear programming is SDP over diagonal matrices

• feasible region – spectrahedron – convex, semi-algebraic



Example:






(x,y) ∈ R
2 :





x 0 y
0 1 −x
y −x 1



 � 0







=







(x,y) ∈ R
2 :

0 ≤ x≤ 1,

x≥ y2,

x−x3−y2 ≥ 0







Open Problem: Can every convex semi-algebraic set be written as a

spectrahedron or a projection of one?

Exact conditions known in R2 (Helton-Vinnikov)

no obstructions known when n > 2.



TV screen : I = 〈x4 +y4−1〉

conv(VR(I)) is not a spec-

trahedron but is the projec-

tion of one. (Helton-Vinnikov)

In many more cases conv(VR(I)) is the projection of a spectrahedron:

• VR(I) finite (Parrilo, Lasserre, Laurent)

• VR(I) compact with certain smoothness & curvature (Helton-Nie)

• non-compact examples with dim(VR(I)) ≤ 2 (Scheiderer)

• some ideals generated by convex quadrics (Gouveia, Parrilo, T.)

• rationally parametrized curves & some hypersurfaces (Didier)



III. Approximating conv (VR(I)) via SDP

⋆ conv(VR(I)) cut out by all linear f ∈ R[x],

non-negative on VR(I)

⋆ f ≡ ∑h2
j mod I ⇒ f ≥ 0 on VR(I); say f is

sum of squares (sos) mod I & k-sos if deg(h j) ≤ k
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Definitions: f ∈ R[x]

• I is k-sos if f ≥ 0 on VR(I) ⇒ f k-sos mod I

• I is (1,k)-sos if f ≥ 0 on VR(I) & f linear ⇒ f k-sos mod I

Lovász: Which ideals are (1,1)-sos, (1,k)-sos?

⌣̈ (Parrilo) I zero-dim & radical ⇒ I is |VC(I)|-sos ⇒ (1, |VC(I)|)-sos.

⌢̈ 〈x2〉 not (1,k)-sos for any k



Theta bodies of polynomial ideals (Gouveia-Parrilo-T )

THk(I) := {x ∈ Rn : f (x) ≥ 0 ∀ f linear & k-sos mod I}

TH1(I) ⊇ TH2(I) ⊇ ·· · ⊇ conv(VR(I)) —(∗)

Theorem (GPT): THk(I) is the projection of a spectrahedron

Definition: I is

• THk-exact if THk(I) = cl(conv(VR(I))) (finite convergence)

• TH-exact if there is convergence in (∗)

∗ 〈x2y−1〉 is (1,2)-sos and TH2-exact

∗ 〈x2〉 is TH1-exact

∗ VR(I) compact ⇒ I is TH-exact (Schmüdgen) eg. tv screen

∗ ideal of rational normal curve of degree d is THd-exact



Geometry of theta bodies

Theorem (GPT): TH1(I) =
T

{conv(VR(F)) : F convex quadric in I}

Ex. I = Vanishing ideal of {(0,0),(1,0),(0,1),(2,2)}

Corollary: Jn := 〈∑n
i=1 x2

i −1〉 is (1,1)-sos & TH1-exact.

By Scheiderer ∃ f ≥ 0 mod Jn, n≥ 4 that is not sos mod Jn.

Question: What is the geometry of higher theta bodies?



The spectrahedra upstairs

y2 ≥ y2
1

x4−2x3−x2 +2x = 0
roots: −1,0,1,2

•y2 ≥ y2
1

•y2y4 ≥ y2
3

•y4 ≥ y2
2,

•2y3y2 +y2
2

−2y2y1−y2
3

−2y3y2
1−y2y2

1
+2y3

1 +2y3y2y1
−y3

2 ≥ 0

tetrahedron
conv(roots lifted to
(1,x,x2,x3))



Real radical ideals

Definition: I real radical if it is the vanishing ideal of VR(I)

• Theorem (GPT): I real radical ⇒ I is (1,k)-sos ⇔ I is THk-exact

• Theorem (GPT): I real radical & 0-dimensional. Then TFAE:

– I is TH1-exact

– conv(VR(I)) has a (finite) linear inequality description in which ∀

f (x) ≥ 0, f ≡ f 2 mod I

– · · · ∀ f (x) ≥ 0, VR(I) ⊆ { f (x) = 0}∪{ f (x) = 1}



IV. Computation
via Combinatorial Moment Matrices (Laurent, Lasserre)

µ probability measure supported on K ⊆ Rn:

• yα :=
R

xαdµ moment of order α
• y := (yα : α ∈ Nn) moment sequence of µ

• M(y) ∈ RNn×Nn
: M(y)(α,β) := yα+β moment matrix (M(y) � 0)

B linear basis for R[x]/I containing 1,x1, . . . ,xn (use Gröbner bases)

• Combinatorial moment matrix: y = (yγ : xγ ∈ B) −→ MB(y)

xαxβ ≡ ∑xγ∈B λγxγ; MB(y)α,β := ∑xγ∈B λγyγ

Theorem (GPT): THk(I) is the closure of the projn onto (y1, . . . ,yn) of
{

y ∈ RB2k : MBk
(y) � 0, y0 = 1

}

(sdp)



Duality

R[x]∗ ∼= {y := (yα ∈ R : α ∈ Nn)} dual vector space of R[x]

P = {p : p(x) ≥ 0, ∀ x ∈ Rn} ⊇ Σ = {∑h2
j : h j ∈ R[x]}

l ∗ l ∗

M := {y ∈ RNn
: y mom seq in Rn} ⊆ M� := {y ∈ RNn

: M(y) � 0}

Haviland 1935 P =M ∗, P ∗ =M

Berg,Christensen,Jensen 1979: Σ =M ∗
�, Σ∗ =M�

• (n = 1) ⇒
M =M� Hamburger’s theorem
P = Σ pre Hilbert



V. Why does Lov ász care?

• G = ([n],E) graph, • S⊆ [n] stable set in G if ∀i, j ∈ S,{i, j} 6∈ E

max stable set problem: max{|S| : Sstable in G}

geometric approach: STAB(G) := conv{χS : S stable set in G}

max stable set problem: max{∑xi : x ∈ STAB(G)} (NP-hard)

IG := 〈xi −x2
i : i ∈ [n], xix j : i j ∈ E〉 ⇒ V (IG) = {χS : S stable in G}

Lovász 1980: introduced TH1(IG) (Lovász theta body of G)

• STAB(G) = TH1(IG) ⇔ G perfect

• poly time algorithm when G perfect

• initiated sdp relaxations in combinatorial opt



Max Cut Problem

C⊆ E cut in G if ∃ V1∪V2 = [n] : ∀i j ∈ E, i ∈V1 & j ∈V2 or vice-versa

max cut problem: max{|C| : C cut in G}

χC : (χE)e =

{

−1 if e∈C
1 if e 6∈C

CUT(G) := conv{χC : C cut in G}

max cut problem: max{∑ 1
2(1−xi j ) : x ∈ CUT(G)} (NP-hard)

IG := I({χC : C cut in G})

GB: {x2
i j −1}∪{xA−xB : A∪B circuit in G}

Theorem (GPT+Laurent): G is cut-perfect (i.e., CUT(G) = TH1(IG)) ⇔

G has no K5-minor and chordless circuits of length ≥ 5. (a Lovász qn)



Bigger context in which CAG lives

Real algebraic geometry: study of semi-algebraic sets in Rn, preorders

in R[x], non-negative polynomials, sos polynomials, positivstellensatz

Analysis: moment problems, functional analysis

Optimization: semidefinite programming, polynomial optimization,

control theory, combinatorial optimization

FRG project (2008-11):

Semidefinite Optimization and Convex Algebraic Geometry

Helton, Nie, Parrilo, Sturmfels, T., Rostalski, Klep, Gouveia, Vinzant,

Diwedi ...


