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Preface

In the past decade there has been a surge of interest in algebraic approaches to
optimization problems defined in terms of multivariate polynomials. Fundamental
mathematical challenges that arise in this program include understanding the struc-
ture of nonnegative polynomials, the interplay between efficiency and complexity
of different representations of algebraic sets, and the development of effective algo-
rithms. Remarkably, and perhaps unexpectedly, convexity provides a new viewpoint
and a powerful framework for addressing these questions. This naturally brings us
to the intersection of algebraic geometry, optimization, and convex geometry, with
an emphasis on algorithms and computation. This emerging area has become known
as convezr algebraic geometry.

Our aim is to provide an accessible and unifying introduction to the many
facets of this fast-growing interdisciplinary area. Each chapter addresses a fun-
damental aspect of convex algebraic geometry, ranging from the well-established
core mathematical theory to the forefront of current research and open questions.
Throughout we showcase the rich interactions between theory and applications.

This book is suitable as a textbook in a graduate course in mathematics and
engineering. The chapters make connections to several areas of pure and applied
mathematics and contain exercises at many levels, providing multiple entry points
for readers with varied backgrounds.

We thank the National Science Foundation for funding a Focused Research
Group grant (2008-2011) awarded to Bill Helton, Jiawang Nie, Pablo A. Parrilo,
Bernd Sturmfels, and Rekha R. Thomas. This award enabled a flurry of research
activity in semidefinite optimization and convex algebraic geometry. Several work-
shops and conferences were organized under this grant’s support. In particular this
book was inspired by the lectures at the workshop LMIPO organized by Bill Helton
and Jiawang Nie at the University of California, San Diego in March 2010.

We thank all our contributors for their hard work and perseverance through
multiple rounds of edits. We also thank Tom Liebling, Sara Murphy, and Ann
Manning Allen at STAM for their support and patience with the production of this
book. Special thanks to our students and colleagues who read versions of this book
and sent us comments, in particular Chris Aholt, Hamza Fawzi, Fabiana Ferracina,
Alexander Fuchs, Chris Jordan-Squire, Frank Permenter, James Pfeiffer, Stefan
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Chapter 1

What is Convex
Algebraic Geometry?

Grigoriy Blekherman, Pablo A. Parrilo, and
Rekha R. Thomas

Convex algebraic geometry is an evolving subject area arising from a synthesis of
ideas and techniques from optimization, convex geometry, and algebraic geometry.
The central objects of study in this rapidly developing field are convex sets with
algebraic structure. Such sets occur naturally, and have been analyzed indepen-
dently, in convex geometry, real algebraic geometry, optimization, and analysis, but
only recently has a unified perspective that systematically takes advantage of the
interactions between algebra and convexity emerged. This viewpoint provides rich
connections across the mathematical sciences and novel tools for applied mathe-
matics and engineering. This book presents the foundations of convex algebraic
geometry and provides an accessible entry point for students and researchers.

A fundamental class of algebraically defined convex sets arises from intersec-
tions of the cone of positive semidefinite matrices with affine subspaces. These sets
are called spectrahedra and are automatically convex and endowed with rich alge-
braic structure. The problem of optimizing a linear function over a spectrahedron
is called semidefinite programming. Such problems admit efficient algorithms, en-
able many applications, and have been studied extensively in the past few decades.
These basic concepts are introduced in Chapter 2.

The structure of nonnegative polynomials is a central theme in polynomial
optimization and real algebraic geometry. A classical question is the existence of
a representation that makes the nonnegativity of a polynomial apparent. Such
representations naturally involve sums of squares and provide certificates for non-
negativity. In addition to classical existence questions, convex algebraic geometry
is concerned with constructive aspects and efficient computation. Semidefinite op-
timization is the algorithmic engine behind the effective computation of sums of
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2 Chapter 1. What is Convex Algebraic Geometry?

squares certificates. Chapter 3 provides a gentle introduction to these techniques.
The underlying geometric aspects of nonnegative and sum of squares polynomials
are then analyzed in detail in Chapter 4.

Chapter 5 presents a unified viewpoint of duality, a powerful and recurring
theme across algebraic geometry, convexity, and optimization. As such, it naturally
plays a central role in convex algebraic geometry. The philosophy of this chapter is
that the different notions of duality become nearly identical when applied to convex
sets with algebraic structure.

A natural question in optimization is to determine what problems can be mod-
eled as semidefinite programs, which translates into the problem of representing or
efficiently approximating convex sets as spectrahedra or their projections. These
questions are addressed in Chapter 6. A particularly nice yet important and chal-
lenging class of sets to represent and approximate are convex hulls of real varieties.
This is the subject of Chapter 7. Sums of squares provide a universal approach
to the above representability questions, although a full picture, particularly with
regard to efficiency issues, is still elusive.

Sums of squares are also prominent in noncommutative and Hermitian con-
texts. Nonnegativity is a much more rigid property in the noncommutative setting,
and thus some parts of the classical commutative theory become more elegant and
structured. Chapter 8 offers a friendly tour through noncommutative convexity and
nonnegativity. The Hermitian case is motivated by fundamental questions in op-
erator theory and complex analysis, and analytic considerations offer new insights
and methods. This is the topic of Chapter 9. Both of these areas have deep roots
in classical mathematics and strong connections to engineering applications.

Besides these central themes, convex algebraic geometry offers fertile ground
for synergies with other areas such as representation theory, computational complex-
ity, combinatorics, harmonic analysis, and probability theory. These interactions
provide exciting opportunities for theoretical developments, computational meth-
ods, and practical applications, as can be witnessed by the growing literature.

The different chapters in this book are interwoven by many recurring themes
and common ideas. However they can also be read independently by a reader who
is interested in a specific topic. Chapters 2 and 3 introduce the reader to the core
ideas and techniques in the book. The following chapters delve deeper into their
own topics while also presenting applications and links to the rest of the book.
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page 2
—PH



Chapter 2

Semidefinite
Optimization

Pablo A. Parrilo

In this chapter we introduce one of the core theoretical and computational tech-
niques in convex algebraic geometry, namely, semidefinite optimization. We begin
by reviewing linear programming and proceed to define and discuss semidefinite pro-
grams from the algebraic, geometric, and computational perspectives. We define
spectrahedra as the feasible sets of semidefinite programs, study their properties,
and discuss numerous examples. Despite the many parallels, the duality theory
of semidefinite optimization is more complicated than in the case of linear pro-
gramming, and we elaborate on the similarities and differences. We also showcase
a number of applications of semidefinite optimization in several areas of applied
mathematics and engineering and give a short discussion of algorithmic and soft-
ware aspects. For the convenience of the reader, we present additional background
material on convex geometry and optimization in Appendix A.

2.1 From Linear to Semidefinite Optimization

Semidefinite optimization is a branch of convex optimization that is of great the-
oretical and practical interest. Informally, the main idea is to generalize linear
programming and the associated feasible sets (polyhedra) to the case where the de-
cision variables are symmetric matrices, and the inequalities are to be understood
as matrices being positive semidefinite. Formal definitions and examples will be
presented shortly in Subsection 2.1.2, preceded by a review of the familiar case of
linear programming. A few selected standard references for linear programming and
their applications are the books [5, 12, 29, 42].
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4 Chapter 2. Semidefinite Optimization

2.1.1 Linear Programming

Linear programming is the problem of minimizing a linear function subject to lin-
ear constraints. A linear programming problem (LP) in standard form is usually

written as
T

minimize cw
subject to Az = b, (LP-P)
x>0,

where A € R™*" b € R™, and we are minimizing over the decision variable z € R™.
The inequality = > 0 is interpreted componentwise, i.e., z; > 0 fori =1,... n.

Geometrically, an LP problem has a nice and natural interpretation. Its fea-
sible set is the intersection of an affine subspace (defined by the equations Az = b),
and the nonnegative orthant. Since it is the intersection of two convex sets, the fea-
sible set of (LP-P) is always convex. In general, a set defined by finitely many linear
inequalities or equations is called a polyhedron, and it is always convex. Thus, linear
programming corresponds exactly to the minimization of a linear function over a
polyhedron. If a polyhedron is bounded, it is called a polytope.

Perhaps one of the most remarkable and useful features of linear programming
is that to every LP problem we can associate a corresponding dual problem. This
is another LP problem (“its dual LP”), which for the case of (LP-P) is

maximize bTy

LP-D
subject to ATy < c. ( )
Notice that here we are again optimizing a linear function over a polyhedron. As

we will see, there are very natural and direct algebraic relationships between the
primal problem (LP-P) and its dual problem (LP-D).

Remark 2.1. In practice, LP problems may not naturally present themselves in
the form (LP-P), where all the decision variables are nonnegative and only equality
constraints are present, or the form (LP-D), where there are no sign restrictions
on the variables and only inequalities appear. However, they can always be put in
either form, by introducing additional slack variables and/or splitting variables if
necessary. The details can be found in any textbook on linear programming.

Example 2.2. Consider the following LP problem:

—x1 + 312 + a3
minimize xr1 — 8z subject to 4dr1 — 19+ 14 =
T1,X2,T3,T4 2 0

Il
~

The feasible region is a two-dimensional polyhedron. Its projection into the (z1, z2)-
plane is drawn in Figure 2.1. Notice that the optimal solution is achieved at a vertex,
namely, z* = (2,2,0,0), with optimal cost p* = —14.
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Figure 2.1. Feasible sets of the primal and dual LP problems (2.1) and (2.2).

The corresponding dual LP is

-y t+4y2 < 1,
_ < _
maximize 4y; + 6y2 subject to Si—ye < 8, (2.2)
U1 S 07
y2 < 0.
The dual feasible set (y1,y2) is presented in the same figure, with optimal solution
y* = (-3, —~) and optimal cost d* = —14. For this example we have

p*=d" = —14,
and thus the optimal values of the primal and dual problems are the same. N

Even in this simple example, we can observe many of the important features
of linear programming. The following facts are well known.

Geometry of the feasible set: The feasible sets of linear programs are polyhe-
dra. The geometry of polyhedra is quite well understood. In particular, the
Minkowski-Weyl theorem (e.g., Appendix A, [5], or [48, Section 1.1]) states
that every polyhedron P is finitely generated, i.e., it can be written as

P = conv(uy,...,u,) + cone(vy,...,vs),

where u;,v; are the wertices and extreme rays of P, respectively, and the
convex hull and conical hull are defined by

conv(ul,...,ur):{z:/\iui Z/\izl’ A >0, izl,...,r}
i=1 i=1

and

S
cone(vy,...,vs) = { Z)‘ivi
i=1

)\120, i:1,...,s}.
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Rational solutions: Unless the problem is unbounded, the optimal solution of
a linear programming problem is always achieved at extreme points of the
feasible set. Since these correspond to vertices of a polyhedron, the solution
can be characterized in terms of a system of linear equations, corresponding
to the equations and inequalities that are active at the optimal point. Thus, if
the problem description (i.e., the matrices A, b, ¢) is given by rational numbers,
there are always extreme points that are rational and achieve the optimal cost.

Weak duality: For any feasible solutions z,y of (LP-P) and (LP-D), respectively,
it always holds that

e —bvTy=aTc— (Ax)Ty = 2T (c — ATy) >0, (2.3)

where the last inequality follows from the feasibility conditions > 0 and
ATy < ¢. Thus, from any feasible dual solution one can obtain a lower bound
on the value of the primal. Conversely, primal feasible solutions give upper
bounds on the value of the dual.

Strong duality: If both primal and dual problems are feasible, then they achieve
exactly the same optimal value, and there exist optimal feasible solutions
x*,y* such that ¢”2* = bTy*. This is a consequence of the separation theo-
rems for convex sets; see, e.g., Section A.3.3 in Appendix A.

Complementary slackness: Strong duality, combined with (2.3), implies that at
optimality we must have

zf(c— ATy*); =0, i=1,...,n.

In other words, there is a correspondence between primal variables and dual
inequalities that says that whenever a primal variable is nonzero, the corre-
sponding dual inequality must be tight.

In the linear programming case, these properties are well known and relatively
easy to prove. Interestingly, as we will see in the next section, some of these prop-
erties will break down as soon as we leave linear programming and go to the more
general case of semidefinite programming. These technical aspects will cause some
minor difficulties, although with the right assumptions in place, the resulting theory
will closely parallel the linear programming case.

Exercise 2.3. Consider a finite set of points S = {a1,az,...,a,} in R?, where
n > d. Prove using linear programming duality that exactly one of the following
statements must hold:

e The origin is in the convex hull of S.

e There exists a hyperplane passing through the origin, such that all points a;
are strictly on one side of the hyperplane.
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Exercise 2.4. Consider the set of n x n matrices with nonnegative entries that
have all row and column sums equal to 1 (i.e., the doubly stochastic matrices).

1. Write explicitly the equations and inequalities describing this set for n =
2,3,4.

2. Compute (using CDD, 1rs, or other software; see Section 2.3.2) all the extreme
points of these polytopes.

3. How many extreme points did you find? What is the structure of the extreme
points? Can you conjecture what happens for arbitrary values of n?

4. Google “Birkhoff-Von Neumann theorem,” and check your guess.

2.1.2 Semidefinite Programming

Semidefinite programming is a broad generalization of linear programming, where
the decision variables are symmetric matrices. A semidefinite programming problem
(SDP) corresponds to the optimization of a linear function subject to linear ma-
triz inequality (LMI) constraints. Semidefinite programs are convex optimization
problems and have very appealing numerical properties (e.g., [7, 44, 45]).

Our notation is as follows: the set of real symmetric n X n matrices is denoted
by S". A matrix A € S" is positive semidefinite if T Az > 0 for all z € R"
and is positive definite if 7 Az > 0 for all nonzero x € R". Equivalently, A is
positive semidefinite if its eigenvalues \;(A) satisfy \;(A) > 0,4 =1,...,n, and is
positive definite if A\;(A) > 0,4 = 1,...,n. The set of n X n positive semidefinite
matrices is denoted S%, and the set of positive definite matrices is denoted S7 .
As we will prove soon, S is a proper cone (i.e., closed, convex, pointed, and solid).
We use the inequality signs “=X” and “>” to denote the partial order induced by
S (usually called the Léwner partial order); i.e., we write A = B if and only
if A — B is positive semidefinite. For a square matrix A, its trace is defined as
Tr(A) = >, Aii. See Section A.1 for further characterizations and general properties
of positive semidefinite matrices.

Spectrahedra. Recall that a polyhedron is a set defined by finitely many linear
inequalities and that feasible sets of LPs are polyhedra. Similarly, we define spec-
trahedra as sets defined by finitely many LMIs. These sets will correspond exactly
to feasible sets of semidefinite programming problems.

Definition 2.5. A linear matrix inequality (LMI) has the form
Ao + Z Az = 0,
i=1

where A; € 8™ are given symmetric matrices.

2012/11/
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AN
J

Figure 2.2. The shaded set is a spectrahedron, with a semidefinite repre-
sentation given by (2.4).

Definition 2.6. A set S C R™ is a spectrahedron if it has the form

S:{(fl)l,...,xm)ERm : A()—FZAl[I‘ZtO},

=1

for some given symmetric matrices Ag, A1, ..., Ay € S™.

Geometrically, a spectrahedron is defined by intersecting the positive semidef-
inite cone and an affine subspace (the span of Ay, ..., A,,, translated to Ag). Spec-
trahedra are closed convex sets, since a matrix inequality is equivalent to infinitely
many scalar inequalities of the form vT(Ag + 3"/~ A;z;)v > 0, one for each value
of v € R™. Since it is always possible to “bundle” several matrix inequalities into a
single LMI (by choosing the matrices A; to be block-diagonal), there is no loss of
generality in defining spectrahedra in terms of a single matrix inequality. In partic-
ular, this shows that polyhedra are a particular case of spectrahedra, corresponding
to all matrices A; being diagonal.

Recall that the positive semidefiniteness of a matrix can be characterized in
terms of scalar inequalities on the coefficients of its characteristic polynomial or its
principal minors (see Proposition A.1). Thus, one can obtain an explicit description
of a spectrahedron in terms of a finite collection of unquantified scalar polynomial
inequalities in the variables x;. In other words, spectrahedra are basic semialgebraic
sets, that are convex.

Example 2.7 (elliptic curve). Consider the spectrahedron in R? given by

rz+1 0 Y
(z,y) €R? 1 A(z,y):=| 0 2 —x-1|=0y. (2.4)
Y —x—1 2

This set is shown in Figure 2.2. To obtain scalar inequalities defining the set, let
pa(t) = det(tI — A(z,y)) = t3 + pat? + pit + po be the characteristic polynomial of

261”2711/1
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A(z,y). Positive semidefiniteness of A(x,y) is then equivalent to the conditions

—p2=x+52>0,
p1:—x2—|—23:—y2+720,
—po=3+2z—x3—32% - 2% >0.

It can be seen that this spectrahedron corresponds to the “oval” of the elliptic curve
34z — 23 — 322 — 292 = 0. Notice that the boundary of the set is given by the
determinant of the matrix inequality (why?), and the role of the other inequalities
is to cut down and isolate the relevant component. N

As defined above, a spectrahedron S is a closed convex subset of the affine
space R™. Following standard usage, we will also use “spectrahedron” to denote
the set {Ag+ Y -, Ajz; |2 € R™}NST. Notice that this is a convex set of matrices
instead of a subset of R, but if the matrices A; are linearly independent, these
two convex sets are affinely equivalent.

Projected spectrahedra. Also of interest are the linear projections of spectrahe-
dra, which we will call projected spectrahedra:

Definition 2.8. A set S C R™ is a projected spectrahedron if it has the form

m p

S = (xl,...,xm)ERm:H(yl,...,yp)ERp, AO"‘ZAV'EZ"‘ZBJ:UJEO ,
i=1 j=1

(2.5)

where Ag, A1, ..., Am, B1,..., By are given symmetric matrices.

As the name indicates, geometrically this corresponds to a spectrahedron in
R™*? that is projected under the linear map = : R™™? — R™ (x,y) — z. Since
spectrahedra are semialgebraic sets, by the Tarski-Seidenberg theorem (Section
A.4.4 in Appendix A) projected spectrahedra are also semialgebraic. Thus, they
can be defined in terms of finite unions of sets defined by polynomial inequalities in-
volving only the variables x;, although in practice it is not always easy or convenient
to do so.

Example 2.9. Consider the projected spectrahedron in R? given by

{(a:,y) €R?: J€ER, {;;_i ZZz__ﬂ =0, z< 1}. (2.6)

This set is shown in Figure 2.3. It corresponds to the projection on R? of the
spectrahedron in R? defined by the intersection of a quadratic cone and a halfspace
(see Figure 2.4).

For any fixed value of z, the set described by the 2 x 2 matrix inequality is a
disk of radius z centered at (2z,0). Thus, this spectrahedron is the convex hull of
the disk of unit radius centered at (2,0) and the origin. W

261”2711/1
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osh

-051

Figure 2.4. A spectrahedron and its projection.

As we will see later in much more detail in Chapters 3 and 6, there are simple
examples of projected spectrahedra that are not spectrahedra (in fact, the set in
Example 2.9 is one such case). This is in strong contrast with the case of polyhedra,
for which we know (e.g., via Fourier-Motzkin elimination) that the linear projection
of a polyhedron is always a polyhedron. Thus, this is a key distinguishing feature
of semidefinite programming, since by adding additional slack or lifting variables,
we can significantly expand the expressibility of our class of sets.

Projected spectrahedra are very important for optimization. Indeed, by in-
cluding the additional “lifting” variables y;, we will see that it is possible to reduce
a linear optimization problem over a projected spectrahedron to the solution of
a standard semidefinite program. Furthermore, projected spectrahedra have very
high expressive power, in the sense that many convex sets of interest can be rep-
resented in this form. Although in general it may be hard to explicitly represent
projected spectrahedra in terms of their defining inequalities in their ambient space

261”2711/1
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2.1. From Linear to Semidefinite Optimization 11

(see Section 5.6 in Chapter 5), having a representation of the form (2.5) will often
be enough for optimization purposes.

Exercise 2.10. Both spectrahedra and projected spectrahedra are convex sets.
Show that spectrahedra are always closed sets. What about projected spectrahedra?

Primal SDP formulation. Semidefinite programs are linear optimization prob-
lems over spectrahedra. An SDP problem in standard primal form is written as

minimize (C, X)
subject to (A;, X) = by, i=1,...,m, (SDP-P)
X =0,

where C, 4; € 8", and (X,Y) := Tr(XTY) = > XijYij. The matrix X € 8™ is
the variable over which the minimization is performed. The inequality in the third
line means that the matrix X must be positive semidefinite. Notice the strong
formal similarities to the LP formulation (LP-P). As we will see in Section 2.1.4,
this formal analogy can be pushed even further to conic optimization problems.

Let us make a few quick comments before presenting examples of semidefinite
programs. The set of feasible solutions of (SDP-P), i.e., the set of matrices X that
satisfy the constraints, is a spectrahedron, and thus it is always convex. This follows
directly from the fact that the feasible set is the intersection of an affine subspace
and the positive semidefinite cone 8%, both of which are convex sets. However,
unlike the linear programming case, in general the set of feasible solutions will not
be polyhedral.

Example 2.11. Consider the semidefinite optimization problem

minimize 2211 + 2712
subject to T11 + x20 =1, (2.7)
T11  Ti12 > 0.
Ti2 T2

Clearly, this has the form (SDP-P), with m =1 and

2 1 1 0
O O R K A

The constraints are satisfied if and only if x11(1 — 211) > 225, and thus the
feasible set is a closed disk, which is not polyhedral. Figure 2.5 shows the feasible
set, parametrized by the variables (x11,212). The optimal solution is equal to

2-v2 1
4 2v/2
X* =
1 24v2 |’
22 4

with optimal cost 1 — /2, which is clearly not rational. W

261”2711/1
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12 Chapter 2. Semidefinite Optimization

Figure 2.5. Feasible set of the primal SDP problem (2.7).

As we have seen from this simple example, SDP problems with rational data do
not necessarily have rational optimal solutions. Since the solutions are nevertheless
algebraic numbers, a natural question is to analyze their algebraic degree, i.e., the
minimum degree of a polynomial with integer coefficients needed to specify the
solution. The algebraic degree of semidefinite programming is studied in Chapter 5,
Section 5.5.

In the particular case when C' = 0 in (SDP-P), the problem reduces to whether
or not the constraints can be satisfied for some matrix X. This is referred to as
a feasibility problem. As described later, the algebraic nature and convexity of
semidefinite programming has made it possible to develop sophisticated and reliable
analytical and numerical methods to solve them.

Duality. A very important feature of semidefinite programming, from both the the-
oretical and applied viewpoints, is the associated duality theory. For every semidef-
inite program of the form (SDP-P) (usually called the primal problem), there is
another associated SDP, called the dual problem, that can be stated as

maximize b7y

o SDP-D
subject to ZAiyi =< C, ( )
i=1
where b = (b1,...,by), and y = (y1,...,ym) are the dual decision variables.

As in the linear programming case, the key relationship between the primal
and the dual problems is that feasible solutions of one problem can be used to bound
the values of the other. Indeed, let X and y be any two feasible solutions of the
primal and dual problems, respectively. We then have the following inequality:

(0, X)) —bTy = (C, X) — iyimi,m = <c — iAiyi, X> >0, (2.8)
=1 i=1

261”2711/1
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2.1. From Linear to Semidefinite Optimization 13

where the last inequality follows from the fact that the inner product of two positive
semidefinite matrices is nonnegative. From (SDP-P) and (SDP-D) we can see that
the left-hand side of (2.8) is the difference between the primal and dual objective
functions. The inequality in (2.8) tells us that the value of the primal objective
function evaluated at any feasible matrix X is always greater than or equal to the
dual objective function at any dual feasible y. This is known as weak duality. Thus,
we can use any X for which (SDP-P) is feasible to compute an upper bound for
the value of b7y in (SDP-D), and we can also use any feasible y of (SDP-D) to
compute a lower bound for the value of (C, X) in (SDP-P). Furthermore, in the
case of feasibility problems (i.e., C' = 0), the dual problem can be used to certify
nonexistence of solutions to the primal problem. This property will be crucial in
our later developments.

If X and Y are positive semidefinite matrices, then (X,Y) = 0 if and only if
XY =YX =0 (e.g., Corollary A.24). Thus, the expression (2.8) allows us to give
a simple sufficient characterization of optimality.

Lemma 2.12 (optimality conditions for SDP). Assume (X,y) are primal and
dual feasible solutions of (SDP-P) and (SDP-D), respectively, that satisfy the com-
plementary slackness condition

<O - i Ai%) X=0 (2.9)
=1

(and thus achieve the same cost (C, X) = bTy). Then, (X,y) are primal and dual
optimal solutions of the SDP problem.

In general, the converse statement may require some additional assumptions, to be
discussed shortly.

Example 2.13. Here we continue Example 2.11. The SDP dual to (2.7) is

maximize y
1

. 2—-y
subject to [ 1 y

] -0

The optimal solution is y* = 1 — /2, with optimal cost 1 — /2. Notice that
in this example, the optimal values of the primal and dual problems are equal.
Furthermore, complementary slackness holds:

m -2 1
1+v2 1 =z L
C—E fhyf) X*z[ }l . ng =0. 1
( i=1 1 \/5_1 T 2v32 4

As opposed to the linear programming case, strong duality may fail in general
semidefinite programming. We present below a simple example (from [36]), for
which both the primal and dual problems are feasible, but their optimal values are
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14 Chapter 2. Semidefinite Optimization

different (i.e., there is a nonzero finite duality gap). Further examples and a detailed
discussion will be presented in Section 2.1.5.

Example 2.14. Let a > 0, and consider the primal-dual pair

minimize o X1 maximize s
subject to X2 =0, y2 0 0 a 0 0
X1 +2Xo3=1, subject to 0 y1 »w|[=2(0 0 0
For a primal feasible point, X being positive semidefinite and X3 = 0 imply

Xo3 = 0, and thus X711 = 1. The primal optimal cost p* is then equal to a (and is
achieved). On the dual side, the vanishing of the (3,3) entry implies that yo must
be zero, and thus d* = 0. The duality gap p* — d* is then equal to a. 1

The example above (and others like it), are somewhat “pathological.” We will
see in Section 2.1.5 that under relatively mild conditions, usually called constraint
qualifications, strong duality will also hold in semidefinite programming. The sim-
plest and most useful case corresponds to the so-called Slater conditions, where the
primal and/or dual problems are required to be strictly feasible. On the primal side,
this means that there exists X = 0 that satisfies the linear constraints, and on the
dual side, there exists y such that C'— 3", A;y; > 0 (notice that the inequalities are
strict). In this case, the situation is as nice as in the linear programming case.

Theorem 2.15. Assume that both the primal (SDP-P) and dual (SDP-D) semidef-
inite programs are strictly feasible. Then, both problems have optimal solutions, and
the corresponding optimal costs are equal; i.e., there is no duality gap.

This statement will reappear, in a more general setting, in Section 2.1.5. For
many problems (for instance, the ones discussed in the next section), these assump-
tions hold and are relatively straightforward to verify. In full generality, however,
they may be restrictive, and thus we investigate in Section 2.1.5 the geometric rea-
sons why strong duality may fail in semidefinite optimization, as well as possible
workarounds.

Exercise 2.16. Consider the following SDP problem:
. . z 1
minimize x subject to [1 y] > 0.

1. Draw the feasible set. Is it convex?
2. Is the primal strictly feasible? Is the dual strictly feasible?

3. What can you say about strong duality? Are the results consistent with
Theorem 2.157

261”2711/1
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2.1. From Linear to Semidefinite Optimization 15

Exercise 2.17. Do the assumptions of Theorem 2.15 hold for Example 2.147

2.1.3 Spectrahedra and Their Properties

Before proceeding further, we present several interesting examples of sets that are
expressible in terms of semidefinite programming. We will revisit several of these
throughout the different chapters in this book.

Spectraplex: The spectraplex or free spectrahedron O, is the set of n x n positive
semidefinite matrices of trace one, i.e.,

O,={Xes"| X=0, TrX=1}.

The hyperplane Tr X=1 intersects S on a compact set and thus defines a base
for this cone. The extreme points of O, are exactly the rank one matrices of the
form X = x2T, where x € R" and ||z|| = 1. The two-dimensional spectraplex O
is affinely isomorphic to the unit disk in the plane and has already appeared in
Example 2.11.

Elliptope and dual elliptope: Let £, be the set of positive semidefinite matrices
with unit diagonal, i.e.,

En={XeS"| X=0, Xy=1 i=1,...,n}.

The convex set &, is contained in a subspace of S of codimension n, defined by the
constraints X;; = 1. It is often useful to consider it instead as a full-dimensional
convex body in R(). For this, define an orthogonal projection 7 : S — R() that
projects a matrix X onto its off-diagonal entries X;; for ¢ < j.

The elliptope &, is defined as &, = 7(&,) and is a full-dimensional compact

convex set in R(2). As we will see in Section 2.2.2, this set is of great importance
when studying semidefinite relaxations of combinatorial problems. Many geometric
aspects of elliptopes have been extensively studied, e.g., in [26].

The elliptope &, is a convex body containing the origin in its interior. Thus,
we can define its polar dual set £ = {y € R(G) yT'z <1 Vxc&,}, known as the
dual elliptope. Tt follows from the expressions above that £° is a (scaled) projection
of the spectraplex onto the off-diagonal entries:

& = —27m(0,). (2.10)
For nice pictures of the 3 x 3 elliptope and its dual body, see Figure 5.8 in Chapter 5.

Operator and nuclear norms: Let A € R"'*"2 be a matrix. The spectral or
operator norm of A is given by its maximum norm gain, i.e.,

Al = a Av|| = A
4= _max 140l = 01(4),

where o1 (A) is the largest singular value of A.
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16 Chapter 2. Semidefinite Optimization

The nuclear norm of a matrix is equal to the sum of its singular values, i.e.,
ks

1Al = 0:(A), (2.11)
i=1

where r is the rank of A. The nuclear norm is alternatively known by several
other names including the Schatten 1-norm, the Ky Fan r-norm, and the trace class
norm. As we will see in Section 2.2.6, the nuclear norm is particularly useful in
optimization problems involving ranks of matrices.

The operator norm and the nuclear norm are dual norms in the sense that
their unit balls are convex bodies that are polar duals, i.e.,

{AeR™ ™ A <1}° ={BeR™ ™ : B, <1}.
Therefore, any two matrices A and B satisfy
(4, B) < [ A[lllB]]-
Furthermore, the following inequalities hold for any matrix A of rank at most r:

A< [[AllF < [[Alle < V7l Allr < 7l Al (2.12)

where || A|| is the Frobenius norm, defined as || Al := (TrATA)z = (> i afj)%.
Both the operator norm and the nuclear norm have nice characterizations in
terms of semidefinite programming. In particular, the operator norm ||A| is the

optimal solution of the primal-dual pair of semidefinite programs

maximize Tr 247 X1

X1 Xio 1
XL Xoo

X =0,

minimize ¢
subject to T 2.13
subject to r{ tl, A]»O.( )

. n
subject to {AT ¢,

To see the exact correspondence between the standard form (SDP-P)-(SDP-D) and
this formulation, notice that we can take m = 1, X is a block (n1 + na) x (n1 +n2)
matrix, Ay is the (nq +n2) X (nq1 + ng) identity matrix, by = 1, and the cost matrix

C is the block matrix (,Sg _OA ). Notice that we have the factor of 2 here because

TrOX = Tr2AT X5, and we have “maximize” in (2.13) instead of “minimize”
in (SDP-P) due to change of sign in the objective function.

Similarly (or “dually”), the nuclear norm ||A]|. corresponds to the optimal
value of the primal-dual pair
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2.1. From Linear to Semidefinite Optimization 17
o 1
maximize Tr ATY minimize 5 (TrWy + TrWsy)
. I,, Y (2.14)
subject to [Y% IM] =0, subject to m/% V[é } = 0.
2

Since the operator norm and the nuclear norm are dual norms, their unit balls
are dual polar convex bodies. In Figure 2.6 we illustrate these convex sets for the
case of a 2 X 2 symmetric matrix given by

A= B ?ﬂ . (2.15)

Figure 2.6. Unit balls of the spectral norm and the nuclear norm, for the
space of 2 X 2 symmetric matrices.

k-ellipse: We consider a class of planar convex sets defined by the algebraic curves
known as k-ellipses [33]. Recall that the standard ellipse in R? is defined as the
locus of points with the sum of distances to two fixed points (the foci) a fixed
constant. Extending this definition to k foci, one can define the k-ellipse as the
algebraic curve in R? consisting of all points whose sum of distances from k given
points is a fixed number. More formally, fix a positive real number d, and fix k
distinct points (uy,v1), (ug,va),. .., (uk,vg) in R%Z. The k-ellipse with foci (u;,v;)
and radius d is the following curve in the plane:

k
Z\/(w—ui)2+ (y —vi)? = } (2.16)

=1

{(x,y) e R?

In Figure 2.7, we present a few k-ellipses with different numbers of foci. In contrast
to the classical circle (corresponding to k = 1) and ellipse (k = 2), a k-ellipse does
not necessarily contain all the foci in its interior. We define the closed convex set
Ci to be the region whose boundary is the k-ellipse, and it is a sublevel set of the
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18 Chapter 2. Semidefinite Optimization

Figure 2.7. A 3-ellipse, a 4-ellipse, and a 5-ellipse, each with its foci.

convex function

k
(z,y) — Z\/(x—ui)Q—F (y —v;)2. (2.17)

In order for C; to be nonempty, it is necessary and sufficient that the radius d be
greater than or equal to the global minimum d* of the convex function (2.17).

The set Cy, is a projected spectrahedron, since it admits a semidefinite repre-
sentation. This can be easily obtained by adding slack variables d; and rewriting
the function (2.17) in terms of 2 x 2 matrices. The region Cj, is given by the points
(x,y) for which there exist (dy,...,dy) satisfying

k

S di<d, [di”_”i Y= 0, i=1,...,k
P y—vi  di—rtu

To see this, notice that the 2 x 2 matrix above is positive semidefinite if and only

if (x —w;)?+ (y —v;)? < d? and d; > 0.

In a less obvious fashion, the k-ellipse can also be represented without addi-
tional slack variables, so it is also a spectrahedron. However, in this case the size
of the matrices is much bigger. Below we present a concrete statement; see [33] for
a sharper result and an explicit construction of this representation.

Theorem 2.18. The convex set Cy, whose boundary is the k-ellipse of foci (u;,v;)
and radius d is defined by the LMI

- Ap+y-Be+Cr = 0, (2.18)
where Ay, By, Cy are symmetric 2k % 2k matrices. The entries of A and By
are integer numbers, and the entries of Cy are linear forms in the parameters

d,ul,vl,...,uk,vk.

For illustration, we present the case k = 3 of the theorem. A spectrahedral
representation of the 3-ellipse is obtained by requiring the following 8 x 8 matrix to
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2.1. From Linear to Semidefinite Optimization 19

be positive semidefinite:

[d+3z—u1—us—us Y—u1 Yy—vs 0
y—u1 d+x+u;—us—us 0 Yy—Us
Yy—vs 0 d+x—ui+us—us y—u1
0 Y—v2 Y—u1 d—z+ui+us—us3
Y—u3 0 0 0
0 Y—vs 0 0
0 0 Y—u3 0
i 0 0 0 Y—u3
Y—3 0 0 0 ]
0 Y—u3 0 0
0 0 Y—u3 0
0 0 0 Y—u3
d+x—u1—us+us Y—u1 Y—u2 0
Y—u1 d—x+u;—us+tus 0 Y—g
Y—Ug 0 d—x—ui+us+usg Y—u1
0 Y—Ug Y—01 d—3z+u1tuz+us |

Exercise 2.19. Prove the relation (2.10) between the elliptope and the spectraplex.

Exercise 2.20. Show that the two semidefinite programs in (2.14) are indeed a
primal-dual pair.

Exercise 2.21. Prove the correctness of the semidefinite characterizations of the
operator and nuclear norms given in (2.13) and (2.14).

Exercise 2.22. Show that for the symmetric matrix in (2.15), the inequalities that
define the boundary of the unit balls of the operator and spectral norms shown in
Figure 2.6 are

v+ (r+2) -z <1, v —(r+2)—zz<1
and
(x—2)% +49° < 1, x+z<1, —(z+2) <1,

respectively.

Exercise 2.23. Analyze the structure of the convex sets in Figure 2.6. What are
the matrices associated with the flat facets (or the vertices)? How can you interpret
the rotational symmetries of these convex bodies?

2.1.4 Conic Programming

The strong formal similarities between linear programming and semidefinite pro-
gramming (equations (LP-P)-(LP-D) vs. (SDP-P)-(SDP-D)) suggest that a more
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20 Chapter 2. Semidefinite Optimization

minimize ¢’z maximize bly

subject to Az =1b subject to ATy < ¢ (LP)
x>0
minimize <C, X> maximize bTy
subject to (4, X) = b;, subject to ZAiyi <C (SDP)
X0 i

minimize (¢, z)g maximize (y,b)r

subject to Az = b, subject to ¢— Ay € K* (CP)
z e

Table 2.1. Primal-dual formulations of linear programming (LP), semidef-
inite programming (SDP), and general conic programming (CP).

general formulation, encompassing both cases, may be possible. Indeed, a gen-
eral class of optimization problems that unifies linear and semidefinite optimization
(as well as a few other additional cases) is conic programming. We describe the
conic framework next, explaining first the key idea, followed by the mathematical
formulation.

The starting point is the geometric interpretation of linear and semidefinite
programming. The feasible set of an LP problem in standard form (LP-P) is the
intersection of an affine subspace (described by the equations Az = b) and the non-
negative orthant R’ . Similarly, the feasible set of a semidefinite program (SDP-P)
is the intersection of an affine subspace (described by (A;, X) = b;) with the set of
positive semidefinite matrices S%. Since both R’} and S are closed convex cones
(in fact, they are proper cones—see below), one can define a general class of opti-
mization problems where the feasible set is the intersection of a proper cone and an
affine subspace. This is exactly what conic optimization will do!

We present a formal description next. We will be a bit more careful than usual
here in the definition of the respective spaces and mappings. It does not make much
of a difference if we are working in R™ (since we can identify a space and its dual
through the inner product), but it is “good hygiene” to keep these distinctions in
mind and will prove useful when dealing with more complicated spaces. We consider
two real vector spaces, S and T, and a linear mapping A : S — T'. Recall that every
real vector space has an associated dual space, which is the vector space of real-
valued linear functionals. We denote these dual spaces by S* and T, respectively,
and the pairing between an element of a vector space and one of the dual as (-, )
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2.1. From Linear to Semidefinite Optimization 21

(i.e., f(z) = (f,x)). Recall that the adjoint mapping of A is the unique linear map
A* . T* — S§* defined by

(A*y,z)s = (y, Az)r VeeS, yeT*.

Notice here that the brackets on the left-hand side of the equation represent the
pairing in S, and those on the right-hand side correspond to the pairing in 7.

A cone K C S is pointed if KN (—K) = {0} and is solid if it is full-dimensional
(i.e., dim K = dim S). A cone that is convex, closed, pointed, and solid is called a
proper cone. Given a cone K, its dual cone is K* := {2z € 8* : (z,2)s >0 Vz €
K}. The dual of a proper cone is also a proper cone; see Exercise 2.24. An element
x is in the interior of the proper cone K if and only if (z,2) > 0 Vz € K*, 2z # 0.

Standard conic programs. Given a linear map A : S — T and a proper cone
K C S, we define the primal-dual pair of (conic) optimization problems

minimize {c,xz)g maximize (y, b)r
subject to Ax = b, subject to ¢ — A%y € K*,
z e K,

where b € T, ¢ € §*. Notice that exactly the same proof presented earlier works
here to show weak duality:

(e;x)s — (Y, b)r = (c,2)s — (y, Az)r (2.19)
(c;x)s — (A'y, x)s
= <C - A*yv $>S
>0

In the usual cases (e.g., LP and SDP), all vector spaces are finite-dimensional and
thus isomorphic to their duals. The specific correspondence between these is given
through whatever inner product we use.

Among the classes of problems that can be interpreted as particular cases of
the general conic formulation we have linear programs, second-order cone programs
(SOCP), and semidefinite programs, when we take the cone K to be the nonnegative
orthant R, the second-order cone L} (Exercise 2.25), or the positive semidefinite
cone SY, respectively. Two other important cases are when K is the hyperbolicity
cone associated with a given hyperbolic polynomial [22, 40] and the cone %, o4 of
multivariate polynomials that are sums of squares. We discuss this latter example
in much more detail in Chapter 3.

Despite the formal similarities, there are a number of differences between lin-
ear programming and general conic programming. We have already seen in (2.19)
that weak duality always holds for conic programming. However, recall from Exam-
ple 2.14 that in semidefinite programming (and thus, in general conic programming)
there may be a nonzero duality gap. In the next section, we explore the geometric
reasons for the possible failure of strong duality in conic programming.

Exercise 2.24. Let K C S be a proper cone. Show that its dual cone K* C S§* is
also a proper cone, and X** = .
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22 Chapter 2. Semidefinite Optimization

Exercise 2.25. The second-order (or Lorentz) cone is defined as

1
n 2
LY =9 (o, x1,...,2,) € R . <Za:12> < zg
i=1

Show that L7} is a proper cone and is isomorphic to its dual cone.

Exercise 2.26. Classify the following statements as true or false. A proof or
counterexample is required.
Let A : R™ — R™ be a linear mapping and K C R™ a cone.

1. If K is convex, then A(K) is convex.
2. If K is solid, then A(K) is solid.

3. If K is pointed, then A(K) is pointed.
4. If K is closed, then A(K) is closed.

Do the answers change if A is injective and/or surjective? How?

2.1.5 Strong Duality

As we have indicated earlier, strong duality in semidefinite programming is a bit
more delicate than in the linear programming case. Most of the time (and partic-
ularly, in applications) this will not be a source of too many difficulties. However,
it is important to understand the geometry behind this, as well as what conditions
we can impose to ensure that strong duality will hold.

As we showed in (2.19), weak duality always holds in conic programming (and
thus, also for semidefinite programming (2.8)). However, it is possible to have finite
duality gaps (as in Example 2.14), or other “anomalies,” as the following simple
example illustrates.

Example 2.27. Consider the primal-dual SDP pair

minimize 11 o
. maximize y
subject to 2x12 =1,

. 0 y 10
[$11 3;12} -0 subject to {y O} = [0 0]'

Tr12 T22

For the dual problem, y = 0 provides an optimal solution, with optimal value d* = 0.
On the primal side, however, we cannot have x1; = 0, since this would violate the
positive semidefiniteness constraint. However, by choosing 211 = €, x22 = 1/€, we
obtain a cost p* that is arbitrarily small but always strictly positive. W

The example above shows that, in contrast with the case of linear programming, in
semidefinite or conic programming optimal solutions may not be attained, even if
there is zero duality gap.
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2.1. From Linear to Semidefinite Optimization 23

There are several geometric interpretations of what causes the failure of strong
duality for general conic problems. Perhaps the most natural one is based on the
fact that the image of a proper cone under a linear map may not be closed, and
thus it is not necessarily a proper cone. This fact may seem a bit surprising (or
perhaps wrong!) the first time one encounters it, but after a while it becomes
quite reasonable. (If this is the first time you have heard about this, we strongly
encourage you to stop reading and think of a counterexample right now! Or, see
Exercise 2.30.)

Strong duality and infeasibility certificates. To better understand strong
duality, we begin with a simple geometric interpretation in the conic setting, in terms
of the separating hyperplane theorem. Recall that this theorem (see Section A.3.3
in Appendix A for several versions of this important result) establishes that if we
have two disjoint convex sets, where one of them is closed and the other compact,
there always exists a hyperplane that separates the two sets. For simplicity, we
concentrate only on the case of conic feasibility, i.e., where we are interested in
deciding the existence of a solution x to the equations

Az =b, zek, (2.20)

where as before K is a proper cone in the vector space S. We want to understand
when this problem is feasible and how to certify its infeasibility whenever there are
no solutions.

To do this, consider the image A(K) of the cone under the linear mapping.
Notice that feasibility of (2.20) is equivalent to the point b being contained in A(K).
We have now two convex sets in 7', namely, A(K) and the singleton {b}, and we
want to know whether these sets intersect or not. If these sets satisfy certain
properties (for instance, closedness and compactness), then we could go on to apply
the (strict) separating hyperplane theorem and produce a linear functional y that
will be positive on one set and negative on the other. In particular, nonnegativity
of y on A(K) implies

(y, Az >0 Ve e K — (A'y,2)>0Verek <= A'yek’.

Thus, if (2.20) is infeasible, and provided the hypotheses of the separating hyper-
plane theorem apply, there exists a (suitably normalized) linear functional y which
satisfies

(y,0)=-1,  A'yek" (2.21)

This yields a certificate of the infeasibility of the conic system (2.20).

When can we actually do this? The set {b} is certainly compact, so a natural
condition is that A(K) be a closed set. However, as we have mentioned, the image
of a proper cone is not necessarily closed, so we cannot automatically conclude
this. However, under certain conditions, we can ensure that this set will be closed.
Well-known sufficient conditions for this are the following.
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24 Chapter 2. Semidefinite Optimization

Theorem 2.28. Let K C S be a proper cone and A:S — T be a linear map. The
following two conditions are equivalent:

(i) KNkerA={0}.
(ii) There exists y € T™ such that A*y € int(K*).

Furthermore, if these conditions hold, then A(K) is a closed cone.

The first condition, while intuitive, has the drawback that it is not directly
verifiable. The second condition is often more convenient, since it can be certi-
fied by exhibiting such a y, and can be interpreted as the range of A* properly
intersecting C*.

Proof. The equivalence of (i) and (ii) follows from Exercise 2.32, taking L = ker A,
and thus L+ = range A*.

Assume now that (ii) holds, and define C = {z € K : (A*y,z) = 1}. We
claim that the set C' is compact. Indeed, C' is closed (being the intersection of two
closed sets), and it is also bounded, since if there is a sequence z € C' with |z
going to infinity, then defining z = limg_,o 21 /||2k| (passing to a subsequence
if necessary) gives an element of I (by closedness of K), for which (A*y,z) =
limg—y oo (A*y, 2k )/ ||2k]| = limg— oo 1/]|2k|| = 0, contradicting A*y € int(K*).

The set A(C) is also compact (being the linear image of a compact set) and
does not include the origin, since for all 2 € C' we have (y, Az) = (A*y,z) = 1.
Thus, since A(K) = cone(A(C)), it follows from Exercise 4.17 in Chapter 4 that
A(K) is closed. 0O

To recap, having strictly feasible solutions in (range.A*) Nint £* is a natural
condition for the existence of infeasibility certificates of the form (2.21).

For the case of a general conic optimization problem (not just feasibility),
similar conditions can be used to ensure that there will be no duality gap between
the primal and dual conic programs. The basic idea is to reduce the optimization
problem to a pure feasibility question by adjoining a new inequality corresponding
to the cost function. In this case, imposing a Slater-type condition will guarantee
that optimal solutions for both problems are achieved, with no gap (compare with
the semidefinite programming case, Theorem 2.15).

Theorem 2.29. Consider a conic optimization problem (CP), where both the
primal and dual problems are strictly feasible. Then, both problems have nonempty,
compact sets of optimal solutions, and there is no duality gap.

Besides Theorem 2.28, many other conditions are known that ensure the
closedness of A(K). In particular, when K is polyhedral this image is always closed,
with no interior-point requirements needed. This corresponds to the case of linear
programming and is the reason why strong duality always holds in the LP case.

In Section 3.4.2 of Chapter 3 we will explore in much more detail general
infeasibility certificates for different kinds of systems of equations and inequalities.
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2.2. Applications of Semidefinite Optimization 25

Exercise 2.30. Consider the set K = {(z,y,2) : y* < zz, 2 > 0}. Show that K is
a proper cone. Show that its projection onto the (x,y) plane is not a proper cone.

Exercise 2.31. Let K1, K2 be closed convex cones. Show, via a counterexample,
that the Minkowski sum &; + Ko does not have to be closed.

Exercise 2.32. Let L C S be a subspace, and IC C S be a proper cone. Show that
the following two propositions are equivalent:

(i) LNnK ={0}.
(ii) There exists z € Lt Nint(K*).

Hint: For the “difficult” direction (i) = (ii), argue by contradiction, and use homo-
geneity and the separation theorem for convex sets.

Although as we have seen, “standard” duality may fail in semidefinite (or
conic) programming, it is nevertheless possible to formulate a more complicated
semidefinite dual program (called the “Extended Lagrange—Slater Dual” in [36])
for which strong duality always holds, regardless of interior-point assumptions.
For details, as well as a comparison with the more general “minimal cone” ap-
proach, we refer the reader to [36, 37].

2.2 Applications of Semidefinite Optimization

There have been many applications of semidefinite optimization in a variety of
areas of applied mathematics and engineering. We present here just a few, to give a
flavor of what is possible; many others will follow in other chapters. The subsections
corresponding to the different examples presented here can be read independently
and are not essential for the remainder of the developments in the book.

2.2.1 Lyapunov Stability and Control of Dynamical Systems

One of the earliest and most important applications of semidefinite optimization is
in the context of dynamical systems and control theory. The main reason is that it
is possible to characterize dynamical properties (e.g., stability) in terms of algebraic
statements such as the feasibility of specific systems of inequalities. We describe
below a relatively simple example of these ideas that captures many of the features
of more complicated problems.

Stability of linear systems. Consider a linear difference equation given by
zlk + 1] = Axl[k], z[0] = =o. (2.22)

This kind of linear recurrence equation is a simple example of a discrete-time dy-
namical system, where the state x[k] evolves over time, starting from an initial
condition xg. The difference equation (2.22), or its continuous-time analogue (the
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26 Chapter 2. Semidefinite Optimization

linear differential equation %x(t) = Az(t)), is often used to model the time evolu-
tion of quantities such as temperature of objects, size of a population, voltage of
electrical circuits, and concentration of chemical mixtures.

A natural and important question about (2.22) is the long-term behavior of
the state. In particular, as K — oo, under what conditions can we guarantee that
the state z[k] remains bounded, or converges to zero? It is well known (and easy
to prove; see Exercise 2.35) that x[k] converges to zero for all initial conditions xg
if and only if the spectral radius of the matrix A is smaller than one, i.e., all the
eigenvalues \; satisfy [A;(A)] < 1 for ¢ = 1,...,n. In this case we say that the
system (2.22), or the matrix A, is stable (or Schur stable, if the discrete-time aspect
is not clear from the context).

While this spectral characterization is very useful, an alternative viewpoint is
sometimes even more convenient. The basic idea is to consider a generalization and
abstraction of the notion of energy, usually known as a Lyapunov function. These
are functions of the state x[k], with the property that they decrease monotonically
along trajectories of the system (2.22). It turns out that for linear systems there
is a simple characterization of stability in terms of a quadratic Lyapunov function
V(z[k]) = z[k]T Pz[k]. Notice first that the monotonicity condition V (z[k + 1]) <
V(z[k]) (for all states x[k]) can be equivalently expressed in terms of the matrix
inequality ATPA — P < 0. We then have the following result.

Theorem 2.33. Given a matrix A € R™"*" the following conditions are equivalent:
1. All eigenvalues of A are inside the unit circle; i.e., |\i(A)| <1 fori=1,...,n.

2. There exists a matrix P € S™ such that
P =0, ATPA - P <.

Proof. (2) = (1): Let Av = Av, where v # 0. Then
0> v*(ATPA— P)v = (|]\> — 1) v* Pu,
>0

and therefore |A| < 1.
(1) = (2): Let P := Y 72 (A*)TA*. The sum converges by the eigenvalue
assumption. Then

ATPA—P =) (A)TAF - " (AF)TAF = —T<0. O
k=1 k=0

Thus, the characterization given above enables the study of the stability prop-
erties of the linear difference equation (2.22) in terms of a semidefinite program-
ming problem, whose feasible solutions correspond to Lyapunov functions. In Sec-
tion 3.6.2 we will explore extensions of these ideas to more complicated dynamics,
not necessarily linear.

Control design. Consider now the case of a linear system, where there is a control
input ulk]:
x[k + 1] = Ax[k] + B ulk], z[0] = xo, (2.23)
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2.2. Applications of Semidefinite Optimization 27

where B € R™" ™. The idea here is that by properly choosing the control input
ul[k] € R™ at each time instant, we may be able (under certain conditions), to affect
or steer the behavior of z[k] toward some desired goal. We are interested in the
case where the matrix A is not stable, but we can use linear state feedback to set
ulk] = Kx[k] for some fixed matrix K (to be chosen appropriately). It is easy to
see that after this substitution, the system is described by (2.22), where the matrix
A is replaced by A(K) = A+ BK. Thus, our goal is “stabilization”; i.e., we want
to find a matrix K such that A + BK is stable (all eigenvalues have absolute value
smaller than one).

Although this problem seems (and is!) fairly complicated due to the nonlinear
dependence of the eigenvalues of A + BK on the unknown matrix K, it turns out
that it can be nicely solved using semidefinite optimization and the Lyapunov char-
acterization given earlier. Indeed, we can use Schur complements (see Appendix A)
to rewrite the condition

(A+BK)'P(A+ BK)-P <0, P=0,

as

P (A+BK)TP <0
P(A+ BK) P ’
Although nicer, this condition is not quite an SDP yet, since it is bilinear in (P, K)
(and, thus, not jointly convex). However, defining @ := P~!, and left- and right-
multiplying the equation above with the matrix BlockDiag(@, @), we obtain

0 Q(A + BK)T
[ (A + BK)Q 0 } o

Notice that this expression contains both @ and K@, but there is no single ap-
pearance of the variable K. Thus, we can define a new variable Y := K@, to
obtain

AT 1 yTBT

@ QA+ 0. (2.24)
AQ + BY Q

This problem is now linear in the new variables (Q,Y"). In fact, it is a semidefinite

programming problem! After solving it, we can recover the controller K via K =

QY. We summarize our discussion in the following result.

Theorem 2.34. Given two matrices A and B, there exists a matriz K such that
A+ BK is stable if and only if the spectrahedron described by (2.24) is nonempty,
i.e., there exist matrices (Q,Y) satisfying this (strict) linear matrixz inequality.

Hence our control design problem is equivalent to solving a semidefinite pro-
gramming feasibility problem.
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28 Chapter 2. Semidefinite Optimization

Semidefinite programming techniques have become quite central in the anal-
ysis and design of control systems. The example above describes only the tip of
the iceberg in terms of the many design problems that can be attacked with these
techniques; we refer the reader to the works [6, 47] and the references therein.

We remark that the formulas in this example (e.g., (2.24)) do not explicitly
depend on the dimensions of the matrices A, B, K,Y, Q. Hence, these kinds of
problems are sometimes called dimension-free. This dimension-free feature applies
to many classical problems in linear systems and has strong implications. Linear
control theory problems can often be reduced to polynomials in matrix variables
where the feasible set is defined by these polynomials being positive semidefinite.
Analyzing this situation requires a theory of inequalities for free noncommutative
polynomials extending classical real geometry for commutative polynomials. The
convexity aspects of this new area, noncommutative real algebraic geometry, is the
subject of Chapter 8.

Exercise 2.35. Show that for the linear difference equation (2.22), the state
x[k] converges to zero for all initial conditions ¢ if and only if |\;(A4)] < 1 for
i =1,...,n. Hint: show that z[k] = AF gz, and consider first the case where the
matrix A is diagonalizable.

Exercise 2.36. The system (2.23) has a nonstabilizable mode if the matrix A has
a left eigenvector w such that wT A = Aw?, wT'B = 0, and |A\| > 1. Show that if
this is the case, then the SDP (2.24) cannot be feasible. Interpret this statement in
terms of the eigenvalues of A + BK. What does this say about the dual SDP?

2.2.2 Binary Quadratic Optimization

Binary (or Boolean) quadratic optimization is a classical combinatorial optimization
problem. In the version we consider, we want to minimize a quadratic function,
where the decision variables can take only the values +1. In other words, we are
minimizing an (indefinite) quadratic form over the vertices of an n-dimensional
hypercube. The problem is formally expressed as

minimize 27 Qux

2.25
subject to x; € {—1,1}, (225)

where Q € §". There are many well-known problems that can be naturally writ-
ten in the form above. Among these, we mention the maximum cut (MAXCUT)
problem, 0-1 knapsack, etc.

Notice that the Boolean constraints can be modeled using quadratic equa-
tions, i.e.,

re{-1,1} & a2?=1.

These n quadratic equations define a finite set, with an exponential number of
elements, namely, all the n-tuples with entries in {—1,1}. There are exactly 2"
points in this set, so a direct enumeration approach to (2.25) is computationally
prohibitive when n is large (already for n = 30 we have 2" ~ 10°).
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2.2. Applications of Semidefinite Optimization 29

We write the equivalent polynomial formulation

minimize =7 Qx
) 9 (2.26)
subject to x; =1,

and we denote the optimal value and optimal solution of this problem as f, and
T4, respectively. It is well known that the decision version of this problem is NP-
complete (e.g., [18]). Notice that this is true even if the objective function is convex
(i.e., the matrix @ is positive definite), since we can always assume @) > 0 by adding
to it a large constant multiple of the identity (this only shifts the objective by a
constant).

Computing “good” solutions to the binary optimization problem (2.26) is a
quite difficult task, so it is of interest to produce accurate bounds on its optimal
value. As in all minimization problems, upper bounds can be directly obtained from
feasible points. In other words, if g € R™ has entries equal to 1, it always holds
that f, < 28’ Qx¢ (of course, for a poorly chosen z¢, this upper bound may be very
loose).

To prove lower bounds, we need a different technique. There are several ap-
proaches to doing this, but many of them will turn out to be exactly equivalent
in the end. In particular, we can provide a lower bound in terms of the following
primal-dual pair of semidefinite programming problems:

minimize Tr@QX maximize TrA
subject to X =1, subject to  Q = A, (2.27)
X =0, A diagonal.

These semidefinite programs can be interpreted in a number of ways. For instance,
it is clear that the optimal solution X™* of the primal formulation in (2.27) yields
a lower bound, since for every z in (2.26), the matrix X = x27 gives a feasible
solution of (2.27) with the same cost: TrQX = Tr Qua’ = 27 Q. Similarly, for
every feasible solution A = Diag(A1,...,A,) of the dual SDP, we have

2TQr > 2T Ax = Z )\ixf = TrA,

=1

thus yielding a lower bound on (2.26).

In certain cases, these SDP-based bounds are provably good. Well-known cases
are when (—@) is diagonally dominant or positive semidefinite or has a bipartite
structure, in which case results due to Goemans—Williamson [20], Nesterov [31], or
Grothendieck/Krivine [30, 2, 25], respectively, have shown that there is at most a
small constant factor between the “true” solutions and the SDP relaxations. We
discuss these bounds next.

Rounding. As described, the optimal value of the SDP relaxation (2.27) provides
a lower bound on the optimal value of the binary minimization problem (2.26). Two
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30 Chapter 2. Semidefinite Optimization

natural questions arise:

1. Feasible solutions: can we use the SDP relaxations to provide feasible points
that yield good (or optimal) values of the objective?

2. Approximation guarantees: is it possible to quantify the quality of the bounds
obtained by SDP?

By suitably “rounding” in an appropriate manner the optimal solution of the SDP
relaxation, both questions can be answered in the affirmative. The basic idea is
to produce a binary vector = from the SDP solution matrix X, using the following
“hyperplane rounding” method [20]:

e Factorize the SDP solution X as X = VIV, where V = [v1...v,] € R"™*"
and r is the rank of X.

e Since X;; = viT v; and X;; = 1, this factorization gives n vectors v; on the
unit sphere in R". Thus, instead of assigning either 1 or —1 to each variable,
so far we have assigned to each x; a point on the unit sphere in R".

e Now, choose a uniformly distributed random hyperplane in R" (passing through
the origin), and assign to each variable x; either a +1 or a —1, depending on
which side of the hyperplane the point v; lies.

Since the last step involves a random choice, this is a randomized rounding method.
By a simple geometric argument, it is possible to quantify the expected value of the
objective function.

Lemma 2.37. Let x = sign(VTr), where X = VIV and r is a standard random
Gaussian vector. Then, E[z;x;] = 2 arcsin X;.

By linearity of expectations, we have the following relationship between the
lower bound given by the optimal value of the SDP, the “true” optimal value f,
and the expected value of the rounded solution x:

TrQX < f. <E[lzTQz] = %TrQarcsin[X]. (2.28)

The notation arcsin|-] indicates that the arcsine function is applied componentwise,
i.e., (arcsin[X]);; = arcsin Xj;.

Exercise 2.38. Prove Lemma 2.37, and verify that it implements the hyperplane
rounding scheme.

Approximation ratios. In many problems, we want to understand how far these
upper and lower bounds are from each other. Depending on the specific assumptions
on the cost function, the hyperplane rounding method (or slight variations) will give
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2.2. Applications of Semidefinite Optimization 31

solutions with different guaranteed approximation ratios. Since the approximation
algorithms literature often considers mazimization problems (instead of the mini-
mization version (2.26)), in this section we use

maximize 27 Az
) ) (2.29)
subject to x; =1

and state below our assumptions in terms of the matrix A (or, equivalently, the
matrix —@ in the minimization formulation (2.25)).

We describe next three well-known cases where constant approximation ratios
can be obtained.

Diagonally dominant: A symmetric matrix A is diagonally dominant if a; >
> ki |a;;| for all 4. This is an important case that corresponds, for instance,
to the MAXCUT problem, where the cost function to be maximized is the
Laplacian of a graph (V, E), given by 1 E(i7j)€E(xi — z;)?. Every diagonally
dominant quadratic form can be written as a nonnegative linear combination
of terms of the form z7 and (x; £2;)? [4]. Thus, to analyze the performance of
hyperplane rounding when A is diagonally dominant, it is enough to consider
the inequality

2
E[(z; £ 2;)%/2] = B[l + 2;2;] = 1 + = arcsin X;; > agw - (1 £ X;5),
s

where agw = minge_11(1 — 2 arcsint)/(1 — ¢) ~ 0.878. Combining this
with (2.28), and taking into account the change of signs (since A = —Q), it
follows that

acw - TrAX <E[2TAz] < f, < Tr AX;

i.e., the vector x obtained by randomly rounding the SDP solution matrix X
is at most 13% suboptimal in expectation. This analysis is due to Goemans
and Williamson [20] and yields the best currently known approximation ratio
for the MAXCUT problem.

Positive semidefinite: Nesterov [31] first analyzed the case of maximizing a con-
vex quadratic function, i.e., when the matrix A is positive semidefinite. Notice
that here we do not have any information on the sign of the individual en-
tries a;j, and thus a “global” analysis is needed instead of the term-by-term
analysis of the previous case. The key idea is to use the following result.

Lemma 2.39. Let f: R — R be a function whose Taylor expansion has only
nonnegative coefficients. Given a symmetric matrix X, define a matric' Y as
Yi; = f(Xi;) (equivalently, Y = f[X]). Then X = 0 implies Y = 0.

This lemma is a rather direct consequence of the Schur product theorem;
see Exercise 2.42. Since the scalar function f(t) = arcsin(t) — ¢ has only
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nonnegative Taylor coefficients, if X = 0, we have arcsin[X] > X, and thus

E[zT Az] = zTrAaurcsin[X] > —-TrAX.
T

R

Thus, in this case we have

z-TYAX};Eh@Ax]gf*gTYAX.
s

Notice that % ~ 0.636, so the approximation ratio in this case is slightly worse
than for the diagonally dominant case.

Bipartite: This case corresponds to the cost function being bilinear and has been
analyzed in [2, 30]. We assume that the matrix A has a structure
1{o0 S
A‘ikTO}
Letting 2 = [p; ¢, an equivalent formulation is in terms of a bilinear optimiza-

tion problem
maximize p’ Sq,

where S € R"*™ and p, q are in {+1, —1}" and {+1,—1}", respectively.

This problem has a long history in operator theory and functional analysis and
was first analyzed (in a quite different form) by Grothendieck. For this class
of problems, it follows from his results that a constant ratio approximation is
possible. In fact, the worst-case ratio (over all instances) between the values
of the semidefinite relaxation and the bilinear binary optimization problem is
called the Grothendieck constant and is usually denoted K,

Tr AX
fo

where X is, as before, the optimal solution of the SDP relaxation. The exact
value is this constant is unknown at this time. The argument below is essen-
tially due to Krivine [25] and provides an upper bound to the Grothendieck
constant.

Kqg :=sup
A

Since there are no assumptions about the sign of the entries of the matrix 5,
we cannot directly apply the techniques discussed earlier to prove a bound on
the quality of hyperplane rounding. The basic strategy in Krivine’s approach
is the following: instead of using hyperplane rounding directly on the solu-
tion X of the SDP relaxation, we will apply first a particular componentwise
transformation, to obtain a matrix Y, and then apply hyperplane rounding
to Y. The reason is that this will considerably simplify the computation of
the expected value of the objective function.

To do this, we use a “block” version of Lemma 2.39.
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Lemma 2.40. Let f,g: R — R be functions such that both f+ g and f — g
have nonnegative Taylor coefficients. Let

X = Ki ij , Y= {f(X“) g(X”’)] : (2.30)

Then X = 0 implies Y = 0.

The result now follows from a clever choice of f and g. Let
f(t) = sinh(cgmt/2), g(t) = sin(cxmt/2),

where the constant cx = %sinh_l(l) = 2]og(1 + v2) ~ 0.5611 is chosen so
f(1) =1. Since

o t2k+l o k t2k+l
h(t =
sin ; 2k—|—1 bln ZO 2k—|—1)

both f + g and f — g have nonnegative Taylor expansions.

Let X be the optimal solution of the SDP relaxation, and define Y as in (2.30).
Notice that the matrix Y satisfies Y > 0 and Y;; = 1. We can therefore apply
hyperplane rounding to it to obtain a vector y. Computing the expected value
of this solution, we have

E[y’ Ay] = %TrAarcsin[Y] = % -TrS(exmXi12/2) = cx - Tr S X9,

and therefore this gives us a randomized algorithm with expected value ck
times the value of the SDP relaxation. Notice that no inequalities are used in
the analysis, so the expected cost of the solution y for this rounding scheme
is exactly equal to cx times the optimal value of the SDP:

CK -TI‘SX12 = E[yTAy] S f* S TI‘SXlg.

This analysis gives an upper bound for the Grothendieck constant of % <
Kg < 1/ck =~ 1.7822. Tt has been recently shown that this rounding method
(and thus, the value 1/ck) is not the best possible one [8], but the exact
approximation ratio is not currently known.

Exercise 2.41. Show that the optimal values of the primal and dual semidefinite
programs in (2.27) are equal, i.e., there is no duality gap.

Exercise 2.42. The entrywise product AoB of two matrices is given by (AoB);; =
A;i;B;;. This product is also known as the Hadamard or Schur product. The Schur
product theorem says that if two matrices A, B are positive semidefinite, so is
their product A o B.
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1. Prove the Schur product theorem. (Hint: What happens if one of the matrices
is rank one?)

2. Prove Lemmas 2.39 and 2.40.

2.2.3 Stable Sets and the Theta Function

Given an undirected graph G = (V, E), a stable set (or independent set) is a subset
of the set of vertices V' with the property that the induced subgraph has no edges.
In other words, none of the selected vertices are adjacent to each other.

The stability number of a graph, usually denoted by «(G), is the cardinality
of the largest stable set. Computing the stability number of a graph is NP-hard.
There are many interesting applications of the stable set problem. In particular,
it can be used to provide upper bounds on the Shannon capacity of a graph [28],
a problem that appears in coding theory (when computing the zero-error capacity
of a noisy channel [43]). In fact, this was one of the first appearances of semidefinite
programming.

In many problems, it is of interest to compute upper bounds on «a(G). The
Lovdsz theta function of the graph G is denoted by J(G) and is defined as the
solution of the primal-dual SDP pair:

maximize TrJX minimize ¢
subject to TrX =1 subject to Y <tI
X,; =0, (i,j)€E, Yi=1 i€V,
X =0, Yij=1, (i,j) ¢ E,
(2.31)

where J is the matrix with all entries equal to one.
The theta function is an upper bound on the stability number, i.e.,

(@) < 9(Q).

The inequality is easy to prove. Consider the indicator vector x(S) of any stable
set S, and define the matrix X := ﬁx(S)X(S)T. It is easy to see that this X is
a feasible solution of the primal SDP in (2.31), and it achieves an objective value
equal to |S|. As a consequence, the inequality above directly follows.

For a class of graphs known as perfect graphs,' the upper bound given by the
theta function is exact; i.e., it is equal to the stability number. Many classes of
graphs, such as bipartite, chordal, and comparability graphs, are perfect. Thus, for
these graphs one can compute in polynomial time the size of the largest stable set
(and a maximum stable set) by solving the SDPs (2.31). Interestingly, at this time
no polynomial-time combinatorial methods (not based on semidefinite program-
ming) are known to compute this quantity for all perfect graphs. Further material

LA graph is perfect if, for every induced subgraph, the chromatic number is equal to size of
the largest clique.
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Figure 2.8. Petersen graph.

on the theta function of a graph and its applications in combinatorial optimization
can be found in Lovész’s original paper [28], or the references [19, 21].

Exercise 2.43. Consider the graph in Figure 2.8, known as the Petersen graph.
Compute the semidefinite programming upper bound on the size of its largest stable
subset (i.e., the Lovdsz theta function). Is this bound tight? Can you find a stable
set that achieves this value?

Exercise 2.44. The chromatic number x(G) of a graph G is the minimum number
of colors needed to color all vertices, in such a way that adjacent vertices receive
distinct colors. Show that the inequality

IG) < x(G)

holds, where G is the complement of the graph G.
Hint: Given a coloring of G, construct a feasible solution of the dual SDP in
(2.31).

2.2.4 Bounded analytic interpolation

In many applications, one tries to find a function in a given function class, that takes
specific values at prescribed points. These kinds of questions are known as interpo-
lation problems. A classical and important class of interpolation problems involves
bounded analytic functions. The mathematical background for these problems is
reviewed and developed further in Chapter 9. Good general references include [3]
for the theoretical aspects, and [24, 47] for specific applications of interpolation in
systems and control theory.

We discuss here two specific problems related to this area. The first is the
computation of the H,,-norm of an analytic function, and the second is the classical
Nevanlinna—Pick interpolation problem. Additional connections between analytic
interpolation and convex optimization can be found in [6].

Norms of rational analytic functions. Let D be the complex open unit disk
D= {z € C: |z| < 1}. Consider a scalar rational function of a complex variable z
given by

f(z)=cl(z'T—A) b +d, (2.32)
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36 Chapter 2. Semidefinite Optimization

where A € R"*" b,c € R"!, and d € R. We assume that all the eigenvalues of A
arein D: |\;(A)| < 1 (i.e., A is Schur stable). It follows that 2~'I — A is nonsingular
on |z| <1, and thus f(z) is analytic? on the domain D.

The question of interest is to compute the Ho-norm of the function f(z), i.e.,
its maximum absolute value on the unit disk:

[flloc = sup | f(2)]. (2.33)
zeD

It can be shown, by using the maximum principle in complex analysis, that it is
enough to compute the supremum of f(z) on the boundary of the domain, i.e., the
unit circle |z| = 1. A fairly complete characterization of this question is available.
It is known in the literature under several names, such as the Kalman—Yakubovich—
Popov lemma [38], or the bounded real lemma, or (as a special case of) the structured
singular value theory [34], among others. The statement, presented below, charac-
terizes this norm in terms of the solution of a semidefinite programming problem.

Theorem 2.45. Consider a function f(z) as in (2.32), with |\;(A)| < 1. Then,
Iflloe <~ if and only if the semidefinite program

A o]"[P 0][A b] [P O
LT d] [O J [CT d} < [O 72], P, (2.34)
is feasible, where the decision variable is the matrix P € S™.

A full proof can be found, for instance, in [3, 47]. We present here only the
“easy” direction, i.e., showing that if (2.34) holds, then we have || f(2)|lcc < 7. For
this, let v = (2711 — A)~1b, and multiply the first inequality in (2.34) left and right
by [v* 1] and its conjugate transpose, respectively. From the identity

o b=l

(=71 = 1) Po) + (If(2)* = 7*) <0,

we have that

and thus the conclusion directly follows. The converse direction takes a bit more
work; see Chapter 9. There are extensions of this result to the matrix case, i.e.,
where f(z) is matrix-valued.

Exercise 2.46. Use the given formulation to compute the H..-norm of the an-
alytic function f(z) = ﬁ How can you compute, from the semidefinite
formulation, a value of z at which the maximum is achieved?

2We remark that the notation used here is slightly different from the usual notation in systems
and control theory, where z is used instead of z~1 in (2.32). The reason is that for interpolation,
it is more natural to use functions that are analytic on D (poles outside the unit circle) than
functions that are analytic outside D. To avoid distracting technical issues of controllability and/or
observability, we use strict inequalities throughout.
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2.2. Applications of Semidefinite Optimization 37

Exercise 2.47. Formulate a similar statement for the matrix case. Do the same
formulas work?

Nevanlinna—Pick interpolation. Consider now the following problem. We want
to find an analytic function on D satisfying the interpolation constraints:

flag) = cx for k=1,...,m, (2.35)

where a;, € D. When does there exist an analytic function, satisfying the interpo-
lation conditions, whose absolute value is bounded by 1 on the unit disk?

Clearly, a necessary condition is that the interpolated values ¢ must satisfy
lek| <1 for all k. However, due to the analyticity constraint, this is not sufficient.
Consider, for instance, the case m = 2 and the constraints f(0) = 0 and f(1/2) = c.
In this case, a necessary condition is |¢| < 1/2, which is stronger than the “obvious”
condition |¢| < 1. To see this, notice that, due to the first interpolation constraint,
f(2) must have the form f(z) = zg(z), where g(z) = f(2)/z is also analytic on D
and bounded by one (by the maximum modulus theorem, since |f(z)| = |g(z)| on
the unit circle). Thus, we must have 1 > |g(1/2)| = 2|¢|, and thus |¢| < 1/2.

Necessary and sufficient conditions for the interpolation problem to be feasible
are given by the Nevanlinna—Pick theorem; see Chapter 9. The formulation below
is convenient from the optimization viewpoint.

Theorem 2.48. There exists a function f(z) analytic on D, satisfying the norm
bound || f(2)]lco <y and the interpolation constraints (2.35) if and only if

~Z  C*
] e (2.30
where Zjj, = ﬁ and C = Diag(c1, ..., ¢m).

Using Schur complements, it can be easily seen that this formulation is equiv-
alent to the more usual characterization where the m x m Pick matrix P given by
72 —clek
Pk = T—=—
aj (477
is required to be positive semidefinite (e.g., Section 9.8). The advantage of con-
dition (2.36) is that it is linear in the interpolation values ¢j. This allows its
use in a variety of system identification problems; see, for instance, [11, 35]. The
Nevanlinna—Pick interpolation problem has many important applications in systems
and control theory; see, for instance, [14] and [47] and the references therein.

2.2.5 Euclidean Distance Matrices

Assume we are given a list of pairwise distances between a finite number of points.
Under what conditions can the points be embedded in some finite-dimensional space
and those distances be realized as the Fuclidean metric between the embedded
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38 Chapter 2. Semidefinite Optimization

points? This problem appears in a large number of applications, including dis-
tance geometry, computational chemistry, sensor network localization, and machine
learning.

Concretely, assume we have a list of distances d;; for 1 < i < j < n. We
would like to find points z; € R* (for some value of k) such that ||z; — ;| = d;;
for all 4,7. What are necessary and sufficient conditions for such an embedding
to exist? In 1935, Schoenberg [41] gave an exact characterization in terms of the
semidefiniteness of the matrix of squared distances.

Theorem 2.49. The distances d;; can be embedded in a Euclidean space if and
only if the n X n matriz

0 di, di; ... d3,
&, 0 By ... &
D= | & 0 .. &
& E 2 ... 0
is negative semidefinite on the subspace orthogonal to the vector e := (1,1,...,1).

Proof. We show only the necessity of the condition. Assume an embedding exists,
i.e., there are points z; € R* such that d;; = |lz; — z;||. Consider now the Gram
matrix G of inner products

(x1,21)  (x1,22) ... (T1,Zn)
G <$2,:$1> <$2,:$2> <9027:96n> _ [5817 o wn]T[xl’ o 7%]7
which is positive semidefinite by construction. Since D;; = ||z; — z;||? = (x4, z;) +

(xj, ;) — 2(x;, x;), we have
D = Diag(G) - e’ + ¢ - Diag(G)" — 2G,
from which the result directly follows. O

Notice that the dimension of the embedding is given by the rank k of the
Gram matrix G.

For more on this and related embedding problems, good starting points are
Schoenberg’s original paper [41] as well as the book [15].

Exercise 2.50. Consider the Euclidean distance matrix characterization in Theo-
rem 2.49. Show that it implies the triangle inequality dir < d;j + d;i for all triples
(x;, 2, x) of points. Is the converse true?
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2.2. Applications of Semidefinite Optimization 39

2.2.6 Rank Minimization and Nuclear Norm

An interesting class of optimization problems appearing in many application do-
mains is rank minimization problems. These have the form

minimize rank X

subject to X € C, (2.37)

where the matrix X € R™*" is the decision variable, and C is a given convex
constraint set. Notice that the cost function is integer-valued, and thus (unless the
problem is trivial) these optimization problems are not convex.

Rank minimization questions arise in many different areas, since notions such
as order, complexity, and dimensionality can often be expressed by means of the
rank of an appropriate matrix. For example, a low-rank matrix could correspond
to a low-degree statistical model for a random process (e.g., factor analysis), a low-
order realization of a linear dynamical system, or a low-dimensional embedding of
data in Euclidean space (as in Section 2.2.5). If the set of models that satisfy the
desired constraints is convex, then choosing the simplest one in a given family can
be formulated as a rank minimization problem of the form (2.37).

In general, rank minimization problems can be quite difficult to solve, both
in theory and practice. However, several researchers have proposed heuristic tech-
niques to obtain good approximate solutions. A particularly interesting method is
the nuclear norm heuristic, originally proposed in [17, 16]. In this method, instead
of directly solving the problem (2.37), one solves instead

minimize || X/«
subject to X € C, (2.38)
where || - ||« is the nuclear norm defined earlier in (2.11). In other words, the

“difficult” objective function (rank) is replaced by a “nicer” cost function (nuclear
norm) which is convex, and thus the resulting problem is convex.

Under certain conditions on the set C, it has been shown that the solution of
the problem (2.38) coincides with the lowest-rank solution, i.e., the “true” solution
of (2.37). For example, a typical formulation (see, e.g., [39] for a specific statement)
would establish that if the set C is a subspace of dimension O(n logn), uniformly cho-
sen according to a natural rotation-invariant probability measure, then the nuclear
norm heuristic succeeds with high probability.

Atomic norms. An interesting generalization of these methods is obtained by
considering more general atomic norms [10]. Consider a set A of atoms v; in some
vector space V' (the set A can be finite or infinite). Given an element a € V', we are
interested in the “smallest” decomposition of a in terms of the elements v;, i.e., the
one that satisfies

minimize ), ||

subject to a =Y, a;v;. (2.39)

We can then define the atomic norm ||a|| 4 as the optimal value of this optimization
problem. If the set of atoms is finite, this is a linear programming problem. In most
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40 Chapter 2. Semidefinite Optimization

situations of interest, however, the set A is either infinite or exponentially large, in
which case an LP formulation is impractical. In certain cases, however, we can still
compute this norm efficiently. For instance, in the case where the set of atoms A
corresponds to the rank one matrices uv?, where |lu| = ||v|| = 1, then this norm
corresponds exactly to the matrix nuclear norm defined earlier.

For many problems, however, we would like to consider more general sets of
atoms. A particularly interesting case is when the atoms are the rank one matrices
with 41 entries. In other words, the atoms are given by A = {vw? € R™*" .y €
R™, v? = 1,w € R",w? = 1}. In this case, the norm (2.39) is in general NP-hard
to compute. However, a nice computable approximation is available, known as the
Y2 or max-norm. This norm is defined as ||A|,, = maxjyj=1,jo|=1 |4 o w0,
where o is the entrywise product, and can be computed as the optimal value of the
primal-dual pair of semidefinite programs:

maximize TrATY minimize ¢
. Diag(p) Y . vV A
subject to [ v7T Diag(q) =0, subject to AT W =0,
- - ‘/;ii = ta
i + i = 2,
(2.40)

It can be easily seen that (2.40) gives a lower bound on the optimal value of (2.39),
ie, [[A]ly, < ||A]la. Indeed, if A= 3", ayv;w], where the v; and w; are 1 vectors,
then choosing V =Y, |a;|viv], W =, |a;|wyw!', and t = Y, || gives a feasible
solution for the right-hand side of (2.40). As discussed in Exercise 2.53, the v2-norm
actually yields a constant approximation ratio to the atomic norm for this specific
set of atoms. The ~p-norm is of great importance in a number of applications,
including communication complexity; see, e.g., [27].

Exercise 2.51. Check that the expression (2.39) correctly defines a matrix norm
by verifying homogeneity and the triangle inequality. What properties are needed
on the atom set A to ensure that the norm is well defined and nonzero at every
nontrivial point?

Exercise 2.52. Let the set of atoms A be the rank one matrices of the form vw?,
where ||v|| = ||w|| = 1. Show that the corresponding atomic norm is the “standard”
nuclear norm (sum of singular values).

Exercise 2.53. Using the results in Section 2.2.2, show that in the case where the
atoms are the rank one matrices with £1 entries, the following inequality holds:

[All5, < [Alla < Kel|Ally,

where K¢ is the Grothendieck constant.
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Exercise 2.54. Based on the previous exercise, explain the geometric relationship
between the unit ball of the vo-norm in R™*™ and the elliptope &, defined earlier
in Section 2.1.3.

2.3 Algorithms and Software
2.3.1 Algorithms

In this section we describe a few algorithmic and complexity aspects of the numerical
solution of semidefinite optimization problems. For a complete treatment, we refer
the reader to articles and monographs such as [13, 32, 44, 45].

Semidefinite programs are convex optimization problems and, as such, can be
solved using general convex optimization techniques. Under “natural” assumptions
(e.g., to rule out doubly exponentially small solutions), semidefinite optimization is
solvable in polynomial time, in the sense that e-suboptimal, weakly feasible solutions
can be computed in time polynomial in log % This follows, for instance, from general
results about the ellipsoid method [21].

Despite these nice theoretical results, the ellipsoid method is often too slow
in practice. Since SDP is a generalization of linear programming, it is natural that
some of the most effective practical methods for SDP have been inspired by state-
of-the-art techniques from LP. This has led to the development of interior-point
methods [1, 32] for SDP. The basic idea of interior-point methods is to consider the
optimality conditions of Lemma 2.12 and to perturb the complementarity slackness
condition to (C' — ). A;y;)X = pl. As u varies, these equations implicitly define a
curve (X,,,y,) called the central path, and to solve the original problem we need to
compute (X, y,) as ¢ — 0. These equations are relatively easy to solve for large p,
and by carefully decreasing the value of y, it is possible to use Newton’s method to
efficiently track solutions as i decreases to zero. There are several different versions
of these methods (depending on the exact form of the equations to which Newton’s
method is applied), although they all share fairly similar features. In particular,
primal-dual interior-point methods of this kind are among the most efficient known
methods for small- and medium-scale SDP problems.

Besides interior-point methods, there are several alternative techniques for
solving SDPs that are sometimes preferable to “pure” primal-dual methods due
to speed or memory efficiency issues. Examples of these are techniques based on
low-rank factorizations [9], spectral bundle methods [23], or augmented Lagrangian
methods for large-scale problems [46], among others.

2.3.2 Software

There are a number of useful software packages for polyhedral computations, lin-
ear and semidefinite programming, and algebraic visualization. We present below
a partial annotated selection. A few good up-to-date web resources for general
information about semidefinite programming include Christoph Helmberg’s SDP
page www-user.tu-chemnitz.de/~helmberg/semidef.html and the SDPA website
sdpa.sourceforge.net.
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Polyhedral computations. The first class of software packages we discuss is
polyhedral manipulation codes and libraries. Almost all of them allow us to convert
an inequality representation of a polyhedron (usually called an H-representation)
into vertices/extreme rays (V-representation), and vice versa, as well as much more
complicated operations between polyhedra.

e cdd, by Komei Fukuda.
www.ifor.math.ethz.ch/~fukuda/cdd_home.

e 1rs, by David Avis.
cgm.cs.mcgill.ca/~avis/C/lrs.html.

e polymake, by Ewgenij Gawrilow and Michael Joswig (main authors).
polymake.org.

e PORTA, by Thomas Christof and Andreas Lobel.
typo.zib.de/opt-long_projects/Software/Porta.

Linear programming. For formulating and solving linear programs, many codes
are available, ranging from academic implementations suitable for relatively small
problems to industrial-scale solvers. The following is a necessarily partial list:

e GLPK — GNU Linear Programming Kit
www.gnu.org/s/glpk. This is an open-source package for solving large-scale
linear programming problems, using either simplex or interior-point methods.
GLPK can also solve integer programming problems and can be used as a
callable C library.

e CLP — LP solver, part of the COIN-OR (COmputational INfrastructure for
Operations Research) suite of open source software. www.coin-or.org

e CPLEX — Perhaps the best-known commercial solver, now being developed and
marketed by IBM.

Semidefinite programming. Although SDP is much more recent than linear pro-
gramming, fortunately many good software packages are already available. Among
the most well-known are the following:

e CSDP, originally by Brian Borchers, now a COIN-OR project:
projects.coin-or.org/Csdp

e SDPA, by the research group of Masakazu Kojima, sdpa.sourceforge.net. Sev-
eral versions of the SDPA solver are available, including parallel and variable-
precision floating-point arithmetic, in MATLAB and C++ versions.

e SDPT3, by Kim-Chuan Toh, Reha Titiincli, and Michael Todd.
www.math.nus.edu.sg/~mattohkc/sdpt3.html. SDPT3 is a MATLAB pack-
age for linear, quadratic, and semidefinite programming. It can also handle
determinant maximization problems, as well as problems with complex data.
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e SeDuMi, originally by Jos Sturm, currently being maintained by the opti-
mization group at Lehigh University (sedumi.ie.lehigh.edu), is a widely used
MATLAB package for linear, quadratic, second order conic, and semidefinite
optimization, and any combination of these.

An easy and convenient way to “try out” many of these packages, without installing
them in a local machine, is through the NEOS Optimization server (neos-server.org),
currently hosted by the University of Wisconsin-Madison.

Parsers. In practice, specifying a semidefinite programming problem by explicitly
defining matrices A;, C, and b in (SDP-P) can be cumbersome and error-prone.
A much more convenient and reliable way is to use a “natural” description of the
variables and inequalities and to automatically translate these into standard form
using a parser or modeling language. Two well-known and convenient modeling
environments for semidefinite programming are the following:

e CVX, by Michael Grant and Stephen Boyd.
cvxr.com/cvx. CVX is a MATLAB-based “disciplined convex programming”
software. It is particularly well suited to conic optimization, including semidef-
inite and geometric programming.

e YALMIP, by Johan Lofberg.
yalmip.org. YALMIP is a MATLAB-based parser and solver for the modeling
and solution of convex and nonconvex optimization problems.
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Chapter 3

Polynomial
Optimization,

Sums of Squares, and
Applications

Pablo A. Parrilo

We begin the study of one of the main themes of the book, namely, the relationships
between nonnegative polynomials, sums of squares, and semidefinite programming.
The two key ideas around which this chapter is structured are

sum of squares decompositions of polynomials can be computed using
semidefinite programming,

and

the search for infeasibility certificates for real polynomial systems is a
convex problem. Given an upper bound on the degree of the certificates,
they can be found by solving a sum of squares program.

In the rest of this chapter, we define and explain the basic concepts needed to make
these assertions precise. For this, in Section 3.1 we introduce nonnegative polyno-
mials, sum of squares decompositions, and the notion of sum of squares programs,
followed by a few simple but important applications in Section 3.2. In Section 3.3
we explore how the presence of additional algebraic structure, such as symmetries
or sparsity, enables more efficient computations. We then explain how these results
can be used to provide infeasibility certificates for systems of polynomial inequali-
ties and the important implications for polynomial optimization (Section 3.4). Sec-
tion 3.5 explores the dual side, including geometric and probabilistic interpretations.
Finally, in Section 3.6, we present additional applications of the methods in diverse
areas of applied mathematics and engineering, concluding with a short discussion
of current software implementations.

47
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3.1 Nonnegative Polynomials and Sums of
Squares

3.1.1 Nonnegative Polynomials

We consider polynomials in n variables, with real coefficients. A multivariate poly-
nomial p(z1,...,2,) is nonnegative if it takes only nonnegative values, i.e.,

p(x1,...,2n) >0 forall (zq,...,2,) € R™ (3.1)

The characterization of nonnegativity of multivariate polynomials is a ubiquitous
question throughout mathematics, with many rich and surprising connections.

From the algorithmic and computational viewpoints, perhaps the immediate
first questions that one can ask include the following:

Decision question. Given a polynomial p(x), how do we decide if it is nonnega-
tive?

Certification. Is it possible to certify nonnegativity efficiently? In other words,
imagine you are trying to convince a friend that p(z) is actually nonnegative,
or that it is not. Is there a more efficient way of doing this than having them
run an algorithm themselves?

Complexity. What computational resources are needed to decide polynomial non-
negativity?

Structural questions. What is the structure of the set of nonnegative polyno-
mials?

Before proceeding to answer these questions in the general case, it makes sense
to consider first a few simple special cases.

Univariate polynomials. A good starting point is the case of polynomials in a
single variable, i.e., when n = 1:

p(x) = paz + pa—12"" + -+ pre + po. (3.2)

We normally assume that the leading coefficient py is not zero, and occasionally we
will normalize it to pg = 1, in which case we say that p(z) is monic. The roots are
the values of x at which p(z) vanishes. By the fundamental theorem of algebra,
there is a unique factorization

d

p(x) =pa- [J(x -z, (3.3)

i=1

where the (complex) roots x; may have multiplicities, i.e., they are not necessarily
all distinct.

How do we decide if p is nonnegative? Clearly, an obvious necessary condition
is that the degree of p(x) be even. Otherwise, if the degree is odd, then either as
Z — 00 or as £ — —o0, the polynomial p(x) will become negative.

In some simple cases, it is possible to give direct characterizations.
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Example 3.1. Let p(z) = 22 + p12 + po be a monic quadratic polynomial. What
conditions must p1,po satisfy for p(x) to be nonnegative? Since p(z) defines a
convex function that achieves its minimum, it is enough to verify the nonnegativity
condition only for its minimum value. Solving for the minimizer of p(x) by setting
its derivative to zero (i.e., 2x + p; = 0), we obtain x, = —p1/2, p(zx) = po — p3/4,
and thus we have

{(po,p1) : p(x) >0 Vo € R} ={(po,p1) : 4po —pi > 0}. W

Thus, in the special case of polynomials of degree 2, we were able to write an explicit
inequality condition in the coefficients of p(z) to ensure its nonnegativity.

What can we say in the general (univariate) case? Reasoning directly in
terms of coefficients does not seem too promising. However, it can be easily seen
that nonnegativity imposes strong restrictions on the roots of p(x). Assume the
leading coefficient of p(x) is positive. If p(z) > 0, then either p(x) has no real roots,
or, if it has real roots, they must have even multiplicity (why?). However, since in
general the roots are nonelementary functions of the coefficients of the polynomial,
this approach does not directly yield a good characterization (we will, however, use
this insight later in Section 3.1.3).

There are several explicit algorithms for deciding nonnegativity of univariate
polynomials. These methods will not require the computation of the roots and
may in fact be implemented in exact rational arithmetic. A classical formulation is
based on Sturm sequences; see, e.g., [19]. We describe an alternative technique
instead, known as the Hermite or trace form method; its justification is developed in
Exercise 3.7. Consider a monic univariate polynomial (3.2) and define its associated
Hermite matriz as the following d x d symmetric Hankel matrix:

S0 S1 Sd—1
s1 S2 Sd d
Hi(p) = . o= ah, (3.4)
j=1
Sd—1 Sd " S2d—2

where, as before, x; are the roots of p(z). The quantities s are known as the power
sums and, remarkably, can be obtained directly from the coefficients of p(z) using
the Newton identities, with no root computation needed; see Exercise 3.5. When
p(x) is monic, the s are polynomials of degree k in the coefficients of p(z).

It turns out that we can count the real roots of p(x) by analyzing the inertia
of its Hermite matrix (see Appendix A for background material on matrix inertia).
The following theorems make this connection precise.

Theorem 3.2. The rank of the Hermite matrix H1(p) is equal to the number of
distinct (complex) roots. Its signature is equal to the number of distinct real roots.

Theorem 3.3. Let p(z) be a monic univariate polynomial of degree 2d. Then, the
following are equivalent:

1. The polynomial p(x) is strictly positive.
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50 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

2. The polynomial p(x) has no real roots.

3. The inertia of the Hermite matrix is Z(H1(p)) = (k,2d — k, k) for some 1 <
k<d.

Recall that the inertia of a matrix can be computed efficiently, in polynomial
time, by diagonalization with a congruence transformation (e.g, via the LDLT
decomposition; see Appendix A), so a decision method for strict positivity based
on this theorem can be effectively implemented.

Example 3.4. Consider again the quadratic univariate polynomial p(x) = 2 +

p12 + po. The power sums are sy = 2, s1 = —p1, and sa = p3 — 2pg. The Hermite
matrix is then
2 —p1
H = .
() {—pl i - 2p0}

Let A = det Hy(p) = p? — 4po. The inertia of the Hermite matrix is

(0,0,2) if A>0,
(1,0,1) if A <0,

and thus p is strictly positive if and only if p? —4pg < 0. W

Exercise 3.5. Let p(x) be a monic univariate polynomial as in (3.2). Show that
the power sums sj, satisfy the recursive equations:

k
so =d, sk=> (=1 'pjsk_j, k=12,....

j=1
These equations are known as the Newton identities.

Exercise 3.6. Show that the determinant of the matrix H;(p) is (up to a constant)
equal to the discriminant [32] of p(x). Hint: Express det Hy(p) in terms of the roots

of p(x).

Exercise 3.7. Given a univariate polynomial p(z) of degree d, define the Hermite
quadratic form or trace form Hi(p) : Rlz]q — R as

where x4, ..., 24 are the roots of p(x).
1. Find a matrix representation of the quadratic form H;(p).

2. When is H;(p) singular?
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3. Find a factorization of the Hermite matrix in terms of the Vandermonde
matrix of the roots. If necessary, assume that roots x; are all distinct, and
describe the required modifications for the general case.

4. Prove Theorem 3.2.

Exercise 3.8. Can you find a criterion for polynomial nonnegativity (not strict
positivity) based solely on the inertia of the Hermite matrix? Describe your pro-
posed criterion in detail, or explain why additional information may be necessary.
Hint: Consider the polynomials (z + 1)z%(z — 1)® and (z + 1)%2?(z — 1)2,

Exercise 3.9. Find necessary and sufficient conditions for the quartic polynomial
p(r) = 2* + p12 + po to be positive for all real values of z. Plot the number of real
roots as a function of the parameters (po, p1).

Multivariate polynomials. Now we move on to the multivariate case. Let P, 24
be the set of nonnegative polynomials in n variables of degree less than or equal
to 2d, i.e.,

Pooi={p € Rz]n24 : p(x) >0 VreR"}
By identifying a polynomial with its IV := (”jird) coeflicients, and noticing that the
constraints p(z) > 0 are affine in the coefficients of p for every fixed z, it follows
directly that P, o4 is a conver set in R[x]y 24 ~ RY. Furthermore, the following
is true.

Theorem 3.10. The set of nonnegative polynomials P, 24 s a proper cone (i.e.,
closed, convez, pointed, and solid) in R[x], 04 ~ RN,

Example 3.11. Consider the case of polynomials of degree 2d = 2, i.e., quadratic
polynomials in n variables. Every such polynomial can be represented as

1
p(z) = §a:TAa: + 207z + ¢,

where A € S" is a symmetric matrix. It can be shown (Exercise 3.16) that p(z) >0
for all x € R™ if and only if

A b
>~ 0.
Thus, in this case, the set P, » is isomorphic to the positive semidefinite cone SJ’Z“.
Notice that for the particular case of a univariate quadratic polynomial p(x) =
pax? + p1x + po, this reduces to the condition

b2 ]91/2
> 0.
L?l/2 Do ] -
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This agrees with Example 3.1, which corresponds to the monic case where
P2 = 1. |

As we will shortly see, although always convex, the cone of nonnegative polynomials
has a fairly complicated geometry in the general case. In Chapter 4, further features
of this set will be studied in detail.

Exercise 3.12. Prove Theorem 3.10.

Except for special situations like the quadratic case of Example 3.11, it will
not be easy to efficiently obtain explicit descriptions of P, 24. The reason is that the
algebraic and combinatorial structure of the set of nonnegative polynomials can be
extremely complicated, even though it is a convex set. As a consequence, obtaining
general explicit inequalities (e.g., on the coefficients) that define when a polynomial
is nonnegative can be a very complex, or even hopeless, task.

To understand this situation in more detail, we discuss the algebraic and
geometric situation with the help of a few examples, followed by a discussion of the
computational complexity aspects.

P, 24 is semialgebraic but is not basic semialgebraic. Recall that in Exam-
ple 3.1 we provided explicit inequalities for the set P; o of univariate quadratics.
Since this description did not include quantifiers or logical operations (e.g., set
unions, implications), we obtained a basic semialgebraic set (see Section A.4.4 in
Appendix A). As we will see, such convenient descriptions are not possible in gen-
eral, since the set of nonnegative polynomials is not basic semialgebraic for 2d > 4.

To see why this is the case, consider the following example, describing a par-
ticular affine section of P 4.

Example 3.13. Let p(z) be the quartic univariate polynomial p(z) = 2*+2ax2+0.
For what values of a,b is p(x) nonnegative? Since the leading term x* has even
degree and is strictly positive, p(x) is strictly positive if and only if it has no real
roots. The discriminant! of p(z) is equal to Dis,(p) = 256b(a? — b)2. For the
number of real roots to change, the discriminant must vanish, and thus the zero
set of the discriminant partitions the set of parameters (a,b) into regions where
the number of real roots is constant. The subset of (a,b) € R? for which p(z) is
positive corresponds to the case of no real roots, with its closure being the region
of nonnegativity. Notice that (as expected) this subset is convex and is shown in
Figure 3.1. N

As the example illustrates, in the univariate case it is easy to see that if p(x)
lies on the boundary of the set P; 24, then it must have a real root, of multiplicity at
least two. Indeed, if there is no real root, then p(z) is in the strict interior of P 24
(small enough perturbations will not create a root), and if it has a simple real root
it clearly cannot be nonnegative. Thus, on the boundary of P; 24, the discriminant

I The discriminant Dis,(p) of a univariate polynomial p(z) is a polynomial in the coefficients of
p that vanishes if and only if p has a multiple root. It is defined as the resultant between p(z) and
its derivative p’(x); see [32] or [120] for an introduction to polynomial resultants and discriminants.
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0.5 1 1.5 2

s D

Figure 3.1. The discriminant Dis,(p) partitions the parameter space (a,b)
into regions where the number of real Toots is constant. The numbers indicate how
many real roots the polynomial x* + 2ax? + b has whenever (a,b) are in the corre-
sponding region. The shaded set corresponds to the polynomial being nonnegative.

Dis; (p) must necessarily vanish. However, it turns out that the discriminant does
not vanish only on the boundary, but it may also vanish at points inside the set;
see Figure 3.1. The algebraic reason is that pairs of complex roots may coincide,
which will cause the discriminant to vanish, even though this does not directly affect
nonnegativity of p.

This situation can create some serious difficulties. For instance, even though
we have a perfectly valid analytic expression for the boundary of the set, we cannot
get a good sense of “how far we are” from the boundary by looking at the absolute
value of the discriminant (this would be very useful for numerical optimization over
P, 24). A more algebraic way of describing the situation is that P, 24 is a convex set
with the complicating feature that the Zariski closure of the boundary intersects
the interior of the set.

In general, these sets are not very convenient to work with since we cannot
describe them in terms of unquantified inequalities.

Lemma 3.14. The set discussed in Example 3.13 and presented in Figure 3.1 is
not basic semialgebraic.

The fact that P, 24 is not basic semialgebraic (for 2d > 4) means that there
is no description of P, 24 in terms of a finite collection of polynomial inequalities
{01(pa) > 0,...,9m(pa) > 0} in the coefficients p,. In other words, any characteri-
zation of the set P, 24 using polynomial inequalities must necessarily include logical
operations between sets (e.g., unions, complements) or other similar complications.

Things can be even more complicated than what Figure 3.1 suggests in the
sense that (as opposed to what may be inferred from this figure) in higher dimensions
it is impossible to remove the “undesired” component (i.e., the discriminant does
not factor, as it did in this example). Consider the case of a quartic polynomial of
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Figure 3.2. The zero set of the discriminant of the polynomial x* 4 4ax> +
6bx2 + 4cx + 1. The convexr set inside the “bowl” corresponds to the region of
nonnegativity. There is an additional one-dimensional component inside the set.

the form p(z) = z* + 4ax3 + 6bx? + 4cx + 1. Its discriminant (up to a nonessential
numerical factor) is the irreducible polynomial

1 —27a* — 64c%a® + 108bca® — 54b%a® + 36b°c?a® — 6¢%a® + 54ba®
+ 108bc%a — 180b%ca — 12ca + 81b* — 27¢* — 18b% — 54b3¢? + 54bc>.

The zero set of this discriminant, shown in Figure 3.2, is an algebraic surface that
defines the boundary of a three-dimensional convex set, corresponding to the values
of (a, b, ¢) for which p(z) is nonnegative. It can be shown that this convex set is the
convex hull of two parabolas, defined parametrically as

2t + 1 212 — 1
t’_> t,T,t Pl t'_> t,T,_t Pl

respectively, and that the surface is singular along these parabolas (these correspond
to the cases when the polynomial factors as p(x) = (22 + 2tz £+ 1)?).

From the numerical optimization viewpoint, the presence of “extraneous” com-
ponents of the discriminant in the interior of the feasible set is also an important
roadblock for the availability of “easily computable” barrier functions for these sets
(even in the univariate case). Indeed, every polynomial that vanishes on the bound-
ary of the set P o4 must necessarily contain the discriminant as a factor. This is a
striking difference from the case of the nonnegative orthant or the positive semidef-
inite cone, where the standard barriers are given (up to a logarithm) by products
of the linear constraints or a determinant (which are polynomials). A possible
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solution to this problem is to produce nonpolynomial barrier functions, either by
partial minimization from a higher-dimensional barrier (i.e., projection) or other
constructions such as the “universal” barrier function introduced by Nesterov and
Nemirovski [84].

Remark 3.15. In principle, explicit conditions describing the set Py 2q can be
obtained via quantifier elimination techniques, such as Tarski-Seidenberg, cylindrical
algebraic decomposition (CAD), and related algorithms; see, e.g., [13, 26]. To do
this, consider the quantified formula

VaiVag - -Va, p(ry,...,xn) >0,

and eliminate the quantified variables (x1, ..., xy) to obtain a description of P, 24 as
a semialgebraic set in terms of the coefficients of p only. Notice that this shows that
the nonnegativity problem is decidable. Although extremely powerful from the the-
oretical viewpoint, these methods often run into serious practical difficulties, given
their doubly exponential dependence on the number of variables (modern versions
reduce this to doubly exponential in the number of quantifier alternations). In prac-
tice, they can only be used for problems of fairly small size. A high-quality imple-
mentation of these methods is the software QEPCAD [23].

Exercise 3.16. Prove the characterization of nonnegativity of quadratic polyno-
mials given in Example 3.11.

Exercise 3.17. In this exercise, we consider sets that are semialgebraic but not
basic semialgebraic. For much more about this, see [7, 8].

1. Consider the set S = R?\ T, where T is the open nonnegative orthant 7' =
{(z,y) € R? : 2 > 0, y > 0}. Write S as a union of basic semialgebraic sets.
Show that S is not basic semialgebraic.

2. Prove Lemma 3.14.

Exercise 3.18. Recall that an extreme point v of a convex set S is exposed if there
exists a supporting hyperplane H of S such that {v} = SN H. Show that the closed
convex set in Figure 3.1 has an extreme point that is not exposed.

Exercise 3.19. Explore the geometry of the convex set in Figure 3.2. In particular,
analyze the “swallowtail” singularities of the discriminant variety at the points
(1,1,1) or (—1,1,1) and the one-dimensional component that joins them.

Computational complexity. A different but related viewpoint on why the set
of nonnegative polynomials is difficult to characterize is based on computational
complexity arguments; see, e.g., [47] for an introduction to computational complex-
ity. The goal here is to quantify the computational resources (e.g., time, memory)
required to decide membership in P, 24 and, in particular, to understand how these
resources scale as a function of the problem input size.
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Recall the situation of quadratic polynomials discussed in Example 3.11, where
nonnegativity of a quadratic polynomial was shown to be equivalent to the posi-
tive semidefiniteness of a symmetric matrix. Thus, for this case, polynomial non-
negativity (equivalently, membership in P, 5) can be decided in polynomial time
using, for instance, Gaussian elimination, or LDL”, or Cholesky matrix decompo-
sitions. Similarly, in the univariate case, there are algorithms that will decide, in
time polynomial in the input size (i.e., the bit-length of the coefficients), whether
a univariate polynomial is nonnegative. This can be done, for instance, with minor
variations of the Hermite matrix method described earlier (which, as described, ap-
plied only to strict positivity); see [19] for a complete treatment and other related
methods.

Unfortunately, the situation is drastically different for multivariate polynomi-
als of degree four or higher. When 2d > 4 it is known that deciding polynomial
nonnegativity is an NP-hard problem (for fixed degree, as a function of the number
of variables). Essentially, this means that unless the complexity-theoretic state-
ment P = NP holds (which is generally considered very unlikely), there cannot be
a polynomial-time algorithm that can decide whether a polynomial is nonnegative.
This includes, of course, the possibility of writing a “small” list of explicit conditions
on the coefficients.

Exercise 3.20. Give a reduction from any known NP-hard problem (e.g., satis-
fiability, independent set, binary integer programming, etc.) to nonnegativity of
multivariate quartic polynomials.

A way out: Describing sets as projections. As we have seen, even in the
univariate case, the set of nonnegative polynomials P, o4 has fairly complicated
features, such as not being basic semialgebraic. However, it turns out that at least
in some cases one can provide nicer representations.

To do this, we will represent (or approximate) these sets as a projection from
a higher dimensional space, where the object “upstairs” will have nicer proper-
ties, and all complicating features will be a consequence of the projection. As an
example, recall the set discussed in Example 3.13 and Figure 3.1. This is a two-
dimensional set, describing a particular section of the set of univariate nonnegative
quartics. Although, as we showed, this set is not basic semialgebraic, it is however
the projection of the convex basic semialgebraic set

{(a,b,t) eR® : b>(a—1t)?, >0}

In Figure 3.3 we present a plot of this three-dimensional convex set and its projection
onto the plane (a,b) that gives exactly the set of Figure 3.1.

As we shall see in detail in the next section, this idea will allow us to exactly
represent the set P; o4 of univariate nonnegative polynomials as the projection of
a “nice” spectrahedral set. Furthermore, the same techniques will make it possible
to obtain good approximations for the set P, o4 of multivariate nonnegative poly-
nomials. The techniques will be based on the connection between sums of squares
polynomials and semidefinite programming.
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PO = N W A~ O

Figure 3.3. A three-dimensional convez set, described by a quadratic and a
linear inequality, whose projection on the (a,b) plane is equal to the set in Figure 3.1.

Exercise 3.21. Recall that the Minkowski sum of two sets Si,S2 C R™ is the
set S + So := {51+ 82 : 51 € S1, 52 € So}. Consider a set S C R?, given by the
Minkowski sum of a disk and a line segment. Show that S is not basic semialgebraic.
Give a representation of S as a projection of a convex semialgebraic set in R3.

Exercise 3.22. Consider the set
{(x,y,2) €eR® s wyz>1, >0, y>0, z>0}.
1. Is it convex?
2. Is it a spectrahedron?
3. Is it a projected spectrahedron?

Hint: If you need help with item 2, try the “real zero” condition in Chapter 6.

Exercise 3.23. Prove the validity of the set containment relationships described
in Figure 3.4, and give counterexamples for all noninclusions.

3.1.2 Sums of Squares

A multivariate polynomial p(x1, ..., 2,) is a sum of squares (sos) if it can be written
as the sum of squares of some other polynomials. Formally, we have the following.

Definition 3.24. A polynomial p(z) € R[z], 24 is ¢ sum of squares (sos) if there
exist q1, . . ., @m € R[z]n,q such that

p(z) = ailx). (3.5)
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Semialgebraic sets

Projected
spectrahedra

Spectrahedra

Figure 3.4. Relationships between set classes.

We will use ¥, 24 for the set of sos polynomials in n variables of degree less
than or equal to 2d. If a polynomial p(x) is a sum of squares, then it obviously
satisfies p(z) > 0 for all z € R™. Thus, an sos condition is a sufficient condition for
global nonnegativity, i.e., ¥y 24 € Py 24.

In general, sos decompositions are not unique.

Example 3.25. The polynomial p(z1,22) = 23 — 2123 + 23 + 1 is a sum of squares.
Among infinitely many others, it has the decompositions

3 1
p(x1,22) = =(x1 — 22)* + = (21 + 23)? + 12

4 4
1 2 1 23
=56 x3)? + gxg + 55 (971 — 16x3)2 ﬁxf. |

It quickly follows from its definition that the set ¥, 24 of sos polynomials is
invariant under nonnegative scalings and convex combinations; i.e., it is a convex
cone. In fact, more is true, as follows.

Theorem 3.26. The set of sos polynomials ¥, 2q4 is @ proper cone (i.e., closed,
convez, pointed, and solid) in R[z], 24 ~ RY.

One of the central questions in convex algebraic geometry is to understand the
relationships between the two cones P, 24 and ¥, 24. In the remainder of this chap-
ter, as well as in Chapter 4, we analyze this problem from the algebraic, geometric,
and computational viewpoints.

Exercise 3.27. Consider the sum of squares representation (3.5). Show that if
p(x) has degree 2d, then the polynomials ¢; necessarily have degree less than or
equal to d, by considering the coefficients corresponding to the highest order terms.

Exercise 3.28. Using finitely many squares in Definition 3.24 may seem restrictive

at first. Show using Caratheodory’s theorem (Theorem A.10 in Appendix A) that

in Definition 3.24 we can always take m < (";rd).
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When is nonnegativity equal to sum of squares? Since sum of squares implies
nonnegativity (i.e., Xy,.2q¢ C Py 24), & natural question is to understand under what
conditions the converse holds, i.e., when a nonnegative polynomial can be expressed
as a sum of squares. We will study many aspects of this question extensively in this
book, particularly in Chapter 4.

More than a century ago, David Hilbert showed that equality between the
set of nonnegative polynomials P, 24 and sos polynomials ¥, 24 holds only in the
following three cases:

e Univariate polynomials (i.e., n = 1).
e Quadratic polynomials (2d = 2).
e Bivariate quartics (n = 2, 2d = 4).

For all other cases, there always exist nonnegative polynomials that are not sums
of squares. Perhaps the most celebrated example is the bivariate sextic (n = 2,
2d = 6) due to Motzkin, given by (in dehomogenized form)

M(z,y) = ohy? + 2%yt + 1 — 3222 (3.6)

This polynomial is nonnegative but is not a sum of squares. Nonnegativity of
M (z,y) follows from the arithmetic-geometric inequality applied to (z%y?, 22y*, 1)
(or, alternatively, from the identity (3.19)) and the fact that it is not a sum of
squares from Exercise 3.97.

The first two cases (univariate and quadratic) of Hilbert’s classification are
relatively straightforward and are discussed in Exercises 3.30 and 3.32, respectively.
In Chapter 4 the more subtle remaining case will be proved, along with an in-depth
study of the structure of these sets.

Another immediate question is related to the algorithmic aspects of sos poly-
nomials. Given a polynomial, how can we decide if it is a sum of squares? Equiva-
lently, how can we decide membership in the cone X, 247 We answer these questions
in the next section, where we describe the connections between sos conditions on
polynomials and semidefinite programming.

Exercise 3.29. Let p(z), ¢(z) be sos polynomials.

1. Show that the sum p(x) + ¢(z) and the product p(z)g(z) are also sums of
squares.

2. Furthermore, show that if both p(z) and ¢(x) are each the sum of two squares,
then so is their product p(x)q(x).
Hint: Recall complex multiplication. For w,z € C, |w|?|z]? = |wz|? holds.
Consider the real and imaginary parts of this expression.

Exercise 3.30. In this exercise, we show that univariate nonnegative polynomials
are sums of squares, and, in fact, two squares suffice.
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1. Show that if p(x) = pagw®?+- - -+p12+po is nonnegative, it has a factorization
of the form

p(x) = poa- [ (@ —r))" - T[l(@ = 2ze)(z — 20)]™,
j k
where r; and (zg, zj,) are the real and complex roots of p(z), pa2q > 0, and the
multiplicities n; of the real roots are even.

2. Show that if z is a complex number, the quadratic polynomial (x — 2)(x — 2*)
is a sum of two squares.

3. Use Exercise 3.29 to conclude that p(z) is itself a sum of two squares.

Exercise 3.31. Using the previous exercise, compute a decomposition of p(x) =
x* + 223 + 622 — 222 + 13 as a sum of two squares.

Exercise 3.32. Let p(z1,...,z,) be a quadratic polynomial (i.e., 2d = 2). Show
that if p(z1,...,2,) is nonnegative, then it is a sum of squares.
Hint: Recall Example 3.11 and matrix factorizations.

3.1.3 Univariate Polynomials

In this section we explain in detail the computation of sos decompositions of univari-
ate polynomials, with a full discussion of the multivariate case in the next section.
The main reason for starting with the univariate case is that it is notationally
simpler, and it is fairly similar to the general case.

Consider a univariate polynomial p(x) of degree 2d:

2d—1
+

p(z) = pzdxzd + p2d—1T -+ p1x + po- (3.7)

Assume that p(x) is a sum of squares; i.e., it can be written as in (3.5). Notice that
the degree of the polynomials g, must be at most equal to d, since the coefficient of
the highest term of each ¢ is positive, and thus there cannot be any cancellation
in the highest power of x (cf. Exercise 3.27). Then, we can write

q1(x) 1
q2fx) —v|| (3.8)
qm.(x) Q;d

where V' € R™*(4+1) "and its kth row contains the coefficients of the polynomial
qi.- For future reference, let [z]4 be the vector of monomials on the right-hand side
of (3.8), and define the matrix Q := VTV. We then have

p(@) = ai(@) = (VIzla)"(Vzla) = [e]§ VTV [2]a = [2]§ Qlala.
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This immediately suggests the following characterization of sos polynomials.

Lemma 3.33. Let p(z) be a univariate polynomial of degree 2d. Then, p(x) is a
sum of squares if and only if there exists a symmetric matriz Q € ST that satisfies

p(z) =[] Qlxla, Q=0 (3.9)

The matrix @ is usually called the Gram matriz of the sos representation. One
direction of the lemma follows directly from noticing that the matrix Q = VTV con-
structed above is positive semidefinite. For the other direction, assume there exists a
positive semidefinite matrix Q for which (3.9) holds. Then, by factorizing @ = VIV
(e.g., via Cholesky or square root factorization), we obtain an sos decomposition
of p(z).

Although perhaps not immediately obvious at first, the condition in (3.9) is a
semidefinite program! Indeed, notice that the constraint p(z) = [2]7 Q[x]4 is affine
in the matrix @, and thus the set of possible Gram matrices ) is given exactly by
the intersection of an affine subspace and the cone of positive semidefinite matrices.

To obtain explicit equations for this semidefinite program, we index the rows
and columns of @ by {0,...,d} as

d d 2d
[$]§Q[$]d = Z Z Qijafﬂ_j = Z Z Qij a:k.
i=0 j=0 k=0 \it+j=k

Thus, for this expression to be equal to p(z), it must be the case that

=Y. Qy,  k=0,...2d (3.10)

i+i=k

This is a system of 2d 4+ 1 linear equations between the entries of @) and the coeffi-
cients of p(x). Thus, since @ is simultaneously constrained to be positive semidefi-
nite, and to belong to the affine subspace defined by these equations, an sos condition
is exactly equivalent to a semidefinite programming problem. We have shown, then,
the following.

Lemma 3.34. A univariate polynomial p(x) = Ziio pra® is a sum of squares if
and only if there exists a positive semidefinite matriz Q € S satisfying (3.10).
This is a semidefinite programming problem.

Recall that in the univariate case, nonnegativity and sum of squares are equiv-
alent conditions. Thus, Lemma 3.34 completely characterizes the set of univariate
nonnegative polynomials and shows that the set P 2q = 1,24 is a projected spec-
trahedron.

Example 3.35. Consider the univariate polynomial

p(z) = 2* + 42 4+ 62 + 4z +5,
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for which we want to find an sos decomposition. Proceeding as described earlier,
we consider the expression

T

1 qoo Qo1 o2 1
p(z) = T qo1 q11 12 x
z? qo2 Q12 g22 z?

= goox + 2q122° + (q11 + 2q02)2” + 2q012 + qoo-

Matching coefficients, we obtain the following linear equality constraints:

zo 1 =qo,
2?4 =2q,
2?6 =qu + 2qoe,
z: 4=2qo,

1: 5=qoo-

We need to find a positive semidefinite matrix () that satisfies these linear equations
(i.e., solve a semidefinite program). In this case, the semidefinite program is feasible,
and we can obtain a solution given by

5 2 0 0o 2 1
Q=12 6 2| =v"y, V=|+v2 V2 0|,
0 2 1 V3 0 0

w

which yields the sos decomposition
p(z) = (® +22)° +2(1+2)>+3. N

In certain special cases, it may be possible to construct sos representations of a
fixed polynomial without necessarily having to solve semidefinite programs. In
Exercise 3.36 we explore the case of univariate polynomials; see Exercise 3.84 for
an extension of these results to a more complicated situation. However, as we
discuss in Section 3.1.7, the reason why the SDP reformulation is crucial is because
it will allow us to search for sos polynomials, even in the presence of additional
convex constraints.

Exercise 3.36. Consider the following algorithm, which computes an sos decom-
position of a monic univariate polynomial, using linear algebra techniques, in a

numerically stable way.

Algorithm 3.1. SOS decomposition of a univariate polynomial.

Input: A monic univariate polynomial p(x) = 224 + - - 4 py1x + po.
Output: An sos decomposition of p(x).
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: Form the companion matrix C,, defined by

00 --- 0 —po
1 0 --- 0 —p1

Cp = O 1 T 0 _pQ
00 -+ 1 —p2g

: Find a complex Schur decomposition of the companion matrix, i.e.,
Un U] [An Aw] [Un Ui’

C,=UAU" =

P |:U21 Uzz} [ 0 A U Usx

where U is unitary, A is upper triangular, and the spectra of A1, Ago are
complex conjugates of each other.

: Let ¢ := vaQl, where v is the first row of Uss. Let ¢ and ¢; be the real and
imaginary parts of ¢, respectively.

: Define

1. Implement this algorithm, and test it in a few examples.
2. If p(x) is not nonnegative, where does the algorithm fail?

3. Prove that the algorithm is correct, i.e., it always produces a valid sos decom-
position.

Hint: What properties does the complex polynomial ¢(x) = ¢1(z) + ig2(z) have?

Exercise 3.37. The results presented in this section for “standard” univariate
polynomials can be easily extended to real trigonometric polynomials, i.e., expres-
sions of the form

s

p(0) = a0+ Y _ (ar cos k + by sin kO) .
k=1

This is a trigonometric polynomial of degree d.

1. Show that if p(6) > 0 for all 6 € [—n, ] and d is even, then there is an sos de-
composition p(6) = ¢3 () + ¢3(0), where g1, g2 are trigonometric polynomials.
What is the corresponding statement for the case when d is odd?
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2. Give a semidefinite programming formulation to decide if a trigonometric
polynomial is nonnegative. The formulation should be in terms of a (d+ 1) x
(d 4+ 1) real symmetric matrix, where d is the degree of the polynomial. It
may be helpful to consider separately the case where d is odd or even.

3. Find an sos decomposition of the polynomial

p(0) =4 —sind + sin 26 — 3 cos 26.

4. Find an sos decomposition of the polynomial

p(0) =5 —sin + sin 26 — 3 cos 36.

3.1.4 Multivariate Polynomials

The general multivariate case is quite similar to the univariate case discussed in
the previous section. The main differences are the need of multi-index notation for
monomials, and the fact that sos will only be a sufficient condition for nonnegativity.

Consider a polynomial p(z1,...,x,) of degree 2d in n variables. The number
of coefficients of p is equal to ("32%). We let p(z) = 3, paz®, where a are tuples
of exponents « € {(a1,...,an) : a1+ -+, <2d, 0, >0Vi=1,...,n}.

Let [2]q := [1,21,..., %0, 22,2129, ...,2%]T be the vector of all ("Zd) mono-
mials in x1, ..., x, of degree less than or equal to d, and consider the equation

p(@) = [z]§ Q [z]a, (3.11)

where (@ is an ("jd) X ("jd) symmetric matrix. Proceeding exactly as in the previous

section, and indexing the matrix @ by the (”;d) monomials in n variables of de-
gree d (or, more precisely, the associated exponent tuples), we obtain the following

conditions:

Pa= Y Qpy Q=0. (3.12)
Bty=«
This is a system of ("32?) linear equations, one for each coefficient of p(z). As

before, these equations are affine conditions relating the entries of @) and the coeffi-
cients of p(z). Thus, we can decide membership in, or optimize over, the set of sos
polynomials by solving an SDP problem.

Example 3.38. We want to determine whether the bivariate quartic polynomial
p(z,y) = 22" + 5yt — 2%y 4+ 223y + 20 + 2
is a sum of squares. Since this polynomial has degree 2d = 4, the vector [z]4 contains

all monomials of degree less than or equal to 2, i.e., []q = [1,z,y, 2%, vy, y?]T. Writ-
ing the expression (3.11) for a generic matrix @ (which, for consistency with (3.12),
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though perhaps at the expense of clarity, we index with exponent tuples), we have

T
1 400,00 900,10 400,01 400,20 400,11 400,02 1

&€ qdoo,10 410,10 ¢10,01 410,20 ¢10,11 410,02 x

_ Y 400,01 410,01 4go1,01 4o1,20 qoi,11 401,02 Yy

p($, y) - 2 2
z d00,20 410,20 401,20 420,20 ¢20,11 420,02 X

ry qoo,11 410,11 go1,11 ¢20,11 911,11 411,02 zy

2 2

Yy d00,02 410,02 401,02 420,02 ¢11,02 402,02

Y
Expanding the right-hand side, and matching coefficients, we obtain (*1*) = 15
linear equations, one per each possible coefficient of p(z,y). For instance, the equa-

tions corresponding to the monomials 2%, 22y2, and y? are
zt 2= 420,20,
22y% . —1=qoo22 +2qo121 + q1111,
Y2 0 = 2qoo,02 + qo1,01-

Again, finding a positive semidefinite matrix () subject to these 15 linear equations
is an SDP problem. Solving it, we obtain a feasible solution:

6 30 -2 0 -2
340 00 0

1 004 00 0
@=31_2 00 6 3 -4
000 35 0

-2 00 -4 0 15

Any factorization of this positive semidefinite matrix will give an explicit sos de-
composition of p(z,y), for instance,

4 5, 1349 4 1 9 1 9 9
= — - J— 4 _
p(z,y) Y + 05 Y + 12( x+3)° + 15(333 + 5ay) +
1
+ ﬁ(—21$2 + 20y2 + 10)2
1
+M(328y2—235)2. [

We summarize the contents of this section in the following theorem, describing the
direct relation between positive semidefinite matrices and an sos condition.

Theorem 3.39. A multivariate polynomial p(x) = > pax® in n variables and de-
n+d
gree 2d is a sum of squares if and only if there exists Q € 84(_ &) satisfying (3.12).

As a consequence, membership in ¥, 2q can be decided via semidefinite program-
ming.

The matrix size of the semidefinite program appearing in Theorem 3.39 is

("), which grows polynomially in the number of variables n for fixed degree d.
Since ("1%) = ("19), it also grows polynomially in d for fixed n.
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Corollary 3.40. The cone ¥, 24 of sos polynomials is a projected spectrahedron of

dimension (”'2"5”1) )

The connections between sos conditions, the Gram matrix representation, and
convexity can be traced back to the work of Shor [113], as well as Reznick and
collaborators [106, 30]. The links with semidefinite programming were made explicit
in [89, 91] and were also explored independently by Nesterov [83] and Lasserre [72].

These results will be of crucial importance in the remainder of the chapter.
Notice in particular the striking constrast with the case of nonnegative polynomials:
while membership in P, 24 is an NP-hard problem for 2d > 4 (and thus, practically
infeasible for most problems of interest), membership in ¥,, 24 can be reduced to a
polynomially sized SDP problem.

3.1.5 Computational Formulations

A nice and useful coordinate-free interpretation of our earlier discussion (and in
particular, of (3.11)) is that writing a polynomial of degree 2d as a sum of squares
is equivalent to expressing it as a quadratic form on the vector space of polynomials
R[z]p,q. Although this coordinate-free viewpoint is very advantageous for theoret-
ical work, when solving these problems in practice it is necessary to express the
corresponding semidefinite programs in a specific set of coordinates. The choice of
basis, although irrelevant from the mathematical (or exact arithmetic) viewpoint,
may have significant consequences for the numerical conditioning of the resulting
optimization problem.

When writing down the semidefinite programs associated to the sos decom-
position of a polynomial, as we did in the previous section, there is an implicit
choice of bases for two vector spaces: one for the space of polynomials R[z],, 4, and
one for the dual space Rz}, 5;. Indeed, in our formulation, the polynomial p(z)
was expressed as a quadratic form on the vector space R[x], 4, represented by the
matrix @ with respect to the monomial basis [z], 4; see (3.11). Similarly, the con-
straints (3.12) correspond to the coefficients of p(x) = [z]] Q[z]4 With respect to the
monomial basis [z],,2¢ of R[z]n,24. While these choices are perhaps “canonical,”
there are several alternative bases that can be used instead, and these can have
very different algebraic and numerical properties.

Based on this discussion, we can write the following more general SDP formu-
lation for sums of squares.

Theorem 3.41. Let p(xz) be a polynomial in n variables and degree 2d. Choose

bases {v1,...,vs} and {w,...,w} of R[z]nqa and Rlz]}, ,,, respectively (and thus,
s = (”;d) and t = (”;r;d)). Then, p(x) is a sum of squares if and only if there

n+d
exists a positive semidefinite matriz QQ € S (") satisfying the affine constraints:

(p(x), wy) = Z Qij (vivj, wy), k=1,..., ¢t

i,j=1
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From the exact arithmetic viewpoint, this statement is of course completely
equivalent to Theorem 3.39 and simply corresponds to a change of basis in both pri-
mal and dual variables of the corresponding semidefinite program. However, when
solving the corresponding semidefinite programs in floating-point arithmetic, there
may be very significant differences in the numerical stability of the corresponding
formulations. When choosing a particular basis {v;} for the space of polynomials,
it will often be convenient to pick {w;} as the corresponding dual basis, i.e., so it
satisfies (v;, w;) = 0;;. However, this need not always be the case, and there may
be advantages (numerical or otherwise) in not doing so.

In what follows, we discuss four specific bases for the space of polynomials
R[z]p,q4, briefly mentioning some of their relative advantages and disadvantages.

Monomial basis. This basis is given by the monomials
Bm = {xa}’

where a = (a1, ...,ay,), with |a| < d. This is perhaps the most usual choice,
and as we did in Section 3.1.4, much of the literature in this area implic-
itly or explicitly uses this basis. While convenient from the notational and
implementation viewpoints, it can have very poor numerical properties.

Scaled monomials. A small modification of the monomial basis is given by the
scaled monomial basis. The main motivation for this is to achieve certain
natural and appealing invariance properties, as explained below. This basis

is defined as )
Bs = { (d) xo‘} ,
«

where (Z) denotes the multinomial coefficient ( d )= dl

ap,..oan/  arlas!.ap!”
The rationale behind this choice is the following: consider the inner product
between polynomials given by

(b)) = <szqx> =S (j)pq

[e3%

This inner product is known under many different names, such as the apo-
lar, Fischer, Calderén, or Bombieri inner product. Its defining property is
the direct relationship between powers of linear forms and point evaluations.
Indeed, if p is a homogeneous polynomial of degree d, we have

. 07 = 3 (2) (2o =500

(e

As a consequence, this inner product satisfies the invariance property

(p(Az), q(x)) = (p(x), q(AT z)),

where A is an n X n matrix.
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The scaled monomial basis is simply an orthonormal basis with respect to this
invariant inner product.

Orthogonal polynomials. Similar to the previous case, assume that there is a
naturally defined inner product in the space of polynomials. In this case, a
natural choice is to pick an orthonormal basis with respect to this inner prod-
uct. Many well-known families of polynomials (e.g., Chebyshev, Lagrange,
Gegenbauer, etc.) fall into this class.

As a concrete illustration, consider the case of an inner product that is induced
by integration against a strictly positive measure. For instance, in the case
of univariate polynomials, for certain problems it may be natural to have an
inner product defined by the Gaussian measure, i.e.,

1 i g2
(p(z),q(x)) = Nor: [wp(x)q(x)e z dx.

For this example, such an orthonormal family would be the well-known Her-
mite polynomials.

Orthogonal polynomials generally enjoy much nicer numerical stability prop-
erties than the monomial basis. This is particularly true whenever the under-
lying measure is chosen in an appropriate way, consistent with the problem
to be solved.

Lagrange interpolation. Yet another choice is given by Lagrange interpolating
polynomials with respect to a given fixed set of nodes. For simplicity, we
discuss here the univariate case only, although the discussion extends naturally
to the multivariate case.

Fix d 4+ 1 distinct points xg,...,x4 in R. It is well known that the Lagrange
interpolating polynomials

&-(a:)::Hx_xk 1=0,....,d,

)
r; — X
ki i k

form a basis of R[x]1,4. Also of interest is that the corresponding dual basis of
the dual space R[x]*l‘ 4 is then given by the point evaluations ¢, that satisfy
Cx;(p) = p(i).

This choice is particularly appealing in the case where the polynomial is pre-
sented in terms of its values at a given set of points, instead of an explicit
description in terms of coefficients. This approach also has some convenient
numerical properties related to the use of interior-point methods in the solu-
tion of the corresponding semidefinite programs; see [75] for more details.

Exercise 3.42. Consider a univariate cubic polynomial p(z) on the interval [a, b],
for which we want to describe the convex hull of its graph, i.e., the set

S = conv ({(t,p(t)) ER® : t € [a,b]}).
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Figure 3.5. Convex hulls of the graphs of cubic polynomials on an interval.

See Figure 3.5 for a few examples. We provide below a description of the set S as
a projected spectrahedron. Define the interpolation points

T = a, :z:zza—l—z(b—a), xz3=a+-(b—a), x4=0.

4

Consider the spectrahedron in the variables (z,y, a1, as, a3, ay) € RS defined by
30[2 0 1 2
[ 0 12044] tas [2 4]
30[3 0 1 2
[ 0 12041] o [2 4] =0,
4 4 4
d ai=1, > i =, > () =y
i=1 i=1 i=1

The set S is then given by the projection of this spectrahedron onto the variables
(z,y). Notice that in this description, the explicit expression of the polynomial p(x)
is never used, but instead only the interpolation values p(z;) appear.

Y
o

1. Prove the validity of this description using an sos formulation based on La-
grange interpolation.

2. Generalize this representation to univariate polynomials of any degree.

3.1.6 Rational Sos Decompositions

We have seen in previous sections how to compute sos decompositions using semidef-
inite programming. These convex optimization problems are usually solved nu-
merically, using floating-point arithmetic. Although floating-point techniques in
principle allow for numerical approximations of arbitrary precision, the computed
solutions will typically not be exact. This may mean, for instance, that the equation
p(z) = [2]}Q[z]4 is only approximately satisfied, or that the matrix  may have
very small negative eigenvalues.

In many applications, particularly those arising from problems in pure math-
ematics, it is desirable or necessary to obtain exact solutions. Examples of this are
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70 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

the use of sos methods for geometric theorem proving (e.g., Section 3.6.5) for estab-
lishing the validity of certain algebraic inequalities between matrices [68], or a case
of the monotone column permanent (MCP) conjecture [64]. A remarkable recent
application is the work in [10], where sos methods were used to prove new upper
bounds on kissing numbers, a well-known problem in sphere packings. A common
element in all these works is the use of exact algebraic identities obtained from
inspection of a numerically computed solution as the basic ingredients in a rigorous
proof.

In this section, we show that under a strict feasibility assumption, we can ob-
tain a rational sos representation from an approrimate solution to the semidefinite
program of Theorem 3.39. The basic idea is to round and project the numerically
obtained Gram matrix onto the feasible subspace. We quantify the relation be-
tween the numerical error in the subspace and semidefinite constraints, versus the
rounding tolerance, that will guarantee that the rounded and projected solution
remains feasible. For a full exposition of these ideas, as well as alternative ap-
proaches and improvements, we refer the reader to [98], [60], [65], and the references
therein.

To obtain rational sos decompositions, it is enough to focus on rational Gram
matrices. This follows from the LDL” decomposition; see Exercise 3.46.

Theorem 3.43. There exists a rational sos decomposition, i.e., p(z) = >, pi(z)?,
where p;(x) € Q[z], if and only if there is a Gram matriz with rational entries.

The approach we will use to obtain rational sums of squares is to take advan-
tage of interior point solvers’ computational efficiency: we first compute an approx-
imate numerical solution, and in a second step we round this numerical solution to
an exact rational one. We have the following standing assumption.

Assumption. There exists a positive definite Gram matrix @ for p(x).

This assumption is equivalent to the polynomial p(x) being in the interior of
the cone of sums of squares. The method described here could fail in general for
sums of squares that are not strictly positive: if there is an 2* such that p(z*) = 0,
it follows from the identity p(z*) = [#*]7Q[2*]4 that the monomial vector [z*]q
is in the kernel of (). Hence @) cannot be positive definite. Nevertheless, this
assumption is reasonable for many problems of interest. Furthermore, very recent
work of Scheiderer [108] shows that this assumption (or a similar one) is required
by giving a construction of sos polynomials with rational coefficients for which no
rational decompositions exist.

We assume the sos problem is posed as a semidefinite problem in primal form,
as described in Section 3.1.4. After solving the SDP problem in general the nu-
merical solution @ will not exactly satisfy (3.11). For an exact representation of
the original polynomial p(x), we have to find a rational approximation to ¢ which
satisfies the equality constraints. The simplest procedure is to compute a ratio-
nal approximation Q, either by naive rounding or more sophisticated techniques
like continued fractions. This rational approximation Q is then projected onto the
subspace defined by the equations. Since this subspace is defined by rational data

261”2711/1
page 70
O
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Figure 3.6. Projection of a rounded solution. The matriz ) is the numer-
ical solution of the SDP problem, and the orthogonal projections of the matrices @
and Q onto the subspace L are denoted by IL(Q) and IL(Q), respectively. The shaded
cone PSD represents the cone of positive semidefinite matrices.

(the coefficients of p(x)), an orthogonal projection II onto this subspace will yield
a rational matrix I1(Q); see Exercise 3.47.

Now we obtain conditions to ensure that the truncated and projected matrix
H(Q) remains positive semidefinite. For this, we will estimate the rounding toler-
ance needed. Assuming strict feasibility of the numerical solution @ returned by the
SDP solver, we quantify how far it is from the boundary of the positive semidefinite
cone and the affine subspace through two parameters € and . The parameter ¢ > 0
will satisfy @ > el and is a lower bound on the minimum eigenvalue of ). The pa-
rameter & quantifies the distance of @ to the subspace, and thus ||Q — TI(Q)||r < 4,
where || - | p denotes the Frobenius norm. The matrix @ will be approximated by
a rational matrix Q such that ||Q — Q|| < 7, where 7 is the desired tolerance.
Figure 3.6 depicts the whole situation.

Theorem 3.44. Let €, §, and 7 be defined as above. Assume § < €, and choose
T < V€2 — 2. Then, the orthogonal projection H(Q) of the rounded matriz Q onto
the affine subspace L is rational and positive semidefinite, and thus it is a valid
rational sos decomposition.

Hence if the SDP problem is strictly feasible, and the numerical solution @
satisfies d < ¢, it is in principle always possible to compute a valid rational solution
by using sufficiently many digits for the approximated solution. The allowed round-
ing tolerance 7 depends on the minimum eigenvalue of the positive definite matrix
@ and its distance from the affine space £. Under the strict feasibility assumption,
there always exists a solution with § sufficiently small such that the inequality above
can be fulfilled (in particular, we can just take § = 0, although using larger values
of 4, if possible, will yield solutions with smaller denominators).
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72 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

As described in [96], these ideas have been implemented in the software pack-
age S0S.m2 for the computer algebra system Macaulay 2 [54]. This package can be
used to compute rational sos decompositions and is available for download at [97].
Similar concepts have been recently implemented by Harrison in the open source
theorem prover HOL Light [60].

In S0S.m2, the main function is getS0S, which tries to compute a rational sos
decomposition for a given polynomial. In the following example we demonstrate how
to use the getS0S command for computing an sos decomposition of a polynomial
of degree 4 with 4 variables.

Example 3.45. Consider the polynomial
p(x,y, z,w) = 2ot + 2%y + ot — 42z — dwyz — 292w + y? — 2yz + 827 — 22w + 2w
We first load the S0S package and define p(z,y, z, w):

il : loadPackage "S0S";

i2 : P = QQ[x,y,z,wl;

i3 1 p = 2*%x74 + XT2%yT2 + yT4 - 4xx72%z - dkxky*z — 2xyT2ky +
Y72 - 2xykz + 8%z72 - 2xzxyw + 2%w2;

If successful, the function getS0S returns a weighted sos representation such that
p(z,y,z,w) =3, digi(x,y, z,w)?. Otherwise an error message is displayed.

i4 : (g,d) = getSOS p

. omitted output ...

1 2 1 1 1 2 2 2 8 2 1
08 = ({- —*x - —*x*ky — —*y + 2 - —*W, — ——%X — ——XXXy - ——*y - ——*y + W,
4 4 8 8 15 15 15 15
2 4 4 2 2 18 2 20 81 2 2
X = TTRXAY - oKy - Sk, XKy - oKy - —ky, - ==y +y, ¥ 1,
11 11 11 59 59 205

8 15 55 59 1025

Hence p(z,y, z, w) may be written as

1, 1 1 1\2 15/ 2, 2 8 , 1 2
pl,y,2,w) =8| ——a” — —wy— —y+z—_w) +—|(——r"— —wy— —y - —ytw

4 4 8 8 8 \ 15 15 15 15
L2 (e 4 4 5 2 2+59 18 5, 20 \?2

— |z =2y — —y" — — — |y — —=y" — —

15 n? Y Y 55 \"Y 7 59Y T 59Y

L4 (_ﬂ 2 ) L 66
50\ 2057 TY) T1025Y
Correctness of the obtained decomposition may be verified with the function sumS0S,
which expands a weighted sum of squares decomposition:
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i5 : sumS0S (g,d) - p

05 =0 [ |

Exercise 3.46. Prove Theorem 3.43. Use the LDLT decomposition (see Ap-
pendix A, Section A.1.2).

Exercise 3.47. Consider the affine subspace in R" defined by the equations Az = b,
and a point xg € R™. Show that the orthogonal projection of g onto the subspace
is given by

H(zg) = ATb+ (I — AT A)xo,
where AT is the Moore-Penrose pseudoinverse of A. If the rows of A are linearly
independent, we have AT = AT(AAT)~1 and thus this formula can be written as

H(xo) = X9 — AT(AAT)il(A{EO — b)

Show that if the matrices A and b are rational, and zg is a rational point, then so
is II(xo). Prove these facts, and show how to use them to convert an approximate
Gram matrix into a rational Gram matrix.

Exercise 3.48. Prove Theorem 3.44.

3.1.7 Sum of Squares Programs

We have described in previous sections how to check whether a given, fixed multi-
variate polynomial is a sum of squares. These results can be nicely generalized to
define a natural class of convex optimization problems which we will call sum of
squares (sos) programs.

Recall that the main objects of interest in semidefinite programming are

quadratic forms that are positive semidefinite.

When attempting to generalize this to homogeneous polynomials of higher degree,
a difficulty appears: deciding nonnegativity for quartic or higher degree forms is
NP-hard. Therefore, a computationally tractable replacement is the following:

even degree polynomials that are sums of squares.

Sum of squares programs can then be defined as conic optimization problems,
where the feasible set is given by the intersection of an affine family of polynomials
and the proper cone ¥, o4 of sos polynomials. As in the case of “pure” semidefinite
programming, there are several possible equivalent descriptions. We choose below
a free variables formulation to highlight the analogy with the standard SDP dual
form (SDP-D) discussed in Chapter 2.

Definition 3.49. An sos optimization problem or sos program is a convex opti-
mization problem of the form

maximize,  biyi + -+ bpym

subject to pi(x;y) are sos in R[z], i=1,...k (3.13)
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74 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

where p;i(x;y) = ¢i(x) + a1 (2)y1 + - - + Qim (T)Ym, and the ¢;, a;; are given multi-
variate polynomials in R[z].

Notice that the p;(x;y) are arbitrary polynomial expressions that are affine in
the “parameters” yi, ..., ym (the decision variables). Also, note that the variables x
are “dummy variables,” in the sense that we are not optimizing over them, but they
are the indeterminates of the underlying polynomials. Sum of squares programs are
very useful, since they directly operate with polynomials as their basic “data type,”
thus providing a quite natural modelling formulation for many problems. We will
discuss several examples later in this chapter, including Lyapunov functions for
nonlinear systems [89, 87], probability inequalities [16], and convex relaxations for
nonconvex optimization [89, 72].

Example 3.50. Consider the following simple sos program:

maximize, Y1+ Yo
subject to 2ty + (24 y2) iS S0s,
(y1 —y2+1) 22 +yox+1 s sos.

The constraints involve two univariate polynomials (in x), whose coeflicients are
affine functions of the parameters (or decision variables) (y1,y2). Notice that the
feasible set (i.e., the set of y1,y2 for which both polynomials are sos) is necessarily
convex, since it is defined by the intersection of an affine subspace and the sos
cone. 1N

Interestingly enough, despite their apparently greater generality, sos programs
are in fact equivalent to SDPs. To see this, notice that, on the one hand, by choosing
the polynomials ¢;(x),a;;(x) to be quadratic forms, we recover the standard SDP
formulation. On the other hand, it is possible to exactly embed every sos program
into a larger semidefinite program. Indeed, the constraints requiring p;(z;y) to be
sos in R[z] are equivalent to the existence of matrices @; = 0 satisfying

pilw;y) =[] Qilxla,  i=1,... k.

Expanding and matching coefficients as before, we obtain linear equations between
the coefficients of p;(z;y) and the entries of @;. Since the coefficients of p;(x;y)
are affine in y, the equations above reduce to linear equations between the decision
variables y; and the entries of the matrices ;. Thus, the sos program (3.13) is
equivalent to a (larger) SDP in the variables (y1,...,Ym, @1, .., Q).

Example 3.51. Consider again the sos program of Example 3.50. Using the Gram
matrix reformulation described in earlier sections, the sos constraints are equiva-
lent to
T
1 doo qo1 qoz2| |1
g tyir+ (2+y) = |2 gor qu Q2| |z |,
Qo2 qi2 qa2] [2°

T
_ 2 _ roo Tor| |1
(Y1 =22+ D" +ypor+ 1= [x] [rm 7’11] [a:} ’

[

—_
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where the matrices ), R are positive semidefinite. Expanding and equating the
left- and right-hand sides, we obtain affine equations between the decision variables
y1,y2 and the entries of the matrices @, R. For instance, for the first constraint we
obtain

T 1 = qa2,
a? 0= 2q2,
z? 0 = q11 + 2qoe,
x: Y1 = 2qo1,
1: 2+ y2 = qoo,

while for the second we obtain

2

T y1—y2+1=rn,
x: Y2 = 2ro1,
1: 1:7"00.

Putting together these linear equations with the conditions @ > 0 and R > 0 yields
a standard semidefinite program. W

As we see, the conversion process from an sos program to a standard semidef-
inite program is fully algorithmic (and somewhat messy and cumbersome if done
by hand!). For these reasons, it has been implemented in several parsers/solvers
such as SOSTOOLS [101], YALMIP [74], and SPOT [78]. Furthermore, it is quite
useful from both theoretical and practical viewpoints to “abstract out” the fact
that (under the hood) sos programs are solved via semidefinite programming and
instead just think of them as a tractable class of convex optimization problems that
we can freely use for modeling and implementation. In fact, from the next chapter
on, we will rarely mention semidefinite programming, and all our formulations will
be given directly in terms of sos programs.

Although sos programs and semidefinite programming are “equivalent” in the
sense described earlier, the rich algebraic structure of sos programs makes possible
a much deeper understanding of their special properties. This also enables cus-
tomized, more efficient algorithms for their numerical solution [50, 75, 107]. As
illustrated in later sections, there are numerous questions in a number of applica-
tion domains, as well as foundational issues in nonconvex optimization that have
simple and natural formulations as sos programs.

Exercise 3.52. Plot the feasible set of the sos program of Example 3.50. Find the
corresponding optimal solution (y7, y3) as well as explicit sos decompositions of the
constraint polynomials at optimality.

Exercise 3.53. Show that sos programs can be written as conic optimization
problems in terms of the cone ¥, 24 of sos polynomials. Write the corresponding
dual conic program.
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76 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

3.2 Applications of Sum of Squares Programs

In this section we elaborate on several natural extensions of the basic sos methods
discussed so far. In combination with the more advanced techniques presented later,
these will serve as building blocks for more complex, domain-specific applications
developed in Section 3.6.

3.2.1 Unconstrained Polynomial Optimization

Our first application is the global optimization of a univariate polynomial p(z).
Although this is a relatively simple task that could be handled with a variety of
alternative methods, it nicely illustrates many of the features of much more com-
plicated problems. In this section, we consider only the unconstrained case (i.e.,
minimization over the whole real line); the constrained case will be considered later.

Rather than directly computing a minimizer x, for which p(z,) is as small as
possible, we instead focus on the alternative viewpoint of obtaining a good (or the
best possible) lower bound on its optimal value. It is easy to see that a number =
is a global lower bound of a polynomial p(z) if and only if the polynomial p(x) —
is nonnegative, i.e.,

p(xr) >y VzeR = p(x) —y>0 VreR.

Notice that the polynomial p(z) —« has coefficients that depend affinely on ~. This
suggests considering the optimization problem

maxivmize ol subject to p(x) — 7 is nonnegative. (OPT-NN)
Clearly, this is a convex problem, since the feasible set is defined by an infinite
number of linear inequalities (one for each value of x). Its optimal solution p, is
equal to the global minimum of the polynomial, p(z,).
Consider now instead the following optimization problem, where the nonneg-
ativity condition has been replaced by an sos constraint:

maximize 7y subject to p(x) — 7 is sos. (OPT-SOS)
Bt

The key distinction between the problems (OPT-NN) and (OPT-SOS) is the re-
placement of nonnegativity by an sos condition. However, since in the univariate
case nonnegativity is equivalent to sum of squares, these two optimization prob-
lems are, in fact, equivalent. Furthermore, (OPT-SOS) has exactly the form of
an sos program, and it is thus equivalent to a standard semidefinite program; see
Exercise 3.54 for its explicit formulation.

As a consequence, we can obtain the value of the global minimum of a uni-
variate polynomial by solving an sos program. Notice also that at optimality we
have 0 = p(z,) — px = Yy qi(24) and thus all the g simultaneously vanish at
T4, which in principle gives a way of computing the minimizer z,. As we shall see
later, a better alternative is to obtain the solution x, directly from the dual SDP
problem by using complementary slackness.
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3.2. Applications of Sum of Squares Programs 7

Even though p(x) may be highly nonconvex, the proposed convex formula-
tion nevertheless effectively computes its global minimum. This will extend, with
suitable modifications, to the general multivariate case.

Exercise 3.54. Let p(z) = Zzio ckz®. Give an explicit SDP formulation to
compute the value of the global minimum of p(x). Apply your formulation to the
polynomial p(z) = 2* — 2022 + .

3.2.2 Rational Functions

What happens if we want to minimize a univariate rational function instead of a
polynomial? Consider a rational function given as a ratio of polynomials p(x)/q(x),
where ¢(z) is strictly positive. From the equivalence

p(x)

—=>7 & plr)—7q=) =0,

q(x)
it follows that one can find the global minimum of the rational function by solving

maximize subject to p(z) — v ¢(x) is sos.

The constrained case (i.e., minimization over a finite or semi-infinite interval) is
very similar and can be formulated using the results in Section 3.3.1. The details
are left to the exercises.

Exercise 3.55. Compute numerically the global minimum and the global maxi-
mum of the rational function (23 — 8z + 1)/(x* + 22 + 12).

Exercise 3.56. Why did we assume that the denominator ¢(z) is strictly positive?
Is this restriction necessary?

3.2.3 Multivariate Optimization

Consider now the case of unconstrained polynomial optimization of a multivariate

polynomial p(x1,...,2,). As in the univariate case discussed in Section 3.2.1, we

can write the following formulation for the global minimum of p(x1,...,z,):
maximize 7y subject to p(z1,...,2,) — 7 is nonnegative. (MOPT-NN)

¥

Despite being convex (why?), this formulation is in general intractable, since the

constraint set involves the set of nonnegative polynomials. As in the univariate

case, this suggests considering its sos alternative:

maximize 7y subject to p(x1,...,@,) — 7 is sos. (MOPT-SOS)

B!
Let p, be the optimal value of (MOPT-NN) (i.e., the global minimum? of the
polynomial p(z1,...,2,)) and pses be the optimal value of (MOPT-SOS). It should

2Unlike in the univariate case, a multivariate polynomial that is bounded below need not
achieve its global minimum (as an example, consider the polynomial z2 + (1 — zy)2). Therefore,
to make things fully rigorous one should consider here the supremum rather than the maximum.
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78 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

be clear that one can compute ps,s efficiently by solving the corresponding sos
program (e.g., using an SDP solver).

Recall that for the general multivariate case, nonnegativity and sum of squares
are no longer equivalent. Thus, since the feasible set of the second problem is a
(possibly strict) subset of the feasible set of the first problem, we have the inequality

Dsos < Dx,

and thus the sos technique is (in principle) only guaranteed to produce a lower bound
on the value of the global minimum of p. Notice that, on computational complexity
grounds, this is to be expected, since multivariate polynomial optimization is NP-
hard, while semidefinite programming is polynomial-time (to any given accuracy).

Interestingly, there is strong experimental evidence that shows that, at least
for relatively small problems, we very often have p, = psos; see, e.g., [94]. The
reasons for this phenomenon are not yet completely understood, except in particular
cases. As explained in Chapter 4, perhaps the opposite trend should be expected
for large enough dimension. Nevertheless, as we shall see shortly in Section 3.2.6,
even in those situations where psos < px, we will be able to produce “stronger” sos
conditions that will improve upon the “plain” sos lower bound pg,s.

Exercise 3.57. Find the value of pg,s for the trivariate polynomial
p(x,y,2) = 2 +y* + 2% — dayz + 22 + 3y + 4z

Is the computed value of ps,s equal to the global minimum p,?

Exercise 3.58. Find a bivariate polynomial p(z,y) for which pses < pa.

Exercise 3.59. Assume that p(z) is bounded below. Is ps,s necessarily finite?
Prove or disprove with a counterexample.

3.2.4 Nonnegativity on Sets and Constrained Optimization

An sos representation is an “obvious” certificate of the nonnegativity of a polynomial
p(x1,...,x,) over the whole space R™. What if we only care about p(z) being
nonnegative on a given subset S C R™, as in the case of constrained optimization?
Are there similarly simple and natural sufficient conditions for nonnegativity that we
can write in this case? We present below an answer to these questions. We remark
up-front, however, that in this section we are concerned only with the sufficiency of
our conditions, and we postpone all possible concerns about the converse direction
to Section 3.4.

The set S could be specified in very different forms (e.g., using only equations,
or only inequalities, or a combination of both). As a consequence, the proposed
conditions for nonnegativity of p(x) on S that we discuss below will naturally depend
on how the set S is presented.
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Equations. For simplicity, let us assume first that the set S is described by a set
of polynomial equations, i.e., that it is a real algebraic variety of the form

S={zeR": fi(x)=0, ..., fm(z) =0}

Recalling the formal similarity with weak duality and Lagrange multipliers, it is
natural to write a condition of the following type:

m

p@) + > Xi(@)fi(x) s sos, (3.14)

i=1

where \;(z) are arbitrary polynomials. Notice that this condition does what we
want, since it “obviously” implies that p(z) is nonnegative on the set S. Indeed,
if (3.14) holds, by evaluating this expression at any point xg € S, we immediately
conclude that p(zg) > 0. Notice also that the expression (3.14) is affine in the
unknown polynomials \;(x), and once the set of allowable multipliers A;(x) has
been fixed (e.g., by restricting their degrees), this condition has the form of an sos
program.

In more algebraic terms, condition (3.14) considers the polynomial ideal I gen-
erated by the constraints f;(x). If p(x) is congruent with a sum of squares modulo
the ideal I, then this “obviously” certifies nonnegativity of p(x). We elaborate more
on this algebraic viewpoint in Section 3.3.5 and Chapter 7.

Inequalities. If the set S is described using polynomial inequalities (as opposed to
equations), we can do something very similar. Assume the set S has a description:

S={zeR": gi(x) >0, ..., gm(z) >0}.

Similar to the previous subsection, and again inspired by weak duality, one can now
consider expressions of the type

m

p(x) = so(w) + Y _ si(x)gi(x). (3.15)

=1

where so(z) and s;(z) are sos polynomials. Indeed, this serves as a “self-evident”
certificate of nonnegativity of p(x) on the set S, since evaluating such a representa-
tion at any point xg € S will directly prove p(zg) > 0. In addition, notice that we
can consider more powerful expressions by allowing finite products of constraints of
the form

p(x) = so(@) + > si(@)gi(@) + Y sij()gi(@)gi(x) + -+ , (3.16)
i=1 ij
where as before the polynomials so(z), s;(x), s;;(x), ... are sums of squares. Again,

once the structure of these polynomials has been fixed (e.g., by restricting their
degrees), the conditions boil down to sos programs. Any representation of the
type (3.16) serves as an obvious certificate of nonnegativity of p(z) on S.
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Remark 3.60. In principle, one could perhaps think of using nonnegative poly-
nomials instead of sum of squares for the s;(x) in the previous expressions, since
evaluating them at candidate points x¢ would certainly show nonnegativity of p(x) on
the set S. Notice, however, that in this case one would have to rely on a “promise”
that the polynomials s; indeed have the stated property. The reason why sums of
squares are of relevance is that their (unconstrained) positivity is certified by the
sos decomposition itself, and thus they serve as a bona fide mathematical proof of
nonnegativity of p(x) on S.

Under certain assumptions, converse results or representation theorems will
ensure that whenever p(x) is nonnegative on a given set S, a certificate of a specified
form must exist. We emphasize, however, that in most practical applications of
sos techniques only the “easy” direction is actually used, in the sense that once
an sos certificate has effectively been computed, it transparently proves the desired
property (e.g., polynomial nonnegativity, etc.).

S-procedure. In the particular case when the g¢;(z) are quadratic forms, and
the s;(x) are nonnegative scalars, the sufficient condition (3.15) is known as the
S-procedure in the mathematical optimization and control literature. Under suitable
assumptions, this condition is lossless; i.e., it exactly characterizes nonnegativity of
a quadratic form on a quadratically constrained set.

Lemma 3.61 (S-lemma). Let p(z) and g1(z) be quadratic forms, and assume that
the set S has an interior point (i.e., there exists an xo € R™ such that gi(xo) > 0).
In this case, if p(x) is nonnegative on S, it has a representation as in (3.16), i.e.,

p(x) = so(x) + s1.91(2),

where so(x) is a positive semidefinite quadratic form, and sy is a nonnegative con-
stant.

For more about the S-procedure, the S-lemma, and their many applications,
see the books [21, 15] or the survey [99].

Exercise 3.62. Let p(z) = 2* — 322 + 1. Give an sos certificate of the nonnegativ-
ity of p(x) on the set S = {z € R: 2® — 4z = 1}.

Exercise 3.63. Allowing products of constraints (as in (3.16) as opposed to (3.15))
sometimes makes possible the existence of much more concise nonnegativity certifi-
cates (or even makes possible their existence). Consider, for instance, the polyno-
mial p(z,y) = xy, which is obviously nonnegative on the compact set S = {(z,y) €
R?:2>0,y>0,2+y<1}.

1. Show that no nonnegativity certificate of the form (3.15) exists.

2. Give a nonnegativity certificate of the form (3.16).
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Exercise 3.64. Assume that the set S is described using both equations and
inequalities; i.e., it has the form

S={zeR": fi(x)=0, ..., fe(x) =0, g1(z) >0, ..., gm(z) > 0}.

What conditions would you propose to use to certify nonnegativity of a polynomial
p(z) on S?

3.2.5 Bounding the Distance to a Variety

The following problem is of interest in many applications: given a real algebraic
variety V and a point x( that is not on V, we want to lower bound the distance
from xg to V. This distance can be measured according to different metrics, but
for simplicity we consider here only the case of the squared Euclidean norm || - ||%.
A common engineering motivation for this problem occurs, for instance, when the
point zy represents the nominal behavior of a system, while the variety V corre-
sponds to an “undesired” operating region. In this situation, we want to quantify
how large the perturbations to xy can be, while guaranteeing that the undesired
region described by V' cannot be reached.

There are numerous important instances of this situation that appear mostly
in robust optimization [14] and robust control [125] problems. For instance, a typical
formulation in the robust control literature is the case where the point zg represents
the parameter values of a feedback control system (given, e.g., by differential or
difference equations), and the variety V' is described by a determinantal condition
that ensures that the system is stable. More complicated situations may require the
undesirable set to be a semialgebraic set (instead of an algebraic variety), but the
underlying techniques are essentially the same.

Let the real variety V' be defined by polynomials fi(x),..., fi(x), e, V =
{z €eR" : fi(z) =0,..., fm(z) = 0}. As we will see, such “safe” regions can be
computed by considering the constrained polynomial optimization problem:

minimize ||z — xol|? subject to  fi(x) =0, i=1,...,m.

The true minimum value d, of this problem yields the distance from zg to the
variety V', and thus any valid lower bound on d, will give a guaranteed neighborhood
of xy that does not intersect the variety. Based on the same arguments as in the
previous section, it should be clear that one can compute lower bounds on d, and
“safe neighborhoods” by considering sos problems of the form

maximize ¥ subject to (& — x> =) + > Ai(z)fi(z) issos.  (3.17)
j=1

Any feasible solution vs,s of this problem gives a ball B = {x € R" : ||z — x¢|? <
Ysos } and a certificate that B that does not intersect the variety V. Indeed, evaluat-
ing the constraint in (3.17) at any point € V, we directly obtain ||z —z0[|? > Ysos-

Example 3.65. Consider a linear difference equation

zlk + 1] = Az[k].
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Figure 3.7. The boundary of the domain of stability is defined by f(a,b) =
0. Also shown is the computed certified stable region of the form a® + b* < ;.

Recall (e.g., from Section 2.2.1) that this linear difference equation is stable (i.e.,
solutions converge to the origin as k — oo for all initial conditions x[0]) if and only
if all eigenvalues of A are inside the unit disk.

Now let A be the matrix

1 1+ 0 a
Azg a 2—b+a -—-1],
0 —b 2

whose characteristic polynomial is

det(tI — A) = [27t3 + (—45 — 9a)t* + (24 + 9a + 3ab — 3b*)t
+ (=4 —2a — b — 2ab + a®b + 3b%)]/27.

When the parameters (a,b) vanish, i.e., for (a,b) = (0,0), the eigenvalues of A
are (1/3,2/3,2/3), and thus the difference equation is clearly stable. We want to
determine how large a perturbation in (a,b) can be (measured in the Euclidean
norm) for the difference equation to remain stable.

To apply the methods described in this section, we can consider the algebraic
variety defined by the Zariski closure of the boundary of the region of stability.
Clearly, A is on the boundary of stability if and only if some eigenvalue A; lies on
the unit circle, i.e., satisfies A A; = 1. We can easily characterize this condition
algebraically. For instance, one can consider the polynomial

fla,b) :=det(A® A—1),
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since the eigenvalues of the Kronecker product A ® A are the products A;\;, and
because A is real its eigenvalues appear in complex conjugate pairs. For our ex-
ample, after removing constants and multiplicities from the factors, this yields the
polynomial

f(a,b) = (2 — 2a — b+ ab + a*b)(—100 — 20a — b — 5ab + a®b + 6b?)
- (—245 + 133a — 14a® — 37b + 2ab + 27a*b + 5a®b + 3162 + 19ab?
+ 2a%b% — 4ab? + a*b? — 6b° — 12ab® + 6426 + 9b*).  (3.18)

This polynomial defines the variety of interest, and it can be seen that it factors
into three components. This factorization is structural and corresponds to the con-
ditions of the matrix A having eigenvalues at 1, at —1, or on the remainder of the
unit circle. (As an aside, a more efficient alternative is to directly compute a factor-
ized representation using the bialternate matriz product instead of the Kronecker
product, since this removes multiplicities associated with the pairs A;A; and AjAy;
see, e.g., [57].)

We can now compute, using (3.17), the size v of a neighborhood of (a,b)
that is guaranteed not to intersect this variety. Notice that, for our example, since
the variety is defined by a single polynomial that factors, it is possible (and more
efficient) to consider each factor separately. In this case, for each of the three factors
in (3.18), we obtain values

v~ 0.8875, 4o~ 9.0696, 3~ 2.1974.

Of these three, v; defines the smallest neighborhood, and thus it yields a region
a® + b% < 0.8875 where the linear difference equation is certified to be stable. This
neighborhood and the corresponding varieties are presented in Figure 3.7. N

Remark. In the robust control literature, there are several methods that can
partially exploit the determinantal structure of these kinds of problems. The notion
of structured singular value and associated convex bounds are particularly relevant;
see e.g. [18, 43, 125] and the references therein.

Remark 3.66. Notice that in the optimization problem (3.17) the unknown multi-
pliers \i(z) are otherwise unconstrained. We will see in Section 3.3.5 and Chapter 7
that it is possible to exploit this structure for more efficient computation by comput-
ing sums of squares on the quotient ring Rlz]/Z(V).

3.2.6 What If “Simple” Sums of Squares Are Not Enough?

In many of the applications described earlier, we replaced the set of nonnegative
polynomials P, 24, which is computationally intractable, with its tractable equiva-
lent, the sos polynomials ¥, o4. In certain cases (e.g., univariate, quadratic) these
two sets coincide, but in general ¥, 24 is a strictly smaller subset (quantitative
estimates of the difference between these sets will be presented in Chapter 4).
What do we do in the cases where the set of nonnegative polynomials is no
longer equal to sum of squares, and a simple sos approximation is not powerful
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84 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

enough to obtain the desired results? As outlined below, it is possible to produce
stronger, more refined approximations to the set of nonnegative polynomials that
strictly improve over what is achievable by “simple” sums of squares.

The power of multipliers. As a preview, and a hint at the techniques that will be
considered later, let us show how to prove nonnegativity of a particular polynomial
which is not a sum of squares. Recall that the Motzkin polynomial was defined as

M(z,y) = 2*y? + 2?y* + 1 — 327y

and is a nonnegative polynomial that is not a sum of squares.

Despite M (z,y) not being a sum of squares, we can try multiplying it by an-
other polynomial which is known to be positive and then check whether the resulting
product is a sum of squares. Clearly, if this is the case, we have succeeded in prov-
ing nonnegativity of the original polynomial (why?). For instance, for our example,
consider multiplying M (z,y) by the obviously positive factor ¢(z) := (22 + 3?). In
this case, the product will be a sum of squares, and in fact we have the explicit sos
decomposition

(2> + ) - M(z,y) =y*(1 — 2*)* +2*(1 —y*)* + 2*y%(2® +y* — 2)%,  (3.19)

which clearly certifies that M (x,y) > 0, despite the fact that M (z,y) itself is not a
sum of squares.

We will discuss a far-reaching generalization of this basic idea in Section 3.4,
where we explain how to approximate any semialgebraic problem (including of
course the simple case of a single polynomial being nonnegative) by sos techniques.
However, let us elaborate at this point on a number of interesting connections.

Sums of squares of rational functions. A simple explanation of why a multiplier
g(z) makes possible more powerful nonnegativity certificates can be obtained by
considering the case where q(z) = Y, ¢;(z)? is a sum of squares. In this case, we
can reinterpret an sos certificate for the product as

In other words, we now obtain a representation of the polynomial p(x) as a sum
of squares of rational functions (instead of a sum of squares of polynomials). It
was conjectured by Hilbert (in fact, this is exactly the statement of the celebrated
Hilbert’s 17th problem; see, e.g., [106]) and later proved by Artin that every non-
negative polynomial has a representation as a sum of squares of rational functions.

Searching over multipliers. In the Motzkin example presented earlier, we pro-
duced the multiplier ¢(x) = 2? + %2 in an ad hoc fashion. Notice, however, that if
p(z) is a fixed polynomial for which we are trying to prove nonnegativity, we can
systematically search for a multiplier ¢(z) by solving a modified convex optimiza-
tion problem (assuming a fixed bound on the degree of ¢(x)). Indeed, the problem
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3.2. Applications of Sum of Squares Programs 85

of finding a polynomial ¢(z) such that

q(z) is sos, q(z) - p(x) is sos

is clearly affine in the unknown polynomial ¢(x) and thus can be reduced to an sos
program (and solved via semidefinite programming).

Uniform denominators and Pdlya’s theorem. Artin’s solution to Hilbert’s
17th problem ensures that for every nonnegative polynomial there is a decomposi-
tion as a sum of squares of rational functions, or alternatively, a suitable multiplier
always exists. In many situations, it is convenient or necessary to restrict the struc-
ture of the possible multipliers (we will see examples of this later when discussing
copositive matrices in Section 3.6.1). Recall that a form is a homogeneous polyno-
mial, i.e., one for which all monomials have the same degree. A well-known theorem
by Poélya about forms that are positive on the nonnegative orthant states precisely
a case where this situation holds.

Theorem 3.67 ([59, Section 2.24]). Given a form f(x1,22,...,xy,) strictly pos-
itive for x; >0, >, x; >0, then f can be expressed as

_9
f - ha
where g and h are forms with positive coefficients. In particular, we can choose
h=(x1+x2+- - +x,)

for a suitable r.

As we see, a representation of this kind gives an “obvious” certificate of the
nonnegativity of f on the nonnegative orthant. To see the relationship with sums
of squares, notice that if f is positive on the nonnegative orthant, then we can
write f(z1,...,7n) = f(x?,...,22) = g(a?,...,22)/(2? + --- + 22)", and thus
Pélya’s theorem yields a representation of the positive even form f as a sum of
squares of rational functions, with a denominator of a fixed form. Pdélya’s theorem
was generalized by Reznick [105], who showed that for any strictly positive form
(not necessarily even), after multiplying by a suitable factor (>, z7)" it becomes
a sum of squares (for r large enough). Furthermore, he also provided quantitative
estimates for the exponent 7.

Exercise 3.68. Let g(z)p(z) and g(z) be sums of squares, where the multiplier
g(z) is not the zero polynomial. Show that p(z) is nonnegative.

Exercise 3.69. Consider the quartic form in four variables
p(w, x,y, 2) == wh + 22y? + 2222 + y?2? — dwayz.
1. Show that p(w, z,y, z) is not a sum of squares.

2. Find a multiplier ¢(w, z,y, z) such that ¢(w,z,y, 2) - p(w, x,y, z) is a sum of
squares.

261”2711/1
page 85
O



86 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

Exercise 3.70. The conditions for a Pdlya-type nonnegativity certificate can be
fairly stringent. Consider the quadratic form f(z,y) = (v — y)? + exy, which is
obviously positive on the nonnegative orthant for all € > 0. Estimate how large the
exponent r must be, as a function of ¢, for the polynomial (z + y)" f(z,y) to have
only positive coeflicients.

3.3 Special Cases and Structure Exploitation

In Section 3.1.4 we introduced a general characterization of sums of squares in terms
of its “standard” SDP formulation. In many applications, the polynomials under
consideration have further structure that can be characterized algebraically in a
variety of ways. In this section we analyze different situations that often appear in
practice and the consequent theoretical and computational simplifications.

3.3.1 Univariate Intervals

For univariate polynomials, we have seen how to exactly characterize global non-
negativity (i.e., for € (—o0, 00)) in terms of semidefinite programming. But what
if we are interested in polynomials that are nonnegative only on an interval (either
finite or semi-infinite)? As explained below, we can use very similar ideas and two
classical characterizations usually associated to the names Pélya—Szego, Fekete, or
Markov-Lukacs. The basic results are the following.

Theorem 3.71. A univariate polynomial p(x) is nonnegative on [0,00) if and only
if it can be written as

p(x) = s(x) + 2 - t(2),

where s(x),t(x) are sums of squares. If deg(p) = 2d, then we have deg(s) < 2d,
deg(t) < 2d — 2, while if deg(p) = 2d + 1, then deg(s) < 2d, deg(t) < 2d.

A similar result holds for closed finite intervals.

Theorem 3.72. Let a < b. Then the univariate polynomial p(x) is nonnegative on
[a,b] if and only if it can be written as

p(z) =s(z)+ (x—a) (b—z)-t(x) if deg(p) is even,

p(x) =(x —a) s(z)+ (b—z) - t(x) if deg(p) is odd,
where s(x),t(x) are sums of squares. In the first case, we have deg(p) = 2d, and

)
deg(s) < 2d, deg(t) < 2d — 2. In the second, deg(p) = 2d + 1, and deg(s) < 2d,
deg(t) < 2d.

Notice the similarity to the conditions discussed in Section 3.2.4 and the fact
that these representations “obviously” certify that p(z) > 0 on the corresponding
set. From the existence of these sos representations, it also follows directly that
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3.3. Special Cases and Structure Exploitation 87

nonnegative polynomials on any interval (finite or semi-infinite) can be exactly
characterized using “small” sos programs.

As we will see later, these sos characterizations, suitably dualized, can be
used to give a complete characterization of the set of valid moments of probabil-
ity measures with support on univariate intervals. We will discuss the details in
Section 3.5.3, followed by an application to game theory in Section 3.6.6.

Exercise 3.73. Prove Theorem 3.71. Hint: p(x) is nonnegative on [0, 00) if and
only if ¢(¢) := p(t?) is a nonnegative polynomial.

Exercise 3.74. Let p(z) be a univariate polynomial of degree d that satisfies
Ip(z)] <1 for z € [—1,1]. How large can its leading coefficient be?

1. Give an sos formulation for this problem, and solve it numerically for d =
2,3,4,5.

2. What is the largest value of d for which you can numerically solve this problem
(using the monomial basis) in a reliable way? Experiment using different
polynomial bases, as explained in Section 3.1.5.

3. Can you guess what the general solution is as a function of d? Can you give
an exact characterization of the optimal polynomial?

Exercise 3.75. Give an sos formulation to the problem of minimizing a univariate
rational function p(z)/q(z) on the interval [a,b]. What condition is needed on the
denominator ¢(x), if any?

3.3.2 Sum of Squares Matrices

The notions of positive semidefiniteness and sums of squares of scalar polynomi-
als can be naturally extended to polynomial matrices, i.e., matrices with entries
in R[zy,...,2,]. Sum of squares matrices are of interest in many situations, in-
cluding the characterization of sos convexity (Section 3.3.3) and representations for
symmetry-invariant polynomials (Section 3.3.6).

We say that a symmetric polynomial matrix P(z) € R[z]™*™ is positive
semidefinite if P(x) = 0 for all z € R™ (i.e., it is pointwise positive semidefinite).
The definition of an sos matrix is as follows [69, 48, 109].

Definition 3.76. A symmetric polynomial matriz P(x) € Rz]™*™, = € R", is
an sos matrix if there exists a polynomial matriz M(z) € R[z]**™ for some s € N,
such that P(x) = MT(x)M(z).

When m =1, i.e., for scalar polynomials, this corresponds to the standard sos
notion. Also, when P is a constant matrix, then the condition simply states that P
is positive semidefinite. Thus, sos matrices are a common generalization of positive
semidefinite (constant) matrices and sos polynomials.
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Example 3.77. Consider the polynomial matrix

P(x):[ﬁ_zﬂz xz}

T T

This is an sos matrix since it admits the factorization

P(“”):[:pil gr{xil ﬂ "

Since an m X m matrix is simply a representation of an m-variate quadratic
form, we can always interpret an sos matrix in terms of a polynomial with m
additional variables. The following result makes this precise.

Lemma 3.78. Let P(x) € Rlx]™*™ be a symmetric polynomial matriz, with x €
R™. Let p(x,y) := yT P(x)y be the associated scalar polynomial in m + n variables

[z:y], where y = [y1,. .., ym].
1. The matriz P(x) is positive semidefinite if and only if p(x,y) is nonnegative.

2. The matriz P(x) is an sos matriz if and only if p(x,y) is a sum of squares
(in Rlz; y]).

Example 3.79. Here we continue Example 3.77. The matrix P(z) is an sos matrix
since the scalar polynomial 3 P(z)y has the sos decomposition

y'P(x)y = (y1 +ay2)? + (x — )%y 1

Notice that Lemma 3.78 allows us to easily decide whether a given polyno-
mial matrix is an sos matrix using the same semidefinite programming techniques
already described in Section 3.1.4. While these results establish that sos matri-
ces are not a completely new concept (since they are fully equivalent to scalar sos
polynomials), the main advantage is that they allow for a more concise notation,
since they appear naturally in many contexts (e.g., sos-convexity in Section 3.3.3,
or symmetry reduction in Section 3.3.6).

When are positive semidefinite matrices sums of squares? A celebrated
result about sos matrices that has been rediscovered many times is the fact that in
the univariate case, the sos condition is also necessary.

Theorem 3.80. Let P(x) € R[z]™*™ be a symmetric polynomial matriz, where
the variable x is scalar (i.e., x € R). Then the matriz P(x) is positive semidefinite
if and only if it is an sos matrix.

For a proof and historical details, see, e.g., [28], [9], and the references therein.
Notice that this is a simultaneous generalization of two of the classical Hilbert cases
where nonnegativity is equal to sum of squares (scalar polynomials and quadratic
forms). For more details about univariate polynomial matrices, references to the
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3.3. Special Cases and Structure Exploitation 89

literature, as well as an efficient eigenvalue-based method for finding their sos de-
composition, we refer the reader to [9].

In the multivariate case, however, not all positive polynomial matrices are
sums of squares. A well-known counterexample is due to Choi [27], who constructed
a positive semidefinite biquadratic form that is mot a sum of squares of bilinear
forms. His counterexample can be rewritten as the polynomial matrix

gc% + 295% —T129 —2123
C(z)=| —mze a3+223 —wxozs |, (3.20)
—r173 —Xox3 x% + 2;10%

which is positive semidefinite for all (x1,x2,23) € R3 but is not an sos matrix.
Exercise 3.81. Prove Lemma 3.78.

Exercise 3.82. Let P(z) be an sos matrix. Show that all principal minors of P(x)
are scalar sos polynomials. (Hint: Use the Cauchy—Binet matrix identity.)

Exercise 3.83. Show that the Choi matrix (3.20) is positive semidefinite for all
real values of (z1,z2,23) but is not an sos matrix.

Exercise 3.84. Modify the algorithm given in Exercise 3.36 so that it will compute
a decomposition of a univariate sos matrix P(z).

Exercise 3.85. Certain optimization problems include constraints that are natu-
rally expressed in matrix form. For instance, a set S could be defined as

1 rT X2
S =1 (x1,m9,73) €ER® : G(z):= |21 1 3| =0
T2 X3 1

(notice that this corresponds to the 3-dimensional elliptope discussed in Section
2.1.3). While these descriptions could be “scalarized” and rewritten in terms of
scalar polynomial inequalities (e.g., by considering minors, or coefficients of the
characteristic polynomial of G(x)), it is often much more convenient to preserve
their structure and keep them in matrix form.

Consider a scalar polynomial p(z), for which we want to show that it is non-
negative on the set S.

1. Show that a sufficient condition for nonnegativity of p on the set S is the
existence of a scalar sos polynomial so(z) and an sos matrix S (x), such that

p(x) = so(x) + (S1(z), G())-
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2. Explain how to compute so(z) and Si(x) via sos programs and semidefinite
programming.

3. Give an sos certificate of nonnegativity of p(z) := 4 — (2] + 23 + z3) on the
set S.

3.3.3 Sum of Squares Convexity

The notion of sos-convexity is a tractable algebraic replacement for convexity of
a polynomial function. Informally, the (difficult to verify) requirement of positive
semidefiniteness of the Hessian matrix is replaced with a tractable condition, the
existence of an sos decomposition. Besides its computational implications, sos-
convexity is an appealing concept since it bridges the geometric and algebraic as-
pects of convexity. Indeed, while the usual definition of convexity is concerned only
with the geometry of the epigraph, in sos-convexity this geometric property (or
the nonnegativity of the Hessian) must be certified through a “simple” algebraic
identity, namely, an sos factorization of the Hessian.

Recall that a multivariate polynomial p(z) := p(z1,...,z,) is convex if and
only if its Hessian is positive semidefinite for all x € R™. This is a pointwise
condition that the Hessian must satisfy at every point z. The notion of sos-convexity
requires instead a global algebraic certificate for this property.

Definition 3.86. A polynomial p(x) is sos-convex if its Hessian H(x) is an sos
matriz, i.e., if it factors as H(x) = M(z)T M(z), where M(x) is a polynomial
matriz.

Clearly, an sos-convex polynomial is convex, since the Hessian being an sos
matrix implies it is positive semidefinite everywhere. Is the converse true? In other
words, is every convex polynomial necessarily sos-convex?

Recall (e.g., from the Choi example in the previous section) that not every
positive semidefinite polynomial matrix is an sos matrix. However, this does not
necessarily serve as a counterexample, since due to the fact that partial derivatives
commute, the Hessian matrix of a polynomial has strong affine dependencies among
the different entries, of the form agg(z) = Hu(@) pg 5 consequence, the set of

k ox

valid Hessians is a lower-dimensional subspace of the space of symmetric polyno-
mial matrices. Thus, due to this special structure, it is perhaps conceivable that
convexity and sos-convexity of polynomials could still be equivalent.
The following counterexample from [5] shows that this is not the case.
Theorem 3.87. The trivariate form of degree 8 given by
p(z) = 3228 + 1182522 + 402822 + 252123 — 432t22a? — 35xtad + 322240l

—16x3x325 + 242328 + 1625 + 442523 + 702323 + 602325 + 3025

18 convex but is not sos-convex.
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3.3. Special Cases and Structure Exploitation 91

The work [4] presents a complete classification of the cases for which convexity
and sos-convexity coincide. This description is in a certain sense the analogue to
Hilbert’s classification of nonnegativity described in Section 3.1.2.

Another motivation and justification for studying sos-convexity is its compu-
tational tractability. Deciding convexity of a multivariate polynomial is an NP-hard
problem [3], while it follows from our earlier discussions that sos-convexity can be
checked using semidefinite programming. Sos-convexity will appear prominently in
the characterization of semidefinite representability of convex sets; see Section 6.4.3
in Chapter 6 for details. For more results and background material on sos-convexity,
we refer the reader to [5, 4].

Exercise 3.88. Show that the Choi matrix (3.20) is not the Hessian of any poly-
nomial.

Exercise 3.89. Prove Theorem 3.87. Hint: To show that p(x) is not sos-convex,
analyze the (1,1) entry of the Hessian.

Exercise 3.90. In this exercise, we explore the use of sos-convexity for the prob-
lem of fitting a polynomial to data, under a convexity restriction (e.g., [76]).

Consider a finite set of data {x;, f;} fori =1,..., N, where x; € D C R" and
fi € R. We want to fit these data points with a polynomial function p(z) of degree
d, making the least-squares fitting error Zij\;l(p(xi) — fi)? as small as possible.

1. Give an sos formulation for this problem, in the case where p(x) is required
to be a globally convex polynomial. Explain whether the formulation solves
this problem exactly.

2. How would you modify your formulation if we only require that p(z) be convex
on the domain D of interest?

3. Generate data points where x; € D := [—1,1] x [-1, 1], and numerically solve
your formulation for those two cases (p(z) is convex everywhere, or is only
convex on the domain D).

3.3.4 Sparsity and Newton Polytopes

Many of the polynomial systems that appear in practice are far from being “generic”
but rather present a number of structural features that, when properly exploited,
allow for much more efficient computational techniques. This is quite similar to the
situation in numerical linear algebra, where there is a big difference in performance
between algorithms that take into account matrix sparsity and those that do not.
For matrices, the notion of sparsity is often relatively straightforward and relates
mostly to the number of nonzero coefficients. In computational algebra, however,
there exists a much more refined notion of sparsity that refers not only to the
number of zero coeflicients of a polynomial, but also to the underlying combinatorial
structure of the nonzero coeflicients.
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y degree

I I I I I ,
0 1 2 3 4 5
x degree

Figure 3.8. Newton polytope of the polynomial 5 — xy — z2y? + 3y? + 2*.

Sparsity for multivariate polynomials is usually characterized in terms of their
Newton polytope, defined below.

Definition 3.91. Consider a multivariate polynomial p(z1,...,2n) = D, CaZ®.
The Newton polytope of p, denoted by N (p), is the convez hull of the set of expo-
nents «, considered as vectors in R™.

Thus, the Newton polytope of a polynomial always has integer extreme points,
given by a subset of the exponents of the polynomial.

Example 3.92. Consider the polynomial p(z,y) = 5 — zy — 22y + 3y + 2*. Its
Newton polytope N (p), displayed in Figure 3.8, is the convex hull of the points
(0,0),(1,1),(2,2),(0,2),(4,0). N

Example 3.93. Consider the polynomial p(z,y) = 1 — 2% + 2y + 4y*. Its Newton
polytope N (p) is the triangle in R? with vertices {(0,0),(2,0),(0,4)}. B

Newton polytopes are an essential tool when considering polynomial arith-
metic because of the following fundamental identity:

N(g-h)=N(g)+N(h), (3.21)

where + denotes the Minkowski addition of polytopes.

The Newton polytope allows us to introduce a notion of sparsity for a polyno-
mial, related to the size of its Newton polytope. Sparsity (in this algebraic sense)
allows a notable reduction in the computational cost of checking sum of squares
conditions of multivariate polynomials. The reason is the following theorem due to
Reznick.

Theorem 3.94 ([104, Theorem 1]). If p(z) = >, qi(x)?, then N(q;) C 1N (p).

This theorem allows us, without loss of generality, to restrict the set of mono-
mials appearing in the sos representation (3.12) to those in the Newton polytope
of p, scaled by a factor of % This reduces the size of the corresponding matrix @,
thus simplifying the semidefinite program to be solved.
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3.3. Special Cases and Structure Exploitation 93

Example 3.95. Consider the following polynomial:
p(w,z,y,2) = (w + D) (a* + D(* + 1)(z* + 1) + 2w + 3z + 4y + 5z,

for which we want to compute an sos decomposition. The polynomial p has degree
2d = 16 and four independent variables (n = 4). A naive direct approach, along the
lines described in Section 3.1.4, would require a matrix @ indexed by all monomials
in (w,z,y, z) of degree less than or equal to d = 8, i.e., of size (";d) = 495.

However, its Newton polytope N (p) is easily seen to be the four-dimensional
hypercube with opposite vertices at (0,0,0,0) and (4,4,4,4). Therefore, by The-
orem 3.94, the polynomials g; in the sos decomposition of p must have support
in %N(p), which is the hypercube with vertices at (0,0,0,0) and (2,2,2,2). This
scaled polytope contains 3* = 81 distinct monomials, and as a consequence a full
sos decomposition can be computed by solving a much smaller semidefinite
program. N

For a discussion of additional techniques for exploiting sparsity in the context
of sum of squares, we refer the reader to [70, 124] and the references therein.

Exercise 3.96. Prove identity (3.21).

Exercise 3.97. Consider the Motzkin polynomial (3.6), and compute its Newton
polytope. Which monomials could appear in a (hypothetical) sos decomposition of
M (x,y)? Show, by considering the coefficient of 2232, that this leads to a contra-
diction, and thus that M (x,y) is not a sum of squares.

Exercise 3.98. Fuacial reduction [20] is a technique by which a conic program-
ming feasibility problem x € K N L that is feasible, but not strictly feasible, is
replaced with a simpler problem that satisfies strict feasibility. The key idea is that
if the subspace L does not properly intersect the cone I, one may restrict attention
to a smaller face of K instead (ideally, of minimal possible dimension). For the
positive semidefinite cone, faces are themselves isomorphic to smaller dimensional
positive semidefinite cones, and thus this procedure yields smaller, but equivalent,
semidefinite programs.

Explain how to interpret the Newton polytope technique described above in
terms of facial reduction.

3.3.5 Equations, Ideals, and Quotient Rings

Sum of squares decompositions give sufficient conditions for global nonnegativity
of a polynomial. However, as discussed in Section 3.2.4, often we are interested in
deciding or proving nonnegativity only on certain regions of R™. In this section
we consider the case where the set of interest is defined using equality constraints
only; i.e., it is an algebraic variety. The more general case of polynomial inequalities
(i.e., basic semialgebraic sets) will be discussed in Section 3.4. As we will see, when
explicit equality constraints are present in the problem, notable simplifications in
the formulation of the corresponding semidefinite programs are possible.
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94 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

For concreteness, consider the problem of verifying the nonnegativity of a
polynomial p(z) on a set defined by equality constraints: {z € R : f;(z) =0, i =
1,...,m} (i.e., an algebraic variety). Let I = (f1,..., fm) be the ideal generated
by the equality constraints, and define the quotient ring R[x]/I as the set of equiv-
alence classes for congruence modulo the ideal I. Then, provided computations
can be effectively performed in this quotient ring, very compact SDP formulations
will be possible. This will be usually the case when Grobner bases for the ideal
are either available or easy to compute. The first case usually occurs in combina-
torial optimization problems, and the latter when the ideal is generated by a few
constraints.

We explain the details next. We want to write sos-like sufficient conditions for
the polynomial p(z) to be nonnegative on the variety V(I). As mentioned earlier,
the condition

p(z) + Z Ai(z)fi(z) is a sum of squares in R[z] (3.22)

is a self-evident certificate of nonnegativity that clearly guarantees this. To see
this, notice that evaluating this expression on any point xo of V(I) gives p(xq)
(since fi(zo) = 0), and this is a nonnegative value (since the expression is a sum of
squares). By passing to the quotient ring (equivalently, considering (3.22) modulo
the ideal I), we can rewrite this as

f(z) is asum of squares in R[z]/I. (3.23)

Both expressions are sufficient conditions for the nonnegativity of p on the variety
defined by fi(xz) = 0. As we will see, we can use this to give a more efficient version
of the SDP formulation of sum of squares.

Sum of squares on quotient rings. We describe next a natural modification
of the standard sos methods that will allow us to compute sos decompositions on
quotient rings. This can be done by using essentially the same SDP techniques
as in the standard case. Since we will need to do effective computations on the
quotient, we assume that a Grébner basis G = {by, ..., b} of the polynomial ideal
I is available; see Appendix A and [32] for an introduction to computational algebra
and Grobner basis methods.

The method will be basically the same as in the standard case explained in
Section 3.1.4 (expressing the polynomial as a quadratic form on a vector of mono-
mials and writing linear equations to obtain a semidefinite program), but with two
main differences:

e Instead of indexing the rows and columns of the matrix @ in the semidefinite
program by the usual monomials, we use standard monomials corresponding
to the Grobner basis G of the ideal I. These are the monomials that are not
divisible by any leading term of the polynomials b; in the Grobner basis.

o When equating the left- and right-hand sides to form linear equations defining
the subspace of valid Gram matrices, all operations are performed in the
quotient ring; i.e., we rewrite the terms in normal form after multiplication.
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Rather than giving a formal description, it is more transparent to explain the
methodology via a simple example.

Example 3.99. Consider the problem of deciding if the polynomial p := 10—2% —y
is nonnegative on the variety defined by f := 22 + y? — 1 = 0 (the unit circle). We
will check whether p is a sum of squares in Rz, y]/I, where I is the ideal I = (f).
Since the ideal I is principal (generated by a single polynomial), we already have a
Grobner basis, which is simply G = {f}. We use a graded lexicographic monomial
ordering, where © < y. The corresponding set of standard monomials is then
B={1,z,y,2% xy, 2% 2%y,...}.

To formulate the corresponding semidefinite program, we pick a partial basis
of the quotient ring (i.e., a subset of monomials in ). In this example, we take
only {1, z,y}, and, as before, we write p as a quadratic form in these monomials:

T

1 Q11 Q12 Q13 1
10 — 22 — y=1|x g2 G22  q23 T
Yy q13  g23 433 Y

= q11 + qox? + q339° + 2q127 + 213y + 2qo32Y
= (qu1 + g33) + (q22 — q33)2° + 2q127 + 2q13Y + 2qo3TY mod 1,

where, in the last line, we used reduction modulo the ideal to rewrite some terms
as linear combinations of standard monomials only (e.g., the term g33y? is replaced
by q33 — q33z?). Matching coefficients between left and right, we obtain the linear
equations

I: 10 =qu1 + ¢33,
Z: 0 = 2q12,

y: —1=2qs,
a?: —1=qay — g3,
zy: 0= 2q3

that define the subspace. Thus, we obtain again a simple semidefinite program.
Solving it, we have

o ©
|
N

Q=

o O O
—= O

30
=L7L, L— L
V2010 0

(SIS
- |
@ ol

and therefore

Y\, 35,
10 — 22 — 5(3——) i a1,
T Y 6 + 36 Y mo
which shows that p is indeed a sum of squares on R[z,y]/I. A simple geometric
interpretation is shown in Figure 3.9. As expected, by the condition above, p co-

incides with an sos polynomial on the variety, and thus it is obviously nonnegative
on that set. N
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Figure 3.9. The polynomials p = 10 — > — y and (3 — %)% + 2542 take

exactly the same values on the unit circle 2 + y2 = 1. Thus, p is nonnegative on
the circle.

Remark 3.100. Despite the similarities between the “standard” case of sum of
squares on the polynomial ring Rlx] versus the quotient ring Rlx]/I, there are a
few important differences. A key distinction is related to computational complexity
issues. Consider an sos decomposition p(x) = >, qi(x)*>. When working on R[z],
we can always bound a priori the degree of the polynomials q; in terms of the degree
of p (namely, deg(q;) < %deg(p)), This is not true when working on a quotient
ring, since monomials can “wrap around” when computing normal forms. This is
the reason why when working on R[x]/I we typically have some freedom in choosing
a finite set of standard monomials to index the matriz Q (unless it is feasible to
include all of them).

In fact, since for the ideal I = (x3—1,...,22—1) every polynomial nonnegative
on V(I) is a sum of squares on R[z]/I (Ezercise 3.105), it directly follows that,
in the general case, deciding whether a polynomial is sum of squares modulo I is
NP-hard.

Even though in the worst case computing a Grobner basis for I may be
troublesome, for many practical problems they are often directly available or rela-
tively easy to compute. A typical example is the case of combinatorial optimization
problems, where the equations defining the Boolean ideal (23 —1,...,22 — 1) are
already a Grobner basis. Another frequent situation is when the ideal is defined by
a single constraint, in which case the defining equation is again obviously a Grébner
basis of the corresponding ideal.

SDP dimensions and Hilbert series. Another advantage of the ideal-
theoretic formulation is the ease with which structural results can be obtained
through basic algebraic notions. For instance, consider the following question: what
are the matrix dimensions of the semidefinite programs for sum of squares modulo an
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3.3. Special Cases and Structure Exploitation 97

ideal? Recall that in the “standard” sos case (over R[z], for a polynomial of degree
2d), the matrices are indexed by all monomials of degree less than or equal to d and
thus have size ("}?). This can be rewritten as (") = S2¢_ ("*F~1), where each
term in the sum corresponds to the number of monomials of total degree k. How
can we generalize this?

For quotient rings, there is a nice way of counting the dimensions of the
different homogeneous components, known as the Hilbert series; see, e.g., [33]. The
Hilbert series H(I,t) is the generating function (a formal power series) of the Hilbert
function H;(k), which gives the dimension of the degree k the homogeneous part of
the quotient ring, i.e.,

H@ﬂ:f}m@m
k=0

where Hy(k) = dim(R[z]/I N R[z]k). If I is a monomial ideal, H;(k) counts the
number of standard monomials of total degree k. If I is an ideal, and in, (I) is
its initial ideal with respect to a graded monomial ordering, then both have the
same Hilbert series. The Hilbert series can be computed from a Grobner basis of
the ideal I, and, as a consequence, this allows us to determine the size of the corre-
sponding semidefinite program, given a bound on the total degree of the standard
monomials we will be considering.

For instance, the “standard” case we just discussed corresponds to the trivial
ideal I = {0}. The Hilbert series for R[z]/I = Rlz] is H(I,t) = 1/(1—-t)" =
> ko ("H,z_l)tk, which corresponds exactly to the dimensions computer earlier.

Example 3.101. Consider the ideal I = (22 +y? — 1) of Example 3.99. Its Hilbert

series is
1+t

H(I,t) = t:1+m+%ﬂnﬁ+%+u,

which counts the number of standard monomials of each degree. The terms of the
series allow us to determine, given a bound on the total degree of the monomials
to be considered, what size the corresponding semidefinite program will be. For
instance, since in Example 3.99 we used only monomials of degree less than or
equal to 1, the size of the corresponding semidefinite programis 1 +2=3. 1

In Exercise 3.106 we discuss another natural and important example, namely,
the Boolean ideal (x2 —1,...,22 —1). These ideas will appear again in Chapter 7,
when computing semidefinite representations of convex hulls of algebraic varieties.

Exercise 3.102. Prove formally that the expressions (3.22) and (3.23) are equiv-
alent.

Exercise 3.103. Counsider the polynomial f(x,y,z) := 1+ axy + yz + xz, and the
variety V(I), where I = (22 — 1,32 — 1,22 — 1). Notice that V(I) is finite.

1. Show, by explicit enumeration, that f is nonnegative on V(I).

2. Write f as a sum of squares on R[z]/I.
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Exercise 3.104. Consider the butterfly curve in R?, defined by the equation

2%+ % = 2”.
Give an sos certificate that the real locus of this curve is contained in a disk of
radius 5/4. Is this the best possible constant?

Exercise 3.105. Consider R[z1,...,z,] and the ideal I = (2% — 1,...,22 — 1).
We will show that every polynomial that is nonnegative on V(I) C R™ is a sum of
squares modulo R[z]/I.

1. Show that V(I) corresponds to all the points {—1,1}" (i.e., the 2" vertices of
the unit hypercube). Thus, a polynomial p(x) is nonnegative on V(I) if and
only if evaluates to a nonnegative number on all these vertices.

2. Let v = (v1,...,v,) € V(I). Define the polynomial ¢,(z) = [[;, (%)
Show that £,(v) = 1, and £, (w) = 0 for all w € V(I), with w # v.

3. Assume that p(z) is nonnegative on V(I). Find an explicit sos decomposition
for p(z) on R[z]/I using the fact that, for all x € V(I), we have

pa) = 3 p)lu(a).

veV(I)
4. Extend this result to all radical zero-dimensional ideals [90].

Exercise 3.106. Consider R[z1,...,z,] and the ideal I = (z? — 1,...,22 — 1).
Show that the standard monomials are the square-free monomials and thus are in
bijection with the 2™ subsets of {1,...,n}. Show that the Hilbert series (actually
a polynomial in this case) is H(I,t) = (1+¢)" = > _, (})t*. What does this say
about the sizes of the corresponding semidefinite programs when looking at sums
of squares modulo I7

3.3.6 Symmetries

Another useful property that can be exploited in the sos context is symmetry. Sym-
metric problems arise very frequently in applications for a variety of reasons. Some-
times symmetry reflects the underlying structure of existing physical systems (e.g.,
time-invariance, conservation laws), while in some other cases it arises as a result
of the chosen mathematical abstraction. Symmetry reduction techniques have been
explored in many contexts, with areas such as crystallography, dynamical systems
[53], and geometric mechanics [77] being prominent examples.

In optimization, as we shall see, symmetry interacts in a very interesting way
with convexity, particularly in the case of semidefinite programming. In general,
there are many potential advantages in exploiting symmetries:

Problem size. The first immediate advantage is the reduction in problem size,
as the new instance can have a significantly smaller number of variables and
constraints.

261”2711/1
page 98
O
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Degeneracy removal. In symmetric SDP problems, there are repeated eigenval-
ues of high multiplicity that are difficult to handle numerically. These can be
removed by a proper handling of the symmetry.

Conditioning and reliability. Symmetry-aware methodologies have in general
much better numerical conditioning, and the resulting smaller size instances
are usually less prone to numerical errors.

An in-depth discussion of symmetries in sum of squares and semidefinite pro-
gramming requires some elements of group representation theory and invariant the-
ory. In this section, we present and isolate the key ideas, referring to the literature
for the full technical details; see, e.g., [48, 123]. We consider the simple situation
where we want to compute an sos decomposition of a single polynomial, and the
underlying symmetry group is finite; the extensions to more general cases are rela-
tively straightforward. The main message is that the presence of symmetry in sos
problems can be exploited at three levels of increasing sophistication: (a) convexity,
(b) semidefinite programming, and (c) sum of squares.

The set-up is as follows: we consider a polynomial p(x1,...,x,) that is invari-
ant under the action of a finite group G. A formal definition is given below in (3.24),
but the idea is that the polynomial in unchanged under certain transformations of
the variables. We will use the following as a running example.

Example 3.107. Consider the (nonconvex) quartic trivariate polynomial
p(x,y,2) =2 +y' + 2 —dayz+a+y+ 2.

This polynomial is invariant under all permutations of {x,y, z} (the full symmetric
group S3). The global minimum of p is p, =~ —2.1129 and is achieved at the orbit
of global minimizers:

(0.988, —1.102, —1.102), (—1.102,0.988, —1.102), (—1.102, —1.102,0.988).

For this polynomial, it holds that psos = px. N

Recall that a linear representation of a group G is a homomorphism p : G —
GL(R"™) (i.e., p(st) = p(s)p(t) Vs,t € G), where GL(R"™) is the group of invertible
n X n real matrices. The assumption that p is invariant under the group action
means that

p(p(9)z) =p(z)  VgeG. (3.24)

Convexity. In general, when minimizing a symmetric function, one cannot always
expect that minimizers will also be symmetric (Example 3.107 is a case where
this clearly fails). There is, however, an important situation where optimization
problems invariant under the action of a group are guaranteed to have solutions that
are themselves invariant. As we show below, this is the case for convexr problems,
where there is no loss of generality in restricting to symmetric solutions.
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Consider the problem of minimizing a convex function f(z) over a convex
set S, where both the objective function f and the constraint set S are invariant
under the group action. This means that

flp(g)z) = f(z) VgeG
and
xeS = plg)res Vg € G,

respectively. When these properties hold (symmetry + convexity), then we can
always restrict the solution to the fized-point subspace (or subspace of symmetric
solutions) defined by

F:={xzeR": p(g)x =2, VgeGqG}.

To see why the statement is true, consider any feasible solution zy € S, and define
the “group average”

~ 1
To = @ Z p(g)zo

geG

that expresses Ty as a convex combination of the images of xy under the group
action. By construction, Zy € F. Since S is convex and invariant, we have gy € .S,
and convexity and invariance of f yield f(Zy) < ﬁ >gec F(p(g)mo) = f(o).
Thus, without loss of generality, for invariant convex problems we can re-
strict the search for optimal solutions to a potentially much smaller subset S N F
(of course, this is most useful whenever the dimension of the subspace F is small).
In other words, for convex problems, no “symmetry-breaking” is ever necessary.

Example 3.108. The entropy of a probability vector (p1,...,pn) with > 1 | p; = 1,
pi > 0, is defined as

H(p) := - Zpi log p;,
i=1

where (by continuity) 0log0 is defined as 0. The (negative) entropy —H(p) is a
convex function of p that is clearly symmetric with respect to arbitrary permuta-
tions of the p;. Consider the problem of finding the vector p with largest possible
entropy; i.e., we want to minimize the convex symmetric function —H (p) over the
convex symmetric set S = {p: > . p; = 1,p; > 0}. For this problem, the fixed-

point subspace F is one-dimensional, of the form (¢,¢,...,t), and thus it follows
with no calculation that the entropy maximizing vector is given by the uniform
distribution (1,...,1). N

Semidefinite programs, being convex optimization problems, naturally fit into
the class discussed above, and thus for invariant SDP problems we will always be
able to restrict solutions to their fixed-point subspace. Furthermore, as we shall see
next, there is often additional structure to be exploited.
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Semidefinite programming. An invariant semidefinite program is a semidefinite
program whose objective and feasible sets are invariant under the action of a group.
As we have just seen, in this case we can always restrict solutions to the fized-
point subspace F of the group action. Remarkably, this subspace will have a very
convenient description.

For most semidefinite programs (in particular, those arising from sos decom-
positions), the group acts on the decision variables in a specific way, where group
elements g act on a symmetric matrix by conjugation, i.e., X + p(g9)T X p(g). Writ-
ing the equations for F, and using the fact that p(g) is an orthogonal matrix, we
obtain

F={X: Xplg) =p(g)X VgeG} (3.25)

i.e., X must commute with all matrices in the representation of G. In this case,
using Schur’s lemma of representation theory, one can show that in the appropri-
ate symmetry-adapted basis, the fixed-point subspace will have a block-diagonal
structure.

Example 3.109. Consider an invariant semidefinite program where the matrices
in the fixed-point subspace have the structure

a b b
X=1b ¢ d
b d ¢

Notice that these matrices are invariant under simultaneous permutation of the last
two rows and columns. We now show that these matrices can be put into a more
convenient form. By pre- and postmultiplying by the orthogonal matrix

1 0 O
T=1{0 o o], o=
0 a —«

1
V2’
d]
The calculation of a symmetry-adapted basis (i.e., the matrix 7" in the exam-
ple above) is fully algorithmic; the details are representation-theoretic (and thus
omitted here) but can be found in the literature in [111, 45, 48]. What is important
is that this step simplifies the description of F by replacing a big matrix with a col-
lection of smaller ones (the specific dimensions will of course depend on the problem
data). As a consequence, the original SDP problem is reduced to a collection of
smaller coupled matrix constraints, with each block corresponding to an “isotypic
component,” and cardinality equal to the number of irreducible representations of

the group that appear nontrivially. This allows for a notable reduction in both the
number of decision variables and the size of the semidefinite programs to be solved.

we obtain

TT'XT = |V2b c+d

0
0
0 0 -

a V2b
c

and the matrix becomes block diagonal. W
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Example 3.110. Consider our running example, Example 3.107. Since p(z,y, z)

has n = 3 variables, degree 2d = 4, and a full Newton polytope, its standard sos
formulation is indexed by all (";d) = (g) = 10 monomials of degree 2, i.e.,

1 ’ doo 4do1r 4do2 do3 do4 Gos5 dqoe Gor qos o9 1

€ qo1r q11 qi12 413 qi4 Q15 qi6 qi7  gi8 q19 x

Y qo2 q12 922 Q423 Q24 QG25 426 427 Q28 Q29 Y

z qo3 413 423 433 {434 G35 436 G377 438 (439 z

p(z,y,2)—y = 95; o4 Qq14 QG24 Qq34 QGa4 Q45 Ga6 G471 G448 q49 !Ez ’

Y qos 915 925 435 445 G55 gs56 457 Q58 Q59 Y

22 qos qi6 426 436 da6 456 466 ge7 ges 469 22
Yz qor qi7 Q42 437 44t 4s7  4e7  qr7  qrs 79 Yz
Tz qos qi18 g28 Q38 d48 (58 (ges grs gss qs9 Tz
LZY]  [Go9 QGi9 QG28 Q439 Q49 G59 G69 Q479 G489 G99 | |TY]

where the matrix () above will be constrained to be positive semidefinite. Recall that
p is invariant under all permutations of the variables (the full symmetric group S3).
Thus, we can constrain the matrix () to be in the fixed-point subspace, i.e., it
should satisfy @ = p(9)7Qp(g), where g € G and p : G — GL(R') is the induced
representation on the vector of monomials that arises from permuting the variables
(z,y, z). Solving the equations (3.25) that define the fixed-point subspace, we find
that the matrices there have the structure

o ™M "™ T™M T2 T2 T2 T3 T3 T3
r T4 Ts5 Ts5 Te Ty Ty T8 To9 T9
r s T4 Ts T7 Te T7 Tg9g T8 T9
r s s T4 T7 T7 Te Tg9g To9 T8
rg Tre T7r Tr Tio Ti1 Tt Ti2 T1i3 713 . (3.26)
rg 7 Te Tr Ti1 Tio Ti1 T3z Ti2 T3
rTo Ty Ty Te Tt Tit Tio Ti3 T3 T12
rTs Ts T9 T9 Ti2 T3 Ti3 Tia Tis Ti5
rTs T9 T8 T9 Tiz Ti2 Ti3 Tis Ti4 Ti15
s T9 T9 T8 T3 T3 Ti2 Tis Ti5 T4

O
I

Notice that the fixed-point subspace is 16-dimensional, as opposed to the (121) =55
degrees of freedom in the original matrix.

We can now, however, give a nicer description of this subspace. Consider the
coordinate transformation (a symmetry-adapted basis) of the form X + TTXT,
where the orthogonal matrix T is given by

T = BlockDiag(1, R, R, R) - 11, R=

2 QR
=2 @R

«
7
B

where a = 1/v/3, 8 = (3—v/3)/6, v = —(3++/3)/6, and IT is the permutation matrix

et . T —
satisfying I1 [360,%1,$2,$3,$4,$5,$6,337,338,369]—[360,361,334,$7,$2,$57$8,$3,$6,$9]-
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It can be verified that under this tranformation, the matrix in (3.26) now takes
the form

TTQT = BlockDiag(Q1, Q2, Q2),

where

[ To \/57“1 \/§7‘2 \/57‘3

) V3 rg + 2rs  re + 217 rg + 219
YT VBry re+2rr Ti0+2r1 rio 4 2ms

[V3rs 78 +2r9 T+ 2713 Tia + 2715

—7‘4 — 75 Te — T'7 rs —T9

Q2= |r¢ =77 Tio—Til Ti2 —T13

1”78 —T9 Ti2—T13 T14 —T15

Notice that the 10 x 10 matrix has split into three blocks, one of size 4 x 4 and two
identical blocks of size 3 x 3. Also, all entries are otherwise linearly independent
(in fact, we have the dimension count (g) + (3) = 10 + 6 = 16, the number of free
parameters in (3.26)).

Since @ > 0 if and only if TTQT = 0, this implies that instead of solving
an SDP problem with a positivity constraint on a 10 x 10 matrix, we have now a
4 x 4 matrix and a 3 x 3 matrix instead (clearly, we need only one copy of the two
identical 3 x 3 blocks), which is a lot simpler. 1

As we can see, exploiting symmetry can allow for a significant reduction in the
computational cost. Depending on how much symmetry the problem has, the gains
can be very significant and may enable the solution of problems that are otherwise
practically impossible to solve.

Sums of squares. We showed in the previous section how to simplify and decom-
pose a specific semidefinite program, corresponding to the sos decomposition of a
given polynomial. We can use similar techniques to simultaneously decompose the
semidefinite programs associated to sos decompositions of all polynomials invariant
under a given symmetry group. In other words, if before we were using a symmetry-
adapted basis to split a fixed vector of monomials into isotypic components, now
we will instead simultaneously decompose the whole polynomial ring.

The results we present can be expressed in a very appealing form using a few
basic concepts of invariant theory. Given a finite group G acting on (z1,...,Zy),
recall that the invariant ring is the set of invariant polynomials R[z]¢ := {p €
R[z] : p(p(g)x) = p(x) Vg € G}, with the natural operations. For simplicity, we will
restrict ourselves to the simple situation where the invariant ring R[z]¢ is isomorphic
to a polynomial ring.? In this case, we have R[z]¢ = (0;,...,6,), where 01,...,0,
are algebraically independent invariant polynomials.

3In general, the invariant ring is a finitely generated algebra but is not necessarily isomorphic to
a polynomial ring; i.e., there may not exist a set of algebraically independent generators; see, e.g.,
[119, 38]. A simple example of this situation is the cyclic group C3 acting on R|z, y, 2] by cyclically
permuting the indeterminates. In this case, a minimal set of generators for the invariant ring R[I}G
is {51, 82,53, 54} := {x+y+z, vy+yz+zz,2yz, 22y +y> 2+ 2%y}. However, these are algebraically
dependent since they satisfy the relation 93% + 3s384 + 3421 — 6515253 — S15254 + sg + 3?33 = 0.
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104 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

Example 3.111. Consider R[xy,...,2,] and the symmetric group S, acting by
permutation of the variables in the natural way. It is well known that in this
case the invariant ring R[x]¢ is isomorphic to a polynomial ring. There are several
natural sets of generators for the invariant ring of symmetric polynomials, including
the elementary symmetric functions

el =21 +T2+ -+ Tp,

€2 =21T2 +X1T3 + -+ + Tp—1Tn

€n = T1T2** Tp

and the power sums
P1 =21+ T2+ + T,

pzzx%—l—x%—l—'-'—l—xi

po=al+al+-+a2" N

Because the invariant ring is generated by {61, ...,0,}, it is possible to rewrite
every invariant polynomial f(x) in terms of the generators 6; to yield a new poly-
nomial f(6). This can be done algorithmically, e.g., using Grobner bases, although
more efficient techniques like SAGBI bases can also be used [119].

Example 3.112. Consider the trivariate polynomial of our running example, Ex-
ample 3.107. We can rewrite p(z,y, z) in terms of the elementary symmetric func-
tionse; =x+y+ 2, e0 =axy +yz+ xz, and e3 = ryz as

ple1,ea,e3) = ef —4deeq + 2e2 +4dejes —des +e1. M

Rewriting an invariant polynomial f(z) in terms of invariants to obtain f(6) is
very convenient, since it usually leads to simpler representations. But how does this
help us in deciding if f(z) is a sum of squares? In general, if an invariant polynomial
is a sum of squares, it may not be a sum of squares of invariant polynomials (see
Exercise 3.115), so requiring f(#) to be a sum of squares in R[] would be a very
weak condition. The answer is given in the next theorem.

Theorem 3.113. Let f(x1,...,2,) be an sos polynomial that is invariant under
the action of a finite group G, and let {61, ...,0,} be generators of the corresponding
invariant ring. Then f(0) = f(x) has a representation of the form

F(0) = (Si(6),1L(9)),

i

where I1; € R[A]"*" are symmetric matrices that depend only on the group action
and S; € R[O]"*" are sos matrices.
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3.3. Special Cases and Structure Exploitation 105

The structure of this representation is very appealing. Given a group G, the
matrices II; can be precomputed, since they depend only on how the group acts on
the polynomial ring. Then, every invariant sos polynomial can be written as a sum
of pairings between “coefficients” S;(#) (which are sos matrices) and the matrices II;.
Since the S;(f) are sos matrices that are subject to affine constraints (equality in
the expression above), this is easily reducible to semidefinite programming (which
should not be surprising, since this is just the symmetry-reduced version of the
original formulation).

The sizes r; of the matrices II; in Theorem 3.113 correspond to the rank of
the ith module of equivariants as a free module over the ring of invariants, and the
number of terms corresponds to the number of irreducible representations of the
group that appear nontrivially in the isotypic decomposition of the polynomial
ring. The dimensions of the corresponding semidefinite programs can be determined
explicitly using the generating functions known as the Molien (or Hilbert—Poincaré)
series in a similar way as the Hilbert series for ideals discussed in Section 3.3.5. The
details are omitted here but can be found in [48].

Example 3.114. For the symmetric group S3, the invariant ring R[z]¢ is gener-
ated by the elementary symmetric functions ej, ea, e3. The corresponding matrices
II; can be computed to be

II, =1,
I, = 6162 462 46?63 + 18e1e0e3 — 27e§,

M. — 261 — bey —et1es + 9e3
37| —eies + 9es 2e3 — bejes

Thus, every Ss-invariant sos polynomial can be written in the form
fler,e2,e3) = s1 111 + s3 - I + (S5, IT3),

where s1, so are scalar sos polynomials and S35 is a 2 X 2 sos matrix.
Recall that the global minimum of our polynomial p(ey, ez, €3) is px = Psos =
—2.112913 (an algebraic number of degree 6). We use the representation above to

provide a rational certificate that ps,s > féég by choosing

_ 2113 19 1120 _ 148 .3 1439 2 _ 85469
$1=p00 T €1 T 47‘82 14161 115116162 ~ 1279€1 1 2454 e3 1889586162 + 69361’

82:0,

79 304, 749

Go— | 282 + 127981 +5m€1 9 + 1636 ¢
3= 24 149 3469
1636 “1 1908

It is easy to check that si, so, and S5 are indeed sums of squares and that they

satisfy p + féég = s1 + (S3,1I3) and therefore serve as a valid algebraic certificate

for the lower bound —2.113. N
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106 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

General case Equality constraints Symmetries
polynomial ring R|x] quotient ring R[z]/T invariant ring R[z]
monomials (deg < k) standard monomials isotypic components

o0
ﬁ = Z(""Hg_l) - tF Hilbert series Molien series
k=0
Finite convergence Block diagonalization
on zero dimensional ideals

Table 3.1. Algebraic structures and sos properties.

In Table 3.1 we present a summary and comparison of the different techniques
to exploit algebraic structure in sos programs.

Exercise 3.115. Let p(z) be an sos polynomial that is invariant under the action
of a group. Show that, in general, there may not exist an sos decomposition p(x) =
>, @i(x)?, where all the g;(z) are invariant polynomials.

Exercise 3.116. An undirected graph G = (V, E) is vertex transitive if its auto-
morphism group Aut(G) acts transitively on the set of vertices V. Consider the
standard semidefinite relaxation for MAXCUT, discussed in Section 2.2.2.

1. Explain how to simplify the MAXCUT semidefinite relaxation in the case of
vertex-transitive graphs.

2. Apply your results to the k-cycle graph. What are the values of the optimal
cut and the corresponding SDP upper bound?

Exercise 3.117. Consider the following sextic form, known as the Robinson form:

R(z,y,2) = 2% + 45 + 26 — a%y® — yta? — %22 — yto? — a2t - 22t 3a2y2e0
1. Show that R(z,y, z) is invariant under S3 but is not a sum of squares.

2. Rewrite (z24+y2+22)-R(z, y, z) in terms of the elementary symmetric functions
e1, €2, €3, and give an sos representation as in Theorem 3.113.

3.4 Infeasibility Certificates

At several points in this chapter, we have given sos-based sufficient conditions for
different problems (e.g., nonnegativity of polynomials over sets in Section 3.2.4). We
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now study in more detail the structure of these certificates, as well as the question
of when converse results hold, i.e., how to use sos techniques to certify properties
of systems of equations and inequalities over the real numbers. As we shall see,
sos techniques are very powerful in the sense that they can always provide proofs
of infeasibility for general basic semialgebraic sets. The key role of sum of squares
in these infeasibility certificates is developed in Section 3.4.2, where we introduce
the Positivstellensatz, highlighting the similarities to and differences from other
well-known algebraic infeasibility certificates.

3.4.1 Valid Constraints: Ideals and Preorders

The feasible set S of an optimization problem is usually described by a finite num-
ber of polynomial equations and/or inequalities. However, at least in principle,
one could write many other constraints that are equally valid on the set S. For
instance, for a linear programming problem, we could consider nonnegative lin-
ear combinations of the given inequalities. Recall that this issue appeared already
in Section 3.2.4, when considering polynomial nonnegativity over a set, and we
described there two techniques (for equations and inequalities, respectively) of pro-
ducing further valid constraints. We would like to understand the set of all possible
valid constraints and, in particular, how to algorithmically generate them. To do
S0, we revisit those constructions next and formalize their properties in terms of
two important algebraic objects: ideals and preorders.

For the case of a set described by equations f;(x) = 0, we were able to produce
further polynomials vanishing on the set S by considering linear combinations with
polynomial coefficients. The set of all polynomials generated this way is a polyno-
mial ideal. We restate the familiar definition here, for easy comparison with the
new concepts introduced later.

Definition 3.118. Given multivariate polynomials {f1,..., fm}, the ideal gener-
ated by the f; is

<f1,...,fm>I:{f:f:t1f1+"'+tmfm, tiER[QI]}.
Similarly, for a set described by inequalities g;(xz) > 0, one can generate new
valid inequality constraints by multiplying the g;(x) against sos polynomials, or
by taking conic combinations of valid constraints. This is formalized through the

notion of quadratic module.

Definition 3.119.  Given multivariate polynomials {g1,...,gm}, the quadratic
module generated by the g; is the set

gqmodule(gi,...,gm) :={9 : g =50+ 5191+ -+ 5mGm},

where Sg, $1, ..., Sm € R[z] are sums of squares.
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108 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

However, as noted earlier, we can also generate further valid constraints by
taking products of existing valid constraints, which suggests considering the preorder
generated by the polynomials g;(x).

Definition 3.120. Given multivariate polynomials {g1, ..., gm}, the preorder gen-
erated by the g; is the set

preorder(gi,...,gm) =<9 : g =50+ Z 8igi
{i}

+ Z 8ij9i9; + Z Sijk9igigrk + - o
{i.d} {i.5.k}

where each term in the sum is a square-free product of the polynomials g;, with a
coefficient s, € R[z] that is a sum of squares. The sum is finite, with a total of
2™ terms, corresponding to all subsets of {g1,...,gm}-

Clearly qmodule(gy,...,gm) C preorder(g,...,gm), S0, in principle, the
latter yields a possibly larger set of valid constraints. By construction, ideals,
quadratic modules, and preorders contain only wvalid constraints, which are logical
consequences of the given equations and inequalities. Indeed, every polynomial

in the ideal (f1,..., fm) vanishes on the solution set of f;(z) = 0. Similarly, ev-
ery element of preorder(gi,...,gm) is clearly nonnegative on the feasible set of
gi(x) > 0.

A natural question arises: Can all valid constraints be generated this way?
Unless further assumptions are made, ideals and preorders (and thus, quadratic
modules) may not necessarily contain all valid constraints; see Exercise 3.121. Re-
markably, however, they will be powerful enough to always detect and certify the
possible infeasibility (i.e., emptiness) of the corresponding feasible set; the Posi-
tivstellensatz (Theorem 3.127) formalizes this statement.

The notions of ideal, preorder, and quadratic module as used above are stan-
dard in real algebraic geometry; see, for instance, [19] (the preorders are sometimes
also referred to as a cones). Notice that, as geometric objects, ideals are affine sets,
and quadratic modules and preorders are closed under convex combinations and
nonnegative scalings (i.e., they are actually cones in the convex geometry sense).
These convexity properties, coupled with the relationships between semidefinite
programming and sums of squares, will be key for our developments in the next
section.

Exercise 3.121. In general, ideals and preorders may not contain all valid con-
straints. In this exercise, we illustrate a few cases where things may go wrong.

1. Let S = {z € R : 22 = 0}. Show that the polynomial = vanishes on the
feasible set but is not in the ideal (z?).
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3.4. Infeasibility Certificates 109

2. Let S = {(z,y) € R? : 2% +y? = 0}. Show that the polynomial = vanishes
on the feasible set but is not in the ideal (z? + y?).

3. Let S ={x € R : 23 > 0}. Show that the polynomial z is nonnegative on the
feasible set but is not in preorder(z) (and thus, is not in gmodule(x)).

4. Let S={z € R : 2 >0,y > 0}. Show that the polynomial xy is nonnegative
on the feasible set but is not in qmodule(z,y) (but it is in preorder(z,y)).

These examples “fail” for a variety of reasons that are related to either multiplici-
ties, real versus complex solutions, or impossibility of degree cancellations. As we
shall see, using suitable modifications to take into account the differences between
C and R, and/or additional assumptions, all these difficulties can be avoided.

3.4.2 Certificates of Infeasibility

A central theme throughout convex optimization is the concept of infeasibility cer-
tificates, or, equivalently, theorems of the alternative. The key links relating al-
gebraic techniques and optimization will be the facts that infeasibility of a given
polynomial system can always be certified through a particular algebraic identity,
and that this identity itself can be found via convex optimization.

Let us start by considering the following question: If a system of equations
does not have solutions, how can we prove this fact? In particular, what kind of
evidence could we show to a third party to convince them that the given equations
are indeed unsolvable?

Remark 3.122. Notice the asymmetry between this question (proving or certifying
nonexistence of solutions) versus providing evidence that the equations truly have
solutions. The latter could be certified (at least in principle) by producing a candidate
point xo that satisfies all equations (finding such a point xo could be very hard, but
that is not the issue here). In complexity-theoretic terms, this is essentially the
distinction between the NP and co-NP complezity classes (over either the Turing or
the real computation model).

Fortunately, for problems with algebraic structure, there are quite natural
ways of providing infeasibility certificates. These are formal algebraic identities that
give irrefutable evidence about the inexistence of solutions. We briefly recall and
illustrate several well-known special cases before proceeding to the general case of
polynomial systems over the reals. Table 3.2 contains a summary of the infeasibility
certificates to be discussed and the associated computational techniques.

Linear equations. We consider first linear systems of equations over either the
real or the complex numbers (in fact, any field will do). It is a well-known result
from linear algebra that if a set of linear equations Ax = b is infeasible, there exists a
linear combination of the given equations such that the left-hand side is identically
zero, but the right-hand side does not vanish (and thus, infeasibility is evident).
Such a linear combination can be found, for instance, by Gaussian elimination.
This result is also known as the Fredholm alternative.

2012/11/
page 109
—



110 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

Degree \ field Complex Real
Linear Range/kernel Farkas’ lemma
Linear algebra Linear programming
Polynomial Nullstellensatz Positivstellensatz
Bounded degree: Linear algebra | Bounded degree: SDP
Grobner bases

Table 3.2. Infeasibility certificates and associated computational techniques.

Theorem 3.123 (Range/kernel). Consider the linear system Ax =b. Then,

Ax =1b s infeasible

)

Jp st ATp =0, bTp=—1.

Notice that one direction of the theorem (existence of a suitable p implies
infeasibility) is obvious: premultiply the equations with u” to obtain

Ar=b = plAz=u"> = 0=-1,

which is clearly a contradiction. Thus, if a vector p satisfies the conditions in
the second half of the theorem, it provides an easily checkable certificate of the
infeasibility of the system Az = b. Notice that in this particular case, not only is it
easy to verify that a given vector u is a valid certificate, but one can also efficiently
find such a u (e.g., by Gaussian elimination).

Polynomial systems over C. For systems of polynomial equations over an alge-
braically closed field, infeasibility is characterized through one of the central results
in algebraic geometry.

Theorem 3.124 (Hilbert’s Nullstellensatz). Let fi(2),..., fm(z) be polyno-
mials in complex variables z1,...,2,. Then,

filz)=0 (i=1,...,m) is infeasible in C"
[}
—-1e <f1,...,fm>.

Again, the “easy” direction is almost trivial. If —1 is in the ideal generated
by the f;, there exist polynomials t1(z),...,t,(z) such that

B(2)fi(2) 4+ tm(2) fn(z) = —L.

Evaluating this expression at any candidate solution of the polynomial system, we
obtain a contradiction, since the left-hand side vanishes, while the right-hand side
does not. The polynomials ¢; prove infeasibility of the given equations and constitute
a Nullstellensatz refutation for the polynomial system. Their effective computation
can be accomplished in a variety of ways. This could be done, for instance, via
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3.4. Infeasibility Certificates 111

Grobner basis techniques, or, if a bound on the degree of the polynomials t; is
assumed a priori, via straightforward (but possibly inefficient) linear algebra.

At this point, we should mention an important complexity-theoretic distinc-
tion between this case and the simpler case of linear equations discussed earlier.
Since deciding feasibility of polynomial equations includes propositional satisfiabil-
ity (which is NP-hard) as a special case, it would be unreasonable to expect that
“short” certificates of infeasibility always exist. Thus, in general one should not
expect to always be able to produce certificates t;(z) of small degree for every infea-
sible system. In fact, explicit systems of equations are known whose Nullstellensatz
refutations necessarily have large degree; see Exercise 3.135, as well as [24, 55, 36]
and the references therein.

Remark 3.125. The two results discussed above deal only with equations (either
linear equations over any field, or polynomial equations over the complex numbers).
Working with inequalities, or trying to distinguish between real versus complex
solutions, will bring additional algebraic challenges. As we will see, to do this one
needs to take into account special properties of the reals (mainly, the fact that R is
an ordered field) that are not true for the complex numbers.

Linear inequalities. For systems of linear inequalities, strong LP duality pro-
vides efficient certificates of infeasibility. These are essentially an algebraic inter-
pretation of the separation theorem for polyhedral sets and are usually presented
in terms of theorems of the alternative such as the celebrated Farkas lemma.

Theorem 3.126 (Farkas’ lemma).

O+ d i 07 18 infeasible

0
AT+ CTXx = 0,
blpu+dTh = —1.

{ Az +b

IA>0, pu s.t. {

As in the previous cases, the “easy” direction is straightforward. It is equiv-
alent to the weak duality of linear programming and follows from direct syntac-
tic manipulations (premultiply the first equation by u” and the second equation
by AT, and add to obtain a contradiction). The “difficult” converse direction is
equivalent to strong duality, which always holds for linear programming problems.
A suitable certificate pair (A, i) can be obtained by solving the corresponding LP,
which can be done in polynomial time using the ellipsoid algorithm or interior-point
methods.

These classical results can be generalized and unified to handle the case of
systems of polynomial equations and inequalities over the real numbers. This will
yield a simultaneous generalization of Farkas’ lemma (to allow for polynomial in-
equalities), as well as the possibility of distinguishing between real and complex
solutions (unlike the Nullstellensatz).
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112 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

3.4.3 The Positivstellensatz

Consider a general system of polynomial equations and inequalities for which one
wants to show that it has no solutions over the real numbers. How do we certify
its infeasibility? As we describe next, a very natural class of algebraic certificates
exists for this case, under no assumptions whatsoever. This result is known as
the Positivstellensatz and is one of the cornerstones of real algebraic geometry. It
essentially appears in this form in [19] and is due to Stengle [114].

Theorem 3.127 (Positivstellensatz).

{1

0 (i=1,...,m),

0 (i=1,...,p)
)
F(z) + G(z) = —1,

JF(x),G(z) € R[z] s.t. F(z) € (fi,-- -5 fm),

G(x) € preorder(gi, ..., gp).

is infeasible in R™

AVAN|

(3.27)

The theorem states that for every infeasible system of polynomial equations
and inequalities, there exists a simple algebraic identity that directly certifies the
inexistence of real solutions. The certificate has a very simple form: a polyno-
mial F(z) from the ideal generated by the equality constraints and a polynomial
G(z) from the preorder generated by the equations that add up to the polynomial
—1. The “easy” direction is immediate: by construction, evaluating F'(z) + G(z)
at any feasible point should produce a nonnegative number. However, since this
expression is identically equal to the polynomial —1, we arrive at a contradiction.
Remarkably, the Positivstellensatz holds under no assumptions whatsoever on the
polynomials.

Naturally, we are concerned with the effective computation of these certifi-
cates. Recall that for the cases of Theorems 3.123-3.126, the corresponding refuta-
tions can be obtained using either linear algebra, linear programming, or Grobner
bases techniques. For the Positivstellensatz, we have established that ideals and
preorders are convex cones in the space of polynomials. As a consequence, the
conditions in Theorem 3.127 for a certificate to exist are convez, regardless of any
convexity property of the original problem. Furthermore, the same property holds
if we consider only bounded-degree sections, i.e., the intersection with the subspace
of polynomials of degree less than or equal to a given number D. In this case,
the conditions in the Positivstellensatz have ezactly the form of an sos program.
This implies that we can find bounded-degree certificates by solving semidefinite
programs.

Theorem 3.128. Consider a system of polynomial equations and inequalities that
has no real solutions. The search for bounded-degree Positivstellensatz infeasibility
certificates is an sos program and thus is solvable via semidefinite programming.
If the degree bound is sufficiently large, infeasibility certificates F(x),G(x) for the
original system will be obtained from the corresponding sos program.
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3.4. Infeasibility Certificates 113

Since infeasibility certificates are naturally ordered by their degree, this gives
rise to a natural hierarchy of semidefinite relaxations for semialgebraic problems,
indexed by certificate degree [89, 91]. The Positivstellensatz guarantees that this
hierarchy is complete in the sense that, for every infeasible system, a suitable refu-
tation will eventually be found.

Example 3.129. Consider the following polynomial system:

fri=ai+a3-1=0,
g1 ::3;102—95?—220,
go :=T1 — 83:% > 0.
We will prove that it has no solutions (z1,x2) € R%. By the Positivstellensatz, the

system is infeasible if and only if there exist polynomials ¢1, sg, s1, s2, $12 € R[z1, 22]
that satisfy

fi-t1 +so+s1-91+82-92+512-91-92 = —1, (3.28)
—
ideal (f1) preorder(gi,g2)

where sg, $1, S2, and s12 are sos polynomials.

We will look for solutions where all the terms on the left-hand side have
degree bounded by D. For each degree bound D, this is an sos program and thus
is solvable via semidefinite programming. For instance, for D = 4 we find the
certificate (written in fully explicit sos form)

t1 = —33:% +x1 — 3333 + 622 — 2,

5 , 387 52 \° 11/ , 1 5 2\
So=-7x]+— | T122 — + — | 2] — =zx1202 — <21 + 23

43 44 129" 5 22 11
1 2 2 2 3 2 2 2
+2—0(—a:1+2x1332+a:2+5a:2) —I—Z(Z—xl—xg—a:z) ,
S1 = 3, S9 = 1, S12 = 0.

The resulting identity (3.28) thus certifies the inconsistency of the system {f; =0,
g1 2 07 g2 2 0} l

In the worst case, of course, the degree of the infeasibility certificates F'(z),
G(z) could be large (this is to be expected due to the NP-hardness of polynomial
infeasibility). In fact, as in the Nullstellensatz case, there are explicit counterex-
amples where large degree refutations are necessary [55]. Nevertheless, for many
problems of practical interest, it is often possible to prove infeasibility using rela-
tively low-degree certificates. There is significant numerical evidence that this is
the case, as indicated by the large number of practical applications where sos tech-
niques have provided solutions of very high quality. An outstanding open research
question is to understand classes of polynomial systems that can be solved, either
in an exact or approximate fashion, using certificates of low degree.
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114 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

To summarize our discussions, there is a direct path connecting general poly-
nomial optimization problems to semidefinite programming, via Positivstellensatz
infeasibility certificates. Pictorially, we have the following:

Polynomial systems
J
Positivstellensatz certificates
J

Sum of squares programs

1

Semidefinite programming.

Even though so far we have discussed only feasibility problems, there are obvious
straightforward connections with optimization questions, which we make more con-
crete in the next section. As we did earlier in the case of unconstrained optimization,
by considering the emptiness of the sublevel sets of the objective function, sequences
of converging bounds indexed by certificate degree can be directly constructed.

Exercise 3.130. Consider a single quadratic polynomial equation az? + bx +
¢ = 0. What conditions must (a,b, c) satisfy for this equation to have no real
solutions? Assuming this condition holds, give a Positivstellensatz certificate of the
nonexistence of real solutions.

Exercise 3.131. Explain how Theorem 3.127 simplifies in the following cases:

1. There are no equality constraints.

2. There are no inequality constraints. Is this case equivalent to Hilbert’s Null-
stellensatz? Explain why or why not.

Exercise 3.132. Consider the polynomial system {z +y* =2, 2? + y* = 1}.

1. Is it feasible over C? How many solutions are there?

2. Is it feasible over R? If not, give a Positivstellensatz-based infeasibility cer-
tificate of this fact.

Exercise 3.133. Assume that in the statement of the Positivstellensatz, we replace
preorder(gi, ..., gp) with the (potentially smaller) set gmodule(gs, ..., gp). Is the
result still true? Prove, or disprove via a counterexample.

Exercise 3.134. Prove, using the Positivstellensatz, that every nonnegative poly-
nomial is a sum of squares of rational functions. (Hint: A polynomial f(z) satisfies
f(z) > 0for all z € R™ if and only if the set {(z,y) € R"XR : f(x) <0, y-f(x) =1}
is empty.)
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Exercise 3.135. In this exercise we compare the relative power of Nullstellensatz
and Positivstellensatz based proofs in the context of a specific example. Consider
the set of equations {> i x; =1, 27 =0fori=1,...,n}.

1. Show that the given equations are infeasible (either over C or R).

2. Give a short Positivstellensatz proof of infeasibility (degree 2 should be enough).

3. Show that every Nullstellensatz proof of infeasibility must have degree greater
than or equal to n.

3.4.4 Positivity on Compact Sets

In many problems, such as constrained optimization, it is of interest to obtain
explicit certificates of positivity of a polynomial over a set. In what follows, S is a
basic closed semialgebraic set defined as

S={zxeR": gi(x) >0, ..., gm(z) >0}. (3.29)

Using the Positivstellensatz, it can be easily shown (Exercise 3.139) that if
a polynomial p(x) is strictly positive on the set S, then it has a representation of
the form

1+ aq(o)

p(x) = (@) q1(x), g2(x) € preorder(gi, ..., gm), (3.30)

which obviously certifies its strict positivity on S.

Under further assumptions on the set S, this representation can be simpli-
fied. The following result, due to Schmiidgen, provides a denominator-free repre-
sentation for positive polynomials on compact sets.

Theorem 3.136 ([110]). Let S be a compact set, defined as in (3.29). If a
polynomial p(x) is strictly positive on S, then p(x) is in preorder(gi,...,gm)-

Adding an additional assumption (not just compactness of the set S, but an
algebraic certificate of its compactness), even more is true. It is convenient to
introduce the following Archimedean property.

Definition 3.137. A quadratic module is Archimedean if there exists N € N such
that the polynomial N — ", 7 is in the quadratic module.

Notice that if gmodule(gs,...,gm) is Archimedean, then the set S is con-
tained in the ball ), 2? < N, and thus it is necessarily compact. The following the-
orem by Putinar gives a representation of positive polynomials for the Archimedean
case.

Theorem 3.138 ([102]). Let S be a compact set, defined as in (3.29). Further-
more, assume that qmodule(gs, ..., gm) is Archimedean. If a polynomial p(x) is
strictly positive on S, then p(x) is in qmodule(gy, ..., gm)-
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As we can see, these representations are “simpler” in the sense that the con-
ditions involve fewer sos multipliers (recall that the preorder contains terms corre-
sponding to squarefree products between inequalities). Notice, however, that these
results say nothing about the degrees of the corresponding sos polynomials. It may
be possible, at least in certain cases, that the degrees appearing in “simpler” rep-
resentations are much larger than those of more complicated ones; see, e.g., [115].
We explore some of these issues in the exercises.

Hierarchies of relaxations. All the sos conditions that we have discussed, in-
cluding Positivstellensatz certificates (Theorem 3.127) and the representation the-
orems of Schmiidgen (Theorem 3.136) and Putinar (Theorem 3.138), depend on
the degree of the sos multipliers. Thus, each of these theorems gives rise to a cor-
responding hierarchy of sos relaxations, obtained by increasing the corresponding
certificate degree. For instance, when minimizing a polynomial p(z) over a set
S of the form (3.29), we can consider as before Positivstellensatz certificates of
the form

1+ qi(z)
pla) —y=—7—
(@) g2(z)
where ¢1, g2 € preorder(g, ..., gm), or Schmiidgen/Putinar representations

p(x) — v € preorder(gi, ..., gm),

p(x) — v € qmodule(gy, ..., gm),

respectively, depending on what form of certificate is desired (or what assumptions
the set S satisfies). For any given maximum degree of the sos polynomials ap-
pearing on the right-hand side, one can maximize over v, which can be done via
sos programs (possibly combined with bisection). Each of these alternatives will
thus produce a monotone sequence of lower bounds converging to the optimal value
(provided the assumptions are satisfied, for the case of Schmiidgen and Putinar
representations). For the Positivstellensatz, this was presented in [89, 91], and the
case of Putinar-type certificates was analyzed by Lasserre in [72] from the dual
viewpoint of moment sequences.

Exercise 3.139. Consider a set S as in (3.29). Show, using the Positivstellensatz,
that a polynomial p(x) is strictly positive on S if and only if it has a representation
of the form (3.30).

Exercise 3.140. Consider the problem of finding a representation certifying the
nonnegativity of p(x) := 1 — 22 over the set S = {z : (1 — 2?)3 > 0}. Notice
that the feasible set S is the interval [—1, 1] and that for this example the preorder
and the quadratic module coincide. Let v > 0. Stengle proved in [115] that no
representation of the form

p(@) +7 = so(z) + s1(2)(1 - 2?)° (3.31)
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exists when v = 0, where so(x),s1(x) are sums of squares. He also showed that

as v — 0, the degrees of sg, s; necessarily have to go to infinity, and provided the
1 1

bounds ¢1772 < deg(sp) < cay™2 log% for some constants cq, co.

1. Give a Positivstellensatz certificate of the form (3.30) for strict positivity of
p(x) + 7 on S. Does the certificate degree depend on ~?

2. Verify that the expressions below give the “best” representation of the form
(3.31). Let the degree of so(z) be equal to 4N. Then, the optimal solution
that minimizes ~ is

W= W’ so(z) = qo(x)?, s1(x) = qi(2)?,

where

qo(z) =2(N +1) o F} (—N,N+2; %;a:z),
1
q(z) = —ax oFy (-N—1,N+1; $;27),
TN
and oFi(a,b;c,x) is the standard Gauss hypergeometric function [1, Chap-
ter 15].

Exercise 3.141. Recall the set S from Exercise 3.63:
S={(z,y) ER* 1 2>0,y>0,z+y<1}.

The polynomial p(z,y) = zy + € (for € > 0) is strictly positive on S. Analyze
experimentally the smallest values of €, provable using the positivity certificates of
Theorems 3.136 and 3.138, as a function of certificate degree. Compare this against
the Positivstellensatz certificates (3.30).

3.5 Duality and Sums of Squares

The sets of nonnegative and sos polynomials, being convex cones, have a rich duality
structure. In this section we introduce their duals P;,; and ¥ ,, and explain
their natural interpretations. We do this from both a coordinate-free viewpoint
that emphasizes the geometric aspects as well as a probabilistic interpretation with
strong links to the classical truncated moment problem and applications.

3.5.1 Dual Cones of Polynomials

Recall that the sets of nonnegative polynomials P, 24 and sums of squares X, 24
are proper cones in R[z], 24. It then follows that the corresponding duals P ,,
and X, ,; are also proper cones (in the vector space R[]}, ,;) and that the reverse
containment holds:

Yin2d € Pr2d — Y2d 2 P o
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118 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

What is the interpretation of these dual cones? Are there “natural” objects associ-
ated with them?

The dual space. Let us consider first the dual space to polynomials R[z]}, 5;. The
elements of this vector space are linear functionals on polynomials, i.e., linear maps
of the form ¢ : R[z],,24 — R, that take a polynomial and return a real number.
There are many such functionals, and they can superficially look quite different.
For instance, some examples of such linear maps are

e evaluation of p at a point zgp € R™: p +— p(zo),

e integration of p over a subset S C R™: p+ [ p(z)dr,

e ecvaluation of derivatives of p at a point zg € R™: p — #{"azk(xo),

e extraction of coefficients: p +— coeff(p, %),

o contraction with a differential operator ¢ € R[01, ..., Onln,24: P g @ p.

A distinguished class of linear functionals are the point evaluations (our first ex-
ample above): to any v € R", we can associate ¢, € R[z]}; ,,, with £, : p = p(v).
Naturally, we can generate additional linear functionals by taking linear combina-
tions of point evaluations, i.e., maps of the form p — >, Aily, (p) = >, Aip(v;) for
Ai € R and v; € R™. It turns out that all linear functionals can be obtained this
way; this is equivalent to the existence of dense multivariate polynomial interpola-
tion schemes (Exercise 3.142).

Dual cone of nonnegative polynomials. What about the dual cone Pl oy =
{€ e R[z]f 54 : p) >0 Vp € Pp2q}7 Clearly, it contains all the point evaluations
¢, (since for any nonnegative polynomial p, we have £,(p) = p(v) > 0), as well as
their conic combinations Zi Aily,, with A; > 0 and v; € R™. It can be shown that
almost all elements of P} ,; have this form in the sense that this dual cone is the
closure of the convex hull of the point evaluations. The need for a closure condition
arises because we are working in an affine setting, i.e., with polynomials instead of
forms; see Exercise 3.143 for an illustration of why the closure is required. In the
homogeneous case, as will be explained in Chapter 4, or when working on a compact
set, the situation is nicer, and the convex hull of point evaluations is automatically
closed. We discuss a probabilistic interpretation in Section 3.5.2 and revisit this
geometric characterization in Section 3.5.4.

Dual cone of sums of squares. For the cone X7 ,; (dual of sums of squares),
the situation is a bit simpler. Since the cone ¥,, 24 is generated by the squares, we
have almost by definition the description X% ,; = {£ € R[z]}, 5, : £(¢°) > 0 Vq €
R[z]n,q}. This directly gives a characterization of ¥ ., as a spectrahedron; see
Exercise 3.144. However, in this case the geometric interpretation is less clear,
since in general X7 o, 2 P7,;, and thus this cone has extreme rays that do not
necessarily correspond to point evaluations.

We remark that from Hilbert’s classification of the cases when P, 24 and X, 24
coincide (Section 3.1.2), one directly obtains the corresponding equalities between

P} 54 and X7 o, for the same values of n and d.
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The coordinate-free viewpoint described above is mathematically natural and
notationally simple, and it is analyzed in more detail in Chapter 4. It is also of
relevance when doing numerical computations, since, as we have discussed already
in Section 3.1.5, it is often essential to use vector space bases with good numerical
properties. Nevertheless, given its many applications, it is also important to un-
derstand the alternative viewpoint where one identifies the dual space R}, o4 with
truncated moment sequences of probability distributions. This corresponds to a
specific choice of coordinates for the space of polynomials (namely, the monomial
basis), and moments constitute the associated dual basis for the dual space R} ,,.
This viewpoint is further explored in the remainder of the section. /

Exercise 3.142. As described earlier, every linear functional on R[z], 24 is a
linear combination of point evaluations, i.e., for every ¢ € R[z]; ,;, there exist

Ao Ak € Rand vy, ..., v, € R, such that £(p) = 32, Nip(v).

1. Prove this statement for the univariate case (n = 1). Hint: Use the nonsin-
gularity of the Vandermonde matrix for suitably chosen points.

2. Extend your proof to the general multivariate case.

Exercise 3.143. Consider the vector space of univariate quadratic polynomials
R[{E]Lg ~ RB.

1. Express the linear functional (pex? +p1z+po) — f23 p(x)dzx as a (finite) linear
combination of point evaluations.

2. Express the linear functional (pax? 4+ p17 + po) + p2 as a linear combination
of point evaluations.

3. Show that this linear functional is in Py, but cannot be written as a conic
combination of point evaluations.

4. Give a geometric interpretation of the statement above.
Exercise 3.144.
1. Show that ¥, 5, is a spectrahedron.
2. Show that X, 24 is a projected spectrahedron but is not a spectrahedron.
3. Is P} 5, or X 5, basic semialgebraic?
Exercise 3.145. Find an extreme point of Y3, that is not a conic combination

of point evaluations. Hint: Think about the Motzkin polynomial. How would you
prove that it is not a sum of squares?
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3.5.2 Probability and Moments

A particular, but important, interpretation of the dual cone P} 54 is in terms of
truncated moment sequences of probability distributions. The basic idea, discussed
below in more detail, is the following: consider the standard monomial basis for
P, 24, and let p = EIa\Q 4 CaZ® be a nonnegative polynomial and p be a nonnega-
tive measure. Then [ pdu =Y cafta > 0, where po := [2*du. Conversely, given
a set of numbers p, if Za Catla = 0 for all nonnegative p, then the linear functional
Cu(p) == >, Calla is in P, ,, and thus it is (up to closure) a conic combination
of point evaluations. We can interpret this as a nonnegative measure j, which will
satisfy pro = £,(z%) = [a*dp. Thus, we can identify (again, up to closure) the
duals space P ,, with the set of moments p, for which a nonnegative measure
matching those moments exists. The following geometric interpretation may be
helpful: on compact sets (or in the homogeneous case), by the Riesz representa-
tion theorem the duals of the nonnegative continuous functions are the nonnegative
measures. Since the set of polynomials is a subspace, P, 24 is a section of the cone
of nonnegative continuous functions, and thus its dual P 54 must be a projection
of the cone of measures. In the chosen basis, this projection is the moment map
p— [ x“dp that takes a measure into its moments.

In what follows, we explain and elaborate upon this interpretation. For sim-
plicity, we start with the univariate case.

Valid sequences of moments. Consider a real-valued random variable X, or,
equivalently, a nonnegative measure p supported on R, where P(X € E) = pu(E)
for all events E. The moments of X (or of u) are defined as the expectation of the
pure powers, i.e.,

py = E[X*] = /xkdu(a:). (3.32)

In particular, for a random variable X we have po = 1 (normalization) and p; =
E[X] (mean or expected value).

A natural question to consider is the following: what constraints, if any, should
the moments py satisfy? In particular, is it true that for any set of numbers
(0, 41, - - -, i) there always exists a nonnegative measure having exactly these
moments? This is the classical truncated moment problem; see, e.g., [6, 112].

It should be apparent that this is not always the case and that some conditions
on the py, are required. For instance, consider (3.32) for an even value of k. Since
the measure p is nonnegative, it is clear that in this case we must have u; > 0.
However, this condition is clearly not enough, and further restrictions should hold.
A simple one can be derived by recalling the relationship between the variance of a
random variable and its first and second moments, i.e., var(X) = E[(X — E[X])?] =
E[X?] — E[X]? = u2 — 3. Since the variance is always nonnegative, the inequality
p2 — 3 > 0 must always hold.

How to systematically derive conditions of this kind? The previous inequality
can be obtained by noticing that for all ag, aq,
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T
0 < E[(ap + a1X)?] = a2 + 2a0a, E[X] + ?E[X?] = {Zﬂ [’/ﬁ Zj {Zﬂ ,
which implies that the 2 x 2 matrix above must be positive semidefinite. Interest-
ingly, this is equivalent to the inequality obtained earlier.
The same procedure can be repeated for higher-order moments. Let pu =
(140, pi1, - - -y pt2a) be given. By considering the expectation of the square of a generic
polynomial

0 < E[(ao+ a1 X + -+ aaX?)?,

we have that the higher order moments of a random variable must satisfy

Mo 1 H2 T Hd
M1 M2 p3 o Hd41

H(p) = |H2  H3 Hame a2 >0, (3.33)
Hd  Hd+1 Ha+2 0 H2d

Notice that H(u) is a Hankel matrix, and the diagonal elements correspond to the
even-order moments, which should obviously be nonnegative.

As we will see below, this condition is “almost” necessary and sufficient in
the univariate case in the sense that it characterizes the set of valid moments up to
closure.

Theorem 3.146. Let p = (po, pt1, - - -, f2d) be given, where puo = 1. If p is a valid
set of moments, then the associated Hankel matriz H(p) is positive semidefinite.
Conversely, if H(p) is (strictly) positive definite, then p is valid; i.e., there exists
a nonnegative random variable with this set of moments.

The derivation given earlier shows the necessity of the semidefiniteness condi-
tion. Sufficiency will follow from the explicit construction of Section 3.5.5.

Remark 3.147. For the case of measures supported on the real line, the semidef-
inite condition in (3.33) characterizes the closure of the set of moments, but not
necessarily the whole set. As an example, consider p = (1,0,0,0,1), corresponding
to the Hankel matriz

H(p) =

OO =
o O O

0
0
1

Although this matriz is positive semidefinite, there is no nonnegative measure corre-
sponding to those moments (notice that us = 0). However, the parametrized atomic
measure given by

84

MEZE-é(x—i—é)+(1—£4)-6(x)+§-5<x—1)

g
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has as first five moments (1,0,2,0,1), and thus as € — 0 they converge to those
given above.

As the remark above illustrates, the fact that the semidefinite description is
correct only “up to closure” is a consequence of considering measures supported on
the whole real line, which is not compact. For the case of compact intervals, the
situation will be nicer, as we will see in the next section.

As we move on to the general multivariate case, however, much more serious
difficulties will appear (essentially, once again, the difference between polynomial
nonnegativity versus sums of squares). We will discuss this situation in Section 3.5.6.

3.5.3 Nonnegative Measures on Intervals

We are interested now in deriving conditions for g = (uo, p1,-- -, tta) to be valid
moments of the distribution of a random variable supported on a compact interval
of the real line. For simplicity, we concentrate in the case of the interval [—1, 1].

Clearly, the necessary condition described in the previous section (positive
semidefiniteness of the Hankel matrix #H(gu)) should hold. However, additional con-
ditions may be required to ensure the measure is supported in [—1,1]. Recall how
the necessity of the condition H(u) > 0 was derived: by considering a nonnegative
polynomial p(z), and computing E[p(X)], which gives a linear condition on the mo-
ments. Thus, in order to generate additional valid inequalities that p must satisty,
we need to have access to nonnegative polynomials on the domain of interest (the
support set of the measure).

Fortunately, we have already discussed in Section 3.3.1 a full sos characteriza-
tion of the set of polynomials nonnegative on intervals. As shown below, dualizing
these conditions, we can similarly obtain a complete characterization for valid mo-
ments of a [—1,1] measure. As in the case of polynomial nonnegativity, depending
on whether the index of the largest moment is even or odd, we can write two
slightly different (but equivalent) characterizations.

Odd case. Consider the polynomials

(1 +2) (2;@0 aiaﬂ')2 . (-2 (2;@0 aiaﬂ')2 , (3.34)

which are obviously nonnegative for x € [—1,1]. As before, by computing the
expectation of these polynomials, we obtain necessary conditions in terms of the
quadratic form (in the coefficients a;):

0<E {(1 + X) (Zf:o aiXi)Q} = Z i(ﬂjﬂc £ fjrh41) ;%

d
7=0 k=0

Since the polynomials of the form (3.34) generate all nonnegative polynomials on
[-1,1], and this interval is compact, these conditions give a full characterization.
We formalize this in the next result.
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Lemma 3.148. There exists a nonnegative finite measure supported in [—1, 1] with

moments (lo, 1, - - -, h2da+1) of and only if
Ho M1 K2 T Hd M1 H2 H3 o Hd+1
H1 H2 H3 Tt Hd+1 H2 H3 Ha o Hd+2
M2 M3 Ma o Mdy2| 4 | M3 Ha Hs 0 Hd+3 | = 0. (3.35)
Hd  Hd+1  Hd+2 0 H2d Hd+1  Hd+2  Hd+3 - H2d+1

Even case. Consider now instead
N\ 2 N2
(Z?:o aixl) , (1- xQ) (Ef;ol aixz) ,
which are again obviously nonnegative in [—1,1]. This yields the following lemma.

Lemma 3.149. There exists a nonnegative finite measure supported in [—1, 1] with
moments (fo, 1, - - -, had) if and only if

Ho M1 H2 pa |
1551 M2 H3 Tt Hd+1
M2 3 Ha T Hdy2| -0,
Hd  Hd+1  Hd+2 - H2d |
Ko U1 K2 T Hd-1 M2 u3 K ,Ud+1_
M1 M2 M3 Hd H3 Ha H5 T Hd+2
B2 p3 o B4 e Hd41 | — | M4 M5 He -t Hd+3| = 0.
Hd—1  Hd  Hd+1 -+ H2d—2 Md+1  Hd+2  Hd+3 0 H2d |

(3.36)

In both cases, if the measure is normalized (i.e., if it is a probability measure),
then additionally the zeroth moment must satisfy po = 1.

Exercise 3.150. Show that the condition (3.35) implies positive semidefiniteness
of the Hankel matrix H(uo, 41, - - - , f42d)-

Exercise 3.151. Show that the two given descriptions (odd and even cases) are
equivalent in the sense that if the highest-order moment is otherwise unconstrained,
the projection of the feasible set of one description is exactly given by the other.

3.5.4 Moment Spaces and the Moment Curve

An appealing geometric interpretation of the set of valid moments described in the
previous section is in terms of the so-called moment curve. This is the parametric
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Hy

Figure 3.10. Set of valid moments (1, pa, us3) of a probability measure
supported on [—1,1]. This is the convex hull of the moment curve (t,t>,¢3) for
—1<t<1. An explicit semidefinite representation is given in (3.37).

curve in R given by ¢+ (1,¢,¢2,...,t%). The convex hull of this curve is known
as the moment space and corresponds exactly to the set of valid moments; see [66]
for background and many more details on this geometric viewpoint.

The reason for this correspondence is simple to understand. Every point on
the curve can be associated to a Dirac measure (i.e., one where all the probability
is concentrated on a single point). Indeed, for a measure of the form §(z — ¢) (all
mass is concentrated at x = ¢), we have y, = E[X¥] = [§(z — c)abdz = cF,
and thus the corresponding set of moments is (1,¢,c?, ..., cd). Any other measure
can be interpreted as a nonnegative combination of these Dirac measures. Since
the moment map that takes a measure into its set of moments is linear, these
“probabilistic” nonnegative linear combinations can be interpreted geometrically as
convex combinations of points, yielding the convex hull of the curve. Thus, every
finite measure on the interval gives a point in the convex hull.

In Figure 3.10 we present an illustration of the moment space for the case of
support [—1,1] and d = 3. Notice that, in this case, by Lemma 3.148, we have the
semidefinite characterization

Ho M1 M1 2
+ > 0, =1. 3.37
|:N1 Nz] le Ms} - Ho ( )

Since both semidefinite constraints are given by 2 x 2 matrices, the moment space
is the intersection of two circular cones.
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Exercise 3.152. Explain Remark 3.147 from this geometric perspective. What can
you say about the closedness of the convex hull of the moment curve in R4? Show
that if we consider closed intervals (i.e., t € [a,b]), then the corresponding convex
hull is compact. What happens in the unconstrained case, i.e., when ¢t € (—00, 00)?

3.5.5 Constructing a Measure

We have given necessary conditions for the existence of a univariate nonnegative
measure with given moments. Under the right assumptions (e.g., compactness of
support, or strict positivity of the Hankel matrix), these conditions were also suffi-
cient. We describe next a classical algorithm to effectively obtain this measure.

In general, given a set of moments, there may be many measures that exactly
match these moments (equivalently, the moment map that takes a measure into a
finite set of its moments is not injective). Over the years, researchers have devel-
oped a number of techniques to produce specific choices of measures matching a
given set of moments (e.g., those that are “simple” according to specific criteria,
or that have large entropy, etc.). We review next a classical method for producing
an atomic measure matching a given set of moments; see, e.g., [112, 39]. This
technique (or essentially similar ones) is known under a variety of names, such as
Prony’s method, or the Vandermonde decomposition of a Hankel matriz. Other vari-
ations of this method are commonly used in areas such as signal processing, e.g.,
Pisarenko’s harmonic decomposition method, where one is interested in producing
a superposition of sinusoids with a given covariance matrix.

Consider the set of moments p = (o, pt1, - - -, t2d—1) for which we want to find
an associated nonnegative measure supported on the real line. We assume that the
associated Hankel matrix #H(u) is positive definite. In this method, the resulting
measure will be discrete (a sum of d atoms) and will have the form Zle w;d(x—x;).
To obtain the weights w; and atom locations x;, consider the linear system

Mo Moo Hd—1 Co Hd
Ho p2 e Hd €1 Hd+1
. . . . . = - . . (3.38)
Hd—1  Hd - H2d—2 Cd—1 H2d—1

The Hankel matrix on the left-hand side of this equation is H(u), and thus the
linear system in (3.38) has a unique solution if the matrix is positive definite. In
this case, we let x; be the roots of the univariate polynomial

2"+ ep 2" e =0,

which are all real and distinct (why?). We can then obtain the corresponding
weights w; by solving the nonsingular Vandermonde system given by

n
Zwixf:,uj 0<j<n-1).
i1
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In Exercise 3.155 we will prove that this method actually works (i.e., the atoms
x; are real and distinct, the weights w; are nonnegative, and the moments are the
correct ones).

Example 3.153. Consider the problem of finding a nonnegative measure whose
first six moments are given by (1,1,2,1,6,1). The solution of the linear sys-
tem (3.38) yields the polynomial

z® — 422 — 92 + 16 = 0,

whose roots are —2.4265, 1.2816, and 5.1449. The corresponding weights are 0.0772,
0.9216, and 0.0012, respectively. It can be easily verified that the found measure
indeed satisfies the desired constraints. N

Remark 3.154. The measure recovery method described above always works cor-
rectly, provided the computations are done in exact arithmetic. In most practical
applications, it is necessary or convenient to use floating-point computations. Fur-
thermore, in many settings the moment information may be noisy, and therefore the
matrices may contain some (hopefully small) perturbations from their nominal val-
ues. For these reasons, it is of interest to understand sensitivity issues at the level
of what is intrinsic about both the problem (conditioning) and the specific algorithm
used (numerical stability).

When using floating-point arithmetic, this technique may run into numerical
difficulties. On the conditioning side, it is well known that from the numerical view-
point, the monomial basis (with respect to which we are taking moments) is a “bad”
basis for the space of polynomials. On the numerical stability side, the algorithm
above does a number of inefficient calculations, such as explicitly computing the co-
efficients ¢; of the polynomial corresponding to the support of the measure. Better
approaches involve, for instance, directly computing the nodes x; as the generalized
eigenvalues of a matriz pencil; see, e.g., [51, 52].

Exercise 3.155. Prove that the algorithm described above always produces a
valid measure, provided the initial matrix of moments is positive definite. Hint:
Show that if p(z) is a polynomial that vanishes at the points z; then E[p(x)?] = 0.
From this, using the assumed positive definiteness of the Hankel matrix, determine
what equations p(x) must satisfy. What is the relation between this matrix and the
Hermite form?

Exercise 3.156.

1. Find a discrete measure having the same first eight moments as a standard
Gaussian distribution of zero mean and unit variance.

2. What does the previous result imply if we are interested in computing integrals
of the type

— r)e” 2 dx,
o /mp( )

261”2711/1
page 126
—



3.5. Duality and Sums of Squares 127

where p(z) is a polynomial of degree less than eight? What would you do if
p(z) is an arbitrary (smooth) function?

3. Use these ideas to give an approximate numerical value of the definite integral

/ cos(2z + 1) e 2" dg.

—0o0
How does your approximation compare with the exact value /3 cos(1)?

Note. In the general case where we are matching 2d moments of a standard Gaus-
sian, it can be shown that the support of these discrete measures will be given by
the d zeros of Hy(x/\/2), where Hy is the standard Hermite polynomial of degree d.
These numerical techniques are called Gaussian quadrature; see, e.g., [116, 49] for
details.

Exercise 3.157. What is the geometric interpretation of the atomic measure
produced by the algorithm described in this section? Explain your answer in terms
of Figure 3.10 and the set of moments p = (1, %, %, %)

3.5.6 Moments in Several Variables

The same questions we have considered so far in this section for the univariate case
can be formulated for nonnegative measures in several variables. Concretely, given a
set of numbers p,, with @ € N and |a| < 2d, does there exist a nonnegative measure
in R™ matching these moments? By our earlier discussions, this is essentially the
membership problem for the cone P o4

Unfortunately, except for a few special situations (e.g., the univariate case and
the others that follow from Hilbert’s classification) there is no easy answer or an
efficient polynomial-time algorithm for this question. This mirrors (in fact, dual-
izes) the case of polynomial nonnegativity. Recall that the cone of valid moments
of nonnegative measures is (up to closure) the dual of the cone of nonnegative poly-
nomials P, 24. It is known that the complexity of the weak membership problem
for a convex cone and its dual are equivalent [56], and, as a consequence, deciding
membership in Py 5, will also be NP-hard. Thus, the computational intractability
of nonnegative polynomials implies (and is equivalent to) the intractability of valid
multivariate moment sequences.

Remark 3.158. As in the case of polynomial nonnegativity noted in Remark 3.15,
the characterization of truncated moment sequences can be reformulated (and, in
principle, solved) using decision algebra methods such as quantifier elimination.
Indeed, both polynomial nonnegativity and conic convexr duality are expressible in
first-order logic, and thus (for any fized dimension and degree) elimination of quan-
tifiers will yield a semialgebraic description of the valid moment sequences, in terms
of the variables po, only. While theoretically useful (since, for instance, this shows
decidability of the problem), this approach is practically infeasible except for very
small instances.
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Fortunately, we can use the sos methods developed in earlier sections; re-
call that these yield the (dual) sos outer bound ¥ ,; 2 P ,;. Furthermore, we
can produce tighter outer approximations to the set P 5, that improve upon the
straightforward outer bound X7 ,,; while still being computationally tractable. To
do this, we simply dualize the hierarchies of inner approximations to the set of non-
negative polynomials that we obtained via sos methods. Each variation of the sos
methods that we have seen (Positivstellensatz, P6lya/Reznick theorem, Schmiidgen,
and Putinar representations) can be used to produce a matching sequence of dual
approximations to the corresponding dual cone. For concreteness, we illustrate this
discussion with two specific examples.

Polynomial multipliers and rational moments. Recall from Section 3.2.6 that
a way of producing stronger sos conditions in the multivariate case was to multiply
the given polynomial p(z) by a fixed sos factor ¢(z). What does this construction
correspond to on the dual side?

A dual interpretation of this method is in terms of rational moments, i.e.,
expectations of rational functions

Na = E[X*/q(X)].

Indeed, one can easily write necessary conditions that these rational moments
should satisfy, of the form

E [p(X)*/q¢(X)] >0, (3.39)

which, as before (after parametrizing polynomials p(z) up to a given degree), give
spectrahedral conditions on the rational moments 7,. Furthermore, the “standard”
moments p, = E[X®] are given by a linear transformation of the rational mo-
ments 7y, since if g(z) = Y 5 cpx”, then

fo = BIX*] = Blg(X)(X"/q(X))] = Y esBIX"7/q(X)] = Y csttass.
8 E

Notice that this yields the normalization condition E[1] = > 5cgng = 1. These
expressions give a refined outer approximation to the set of valid moments as an
affine projection of a spectrahedral set (i.e., we are approximating the set of mo-
ments with projected spectrahedra). Under suitable conditions on the polynomial
q(z) (e.g., those in Pélya’s theorem), this method will produce a complete hierarchy
of spectrahedral approximations to the set of valid moments.

Example 3.159. In this example we compute a particular projection of the set
of moments P ,,;. We consider bivariate probability distributions (n = 2) and
moments up to sixth order (2d = 6). We are interested in the projection of the set
of valid moments onto the two-dimensional plane («, 8) given by « = g9 + o4 =
E[z*y?|+E[z?y*] and 3 = pg» = E[2?y?]. The simple sos approximation X3 ¢ O P5 ¢
in this case yields the trivial orthant outer bound a > 0, 5 > 0.

We can produce tighter bounds by considering the multiplier-based relaxations
described earlier. Let us describe the geometry first. For this, define the Motzkin-
like family of polynomials M, (x,y) = t3xiy? + t322y* + 1 — 3t22%y? (for t = 1, this
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Figure 3.11. Projection of the set P ,, of valid moments onto (a, B) =
(a2 + poa, po2).  The outer approximation o > 0, 8 > 0 corresponds to the
“plain” sos bound X ;. The inner region is obtained using a polynomial multi-

plier q(z,y) = 2 + y? and gives the exact projection.

is the standard Motzkin polynomial). It can be shown (e.g., via the arithmetic-
geometric inequality or Exercise 3.160) that M;(z,y) is nonnegative for ¢ > 0.
Therefore, we have the parametrized family of linear inequalities

0 <E[M(X,Y)] =t3a+1-3t3

for all ¢ > 0. Simplifying this expression, we obtain o > 263, B > 0. These
inequalities exactly define the projection of the set of valid moments onto («, 5);
see Figure 3.11 and Exercise 3.160.

Let us see how the rational moments interpretation described earlier gives a
description of this set as a projected spectrahedron. We choose q(z,y) = 22 + 2
(as the Pélya—Reznick theorem would suggest) and define rational moments 7;; =
E[X7Y*/(X? 4+ Y?)]. Parametrizing a generic polynomial p(z,y) = ajoz + ag1y +
<o+ arzwy® + agsy®, we write the inequality (3.39), i.e.,

E[p(X,Y)?/(X*+Y?)] >0  vp,

which is a quadratic form in the coefficients a;. Expressing this in matrix form, one
obtains a 14 x 14 matrix? whose entries are the rational moments 7. We also have
the normalization condition E[1] = 19 + no2 = 1. Since (o, 8) = (f24 + faz, f22),
the desired projection is then given by 1,z +— (62 + 2744 + 26, a2 + 124).

Moments on compact sets. Consider a basic semialgebraic set set S = {z €
R™ : gi1(z) >0, ..., gm(xz) > 0}. We want to describe (or approximate) the set of
valid moments of nonnegative measures supported on S.

As before, we can easily write necessary conditions that the moments should
satisfy by computing expectations of polynomials that are “obviously” nonnegative

4In this specific case, the problem can be much simplified by exploiting the sparsity and
symmetry present in the problem. For simplicity, the details are omitted.
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on S. Since squares are certainly nonnegative, and so are the products of squares
with the defining polynomials g;, we can consider the expressions

E[p(X)?] >0,  E[g(X)p(X)’]>0, ... Elgn(X)p(X)*] >0,  (3.40)

where p(z) are arbitrary polynomials. Exactly as in the univariate case, imposing
this condition for all p(z) up to a certain degree, these yield quadratic forms in
the coefficients of p(x) that depend linearly on the moments p,. Thus, the con-
ditions (3.40) give a family of spectrahedral approximations of the set of moments
of S-supported nonnegative measures. By increasing the degree of the polyno-
mial p(X), tighter approximations are obtained. Under the “right” assumptions
(essentially, if we can approximate the set of nonnegative polynomials), this dual
hierarchy will approximate the set of moments arbitrarily well. For instance, recall
from Section 3.4.4 that this will be the case if gqmodule(qs, ..., q,) satisfies the
Archimedean property of Definition 3.137 (and thus, S is compact), as was done
in [72]. Notice that these approximations can be strengthened by including products
of the form E[g;(X) - gr(X)p(X)?] > 0, which correspond to the distinction be-
tween preorders and quadratic modules, or, equivalently, Schmiidgen versus Putinar
representations.

Constructing multivariate measures. In the univariate case, we have discussed
in Section 3.5.5 how to produce an atomic measure matching a given finite set of
moments using Prony’s method. This is possible because in that case there is a full
characterization of the moment space. In the multivariate case, as we have seen,
even the decision question (“Are these valid moments?”) is NP-hard, and thus,
in general, unless further assumptions are satisfied, no such efficient procedure is
available.

Given a truncated moment sequence (or, equivalently, a functional £, € R}, ),
the positivity condition £, (p*) > 0 is of course necessary for the existence of a
nonnegative measure. A well-known case where it is possible to construct such
a measure is whenever the flat extension property [34] holds. This is a condi-
tion on the given moment sequence that requires the rank of the quadratic form
p+— £,(p?) to remain the same when considering polynomials p of degree d or d+ 1
for some value of d. Whenever this condition holds, a natural generalization of
the method described in the univariate case can be applied to obtain an atomic
measure matching the given moment sequence. The basic idea of this construc-
tion is sketched below and appears in a number of related forms in the literature
(e.g., Gelfand-Neimark—Segal construction, Stickelberg/Stetter-Moller/eigenvalue
method for polynomial equations [32, 121], etc.). Under the flat extension assump-
tion, one can define finite-dimensional commuting multiplication operators (i.e.,
matrices) associated to each of the variables x;. To do this, one considers the linear
maps M, : f — z;f, where My, : Rlz],,qa/S — Rlz]s,a/S and S is the subspace
{p € R[z]pn,a : £,,(p*) = 0}. By construction, these matrices pairwise commute, and
they can be simultaneously diagonalized. From their diagonal representation, one
can directly read the components of the support of the measure and then obtain the
corresponding weights. For a full exposition of the procedure, we refer the reader
to [63, 73].
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Exercise 3.160. Consider again Example 3.159.
1. Show that (22 + y?) - My(z,y) is a sum of squares when t > 0.

2. Show, by producing a family of suitable probability distributions, that the
inequalities a > 25%, B > 0 fully characterize the projection of the set of
valid moments P ,; onto the plane (a, 3).

3. Write the explicit form of the corresponding semidefinite program, and verify
that it indeed gives the projection of P, onto the plane (o, §).

Exercise 3.161. Show that, by allowing the degree of p(X) to grow, the condi-
tions (3.40) can approximate arbitrarily closely the set of valid moments of nonneg-
ative measures supported on S. Notice that this statement is essentially the dual
of Putinar’s representation theorem (Theorem 3.138).

3.6 Further Sum of Squares Applications

In this section we present several applications from different domains of applied
mathematics and engineering where sos techniques have provided new solutions
and insights. In each case we present the core mathematical ideas, attempting to
reduce as much as possible the use of domain-specific jargon. The main point we
want to illustrate is the power and versatility of polynomial optimization and convex
optimization in addressing many apparently diverse questions, using virtually the
same mathematical and computational machinery. We refer the reader to the cited
literature for in-depth discussions of each specific topic.

3.6.1 Copositive Matrices

A symmetric matrix M € 8™ is copositive if, for all z € R™,
>0 — 2T Mz > 0.

Equivalently, the associated quadratic form is nonnegative on the closed nonnegative
orthant. If 27 Mz takes only positive values on the closed orthant (except the
origin), then M will be strictly copositive. We will denote the set of n x n copositive
matrices as C,,.

Copositive matrices are of importance in a number of applications. We briefly
describe two of them.

Example 3.162. Consider the problem of obtaining a lower bound on the optimal
solution of a linearly constrained quadratic optimization problem [103]:

* = min =T Qu.
f Az>0, zTz=1 Q

If there exists a feasible solution C' to the linear matrix inequality

Q—ATCA = ~I
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132 Chapter 3. Polynomial Optimization, Sums of Squares, and Applications

where the matrix C is copositive, then by multiplying the inequality above by x©
on the left and = on the right, it immediately follows that f* > ~. Thus, having
“good” convex conditions for copositivity would allow for enhanced bounds for this
type of problem. N

Example 3.163 ([35]). This is an important special case of the problem just de-
scribed. It corresponds to the computation of the stability number « of a graph G
(recall Section 2.2.3 in Chapter 3). From a result of Motzkin and Straus [80], it is
known that «(G) can be obtained as

1 T
— = i A+1T
(@) zizor’%?ziﬂx (A+ 1z,

where A is the adjacency matrix of the graph G. This result implies that given
a graph G with adjacency matrix A, the matrix a(G)(I + A) — ee® is copositive.
In [35], de Klerk and Pasechnik show how to use this result and the semidefinite
approximations presented in this section to obtain guaranteed approximations to
the stability number that can improve upon the bound provided by the Lovasz theta
function. M

The set of copositive matrices C,, is a closed convex cone (in fact, it is a
proper cone; see Exercise 3.167). However, in general it is very difficult to decide if
a given matrix belongs to this cone. In the literature there are explicit necessary and
sufficient conditions for a given matrix to be copositive, usually expressed in terms
of principal minors; see, e.g., [122, 31] and the references therein. Unfortunately, it
has been shown that checking copositivity of a matrix is a co-NP-complete problem
[81], so this implies that in the worst case, these tests can take an exponential
number of operations (unless P = NP). This motivates the need of developing
efficient sufficient conditions to guarantee copositivity.

It should be clear that the situation looks very similar to the case of nonnega-
tive polynomials studied in earlier sections. In fact, it is exactly the same, since, as
we will see, we can identify the set of copositive matrices with a particular section
of the cone of nonnegative polynomials. Not surprisingly, we will be able to use sos
and SDP techniques to provide tractable approximations of the cone C,.

An apparent distinction between the copositivity question and the problems
studied earlier is the presence of nonnegativity constraints on the variables z;. Thus,
to establish the links with sos techniques we will need a way of handling the nonneg-
ativity constraints. There are different ways of doing this, but a straightforward one
is to define new variables z; and to let z; = z2. Then, to decide copositivity of M,
we can equivalently study the global nonnegativity of the quartic form given by

P(z) :=x"Mx = mezfzf
4,9

It is easy to verify that M is copositive if and only if the form P(z) is nonnegative,
ie, P(z) > 0 for all z € R”. This shows that we can indeed identify the cone
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3.6. Further Sum of Squares Applications 133

C,, of copositive matrices with a particular slice of the cone of nonnegative quartic
forms P, 4.

How to produce “good” approximations to C,? Based on the characterization
given earlier, it should be clear that an obvious sufficient condition for M to be
copositive is that P(z) be a sum of squares. Due to the special structure of the
polynomial, this condition can be interpreted directly in terms of the matrix M.

Lemma 3.164. The form P(z) is a sum of squares if and only if M can be written
as the sum of a positive semidefinite matriz and a nonnegative matriz, i.e.,

M =P+ N, P >0, N;; >0 fori#j
(without loss of generality, we can take N;; = 0). If this holds, then M is copositive.

The condition in Lemma 3.164 is only sufficient for copositivity. A well-known
example showing this is the matrix

1 -1 1 1 -1
-1 1 -1 1 1
H=| 1 -1 1 -1 1]. (3.41)

-1 1 1 -1 1

This matrix, originally introduced by A. Horn, is copositive even though it does not
satisfy the P + N condition of Lemma 3.164.

This motivates the definition of a natural hierarchy of approximations to the
copositive cone [89, 35]. Cousider the family of 2(r + 2)-forms given by

P.(z) = (Z z§> P(z), (3.42)
=1

and define the cones K, = {M € 8™ : P.(z) is sos} (for simplicity, we omit the
dependence on n). It is easy to see that if P, is a sum of squares, then P, is also
a sum of squares. The converse proposition, however, does not necessarily hold;
i.e., P.y1 could be a sum of squares even if P, is not. Additionally, if P.(z) is
nonnegative, then so is P(z). Thus, by testing whether P,.(z) is a sum of squares,
we can guarantee the nonnegativity of P(z) and, as a consequence, the copositivity
of M. This yields the hierarchy of inclusions

st RY xKchCo K CoC (3.43)

where (abusing notation) the first equality expresses the statement of Lemma 3.164.
The containment between these cones is in general strict. For instance, the Horn
matrix presented in (3.41) is not in Ko, but it is in Ky; see Exercise 3.170.
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Clearly, this hierarchy gives computable conditions that are at least as pow-
erful as the P + N test of Lemma 3.164. But how conservative is this procedure?
Does it approximate the copositive cone C,, to arbitrary precision? It follows from
our discussion of Pélya’s theorem in Section 3.2.6 that for any strictly copositive
matrix M, there is a finite r for which M € K,. However, the minimum r can-
not be chosen as a constant (uniformly over all strictly copositive matrices). In
general, the known lower bounds for r usually involve a “condition number” for
the form P(z): the minimum r grows as the form tends to degeneracy (nontrivial
solutions). This is consistent with the computational complexity results mentioned
earlier: if the value of r were uniformly bounded above, then we could always pro-
duce a polynomial-time certificate for copositivity (namely, an sos decomposition of
P.(z)), contradicting NP # co-NP.

Circulant copositive matrices. In general, particularly in high dimensions, the
geometry of the copositive cone is very complicated. As such, it is often useful
to consider low-dimensional sections, where we can gain some intuition and under-
standing. A nice case, which we analyze next, is the case of circulant (or cyclic)
matrices.

An n x n matrix is circulant if its (4, 7) entry depends only on |i — j| mod n.
We denote the subspace of n x n circulant matrices by O,,. For the case of n = 5,
we provide below a complete characterization of the circulant copositive matrices
and the associated relaxations. A general 5 x 5 circulant matrix has the form

M(a,b,c) = (3.44)

S0 0O R
o 0 e o

O TR o0
R O 0
L Tt 0O o o

For circulant matrices, the second relaxation Iy will be enough to recognize copos-
itivity, i.e., C5 N O5 = K1 N Os. Notice that if a = 0, then all the other elements
must be nonnegative. For later reference, we define the constant

€ = (1+/5)/4 =~ 0.809.

Theorem 3.165. Consider a circulant matric M = M(a,b,c) as in (3.44). Then
the following hold.

1. The matriz M is in Ko if and only if
a >0, la+b>0, la+c¢>0, a+2b+2c > 0.
2. The matriz M is in IC1 if and only if
a>0, a+b>0, a+c>0, a+2b+2c >0,
if b <0, then ac > 2b*> — a?, if ¢ <0, then ab > 2¢* — a®.

3. Furthermore, if M is copositive, then it is in K;.
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Figure 3.12. The convex cone of 5x 5 circulant copositive matrices (3.44)
and its inner sos approrimation KCo. This plot corresponds to a compact section of
the cone where a +b+ ¢ = 1. This cone is not polyhedral, as parts of the boundary
are described by quadratic inequalities; see Theorem 3.165.

Notice that, for this example, the set Ko N Os is basic semialgebraic (in fact,
polyhedral), but 1 N Os5 = C5 N Os is not basic semialgebraic. These sets are
presented in Figure 3.12. Notice that the Horn matrix H = M (1,—1,1) presented
in (3.41) corresponds to the extreme point at b = —1, ¢ = 1.

For general matrices (even 5 x 5!), the situation is not nearly as nice as the
slice described above may lead us to believe. In fact, the following is true.

Theorem 3.166. Consider the set Cs of copositive 5 X 5 matrices. There is no
finite value of r for which C5 = K,..

In fact, it is not yet known whether the set of 5 x 5 copositive matrices Cs is
a projected spectrahedron.

Exercise 3.167. Show that the set of copositive matrices C, is a proper cone (i.e.,
closed, convex, pointed, and solid).

Exercise 3.168. A matrix A € S" is completely positive if A = VVT for some
nonnegative matrix V € R’}rm, ie.,

k

T

A= E v;v;
i=1
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where v; € R? are the columns of V, and hence nonnegative vectors.
1. Show that the set B,, of completely positive matrices is a proper cone.

2. Show that B,, and C,, are dual cones.

3. Give explicit examples of matrices in the interior of the cones C, and B,.
Exercise 3.169. Prove Lemma 3.164.

Exercise 3.170. Prove that the Horn matrix (3.41) is copositive by finding an sos
certificate of the nonnegativity of 7 Hx on the nonnegative orthant.

Exercise 3.171. An alternative (and perhaps more natural) interpretation of the
approximations (3.43) can be obtained by rewriting the sos certificates directly in
terms of the variables x;. In this case, we have that M € ICy if and only if

2T Mz =27 Pz + E NijTiTy,
i£]

where P = 0 and n;; > 0 (P 4+ N decomposition). Similarly, M € Ky if and only if

<§: a:1> (2T Mz) = ixl (T Qi) + Z Nijk TiZjTr,
i=1 i=1

ik

where Ql t 0 and >\ijk Z 0.

Prove the correctness of these statements, and explain why these represen-
tations directly prove copositivity of M. What is the relationship between these
expressions and Schmiidgen-type certificates of nonnegativity?

Exercise 3.172. Explain how to use the semidefinite relaxations K, of the copos-
itive cone C, to give outer approximations to the cone B, of completely positive
matrices. In particular, provide “explicit” SDP characterizations of the first two
levels of the hierarchy.

3.6.2 Lyapunov Functions

As we have seen, reformulating conditions for a polynomial to be a sum of squares in
terms of semidefinite programming is very useful, since we can use the sos property
as a convenient sufficient condition for polynomial nonnegativity. In the context
of dynamical systems and control theory, there has been much work applying the
sos approach to the problem of finding Lyapunov functions for nonlinear systems
[89, 87].

The basic framework of Lyapunov functions was introduced in Section 2.2.1 of
the previous chapter for the case of linear systems. The main difference is that now
we will allow our system of differential equations to be nonlinear. This approach
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makes possible searching over affinely parametrized polynomial or rational Lya-
punov functions for systems with dynamics of the form

Bi(t) = fi(z(t)  fori=1,....n, (3.45)

where the functions f; are polynomials or rational functions. Recall that, for a
system to be globally asymptotically stable, it is sufficient to prove the existence of
a Lyapunov function that satisfies

T
V(z) >0, V(z) = (3_V) f(z) <0
ox

for all x € R™ \ {0}, where without loss of generality we have assumed that the
dynamical system (3.45) has an equilibrium at the origin (see, e.g., [67]).

As mentioned earlier, we will consider candidate Lyapunov functions that are
polynomials (or rational functions). Since polynomial nonnegativity is computa-
tionally hard, we will instead impose that the candidate Lyapunov function V' (z)

and its Lie derivative V'(z) both satisfy the (possibly stronger) condition:®

T
V(z) is sos, —V(z)=— (8—‘/) f(z) is sos.
ox

Parametrizing a candidate Lyapunov function (e.g., by considering all possible poly-
nomials of degree less than or equal to 2d), the conditions given above can be ex-
pressed as sos constraints in terms of the coefficients of the Lyapunov function.
Since both conditions are affine in the coefficients of V' (x), using the techniques
described earlier in this chapter, these can be easily transformed into a standard
semidefinite optimization formulation.

As an example, consider the following nonlinear dynamical system that cor-
responds to the Moore—Greitzer model of a jet engine with stabilizing feedback

operating in the no-stall mode (see, e.g., [71]). The dynamic equations take the form

_ 3 2 1 3
YT Tt (3.46)
y=3r—y.

Using SOSTOOLS [101], we easily find a Lyapunov function that is a polynomial
of degree 6. The trajectories of the nonlinear system, and the level sets of the
found Lyapunov function, are shown in Figure 3.13. Notice that, as expected,
V(z) monotonically decreases along trajectories, and thus all trajectories move
from larger to smaller level sets of the Lyapunov function for all possible initial
conditions.

Similar approaches have been developed for much more complicated problems
in systems and control theory. Among others, these include finding Lyapunov func-
tionals for nonpolynomial, time-delayed, stochastic, uncertain, or hybrid systems;
see, e.g., [87, 88, 100, 44] and the references therein.

5The strict positivity requirement can be easily handled, either by including a strictly positive
term, or by relying on the fact that SDP solvers usually compute strictly feasible solutions.
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2+

3+

4t

-5+

Figure 3.13. Trajectories of the nonlinear dynamical system (3.46) and
level sets of a Lyapunov function found using sos techniques.

Exercise 3.173. Consider the polynomial dynamical system

&= —x+(1+a)y,
y=—(14z)x.

Find a polynomial Lyapunov function of degree 4 that proves global asymptotic
stability.

Exercise 3.174. Consider the polynomial dynamical system

r= -+ xy,
= —y.

1. Show that this system is globally asymptotically stable by considering the
(nonpolynomial) Lyapunov function V(z,y) = In(1 + 2?2) + 32

2. Using SOSTOOLS (or other software) try to find a polynomial Lyapunov
function. Explain your success or failure.

Remark 3.175. The example in the previous exercise is from [2]. Although polyno-
mial Lyapunov functions may fail to exist if global asymptotic stability is desired, it
is known that locally exponentially stable polynomial vector fields always have poly-
nomial Lyapunov functions on compact sets; see, e.g., [95]. A suitable modification
of the method explained in this section can be used to establish stability for a given
compact set of initial conditions.
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3.6.3 Probability Bounds

Two of the most useful results in basic probability theory are the classic Markov
and Chebyshev inequalities. Markov’s inequality states that if X is a nonnegative
scalar random variable, then, for all a > 0,

E[X]

P(X >a) < (3.47)
Similarly, Chebyshev’s inequality says that for any random variable X with mean
p and variance o2, we have

0.2

P(X > a) < 5. (3.48)
In fact, Chebyshev’s inequality is just Markov’s applied to the nonnegative random
variable (X — u)?.

Both inequalities can be interpreted as producing bounds on the probability
of certain events, given partial information about the random variable X expressed
in terms of its moments (only the first moment in Markov’s, and the first and second
moments for Chebyshev).

In this section we describe an important application of polynomial inequalities
in probability theory, namely, a technique to generalize Chebyshev-type inequali-
ties to the case of more general events and moment information. For simplicity, we
consider only the univariate case; the extensions to the multivariate case are quite
straightforward. We refer the reader to [16] for background, extensions, applica-
tions, and more details.

The statement of the problem is the following: let X be a scalar random
variable with an unknown probability distribution supported on the set 2 C R, and
for which we know its first d + 1 moments (uo, . ., jta), where ux = E[X¥]. The
goal is to find bounds on the probability of an event S C €; i.e., we want to bound
P(X € S). For simplicity, we assume S and €2 are given intervals.

As we shall see next, we can obtain bounds on this probability via convex
optimization. Let p(z) := ZZZO cxz® be a univariate polynomial, and consider the
following optimization problem in the decision variables cg:

>1 Vzes,
minimize E[p(X)] subject to plz) 2 N (3.49)
p(z) >0 Ve,
or, equivalently,
d Zd cprF >1 Ve esS
minimize chuk subject to k=0 . ’ (3.50)
P Yoo Ckr” >0 VreQ.

Notice that when €2 and S are (unions of) univariate intervals, it follows from the
characterizations given in Section 3.3.1 that this is an sos optimization program of
the form discussed in Section 3.1.7.
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We claim that any feasible solution of (3.49) gives a valid upper bound on
P(X € S). To see this, notice if 1g(z) is the indicator function of the set S (i.e., it
is equal to 1 if € S and 0 otherwise); the constraints in (3.49) imply the inequality
1s(z) < p(z) for all z € Q. It then follows that

P(XeS):/

15(2) dP(x) < / p(z) dP () = E[p(X))].
Q

Q
In simpler terms, these bounds work by approximating (from above, in the case
of upper bounds) the indicator function of the event S by a polynomial. Since we
know the moments of X, we can compute in closed form the expectation of this
polynomial. By optimizing over the coefficients ci, we find the best polynomial
approximation of the indicator function and thus the best upper bound provable by
this method.

Essentially the same techniques apply to much more complicated situations
(e.g., the multivariate case, partial moment information, martingale inequalities,
etc.). For a detailed treatment, see [16, 17] and references therein.

Exercise 3.176. Show that the Markov and Chebyshev bounds can be inter-
preted as closed-form solutions of (3.49) for specific sets {2 and S. What are the
corresponding optimal polynomials p(x)?

Exercise 3.177. Assume that Q = [0,5], S = [4,5], and the mean and variance
of the random variable X are equal to 1 and 1/2, respectively. Give upper and
lower bounds on P(X € S). Are these bounds tight? Can you find the worst-case
distributions?

3.6.4 Quantum Separability and Entanglement

The state of a finite-dimensional quantum system can be described in terms of
a positive semidefinite Hermitian matrix, called the density matriz. A question
of interest in quantum information theory is whether a given quantum state can
be explained “classically” (i.e., purely in terms of probability theory) or whether
the full power of quantum mechanics is needed. In what follows, we explain the
core mathematical issues behind this question; see [85] for a detailed treatment of
quantum information theory. For simplicity, we consider real symmetric matrices
(as opposed to complex Hermitian) and use standard mathematical notation instead
of the Dirac formulation used in physics.

Consider a symmetric, positive semidefinite matrix p, with trace equal to one.
We will refer to p as a density matriz. An important property of a bipartite quantum
state p is whether or not it is separable, which means that it can be written as a
convex combination of tensor products of rank one matrices, i.e.,

p=> pi(wx])@wyl), pi>=0, > pi=1

Here z; € R™, y; € R™, and p € S/'". By construction, the set of separable
states is a convex set. If the state is not separable, then it is said to be entangled.
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The physical interpretation of a separable state corresponds to a probabilistic su-
perposition (with probabilities given by the p;), where one subsystem is in state
x; and the other subsystem is in state y;. If no such decomposition is possible,
then it is not possible to think of the two subsystems as being “independent” (even
though they may be physically separated), and thus actions/measurements on one
subsystem may affect the other (i.e., they are “entangled”).

The quantum separability or quantum entanglement question is the following:
Given the density matrix p of a quantum state, how do we decide whether p is
entangled or not? If it entangled (or separable), how can we certify this property?
It has been shown by Gurvits that in general this is an NP-hard question [58].

As we shall see, quantum entanglement is intimately related to polynomial
nonnegativity. A natural mathematical object to study in this context is the set of
positive maps. These are the linear operators A : S™ — S§™2 that satisfy X = 0 =
A(X) > 0; i.e., they map positive semidefinite matrices into positive semidefinite
matrices. Notice that to any such A, we can associate a unique “observable” Wy €
S™n2 that satisfies yT A(zxT )y = (x®@y)T Wi (x®y). Furthermore, if A is a positive
map, then the pairing between the observable W, and any separable state p will
always give a nonnegative number, since

(W, p) =T Wy - (sz- (zizl) @ <yz-y?>> = sz- TeWa - (2 ® i) - (21 @ yi) |
_sz xz®yz) WA 1’1®y1 sz sz )yz>0

In other words, every positive map yields a separating hyperplane for the convex set
of separable states. It can further be shown that every valid inequality corresponds
to a positive map, so this yields, in fact, a complete characterization (and thus,
the sets of separable states and positive maps are dual to each other). For this
reason, the observables W, associated to positive maps A are called entanglement
witnesses.

The set of positive maps (and thus, entanglement witnesses) can be exactly
characterized in terms of a multivariate polynomial nonnegativity, since a linear map
A 8™ — 8™ is positive if and only if the biquadratic form in n; + no variables
p(z,y) = yTA(xzT)y is nonnegative for all ,y (why?). Replacing nonnegativity
with sos based conditions, we can obtain a family of efficiently computable criteria
that certify entanglement.

Concretely, given a state p for which we want to determine whether it is en-
tangled, the first such test corresponds to the optimization problem of finding an
entanglement witness Wy (or linear map A) such that

(Wa,p) <0, y T A(zzT)y is sos. (3.51)

Interestingly, this corresponds to the well-known “positive partial trace” (PPT)
separability criterion. The advantage of sos techniques is that stronger tests can be
naturally derived by considering higher-order sos conditions. In particular, we have
the parametrized family of tests

(Wa, p) <0, (zTz)* - (yTA(zzT)yT) is sos (3.52)
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for k > 0 that obviously generalize (3.51) (which corresponds to the case k = 0). It
should be clear that these sos programs can be numerically solved using semidefinite
programming. It can also be shown [40, 41] that this hierarchy is complete in the
sense that every entangled state is eventually certified by some value of k.

For more background and details about quantum entanglement and the sep-
arability problem, see [40, 41] and the references therein. It has been recently
shown [22] that the sos based algorithm described above can be used to provide a
quasipolynomial time algorithm for the quantum separability problem.

Exercise 3.178. Consider linear maps between symmetric matrices of the form
A:S™M — 8"z,

1. Show that any linear map of the form A — Y, PTAP;, where P, € R™*"2,
is positive. These maps are known as decomposable maps.

2. Consider the polynomial defined by p(z,y) := y? A(zzT)y. Show that A is a
positive map if and only if p(z, y) is nonnegative and that A is a decomposable
map if and only if p(z,y) is a sum of squares.

3. Show that the linear map C : 83 — &3 (due to M.-D. Choi) given by

2&11 + ag2 0 0
C:A— 0 2a99 + ass 0 —A
0 0 2a33 + a11

is a positive map but is not decomposable.

4. Explain the relationship between this linear map and the Choi matrix dis-
cussed earlier in (3.20).

3.6.5 Geometric Theorem Proving

Many geometric statements can be reinterpreted, after a suitable coordinatization,
in terms of algebraic inequalities. This opens up the possibility of proving theorems
about geometric objects by characterizing the desired properties in terms of alge-
braic inequalities and then proving these inequalities through sos certificates. We
give two concrete examples in what follows. The main value of these simple exam-
ples is to illustrate how the process of proving algebraic or geometric inequalities
can be made fully algorithmic and how the power of convex optimization can be
brought to these questions.

Schur’s inequality. This is a classical inequality due to Schur that states
that for nonnegative variables z,y, z, we have

S(x,y,2) =a"(@ —y)(z - 2) + 5" (y = 2)(y — 2) + 2"(z —2)(2 —y) 2 0, (3.53)

where k£ > 0 is an integer.
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We give next a simple sos proof of this inequality for the case k = 1, easily
obtainable via semidefinite programming. Define

1 22 4+ yz ro -1 1 22 4+ yz
S1 == |y?+uaz -1 2 —1| |y*+zz],
22 4+ 2y -1 -1 2 224y
S = y2(y — 2)* +w2(x — 2)% + xy(z — y)*.
Since the matrix in the expression above is positive semidefinite, it is clear that
both S; and Sy are nonnegative when x,y, z are nonnegative. We have then the
easy-to-verify identity

(x+y+2) S(x,y,2) =51+ 52

that clearly proves (3.53). Schur’s inequality is closely related to the Robinson form,
one of the first explicit examples of non-sos positive definite forms; see [29] and [106]
for background and more details.

Ono’s inequality. We present next an sos proof of a geometric inequality
due to Ono. This example originally appeared in [117] as a benchmark problem for
geometric theorem proving.

Consider a triangle with sides of length a, b, ¢, and denote its area by K. In
1914, T. Ono [86, 79] conjectured that the inequality

(4K)% > 27 (a® +b* — )2 (1P + 2 — a?)? - (S + a® — b?)? (3.54)

holds for all triangles. The statement was subsequently shown to be false in general
[11] but proved to hold whenever the triangle in question is acute (all angles are
less than or equal to 7/2) [12]. Using sos techniques, we will obtain a very concise
proof.
For this, we can express the premise that the triangle be acute as the three
polynomial inequalities
ty:=a?+b> -2 >0,

ty :=b>+c —a® >0, (3.55)
ts:=c+a?>—1b2>0.
It is well known (Heron’s formula) that we can rewrite the square of the area K as

a polynomial in a, b, c:

a+b+ec

K*=s(s—a)(s—b)(s—c), s= 2

The question, therefore, reduces to verifying that (3.54) holds whenever the inequal-
ities (3.55) are satisfied. A simple proof of Ono’s inequality can then be found using
the Positivstellensatz and sos methods: define the sos polynomial

s(z,y,2) = (' +2%y® 29" —22°22 + 227 +21) 415 (0 —2)% (2 +2)2(2° +2° — %)%,
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We have then
(4K)% — 2712 .42 12 = s(a, b, c) - t1 - to + s(c,a,b) - t1 - t3 + s(b, ¢, a) - to - t3, (3.56)

therefore proving the inequality.

Another, more complicated, application of these techniques is given in [93].
In that paper, the subadditivity of a geometric quantity for triangles, expressible in
terms of its side lengths and an angle, is proved via sos methods. The problem can
be reduced to proving the nonnegativity of the polynomial

a?B%(a— B)? + B2 (1 — af)(1 + af — 2a%)y”
+a?(1 —aB)(1+ af —26%)0% — aB(2 + af® — 4af + Ba®)ys
+B(1 - af)(2a — B — af®)y’6 — (® + 52 + 20757 — 4a®%)y%6?
+a(l—aB)(28 —a—a?B)y8® + (a — B)*~+*6*  (3.57)

on the unit box 0 < a, 8,7, < 1. As shown in [93], it is possible to obtain a concise
certificate of its nonnegativity using sos methods.

As generalizations of the well-understood methods of semidefinite program-
ming, sos techniques have proved remarkably powerful in the treatment of geometric
problems. A nice example of this is the recent work of Bachoc and Vallentin [10],
where the authors have developed improved bounds on kissing numbers. This is
the classical question of how many identical n-dimensional nonoverlapping spheres
can be simultaneously tangent to a given central sphere of the same radius. It is
easy to see that in the plane, this number is six (six disks, surrounding a central
disk, in a hexagonal pattern), but determining this number in higher dimensions
is a very difficult problem. By combining techniques from harmonic analysis and
semidefinite programming (related to the symmetry reduction techniques discussed
in Section 3.3.6), the authors of [10] have extended the classical association scheme
approach to spherical codes (see, e.g., [37] and the references therein) to obtain the
best available upper bounds on kissing numbers.

Sum of squares techniques can also be nicely interfaced with other, more
general, methods for automated theorem proving. We refer the reader to the work
of Harrison [60] for a discussion of these ideas, some of which have been implemented
in the theorem prover HOL Light [61].

An interesting open research question is whether these algebraic proofs or
sos certificates can be given “natural” geometric interpretations. For instance, as
a concrete question, is there any intrinsic geometric meaning of the polynomial
identity proof given in (3.56)7

Exercise 3.179 (Weitzenbock’s inequality). Consider a triangle with side
lengths equal to a, b, ¢ and area equal to K. Give an sos proof of the inequality

a? + 0%+ 2 > (43K,

and show that 44/3 is the best possible constant.
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Exercise 3.180 (Pedoe’s inequality). Consider two triangles with side lengths
equal to (a1,b1,c1) and (ag, ba, c2) and areas K7, Ko, respectively. Give an sos proof
of the inequality

ai (b3 + c5 — a3) + bi(c3 + a3 — b3) + (a3 + b5 — ¢3) > 16K, K.
Is 16 the best possible constant? What happens if one of the triangles is equilateral?

Exercise 3.181. Prove that the polynomial (3.57) is nonnegative when the vari-
ables satisfy 0 < «, 8,7, < 1. Find an sos certificate of this fact.

3.6.6 Polynomial Games

The mathematical theory of games was developed to model and analyze strategic
interactions among multiple decision makers with possibly conflicting objectives.
Game theory has been successfully used in many domains, including economics,
engineering, and biology. Standard modern references include [46, 82]. In this
section we present an application of sos methods in game theory, initially described
in [92].

We consider two-player zero-sum games, where the payoffs are polynomial
functions. This class of polynomial games was originally introduced and studied
by Dresher, Karlin, and Shapley in 1950 [42]. In the basic set-up there are two
players (which we will denote as Player 1 and Player 2), which simultaneously and
independently choose actions parametrized by real numbers x, ¥y, respectively, in the
interval [—1,1]. The payoft associated with these choices is given by a polynomial
function

n m
P(z,y) = > Y pija'y’ (3.58)
i=0 j=0
that assigns payments from Player 2 to Player 1. Thus, Player 1 wants to choose
his strategy = to maximize P(z,y), while Player 2 tries to make this expression as
small as possible. Players are allowed, and often it is in their interest, to choose
their actions randomly according to specific probability distributions; these are
called mized strategies (the game of rock-paper-scissors is a simple example of this
situation).

The solution concept of interest is called Nash equilibrium. This corresponds
to a choice of strategies for both players, for which there is no incentive for a player
to deviate, assuming the other player keeps their strategy fixed. It is well known
that for zero-sum games, this notion reduces to the simpler minimax or saddle-point
equilibrium; see (3.60).

Example 3.182. Consider a polynomial game on [—1, 1] x[—1, 1], with payoff func-
tion given by P(x,y) = (x — y)2. Since Player 2 wants to minimize her payoffs, she
should try to “guess” the number chosen by Player 1. Conversely, the first player
should try to make his number as difficult to guess as possible (in the sense defined
by P(z,y)). It is easy to see in this case that the optimal strategy for Player 1 is
to randomize between x = —1 or z = 1 with equal probability, while the optimal
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strategy for Player 2 is to always choose y = 0. Assuming the other player keeps
their strategy fixed, no player has incentive to deviate from these strategies, and
thus this yields an equilibrium, with the corresponding value of the game being
equalto 1. W

The question of interest is the following: given a game described by its payoff
function P(z,y), how do we efficiently compute its equilibrium solution, i.e., the
optimal strategies both players should use?

Recall that players can randomize over their choices, so their strategies will
be described by probability measures p and v, respectively, supported on [—1,1].
When considering mixed strategies, and similarly to the finite case, we need to
consider the expressions

maxmin E,,[P(z,y)] and minmax E,x,[P(z,y)],
v n n v
where E, . ,[-] denotes the expectation under the product measure. We can rewrite
these as bilinear expressions

n m

n m
max min Y Y pisvifty, min max » > pivitt; (3.59)

" 20 5=0 i=0 j=0

where v;, 1 are the moments of the measures v, p, i.e.,

1 1
v; ::/ ztdy, My o= / yldpu.
-1 -1

Recall from Section 3.5.4 that the moment spaces (i.e., the image of the probability
measures under the moment map given above) are compact convex sets in R"*?
and R™T!. Since the objective function in the problems (3.59) is bilinear, and
the feasible sets are convex and compact, the minimax theorem (Theorem A.6
in Appendix A) can be used to show that these two quantities are equal. As a
consequence, there exist measures v*, u* that satisfy the saddle-point condition:

n m n m

SO i <O pivinl <30 pigvipg. (3.60)

i=0 j=0 i=0 j=0 i=0 j=0

The key fact here is that, due to the separable structure of the payoffs, the optimal
strategies can be characterized only in terms of their first m (or n) moments. Higher
moments are irrelevant, at least in terms of the payoffs of the players.

From the previous discussion, we have the following result, essentially con-
tained in [42].

Theorem 3.183. Consider the two-player zero-sum game on [—1,1] x [—1,1], with
payoffs given by (3.58). Then, the value of the game is well defined, and there exist
optimal mized strategies v*,u* satisfying a saddle-point condition. Furthermore,
without loss of generality, the optimal measures can be taken to be discrete, with at
most min(n, m) + 1 atoms.
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The derivation and computation of the mixed strategies and the value of the
game can be done as follows. We first characterize “security strategies” that provide
a minimum guaranteed payoff. We can then invoke convex duality to prove that
this actually yields the unique value of the game. Proceeding along these lines,
by analogy to the finite case, a security strategy of Player 2 can be computed by
solving

minimize ~y (3.61)

Yok

st {Eﬂ[lp(xvy)] < v VafE[—l,l],
[liduly) = 1

Indeed, if Player 2 plays the mixed strategy p obtained from the solution of this
problem, the best that Player 1 can do is to choose a value of z that maximizes
E,[P(z,y)], thus limiting his gain (and Player 2’s loss) to ~.

Since P(z,y) is a polynomial, this expectation can be equivalently written in
terms of the first n moments of the measure p, i.e.,

1 n m
B, [P(z,y)] = / Pla)dnn) = 0 '

i=0 j=0

Notice that this is a univariate polynomial in the action = of Player 1, with coeffi-
cients that depend affinely on the moments f1; of the mixed strategy of Player 2.

Consider now the problem (3.61), but instead of writing it in terms of the
decision variable p (which is a probability measure), let us use instead the moments
{1; }}”:0. The problem is then reduced to the minimization of the safety level ~,
subject to the following conditions:

e The univariate polynomial v — 37 330" pij pjx* is nonnegative on [—1,1].

e The sequence {;}7" is a valid moment sequence for a probability measure
supported in [—1,1].

We can rewrite this in a more compact form, as the optimization problem

n m i
minimize -~ s.t. { 7~ Rizo Ljmo Pis®Hi € Prn, (3.62)
w € My,
where Py, is the set of univariate polynomials of degree n nonnegative in [—1,1],
and M., is the set of m + 1 first moments of a probability measure with support
on the same interval.

By the characterizations provided in earlier sections, it is clear that both of
these conditions can be rewritten in terms of semidefinite programming and thus
efficiently solved. Furthermore, using the procedure described in Section 3.5.5, the
corresponding optimal mixed strategies can be obtained.

Example 3.184. Consider the guessing game discussed in Example 3.182. In this
case, the decision variables (ug, pt1, pi2) are the moments of the mixed strategy of
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Player 1. To compute the optimal strategies, we must then solve (3.62), i.e.,

v = (2o — 2z + p2) so(x) 4+ 51+ (1 —a?),

L Ho i,
minimize 7y s.t. m1 o p2|

po—p2 = 0,

o = 1,

where we have used the sos/semidefinite characterizations of univariate polynomi-
als (Section 3.3.1) and moments constraints (Section 3.5.3) for the interval [—1,1].
The optimal solution of this problem is v = 1, (uo, p1, p2) = (1,0,1), so(z) = 0, and
s1 = 1. From this, the optimal strategies 6(x) for Player 1 and $6(z—1)+ $6(z+1)
for Player 2 directly follow. N

Exercise 3.185. Counsider a two-player game on [—1, 1] x [—1, 1] with payoff func-
tion given by

P(z,y) = bay — 22% — 2xy* — .

Notice this function is neither convex nor concave.

Formulate and solve the corresponding optimization problem to find the opti-
mal solution of this game. Verify that the optimal strategies correspond to Player 1
always choosing x = 0.2, and Player 2 choosing y = 1 with probability 0.78, and
y = —1 with probability 0.22.

3.7 Software Implementations

Despite the many advances in theoretical and modeling aspects of SDP and sos
methods, much of their impact in applications has undoubtedly been a direct con-
sequence of the efforts of many researchers in producing and making available good
quality software implementations. In this section we give pointers to and discuss
briefly some of the current computational tools for effectively formulating and solv-
ing SDP and sos programs.

Most SDP solvers (e.g., those described in Section 2.3.2) usually take as input
either text files containing a problem description or directly the matrices (A;, b, C)
corresponding to the standard primal/dual formulation. This is often inconvenient
at the initial modeling and solution stages. A more flexible approach is to for-
mulate the problem using a more natural description, closer to its mathematical
formulation, that can later be automatically translated to fit the requirements of
each solver. For generic optimization problems, this has indeed been the approach of
much of the operations research community, which has developed some well-known
standard file formats, such as MPS, or optimization modeling languages like AMPL
and GAMS. An important remark to keep in mind, much more critical in the SDP
case than for linear optimization, is the extent to which the problem structure can
be signaled to the solver.

For sos programs, as we have seen, the conversion process to an SDP for-
mulation is algorithmic, and there are parsers that partially or fully automate this
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conversion task and can be used from within a problem-solving environment such as
MATLAB. The software SOSTOOLS [101] is a free, third-party MATLAB toolbox
for formulating and solving general sos programs. The related software Gloptipoly
[62] is oriented toward global optimization problems and the associated moment
problems. In their current version, both use the SDP solver SeDuMi [118] for nu-
merical computations. Other possibilities include YALMIP [74], a very complete
modeling language for convex and nonconvex optimization that includes several
sos/moments features, as well as the more specialized toolbox SPOT [78], oriented
toward problems in systems and control theory. An interesting new addition to this
area is the MATLAB toolbox NCSOStools [25] that specializes in sums of squares
in noncommuting variables, a topic that will be discussed extensively in Chapter 8.
Any of these parsers can make formulating and solving sos programs a much simpler
and more enjoyable task than manual, error-prone methods.
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Chapter 4

Nonnegative
Polynomials and Sums
of Squares

Grigoriy Blekherman

A central question, for both practical and theoretical reasons, is how to efficiently
test whether a polynomial p is nonnegative. We reformulate this problem in the
following way: given a nonnegative polynomial p, how do we efficiently find a rep-
resentation of p, so that nonnegativity of p is apparent from this representation?
In other words, how do we efficiently represent p as an “obviously nonnegative”
polynomial? Some polynomials are obviously nonnegative. If we can write p as a
sum of squares of polynomials, then it is clear that p is nonnegative just from this
presentation. Very importantly, if p is a sum of squares then its sums of squares
representation can be efficiently computed via semidefinite programming. This
connection was described in detail in Chapter 3. As we will see, the set of sums of
squares is a projected spectrahedron, while the set of nonnegative polynomials is far
more challenging computationally. The main question for this chapter is: what is
the relationship between nonnegative polynomials and sums of squares?

4.1 Introduction

Our story begins in 1885, when twenty-three-year-old David Hilbert was one of the
examiners in the Ph.D. defense of twenty-one-year-old Hermann Minkowski. During
the examination Minkowski claimed that there exist nonnegative polynomials that
are not sums of squares. Although he did not provide an example or a proof, his
argument must have been convincing, as he defended successfully.

Three years later Hilbert published a paper in which he classified all of the
(few) cases, in terms of degree and number of variables, in which nonnegative poly-
nomials are the same as sums of squares. In all other cases Hilbert showed that
there exist nonnegative polynomials that are not sums of squares. Interestingly,
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Hilbert did not provide an explicit example of such polynomials. The first explicit
example was found only seventy years later and is due to Theodore Motzkin. In
fact, Motzkin was not aware of what he constructed. Olga Taussky-Todd, who was
present during the seminar in which Motzkin described his construction, later no-
tified him that he found the first example of a nonnegative polynomial that is not
a sum of squares [22].

We examine the relationship between nonnegativity and sums of squares in
two different fundamental ways. We first consider the structures that prevent sums
of squares from capturing all nonnegative polynomials, and show that equality oc-
curs precisely when these structures are not present. We then examine in detail
the smallest cases where there exist nonnegative polynomials that are not sums of
squares and show that the inequalities separating nonnegative polynomials from
sums of squares have a simple and elegant structure. Second, we look at the quan-
titative relationship between nonnegative polynomials and sums of squares. Here
we show that when the degree is fixed and the number of variables grows, there are
significantly more nonnegative polynomials than sums of squares. We also apply
these ideas to studying the relationship between sums of squares and convex poly-
nomials. While the techniques we develop for the two approaches are quite different
in nature, the unifying theme is that we examine the sets of nonnegative polynomi-
als and sums of squares geometrically. Algebraic geometry is at the forefront of our
examination of fundamental differences between nonnegative polynomials and sums
of squares, while convex geometry and analysis are used to examine the quantitative
relationship.

The chapter is structured as follows: After discussing Hilbert’s theorem and
Motzkin’s example in Section 4.2, we begin a detailed examination of the under-
lying causes of differences between nonnegative polynomials and sums of squares
in Section 4.3. On the way we will see that nonnegative polynomials and sums of
squares form fascinating convex sets. Section 4.4 is devoted to the examination of
these objects from the point of view of convex algebraic geometry. We note that
many basic questions remain open.

The fundamental reasons for the existence of nonnegative polynomials that
are not sums of squares come from Cayley-Bacharach theory in classical algebraic
geometry and, in fact, Hilbert’s original proof of his theorem already used some of
these ideas. We begin developing the necessary techniques in Section 4.5. Duality
from convex geometry and its interplay with commutative algebra will play a central
role in our investigation. Section 4.6 develops the duality ideas and presents a unified
proof of the equality cases of Hilbert’s theorem. Sections 4.7 and 4.8 investigate
the smallest cases in which there exist nonnegative polynomials that are not sums
of squares. We show that this situation fundamentally arises from the existence of
Cayley—Bacharach relations and present some consequences.

We proceed by examining the quantitative relationship between nonnegative
polynomials and sums of squares in Section 4.9. This is done by establishing bounds
on the volume of sets of nonnegative polynomials and sums of squares, and ana-
lytic aspects of convex geometry come to the fore in this examination. We will
explain that if the degree is fixed and the number of variables is allowed to grow,
then there are significantly more nonnegative polynomials than sums of squares [5].
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This happens despite the difficulty of constructing explicit examples of nonnega-
tive polynomials that are not sums of squares, and numerical evidence that sums
of squares approximate nonnegative polynomials well if the degree and number of
variables is small [19]. The question of precisely when nonnegative polynomials
begin to significantly overtake sums of squares is currently poorly understood.

Section 4.10 presents an application of the volume ideas to showing that there
exist homogeneous polynomials that are convex functions but are not sums of
squares. There is no known explicit example of such a polynomial, and this is
the only known method of showing their existence.

4.2 A Deeper Look

We first reduce the study of nonnegative polynomials and sums of squares to
the case of homogeneous polynomials, which are also called forms. A polynomial
p(x1,...,zy,) of degree d can be made homogeneous by introducing an extra vari-
able x,41 and multiplying every monomial in p by a power of x,1, so that all
monomials have the same degree. More formally, let p be the homogenization of p:

p=al,p ( e n )
= +1 sy .
" Tn+1 Tn+1

Exercise 4.1. Let p be a nonnegative polynomial. Show that p is a nonnegative
form. Also show that if p is a sum of squares, then p is a sum of squares as well.

Given a form p we can dehomogenize it by setting x,,+1 = 1. Dehomogeniza-
tion clearly preserves nonnegativity and sums of squares. Therefore the study of
nonnegative polynomials and sums of squares in n variables is equivalent to studying
forms in n + 1 variables. From now on we restrict ourselves to the case of forms.

Let R[z]q be the vector space of real forms in n variables of degree d. In order
to be nonnegative a form must have even degree, and therefore our forms will have
even degree 2d. Inside R[z]2q sit two closed convex cones: the cone of nonnegative
polynomials,

Pn2da ={p € R[z]2q | p(z) >0 forall x € R"},
and the cone of sums of squares,
En,Zd = {p c ]R[g;]2d | p(g;) = Zq? for some qi € ]R[a:]d} .

Exercise 4.2. Show that P, 2q and X, 24 are closed, full-dimensional convex cones
in R[z]2q. (Hint: Consider Exercise 4.17.)

We now come to the first major theorem concerning nonnegative polynomials
and sums of squares.
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162 Chapter 4. Nonnegative Polynomials and Sums of Squares

4.2.1 Hilbert’s Theorem

The first fundamental result about the relationship between P, 24 and ¥y 2q was
shown by Hilbert in 1888.

Theorem 4.3. Nonnegative forms are the same as sums of squares, Pn 2d = ¥n,2d;
in the following three cases: m = 2 (univariate nonhomogeneous case), 2d = 2
(quadratic forms), and n = 3, 2d = 4 (ternary quartics). In all other cases there
exist nonnegative forms that are not sums of squares.

The proof of the three equality cases in Hilbert’s theorem usually proceeds by
treating each of the three cases separately. For example, it is a simple exercise to
show that Pn 2 = X4 2.

Exercise 4.4. Deduce that P, 2 = Xy, 2 from diagonalization of symmetric matrices.

We adopt a different approach: We begin by examining the structures that
allow the existence of nonnegative forms that are not sums of squares. In Section
4.6.1 we show that the three cases of Hilbert’s theorem are the only cases in which
these structures do not exist. This provides a unified proof of the three equality
cases of Hilbert’s theorem, which are usually treated separately.

4.2.2 Motzkin’s Example

The first explicit example of a nonnegative form that is not a sum of squares is due
to Motzkin:

M(z,y, z) = 2ty? + 2%y + 20 — 322222

The form M can be seen to be nonnegative by the application of the arithmetic
mean-geometric mean inequality. Why is M not a sum of squares?

In the following exercises we develop a general method for showing that a
form is not a sum of squares, based on the monomials that occur in the form.
This method can also be applied to reduce the size of the semidefinite program that
computes the sum of squares decomposition, as explained in Chapter 3. These ideas
are originally due to Choi, Lam, and Reznick [22].

Exercise 4.5. For a polynomial p define its Newton polytope N (p) to be the
convex hull of the vectors of exponents of monomials that occur in p. For example,
if p = x12% + 23 + z12923, then N (p) = conv ({(1,2,0),(0,2,0),(1,1,1)}), which is
a triangle in R3.
Show that if p = ¢?, then
N(ai) € 5N ().

Exercise 4.6. Calculate the Newton polytope of the Motzkin form and use Exer-
cise 4.5 to show that the Motzkin form is not a sum of squares.
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For much more on explicit examples of nonnegative polynomials that are not
sums of squares see [22].

4.2.3 Quantitative Relationship

While Hilbert’s theorem completely settles all cases of equality between P, 24 and
3n 24 it does not shed light on whether these cones are close to each other, even if
the cone of nonnegative polynomials is strictly larger. Due to the difficulty of con-
structing explicit examples and numerical evidence for a small number of variables
and degrees, it is tempting to assume that ¥, 24 approximates P, 24 fairly well.

However, it was shown in [5] that if the degree 2d is fixed and at least 4, then
as the number of variables n grows, there are significantly more nonnegative forms
than sums of squares. We will make this statement precise and present a proof in
Section 4.9. The main idea is that, although the cones themselves are unbounded,
we can slice both cones with the same hyperplane, so that the section of each cone
is compact. We then derive separate bounds on the volume of each section.

For now we would like to note that the bounds guarantee that the differ-
ence between P, 2q and X, 24 is large only for a very large number of variables n.
Whether this is an artifact of the techniques used to derive the bounds is unclear.
As we will see, for a small number of variables the distinction between P, 24 and
Yn,2d is quite delicate, and it is not known at what point P, 24 becomes much
larger than ¥, 24.

We now begin a systematic examination of differences between nonnegative
forms and sums of squares. It is actually possible to see that there exist nonnega-
tive forms that are not sums of squares by considering values of forms on finitely
many points. The following example will illustrate this idea and explain some of
the major themes in our investigation.

4.3 The Hypercube Example

According to Hilbert’s theorem the smallest cases where P, 24 and Xy, 24 differ are
forms in 3 variables of degree 6, and forms in 4 variables of degree 4. We take a
close look at an explicit example for the case of forms in 4 variables of degree 4.
Let S = {s1,...,ss} be the following set of 8 points in R*:

S ={+1,+1,+1,1}.

We will see that there is a difference between nonnegative forms and sums
of squares by simply looking at the values that nonnegative polynomials and sums
of squares take on S. Accordingly, let us define a projection 7 from R[z]s 4 to R®
given by evaluation on S:

m(f) = (f(s1),..., f(ss)) for [€R[z]aa.
We will explicitly describe the images of Py 4 and ¥4 4 under this projection. Let

P'=7(Pya) and X' =7(3q,4).
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164 Chapter 4. Nonnegative Polynomials and Sums of Squares

As they are images of convex cones under a linear map, it is clear that both
P’ and ¥’ are convex cones in R8. Although both P’ and ¥’ will turn out to be
closed, projections of closed convex cones do not have to be closed in general.

Exercise 4.7. Construct a closed convex cone C in R? and a linear map 7 : R3 — R2
such that 7(C') is not closed.

4.3.1 Values of Nonnegative Forms

We first look at values on S that are achievable by nonnegative forms. Let Rﬁ_ be
the nonnegative orthant of R®:

Ri_z{(l“l,---,ﬂig) | ;>0 for i =1,...,8}.

Since we are evaluating nonnegative polynomials, it is clear that P’ C Ri. We
claim that, in fact, P/ = Ri. In other words, any 8-tuple of nonnegative numbers
can be attained on S by a globally nonnegative form. By convexity of P’ it suffices
to show that all the standard basis vectors e; are in P’. Moreover, substitutions
x; — —x; permute the set S, and therefore it is enough to show that e; € P’ for
some 1.

Exercise 4.8. Let p € R[z]4 4 be the following symmetric form:

4
p= fo +2 Z a:?a:jxk + 4z T00324.
i=1 ij4k

Show that p is nonnegative, and check that p vanishes on exactly 7 points in S.
Conclude that P’ = RY.

We have seen that all combinations of nonnegative values on S are realizable
as values of a nonnegative form. We now look at why some values in Rﬁ_ are not
attainable by sums of squares. In the end we will completely describe the projec-
tion X',

4.3.2 Values of Sums of Squares

In order to analyze the values of sums of squares, we need to take a look at the
values of the forms that we are squaring. The values of quadratic forms on S are not
linearly independent. Here is the unique (up to a constant multiple) linear relation
between the values on the points s; that all quadratic forms in 4 variables satisfy:

Flsi) = ) F(s:). (4.1)

s; has even number of 1’s s; has odd number of 1’s

Exercise 4.9. Verify that the relation (4.1) holds for all quadratic forms f € R[z]4,2
and that it is unique up to a constant multiple.
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We are now ready to see how the relation (4.1) prevents sums of squares from
attaining all values in Ri.

Proposition 4.10 (Hilbert’s original insight). Let e; be the ith standard basis
vector in RE. Then e; ¢ X' for all i.

Proof. Since we did not attach a specific labeling to the points of S it will suffice
to show that e; ¢ ¥/ = 7(X4,4). Suppose that there exists p € X4.4 such that
m(p) = e1. Writep =3, q; for some g; € R[z]4,2. The form p vanishes on s, . . ., s,
and it has value 1 on s;. Since p = Zj q? it follows that each g; vanishes on
s2,...,58. Bach g; is a quadratic form in 4 variables, and therefore each g; satisfies
relation (4.1). From this relation it follows that ¢;(s1) = 0 for all j. Therefore
p(s1) = 0, which is a contradiction. O

Hilbert’s original proof did not use an explicit example to show that the vec-
tors e; can be realized as values of a nonnegative form, which we did in Exercise
4.8. Instead he provided a recipe for constructing such a form, and proved that
the construction works. We largely followed Hilbert’s recipe to construct our coun-
terexample. For more information on Hilbert’s construction see [23].

4.3.3 Complete Description of X’

We can do better than just describing some points that are not in ¥/. Our next goal
is to completely describe ¥’ and, in particular, we will see how far the points e; are
from being the values of a sum of squares.

We use 7 to also denote the same evaluation projection on quadratic forms in
4 variables:

m(f) = (f(s1);-.-, f(ss)) for f€R[z]az.
Let L be the projection of the entire vector space of quadratic forms:
L = W(R[$]472).

Using relation (4.1) and Exercise 4.9 we see that L is a hyperplane in R®. Let
C be the set of points that are coordinatewise squares of points in L:

C={(wi,...,v3) | v=(vi,...,v8) €L}
We first show the following description of X'.

Lemma 4.11. X/ is equal to the convex hull of C':
¥ = conv(C).

Proof. Let v = (v1,...,vs) € L. Then there exists a quadratic form f € Rlz]s.2
such that f(s;) = v; for i = 1,...,8. It follows that for the square of f we have
f?(s:) = v2. In other words,

7(f?) = (vi,...,v3), where v= (vi,...,v8) =7n(f).

Therefore we see that C' C ¥ and by convexity of ¥’ it follows that conv(C) C X'.
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To prove the other inclusion, suppose that p = Y, ¢? € ¥4 4. Then 7(¢?) € C
for all ¢ and therefore ¥’ C conv(C). O

Let T}, be the subset of the nonnegative orthant R’ defined by the following
m inequalities:

Tm:{($177$m)€RT ‘ Z\/EZ2\/ZE]€ fOI' aH k}
i=1

We will show that ¥’ = Ty. We begin with a lemma on the structure on T,.

Lemma 4.12. The set Ty, is a closed convex cone. Moreover, T,, is the convex
hull of the points © = (x1,...,2m) € R, where Z:’il T; = 2,/Tk for some k.

Proof. The set T, is defined as a subset of R™ by the following 2m inequalities:
zr > 0 and \/T1 + -+ + /T, > 24/}, for all k. Therefore it is clear that T}, is a
closed set.

For z = (21,...,2m) € RT let ||z]|1/2 denote the L'/2-norm of a:

Izlli2 = (V&L + - + Vam)®.

We can restate the inequalities of T}, as xx > 0 and ||z|; /o > 4xy for all k. Now
suppose that z,y € T),, and let z = Az + (1 — A)y for some 0 < A < 1. It is clear that
2 > 0 for all k. Tt is known by the Minkowski inequality [11, p. 30] that L'/?-norm
is a concave function: [[Az + (1 — A)yll1/2 > A|x|l1/2 + (1 — A)|lyll1/2. Therefore

Thus T,, is a convex cone.

To show that T, is the convex hull of the points where ||z, = 4z} for some
k we proceed by induction. The base case m = 2 is simple since T5 is just a ray
spanned by the point (1,1). For the induction step we observe that any convex set
is the convex hull of its boundary. For any point on the boundary of T, one of
the defining 2m inequalities must be sharp. If a point = is on the boundary of T},
and x; # 0 for all 4, then the inequalities z; > 0 are not sharp at x; therefore the
inequality ||z, 2 > 42 must be sharp for some k, and we are done.

If z; = 0 for some ¢, then the point z lies in the set T;,_1 in the subspace
spanned by the m — 1 standard basis vectors excluding e;, and we are done by
induction. O

Exercise 4.13. Show that the cone T, C R* can be transformed via a nonsingular
linear transformation into the dual cone of 3 x 3 positive semidefinite matrices with
equal diagonal elements:

r1 T2 X3
(21,72, 23,74) € R* such that To w11 x4 | = 0.
Tr3 T4 T1

If we restrict x; to being 1 then we obtain the elliptope €3, which we have already
seen in Chapter 2.

261”2711/1
page 166
O



4.4. Symmetries, Dual Cones, and Facial Structure 167

We are now ready to completely describe X'.
Theorem 4.14. ¥/ = Tg.

Proof. We rewrite the relation (4.1) in the form

8
Zazf(sz) =0 for f S R[$]4’2, (42)
=1

and let @ = (a1, ...,as) be the vector of coefficients, with a; = £1. It follows that
L = 7 (R[z]4,2) is the hyperplane in R® perpendicular to a.

Since Ty is a convex cone, to show the inclusion ¥’ C Ty it suffices by Lemma
4.11 to show that C C Ts. Let v = (vy,...,vs) € L and t = (v},...,v3) € C.
By the relation (4.2) we have ajvy + -+ + agvg = 0 with a; = £1. Without loss
of generality, we may assume that v; has the maximal absolute value among v;.
Multiplying the relation (4.2) by —1, if necessary, we can make a; = —1. Then we
have v1 = agvs + -+ + agvg. We can now write \/t; = £/fs £ /t3 & -+ = /Ig
with the exact signs depending on a; and signs of v;. Therefore we see that 2+/t; <
V1 + -+ + /ts. Since v; has the largest absolute value among wv;, it follows that
2/t <Vt + -+ /tg for all 1 < k < 8. Hence we see that ¥/ C Tg.

To show the reverse inclusion Ty C X/ we use Lemma 4.12. It suffices to
show that all points + € Ty with 2\/z; = /z1 + --- + \/xg for some k, are also
in ¥’. Without loss of generality we may assume that £ = 1 and we have /21 =
VT2 + -+ Jos. Let y = (y1,...,y8) with y1 = —/@1/a1 and y; = /7;i/a; for
2 < i < 8. It follows that a1y1 + --- + asys = 0. Therefore y € m(R[z]s2) and
y = m(q) for some quadratic form ¢g. Then 7(¢?) = z and we are done. 0O

We can use Exercise 4.8 and Theorem 4.14 to visualize the discrepancy between
P’ and Y'. Let’s take a slice of both cones with the hyperplane H given by z1 +
-+ 4 x5 = 1. Recall that by Exercise 4.8 we have P’ = R. Therefore the slice of
P’ with H is the standard simplex. The slice of Ty with H is the standard simplex
with cut off corners. It was Hilbert’s observation that the standard basis vectors
e; are not in X/, and Theorem 4.14 tells us exactly how much is cut off around the
corners.

We now take a short break from comparing P, 24 and X, 2q4 to consider some
convexity properties of these cones, such as boundary, facial structure, symmetries,
and dual cones.

4.4 Symmetries, Dual Cones, and Facial
Structure

4.4.1 Symmetries of P, 2q and X, 24

The cones Py 29 and X, 29 have a lot of built-in symmetries coming from linear
changes of coordinates. Suppose that A € GL,(R) is a nonsingular linear transfor-
mation of R™.
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168 Chapter 4. Nonnegative Polynomials and Sums of Squares

Exercise 4.15. Show that if p(z) € R[z]2q is a nonnegative form, then p(Azx) is
also a nonnegative form in R[z]2q. Similarly, if p(z) is a sum of squares, then p(Ax)
is also a sum of squares.

In more formal terms, a nonsingular linear transformation A of R™ induces a
nonsingular transformation ¢4 of R[z]2q, which maps p(z) € R[z]2q to p(A™!(z)).
We say that the group GL, (R) acts on R[z]2q. It follows from Exercise 4.15 that
both cones Py 24 and Xy, 29 are invariant under this action. In other words, Py 24
and ¥, 24 are invariant under nonsingular linear changes of coordinates.

Exercise 4.16. Show that, up to a constant multiple, r2¢ = (22 4 --- 4+ 22)% is the
only form in R[x]2q4 that is fixed under all orthogonal changes of coordinates; i.e.,
it is the only form in R[z]2q that satisfies

p(z) =p(Az) forall A€ O,,

where O,, is the group of orthogonal transformations of R™.

We note that even if a linear transformation A of R™ is singular, it still induces
a linear transformation ¢4 in the same way. However the linear map ¢4 will also
be singular. The map ¢4 still sends Py 24 and X, 2q into themselves, but it will
no longer preserve the cones. Closed convex cones in R[z]2q that are mapped into
themselves under any linear change of coordinates are called blenders [24].

4.4.2 Dual Cone of P, 34

Let K be a convex cone in a real vector space V. Let V* be the dual vector space
of linear functionals on V. The dual cone K* is defined as the set of all linear
functionals in V* that are nonnegative on K:

K={{eV* | lxz)>0 forall ze€K}.

Many general aspects of duality will be discussed in Chapter 5. We examine
the specific cases of cones of nonnegative polynomials and sums of squares.

Let’s consider the dual space R[z]54 of linear functionals on R[z]2q. We first
observe that the dual cone of P, 24 is conceptually simple. For v € R", let ¢, be
the linear functional in R[z]5, given by evaluation at v:

()= f(v) for f € Rla]aa.

By homogeneity of forms we know that nonnegativity on the unit sphere is
equivalent to global nonnegativity. Therefore it is natural to think that the func-
tionals £, with v € S"~! generate the dual cone P} ,,. Before we show that this is
in fact the case we need a useful exercise from convexity.

Exercise 4.17. Let K C R" be a compact convex set with the origin not in K.
Show that the conical hull of K, cone(K), is closed. Construct an explicit example
that shows that the condition 0 ¢ K is necessary.
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Lemma 4.18. The dual cone P} o4 of the cone of nonnegative forms is the conical
hull of linear functionals ¢, with v on the unit sphere:

P} 5q = cone (€, | v eS™1).

Proof. Let Ly2a C R[z]54 be the conical hull of functionals ¢, with v € S"~1.
The dual cone Ly, o4 is the set of all forms p € R[z]2q such that

ly(p) = p(v) >0 forall vesS™

Therefore we see that L;)2d = Pn,24. Using biduality we see that the dual
cone Pp 54 is equal to the closure of Ly 2q:

::,2(1 = (L;,Zd)* = Ln,2d~

We now just need to show that the cone Ly 24 is closed and then Ly 29 =
Ln,24. Consider the set C of all linear functionals ¢, with v € S*~!. The set C is
given by a continuous embedding of the unit sphere S*~! into R[z]3,, and therefore
C is compact. If we can show that the convex hull of C' does not contain the origin,
then we are done by applying Exercise 4.17.

Let 724 = (22 + ... + 22)? be the form in R[z]2q that is constantly 1 on
the unit sphere. Suppose that m = > ¢, € conv(C). Then it follows that
m(r??) = 3" ¢, = 1, and therefore m cannot be the zero functional in R[z]5,. It
follows that conv(C) is a compact convex set with 0 ¢ C' and we are done. 0O

Exercise 4.19. Use the apolar inner product from Chapter 3 to identify R[x]2q
with the dual space R[z]54. Show that the dual cone Py ,4 is identified with the
cone of sums of 2dth powers of linear forms:

{p € R[z]2q ‘ p= qud with ¢; € ]R[a:]ml} .

Remark 4.20. The map that sends a point v € R™ to the form (vix1+- - -—|—Unxn)2d
is called the 2dth Veronese embedding and its image is called the Veronese variety. It
follows from Lemma 4.18 that the cone Py 54 is the conical hull of the 2dth Veronese
variety. For more information and for connections to orbitopes we refer to [25].

By applying spherical symmetries to functionals ¢, we obtain the following
crucial corollary, which describes the extreme rays of Py 5.

Corollary 4.21. The functional £, spans an extreme ray of Py o4 for all v € s,
and the functionals £, form the complete set of extreme rays of Py oq-

The extreme rays of the cone P 54 have a very nice parametrization by points
v € S~ 1. However, the cone P} , 4 is a very complex object from the computational
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170 Chapter 4. Nonnegative Polynomials and Sums of Squares

and convex geometry point of view. For example, given a linear functional ¢ €
R[z]54, determining whether it belongs to the cone P} 54 is known as the truncated
moment problem in real analysis. Despite a long history, there are very few explicit
and computationally feasible criteria for testing membership in R[z]54. For more
on this approach see [15].

Decomposing a given linear functional in R[z]54 as a linear combination of
the functionals ¢, or equivalently by Exercise 4.19, decomposing a given form in
R[r]2q as a linear combination of forms v2? is known as the symmetric tensor
decomposition problem. Again, despite a long history, many aspects of symmetric
tensor decomposition remain unknown. For more information we refer to [14, 21].

4.4.3 Boundary of the Cone of Nonnegative Polynomials

The boundary and the interior of the cone of nonnegative forms P, 24 are easy to
describe given our knowledge of the dual cone Fy 5.

Exercise 4.22. Show that the interior of P, 2q consists of forms that are strictly
positive on R™ \ {0} and the boundary of P, 24 consists of forms with a nontrivial
ZEro.

We note that the situation is slightly different in the nonhomogeneous case.
Let f(x) = 2%+ 1 be a univariate polynomial, and let P be the cone of nonnegative
univariate polynomials of degree at most 4. Clearly f € P and f is strictly positive
on R. However, f lies on the boundary of P. Consider g. = f — ex*. For any ¢ > 0
the polynomial g, will not be nonnegative. Therefore f is not in the interior of P,
and it lies on the boundary of P.

The explanation for this phenomenon is that even though f is strictly positive
on R, when viewed as a polynomial of degree 4, f has a zero at infinity. The
growth of f(x) as x goes to infinity is only of order 2, and therefore we cannot
subtract a nonnegative polynomial of degree 4 from f and have the difference remain
nonnegative. The easiest way to see the zero at infinity is to homogenize f with an
extra variable y: f = x%y? 4+ y*.

Note that if we set y = 1 in f we just recover f. However, f is not a strictly
positive form on R? \ {0}, since f has a nontrivial zero which comes from setting
y = 0. In general, for a polynomial f in n variables of degree d, let f; be the degree
d component of f consisting of all terms of degree exactly d. Zeroes at infinity of
f correspond to zeroes of fy. This can be seen by homogenizing f with an extra
variable. When we set this variable equal to 0 we obtain fj.

4.4.4 Exposed Faces of P, 2q

Exposed faces of P, 24 are conceptually easy to understand due to our knowledge of
the extreme rays of the dual cone Pl oq In Corollary 4.21. Maximal (by inclusion)
faces of P, 2q come from the vanishing of one extreme ray of the dual cone. There-
fore it follows that maximal faces F'(v) of P, 24 consist of all nonnegative forms
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that have a single common zero v € S"~1:
F(v)={p € Pa2a | lu(p) =p(v) =0}

We observe that a zero of a nonnegative form p is a local minimum. Therefore,
if p(v) = 0, this implies that the gradient of p at v is zero as well, Vp(v) = 0. In
other words, p must have a double zero at v.

Exercise 4.23 (Euler’s relation). Show that for p € Rlz]q and all v € R™ the
following relation holds:

(Vp(v),v) = d-p(v).

From the above exercise it follows that for forms p € R[z]2q the vanishing of
the gradient at v, Vp(v) = 0, forces the form p to vanish at v as well, p(v) = 0.
Therefore, for a nonnegative form p € Py 24 a single zero forces p to satisfy n lin-
ear conditions coming from Vp(v) = 0. It follows that the face F'(v) has codimension
at least n.

Exercise 4.24. Show that the maximal faces F'(v) of Py, 24 have codimension ex-
actly n in R[z]24.

All smaller exposed faces F(vy,...,vx) come from the vanishing of several
extreme rays Ly, , ..., Ly, of P;,4. The face F(v1,...,vx) has the form

F(vi,...,v5) ={p € Pnz2da | pv1)=---=pvy) =0, viESnfl}.

Therefore F(v1,...,v) consists of all nonnegative forms with zeroes at pre-
scribed points vy, ...,vx € S*L. It is natural to expect that every additional zero
increases the codimension of the exposed face by n so that codim F(v1, ..., v;) = kn.
However, this intuition fails if the number of zeroes k is sufficiently large. In partic-
ular if we prescribe enough zeroes, it is not even clear when the face F(v1,...,vg)
is nonempty. The question of the dimension of F(v1,...,vx) is quite complicated
[6] and it is related to the celebrated Alexander—Hirschowitz theorem [17].

Exposed extreme rays of P, 2q are also conceptually simple: a nonnegative
form p € Py 24 is an exposed extreme ray of P, 2q if and only if the variety defined
by p is maximal among all varieties defined by nonnegative polynomials.

Exercise 4.25. Show that p € P, 24 is an exposed extreme ray of P, 24 if and
only if for all ¢ € Py 24 with V(p) C V(q) it follows that ¢ = Ap for some A € R.

4.4.5 Nonexposed Faces of P, 4

The cone P, 24 has many nonexposed faces. If a form p has a zero at a point
v € R, then it must have a double zero at v. Exposed faces of P, 24 capture double
zeroes on any set of points vy,..., vk, but exposed faces fail to capture zeroes of
higher order.
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Exercise 4.26. Show that x%d is an extreme ray of Pp24. Use Exercise 4.25 to
conclude that x2? is not exposed.

More generally, the following construction explains the origins of nonexposed
faces of Pp24. Consider a maximal face F(v) of Py 24. We can construct an
exposed subface of F'(v) by considering nonnegative forms with zeroes at v and w
for some w € S*~1. We can also build nonexposed subfaces of F(v) by considering
nonnegative forms that are more singular at v.

Let p € F(v), so that p is a nonnegative form and p(v) = 0. Since 0 is the
global minimum of p and Vp(v) = 0, it follows that the Hessian VZp(v) must be a
positive semidefinite matrix. Let F,,(v) be the set of all nonnegative forms p with
zero at v whose Hessian at v is positive semidefinite and w lies in the kernel of
V2p(v):

Fo(v)={pe F(v) | Vp(v) w=0}.

Exercise 4.27. Show that F,,(v) is a face of Py 24. Use the characterization of
exposed faces of Py 24 to show that F,(v) is not an exposed face of Py 24.

4.4.6 Algebraic Boundaries

The boundaries of the cones Py 24 and Xy, 2q are hypersurfaces in R[z]24. Suppose
that we would like to describe these hypersurfaces by polynomial equations. This
leads to the notion of algebraic boundary of the cones Py 24 and ¥y 24, which is
obtained by taking the Zariski closure of the boundary hypersurfaces. As explained
in Chapter 5, the algebraic boundary of Py, 24 is cut out by a single polynomial, the
discriminant. The algebraic boundary of the cone of sums of squares is significantly
more complicated.

Exercise 4.28. Show that the hypersurface cut out by the discriminant is a com-
ponent of the algebraic boundary of ¥y, 24.

The above exercise shows that the algebraic boundary of P, 24 is included in
the algebraic boundary of ¥, 24. This seems counterintuitive, but it occurs because
we passed to the Zariski closures of the actual boundaries. We will see below that
for 36 and X4 4 the algebraic boundary of the cone of sums of squares has one
more component, which is described in Exercise 4.51.

4.5 Generalizing the Hypercube Example

We completely described the values of nonnegative forms and sums of squares on
the specific set S of £1 vectors in R* and we have seen, just from the evaluation
on S, that there exist nonnegative forms in R[z]4 4 that are not sums of squares.

However, these descriptions are limited to the specific set S. We now ex-
tend the arguments of Section 4.3 to work in far greater generality. We begin by
explaining how the set S was chosen in the first place.
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4.5.1 Hypercube Example Revisited
Let ¢; be the three quadratic forms

_ .2 2 .2 2 _ .2 2
g1 =] — X3, Q2 =T] — T3, (3 =] — Ty,

and let V' be the set of common zeroes of ¢;:
V={zeR* | ¢(z)=0 for i=1,2,3}.

Viewed projectively V consists of eight points in the real projective space RP?.
Viewed affinely V consists of eight lines, each line spanned by a point in S. We can
extend much of what was proved about the values of nonnegative polynomials to
zero-dimensional intersections in RP™ .

4.5.2 Zero-Dimensional Intersections

Let V be a set of finitely many points in RP"~!:

V={51,...,5k}
Suppose that V' is the complete set of real projective zeroes of some forms ¢, .. ., gn
of degree d:
V={zeRP"™" | q(z)="=gu(z)=0}

For each §; € V let s; be an affine representative of §; lying on the line
spanned by §;. Now let S = {s1,...,8}, be the set of affine representatives corre-
sponding to the common zeroes of ¢;.

Let’s consider the values of nonnegative forms of degree 2d on S. Let mg:
R[x]2a — R* be the evaluation projection:

ms(f) = (f(s1),..-, f(sk)) for f€R[z]2q.
Let H be the image of R[z]2q and let P’ be the image of Py, 2q under mg:
H =7g(R[z|2a), P’ =ng(Pa,2q)-

We have an additional complication that H does not have to equal R*. We know,
however, that P’ must lie in H, and since we are evaluating nonnegative forms
it follows that P’ lies inside the nonnegative orthant of RF: P’ C R’i. Therefore it
follows that P’ lies inside the intersection of H and R’i:

k
P'C HNRE.
The following theorem shows that this inclusion is almost an equality.

Theorem 4.29. Let Rf_+ be the positive orthant of RF. The intersection of H with
the positive orthant is contained in P':

HNRE, CP.
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Before proving Theorem 4.29 we make some remarks. As we know from Ex-
ercise 4.7 we cannot simply conclude that P = H N Ri using a closure argument,
since a projection of a closed cone does not have to be closed. We now show that
this occurs for evaluation projections as well.

Exercise 4.30. Let S C R® be the set of 16 points S = {#1,+1,41,41,1}. Show
that S can be defined as a common zero set of four quadratic forms in R[z]s 2, and
use Theorem 4.29 to show that R}ﬂ C mg(Ps,4). Show that the standard basis
vectors e; € R'® are not in the image mg(Ps 4). In other words, the vectors e; are
not realized as values on S of a nonnegative form of degree 4 in 5 variables, but all
strictly positive points in RS, are realized.

Proof of Theorem 4.29. Let v = (vi,...,v;) € HNRY . Since v € H there
exists a form f € R[z]2q such that f(s;) = v;. Let g = ¢ + --- + ¢2,, where ¢; are
the forms defining V. We claim that for large enough A € R the form f = f + \g
will be nonnegative, and since each ¢; is zero on S we will also have 7g ( f) = .

By homogeneity of f it suffices to show that it is nonnegative on the unit
sphere S”~!. Furthermore, we may assume that the evaluation points s; lie on the
unit sphere. Since we are dealing with forms, evaluation on the points outside of
the unit sphere amounts to rescaling of the values on S*~1.

Let B.(S) be the open epsilon neighborhood of S in the unit sphere S"~1.
Since f(s;) > 0 for all 4, it follows that for sufficiently small € the form f is strictly
positive on B(95):

f(z) >0 forall xe€ B.(S).

The complement of B.(S) in S"~! is compact, and therefore we can let m; be the
minimum of g and ms be the minimum of f on S"~1\ B.(S). If my > 0, then f
itself is nonnegative and we are done. Therefore, we may assume my < 0. We also
note that since g vanishes on S only, it follows that m; is strictly positive.

Now let A > — 2. The form f = f+4\g is positive on B.(S). By construction
of B.(S) we also see that the minimum of f on the complement of B.(S) is at
least 0. Therefore f is nonnegative on the unit sphere S*~!, and we are done. O

We proved in Theorem 4.29 that any set of strictly positive values on the finite
set S, coming from real zeroes of forms of degree d, can be achieved by a globally
nonnegative form of degree 2d. We now look at the values that sums of squares can
take on such sets S.

4.5.3 Values of Sums of Squares

We recall from Section 4.3 that the reason that sums of squares could not achieve all
the possible nonnegative values on the hypercube was that the values of quadratic
forms on the hypercube satisfied a linear relation. The points of the hypercube
come from common zeroes of the quadratic forms, as we have seen in Section 4.5.1.

There is a general theory in algebraic geometry on the number of relations
that values of forms of certain degree have to satisfy on finite sets of points. These
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relations are known as Cayley—Bacharach relations. For more details we refer the
reader to [10].

At first glance it is surprising that there should be any linear relation at all.
If the points were chosen generically then the values of forms of degree d on these
points would be linearly independent, at least until we have as many points as the
dimension of the vector space of forms of degree d. However, our choice of points
is not generic; point sets that come from common zeroes are special.

For the cases R[z]4,4 and R[z]36 it is easy to establish the existence of the
linear relation by simple dimension counting. We explain the case of R[x]4 4.

Since common zeroes of real forms do not have to be real, for this section
we will work with complex forms. Suppose that qi,q2,q3 € C[z]s,2 are complex
quadratic forms in 4 variables. As before let V' be the complete set of projective
zeroes of some forms q1, ¢2, q3:

V={zeCP’ | q(z)=q(@) =q(@) =0}

Three quadratic forms in C[z]4 2 are expected to generically have 23 = 8 common
zeroes. Suppose that this is the case and let V = {51,..., 3s}.

For each §; € V let s; be an affine representative of §; lying on the line
corresponding to §;. Let S = {s1,...,s8}, be the set of affine representatives
corresponding to the common zeroes of ¢;. Define mg : C[z]s2 — C® to be the
evaluation projection.

Lemma 4.31. The values of quadratic forms in Clx]a 2 satisfy a linear relation on
the points of S. In other words there exist pi1,...ug € C such that

p1f(s1)+ -+ usf(ss) =0 forall feCz]az. (4.3)

Proof. The dimension of C[z]s 2 is 10. Note that the kernel of g contains the
three forms ¢;, since each ¢; evaluates to 0 on S. Therefore the dimension of the
kernel of 7g is at least 3. It follows that the image of mg has dimension at most
10 — 3 = 7. Since the image of 7g lies inside C3, it follows that there exists a linear
functional that vanishes on the image of mg. This linear functional gives us the
desired linear relation. 0O

Remark 4.32. It is possible to show in the above proof that the dimension of the
kernel of mg is exactly 3 and therefore the linear relation (4.3) is unique. Further-
more, it can be shown that each p; # 0, or, in other words, the unique linear relation
has to involve all of the points of S.

Exercise 4.33. Suppose that ¢i,¢2 € C[z]3 3 are two cubic forms intersecting in
3% = 9 points in CP?. Let S be the set of affine representatives of the common
zeroes of ¢; and ¢o. Use the argument of Lemma 4.31 to show that the values of
cubic forms on S satisfy a linear relation.

Exercise 4.34. The Robinson form

R(z,y,z) = 2% + 9% + 20 — (2% + 2%y + 2727 + 222" + y*2® + y?2?) + 32%y%2?
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176 Chapter 4. Nonnegative Polynomials and Sums of Squares

is an explicit example of a nonnegative polynomial that is not a sums of squares.
Let ¢1 = z(x + 2)(z — 2) and g2 = y(y + 2)(y — z). Calculate the 9 common zeroes
of ¢1 and g2. Show that R(z,y,z) vanishes on 8 of the 9 zeroes. Use Exercise 4.33
to show that R(z,y, 2) is not a sum of squares.

We have examined in detail what happens to values of nonnegative forms
and sums of squares on finite sets of points coming from common zeroes of forms.
However, this still seems to be a very special construction. We now move to show
that the difference in values on such sets is in fact the fundamental reason that
there exists nonnegative polynomials that are not sums of squares.

4.6 Dual Cone of 3, 2q

We gave a simple description of the extreme rays of the dual cone Py 54 in Corollary
4.21. The description of the extreme rays of the dual cone X7, , is significantly more
complicated. We will see that evaluation on the special finite point sets we described
in Section 4.5 will naturally lead to extreme rays of X} 5.

We first describe the connection between X} ,4 and the cone of positive
semidefinite matrices that lies at the heart of semidefinite programming approaches
to polynomial optimization. To every linear functional ¢ € R[z]54 we can associate
a quadratic form @, defined on R[z]q by setting

Qe(f) =4(f>) forall [ e Rlala.

The cone X} 54 can be thought of as a section of the cone of positive semidef-
inite quadratic forms. We now show how this description arises.

Lemma 4.35. Let £ be a linear functional in Rlx|54. Then £ € ¥}, o4 if and only
if the quadratic form Qg is positive semidefinite.

Proof. Suppose that £ € X} ,4. Then ((f?) > 0 for all f € R[z]a. Therefore
Qe(f) = 0 for all f € R[z]g and Q, is positive semidefinite.

Now suppose that Qg is positive semidefinite. Then £(f2) > 0 for all f € R[x]q.
Let g = f? € Bn2d. Then £(g) = > 4(f?) >0and { € ¥iaq- O

An Aside: The Monomial Basis and Moment Matrices

Suppose that we fix the monomial basis for R[z]q. Given a linear functional
¢ € Rlz]$4 we can write an explicit matrix M (¢) for the quadratic form @, using
the monomial basis of R[z]q. The matrix M (¢) is known as the moment matriz or
generalized Hankel matriz. The entries of M (¢) are indexed by monomials ¢, 2% €
R[x]q. The entry M(£), s is given by evaluating £ on x®2% = 2°+5;

M(l) o = L(x*TF).

For example, consider the linear functional ¢, : Rz]2 4 — R given by evalu-
ation on v = (1,2). The monomial basis of R[z]2 2 is given by 2% zy,y? and the
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4.6. Dual Cone of ¥p, 24 177

moment matrix of M (¢,) reads as
4
M) = 8

o N
CO = DN
—

6

The rank of the quadratic form @ is the same as the rank of its moment matrix
M(¢), and @, being nonnegative is equivalent to having a positive semidefinite
moment matrix M (¢). However, the moment approach is tied to the specific choice
of the monomial basis. Below we prefer to keep a basis independent approach
with emphasis on the underlying geometry, but we note that the results are readily
translatable into the terminology of moments. |

Let S™% be the vector space of real quadratic forms on R[z]q. We can view
the dual space R[z]54 as a subspace of S™? by identifying the linear functional
¢ € R[z]54 with its quadratic form Q. Let S’_’f_’d be the cone of positive semidefinite
forms in S™%:

Si’d = {Q e s ‘ Q(f)>0 forall fe R[x]d}.
We can restate Lemma 4.35 as follows.

Corollary 4.36. The cone ¥}, 54 is the section of the cone of positive semidefinite

matrices S with the subspace R[z]5y:
* _ Sn,d Rizl*
n2d = 54 NR[z]aq.

Note that this shows that the cone X7 ,; is a spectrahedron.

The following exercise establishes the connection between the cone of sums of
squares X, 29 and the cone of positive semidefinite matrices Si’d. This allows us
to formulate sums of squares questions in terms of semidefinite programming.

Exercise 4.37. Use the result of Corollary 4.36 to show that the cone ¥, 24 is a
projection of the cone Sfd of positive semidefinite matrices on R[z]q. Use the
monomial basis of R[z]q to describe this projection explicitly. Conclude that the
cone Xy 24 is a projected spectrahedron. (Hint: See Chapter 5 for a general discussion
of the relationship between duality and projections.)

Remark 4.38. In order to apply the result of FExercise 4.37 to actual computation
we need to work with an explicit basis of Rlx]a. See Chapter 3 for the discussion
of possible basis choices and their impact on computational performance. We note
that the size of the positive semidefinite matrices we work with is the dimension
of Rlz]a, which is equal to ("Jrg*l), Therefore the size of the underlying positive
semidefinite matrices increases rather rapidly as a function of n and d. This is one
of the main computational limitations of semidefinite programming approaches to
polynomial optimization.
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178 Chapter 4. Nonnegative Polynomials and Sums of Squares

We would like to see what separates sums of squares from nonnegative forms.
The extreme rays of ¥} ,4 cut out the cone of sums of squares. Therefore we would
like to find extreme rays of Y} .2q that are not in the dual cone P 54, since these
are the functionals that distinguish the cone of sums of squares from the cone of
nonnegative forms.

Formally the dual cone Xf , is defined as the cone of linear functionals non-
negative on ¥, 24, which is equivalent to being nonnegative on squares. One way
of constructing linear functionals nonnegative on squares is to consider point eval-
uation functionals ¢, with v € R™ that send p € R[z]2q to p(v). However, as we
have seen in Corollary 4.21, point evaluation functionals are precisely the extreme
rays of P} 5. Therefore, these linear functionals are not helpful in distinguishing
between X} 54 and Py 54. Our goal now is to find a new way of constructing func-
tionals nonnegative on squares and also to understand why such functionals do not
exist when En,2d = Pn,2d-

We showed in Corollary 4.36 that the cone X ,4 is a spectrahedron. We
now prove a general lemma about spectrahedra that states that extreme rays of a
spectrahedron are quadratic forms with maximal kernel [20]. The examination of
the kernels of extreme rays of X3 ,4 will provide a crucial tool for our understanding
of X7, 5q. ’

Let S be the vector space of quadratic forms on a real vector space V. Let
S, be the cone of psd forms in S.

Lemma 4.39. Let L be a linear subspace of S and let K be the section of Sy
with L:

Suppose that a quadratic form @ spans an extreme ray of K. Then the kernel of @
is mazimal for all quadratic forms in L: if P € L and ker Q C ker P then P = A\Q
for some X € R.

Proof. Suppose not, so that there exists an extreme ray @ of K and a quadratic
form P € L such that ker @ C ker P and P # AQ. Since ker @) C ker P it follows
that all eigenvectors of both @) and P corresponding to nonzero eigenvalues lie in
the orthogonal complement (ker @)+ of ker Q. Furthermore, @ is positive definite
on (ker Q)= .

It follows that @ and P can be simultaneously diagonalized to matrices Q'
and P’ with the additional property that whenever the diagonal entry @7, is 0 the
corresponding entry P/; is also 0. Therefore, for sufficiently small ¢ € R we have
that Q@+ eP and @) — e P are positive semidefinite and therefore Q+¢eP,Q —eP € K.
Then @ is not an extreme ray of K, which is a contradiction. O

We now apply Lemma 4.39 to the case X 54. This gives us a crucial tool for
studying extreme rays of Xf o4.

Corollary 4.40. Suppose that Q) spans an extreme ray of ¥y, o4. Then either
rank @ = 1 or the forms in the kernel of QQ have no common zeroes, real or complex.
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Proof. Let W C Rz]q be the kernel of @ and suppose that the forms in W
have a common real zero v # 0. Let £ € R[z]54 be the linear functional given
by evaluation at v: £(f) = f(v) for all f € Rlx]2a. Then Qg is a rank 1 positive
semidefinite quadratic form and ker @ C ker ;. By Lemma 4.39 it follows that
Q = MQy and thus @ has rank 1.

Now suppose that the forms in W have a common complex zero z # 0. Let
¢ € R[z]54 be the linear functional given by taking the real part of the value at z:
0(f) =Re f(z) for all f € R[z]zqa. It is easy to check that the kernel of @, includes
all forms that vanish at z and therefore W C ker (Qy. Therefore by applying Lemma
4.39 we again see that Q = AQy. However, we claim that @y is not a positive
semidefinite form.

The quadratic form @ is given by Q¢(f) = Re f?(2) for f € R[z]q. However,
there exist f € R[z]q such that f(z) is purely imaginary and therefore Q(f) < 0.
The corollary now follows. 0O

Corollary 4.40 shows that extreme rays of X, 54 are of two types: either they
are rank 1 quadratic forms or they have a kernel with no common zeroes. We now
deal with the rank 1 extreme rays of ¥}, ,4. For v € R" let £, be the linear functional
in R[z]%4 given by evaluation at v,

o(f) = f(v) for f € R[z]za,

and let Q, be the quadratic form associated to £,: Q,(f) = f2(v). In this case we
say that @, (or {,) corresponds to point evaluation. Recall that the inequalities
¢, > 0 are the defining inequalities of the cone of nonnegative forms P, 24. The
following lemma shows that all rank 1 forms in R[z]54 correspond to point evalu-
ations. Since we are interested in the inequalities that are valid on ¥, 249 but not
valid on Pn 24 it allows us to disregard rank 1 extreme rays of ¥} 54 and focus on
the case of a kernel with no common zeros.

Lemma 4.41. Suppose that Q is a rank 1 quadratic form in R[z]s,. Then Q = AQ,
for some v € R"™ and X € R.

Proof. Let @ be a rank 1 form in R[z]34. Then Q(f) = As*(f) for some linear
functional s € R[z]j. Therefore it suffices to show that if Q = s?(f) for some
s € Rlx]j, then Q = Q, for some v € R".

Since @ € R[z]sy we know that Q is defined by Q(f) = ¢(f?) for a linear
functional ¢ € R[z]54 and therefore £(f?) = s%(f) for all f € R[z]q. We have Q(f +
g) = 0((F+9)%) = £(£2)+20(fg)+£(9%) = (s(f)+5(9))2 = 52(f)+25(F)s(g)+52(g)
and it follows that £(fg) = s(f)s(g) for all f, g € R[z]a.

Let 2 denote the monomial z{* - - - 2%. If we take monomials 2, 28 1, x
in R[z]q such that 2%2® = 2727, then we must have s(2*)s(2”) = s(27)s(z?).

Suppose that s(z¢) = 0 for all i. Then we see that

s(a{z))? = s(af)s(x{*aF) = 0,

)

and continuing in similar fashion we have s(z*) = 0 for all monomials in R[z]q.
Then / is the zero functional and @ does not have rank one which is a contradiction.
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We may assume without loss of generality that s(x¢) # 0. Since we are inter-
ested in £(f?) = s?(f) we can work with —s if necessary, and thus we may assume
that s(z{) > 0. Let s; = s(z¢ 'a;) for 1 < i < n. We will express s(z®) in
terms of s; for all z* € R[z]q. Since (x§)(z¢ %z;2;) = (2§ ;) (2¢ " 2;) we have

s(a:il_zxia:j) = s;8;/s1. Continuing in this fashion we find that
Q2 «
S e S n
(%% [e% _ 22 n
stap ) =

1

Now let v € R™ be the following vector:

s/ g(d-D/d, —(d-1)/d

v= 2 .eny 8 Sn,)-

Let s, be the linear functional on R[z]q defined by evaluating a form at v: s,(f) =
f(v). Then we have s, (¢ 'z;) = s; and

Q2 Qp
d—(d—1)(d— d S S
su(ft - afn) = 52 s /AT 22 L o
S
1

Since s agrees with s, on monomials it follows that s = s, and thus £(f2) =
s2(f) = f(v)? = f2%(v). Therefore ¢ indeed corresponds to point evaluation and we
are done. 0O

Suppose that Q; spans an extreme ray of X}, 24 that does not correspond to
point evaluation. Let W, be the kernel of ;. Then by Corollary 4.40 and Lemma
4.41 we know that the forms in W, have no common zeroes real or complex. This
condition gives us a lot of dimensional information about W, and places strong
restrictions on the linear functionals /. As we will see, for the three equality cases
of Hilbert’s theorem the dimensional restrictions on W, will allow us to derive non-
existence of the extreme rays of ¥} 54 with kernel Wy, thus proving the equality
between nonnegative forms and sums of squares.

Let W be a linear subspace of R[z]q and define W2 to be the degree 2d part
of the ideal generated by W:

W = (W)aq.
We use Ve (W) to denote the set of common zeroes (real and complex) of forms
in W.

We next show that there is a strong relation between the linear functional ¢
and the kernel Wy of the quadratic form @,. Namely, we show that ¢ vanishes on
all of W2

(p)=0 forall pe Wg@). (4.4)

We will write the condition (4.4) as é(W€<2>) = 0 for short. We also now show
that W, is the maximal subspace among all W such that £(W () = 0.

Lemma 4.42. Let Q; be a quadratic form in X, o4 and let W, C Rlz]a be the
kernel of Q¢. Then p € Wy if and only if £(pq) = 0 for all ¢ € R[x]q.
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Proof. In order to investigate Wy, we need to define the associated bilinear form By:

Qe(p+q) — Qu(p) — Qulq)
2

Bi(p,q) = for p,q € Rlz]q.

By definition of Q; we have Q,(p) = £(p?). Therefore it follows that

B(p,q) = €(pq).

A form p € R[z]q is in the kernel of @y if and only if By(p,q) = 0 for all ¢ € R[z]q.
Since By(p, q) = £(pq), the lemma follows. 0O

We note that V(W) = 0 implies that the dimension of Wy is at least n
and we can find forms py,...,p, € W, that have no common zeroes. We need a
dimensional lemma from algebraic geometry which we will use without proof.

Lemma 4.43. Suppose that py, ..., pn € R[x]q are forms such that Ve(p1, ..., pn) =
0 and let I = (p1,...,pn) be the ideal generated by the forms p;. Then

dim Irg = n - dimR[z]q — <Z>

Remark 4.44. The forms pi,...,pn € Rlx]a such that Ve(p1,...,pn) = 0 form
a complete intersection. The dimensional information of the ideal (p1,...,pn) is
well understood via the Koszul complex. The statement of Lemma 4.43 is an easy
consequence of the powerful techniques developed for complete intersections [12].

4.6.1 Equality Cases of Hilbert’s Theorem

We have obtained enough information on the dual cone X7, ,4 to give a unified proof
of the equality cases of Hilbert’s theorem.

Proof of equality cases in Hilbert’s theorem. Suppose that ¥y, 24 # Pn 24-
Then there exists an extreme ray of 2, 24 that does not come from point evaluation.
Let £ be such an extreme ray and let W, be the kernel of @);. By Lemma 4.41 it
follows that rank @, > 1, and therefore by Corollary 4.40 we see that Ve (Wy) = (.

Therefore dim W, > n and we can find forms pi,...,p, € W; such that
Velpr,---ypn) = 0. Let I = {p1,...,pn) be the ideal generated by p;. It follows
that W€<2> includes o4 and dim Irg = n-dimR[z]q — () by Lemma 4.43. Therefore
we see that

dim We<2> >n-dimR[z]q — (Z)

However, by (4.4) we must also have

dim W < dimR[2]2q — 1,
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since a nontrivial linear functional £ € R[z|54 vanishes on Wg@). We now go case by
case and derive a contradiction from these dimensional facts in each of the equality
cases.

Suppose that n = 2. Then dimR[z]z.a = d + 1 and thus dim Wé<2> > 2(d +
1) = 1=2d+ 1 = dimR[z]2,24, which is a contradiction.

Suppose that 2d = 2. Then dimR[x],1 = n and dim W€<2> >n?—(y) =

(";rl) = dim R[z]p,2, leading to the same contradiction.

Finally suppose that n = 3 and 2d = 4. Then dim R[z]3 2 = 6 and dim W€<2> >
6-3— (g) = 15 = dimR[z]3 4, which again leads to the same dimensional contra-
diction. 0

We now turn our attention to the structure of extreme rays of ¥y ,, in the
smallest cases where there exist nonnegative polynomials that are not sums of
squares: 3 variables, degree 6, and 4 variables, degree 4.

4.7 Ranks of Extreme Rays of 2;’,‘,’6 and EZ’ 4

We first examine, in the cases (3,6) and (4,4), the structure of linear functionals
¢ € Rz]54 with a given kernel W such that Ve (W) = 0.

Proposition 4.45. Let W be a three-dimensional subspace of R[x]s s such that
Ve(W) = 0. Then dim W2 = 27 and there exists a unique quadratic form Q €
R(z]s,6 containing W in its kernel. Furthermore ker Q, = W.

Before we prove Proposition 4.45 we note that the unique form @, with kernel
W need not be positive semidefinite. The investigation of positive definiteness of
Q¢ will lead us to evaluation on finite point sets in the next section.

Proof of Proposition 4.45. By applying Lemma 4.43 we see that
dimW® = 3. dimR[z]3 3 — 3 = 27.

Since dimR[z]s,¢ = 28 it follows that W(? is a hyperplane in R[z]3 ¢ and
therefore there is a unique linear functional ¢ vanishing on W. By Lemma 4.42 it
follows that @ is the unique (up to a constant multiple) quadratic form with W in
its kernel.

We leave the part that the dimension of the kernel of @)y cannot be more
than 3 as an exercise. [

There is also the corresponding proposition for the case (4,4) with the same
proof.

Proposition 4.46. Let W be a four-dimensional subspace of Rlz|a2 such that
Ve(W) = 0. Then dim W) = 34 and there exists a unique quadratic form Qg €
R[z]a,4 containing W in its kernel. Furthermore ker Qg = W.
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We obtain the following interesting corollaries.

Corollary 4.47. Suppose that ¢ spans an extreme ray of ¥3 ¢ and £ does not
correspond to point evaluation. Then rank Q, = 7. Conversely, suppose that Qg is
a psd form of rank 7 in Si’_’g and let Wy be the kernel of Q¢. If Ve(Wy) = 0, then
Qe spans an extreme ray of X3 g.

Proof. Suppose that ¢ spans an extreme ray of 33 g and ¢ does not correspond
to point evaluation. Let W; be the kernel of Q. We know that V(W;) = () and
dim W, > 3. We can then find a three-dimensional subspace W of W, such that
V(W) = 0. Applying Proposition 4.45 we see that there exists a unique quadratic
form @ containing W in its kernel. Then it must happen that Q) is a scalar multiple
of @, and since ker @ = W we see that the kernel of (), has dimension 3 and thus
Q¢ has rank 7.

Conversely suppose that @y is a positive semidefinite form of rank 7 and
Ve(We) = 0. Then by Proposition 4.45 Q; is the unique quadratic form in R[z]3 ¢
with kernel Wy. Suppose that Q; = Q1 + Q2 with Q1,Q2 € ¥3 . Then @1 and
Q2 are positive semidefinite forms by Lemma 4.35 and therefore ker Q, C ker Q);.
Then @1 and Q4 are scalar multiples of @y and therefore Q; spans an extreme ray
of ¥36. O

The above corollary has a couple of interesting consequences. If the quadratic
form Qg is in X3 g and its rank is at most 6, then it must be a convex combination of
rank 1 forms in 33 g, which we know are point evaluations. Restated in measure and
moment language, this says that if a positive semidefinite moment matrix in Rz]3 ¢
has rank at most 6, then the linear functional can be written as a combination of
point evaluations, and therefore the linear functional has a representing measure.
However, there are rank 7 positive semidefinite moment matrices that do not admit
a representing measure.

Another consequence can be stated in optimization terms. Suppose that we
would like to optimize a linear functional over a compact base of the X3 . Then
the point where the optimum is achieved will have rank 1 or rank 7.

Corollary 4.48. Suppose that p € X3¢ lies on the boundary of the cone of sums
of squares and p is a strictly positive form. Then p is a sum of exactly 3 squares.

Proof. Let p be as above. Since p lies in the boundary of ¥3¢ there exists an
extreme ray ¢ of the dual cone ¥} ¢ such that ¢(p) = 0. Now suppose that p =
3 f? for some f; € Rlz]s3. It follows that Q¢(f;) = 0 for all 4, and since Qg is a
positive semidefinite quadratic form, we see that all f; lie in the kernel W, of Q.
By Corollary 4.47 we know that dim W, = 3 and therefore p is a sum of squares
of forms coming from a three-dimensional subspace of R[z]s 3. It follows that p
is a sum of at most 3 squares. Since any two ternary cubics have a common real
zero and p is strictly positive, it follows that p cannot be a sum of two or fewer
squares. [
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The equivalent corollaries hold for the case (4, 4), although the proof of Corol-
lary 4.50 requires slightly more work, while the proof of Corollary 4.49 is exactly
the same. For complete details see [7].

Corollary 4.49. Suppose that £ spans an extreme ray of ¥3 4 and £ does not
correspond to point evaluation. Then rank Qy = 6. Conversely, suppose that Qg is
a positive semidefinite form of rank 6 in 5’12 and let Wy be the kernel of Q¢. If
Ve(We) =0, then Qg spans an extreme ray of X3 4.

Corollary 4.50. Suppose that p € X4 4 lies on the boundary of the cone of sums
of squares and p is a strictly positive form. Then p is a sum of exactly 4 squares.

Corollaries 4.48 and 4.50 were used to study the algebraic boundary of the
cones X3¢ and X4 4 in [8].

Exercise 4.51. Show that all forms in R[z]s ¢ that can be written as linear combi-
nations of squares of 3 cubics form an irreducible hypersurface in R[x]3 ¢. Similarly,
show that all forms in R[z]4 4 that are linear combinations of squares of 4 quadrat-
ics also form an irreducible hypersurface in R[z]4,4. (Hint: Use Terracini’s lemma.)
Use Corollaries 4.48 and 4.50 to show that the algebraic boundary of 33 ¢ and 4 4
has a single component in addition to the discriminant hypersurface.

It was shown in [8] that despite their simple definition the hypersurfaces of
Exercise 4.51 have very high degree: 83200 in the case (3,6) and 38475 in the
case (4,4). This shows that the boundary of the cone of sums of squares is quite
complicated from the algebraic point of view.

4.8 Extracting Finite Point Sets

We have established in the previous section that the “interesting” extreme rays of
33 ¢ have rank 7 and those of 33 ; have rank 6. Let’s consider the case of 4 variables
of degree 4. We have shown that a four-dimensional subspace W leads to a unique
form @, of rank 6 such that the kernel of @y contains W. However, the form @), does
not have to lie in 3} 4, since the form Q¢ is not necessarily positive semidefinite.

In order to examine positive semidefiniteness of )y we reduce the problem to
looking at an evaluation on finite point sets.

Exercise 4.52. Let W be a subspace of R[z]q such that Ve (W) = 0. Show that
there exist forms g1, .. ., gn—1 € W that intersect in d”~! projective points in CP"~!:

Vc(ql,...,qn_l)2{51,...,§dn—1 | §1 E(C]P)nil}.

We apply this result to our case of W C R[z]4,4 and obtain forms g1, ¢2,q3 €
W intersecting in 2% = 8 projective points §; € CP?. We can take their affine
representatives si,...,ss € C". Unfortunately, even though the forms ¢; € W are
real, their points of intersection may be complex.
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However, as was shown in [7], the fact that the form @, is positive semidefinite
restricts the number of complex zeroes. Since complex zeroes of real forms come
in conjugate pairs, the fewest number of complex zeroes that the forms ¢; may
have is 2.

Theorem 4.53. Suppose that £ € R[z]} 4 is an extreme ray of ¥} 4 that does not
correspond to point evaluation and let Wy be the kernel of Qq. Let q1,92,q93 € Wy
be any three forms intersecting in 23 = 8 projective points in CP®. Then the forms
q; have at most 2 common complex zeroes. Conversely, given qi,qz2,q3 € Rlz]a2
intersecting in 8 points with at most 2 of them complex, there exists an extreme ray
of 33 4 whose kernel contains qi1,qz, gs-

There is an equivalent theorem for the case (3,6).

Theorem 4.54. Suppose that £ € R[z]3 ¢ is an extreme ray of ¥ ¢ that does not
correspond to point evaluation and let Wy be the kernel of Qg. Let q1,q2 € Wy be
any two forms intersecting in 32 = 9 projective points in CP*>. Then the forms
¢ have at most 2 common complex zeroes. Conversely, given qi1,q2,q3 € R[z]s 3
intersecting in 9 points with at most 2 of them complex, there exists an extreme ray
of X3¢ whose kernel contains q1,qz.

It is possible to apply the Cayley—Bacharach machinery explained in Section
4.5 to completely describe the structure of the extreme rays of X524 for the cases
(4,4) and (3, 6) using the coefficients of the unique Cayley-Bacharach relation that
exists on the points of intersection of the forms g;.

We have now come full circle, from using a finite point set to establish that
there exist nonnegative forms that are not sums of squares in Section 4.3 to showing
that these sets underlie all linear inequalities that separate ¥y, 24 from P 24.

4.9 Volumes

We now switch gears completely and turn to the question of the quantitative re-
lationship between P, 2q and ¥, 24. Our goal is to compare the relative sizes of
the cones Py 24 and Xy 24. While the cones themselves are unbounded objects, we
can take a section of each cone with the same hyperplane so that both sections are
compact.

Let Ly 24 be an affine hyperplane in R[z]2q consisting of all forms with inte-
gral (average) 1 on the unit sphere S*~! in R™:

Ln,2d = {p S R[a}hd ‘ / pdo = 1} ,
Sn—1

where o is the rotation invariant probability measure on S"~1. Let Py 24 and $p 24
be the sections of Py 24 and ¥y, 24 with Ly 24:

Pn,2d = Pn,2d N Ln,2d and 21'1,2d = Zn,2d N Ln,2d-
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Let 724 = (22 4 --- + 22)? be the form in R[x]2q that is constantly 1 on the

unit sphere. Convex bodies P, 24 and 2n72d lie in the affine hyperplane Ly, 24 of
forms of integral 1 on the unit sphere. We now translate them to lie in the linear
hyperplane My 24 of forms of integral 0 on the unit sphere by subtracting r2?:

Po2d = Po2a— 1" ={p€Rz]aa | p+r*’ € Pnaa}

and

Sn2d =Sn2a — " ={pERz]2a | p+r* € Sn2al.

The estimation of the volumes of Pn,zd and f]n,zd will be done separately.
Before proceeding we make a short note on the proper way to measure the size of
a convex set. Let K C R"™ be a convex body. Suppose that we expand K by a
constant factor a. Then the volume changes as follows:

Vol(aK) = o" Vol K.

We would like to think of K and «K as similar in size, but if the ambient
dimension n grows, then oK is significantly larger in volume. Therefore the proper
measure of volume that takes care of the dimensional effects is

(Vol K.

4.9.1 Volume of Nonnegative Forms

Let My 24 be the linear hyperplane of forms of integral 0 on the unit sphere:

My 24 = {pGR[JC]zd ‘ / pdcr:O}.
Snfl

Both convex bodies Iszd and in)gd live inside My, 24, so our calculations will
involve the unit sphere and the unit ball in My 24.
We equip R[x]2q with the L? inner product:

(p,q) = / pqdo.
Snfl

We note that with this metric we have

ol = .0} = [ 5o = I

We also let ||p||,, denote the L>-norm of p:

IPlloe = max |p()]-

Let N be the dimension of My, 2q4. Since My, 24 is a hyperplane in R[z]2q we
know that N = dimR[z]2g — 1 = ("+2d_1) — 1. Let S¥~1 and BY denote the unit

2d
sphere and the unit ball in M, 29 with respect to the L? inner product.
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Our goal is to show the following estimate on the volume of szd.

Theorem 4.55.

Vol Py 24 S S
Vol BN ~ 2VAd+ 2 '

We first develop a general way of estimating the volume of a convex set,
starting from simply writing out the integral for the volume in polar coordinates.
We refer to [11] for the relevant analytic inequalities.

Exercise 4.56. Let K C R™ be a convex body with the origin in its interior and
let xx be the characteristic function of K: xx(z) = 1if v € K and xx(z) =0
otherwise. The volume of K is given by the following integral:

Vol K = XK di,
Rn

where p is the Lebesgue measure.
Let Gk be the gauge of K. Rewrite the above integral in polar coordinates

to show that
Vol K

Vol B"  Jena

Gdo,

where B™ and S™~! are the unit ball and the unit sphere in R™ and o is the rotation
invariant probability measure on S"~1.

Exercise 4.57. Use Exercise 4.56 and Hoélder’s inequality to show that

Vol K\ /™ .
Bl > ~Ldo.
(voan) = )., Grde

Exercise 4.58. Use Exercise 4.57 and Jensen’s inequality to show that

Vol K\ /™ !
—_— > .
(voan) = ( - GKdU)

Now we apply the results of Exercises 4.56-4.58 to the case of ]5“,2(1.

_ 1/N 1
VOIszd S / || || d
Vol BN =\ Jgw o Ploc @02 )

Proof. We observe that ]5“72(1 consists of all forms of integral 1 on S"~! whose
minimum on S”~! is at least 0. Therefore Py 24 consists of all forms of integral 0

Lemma 4.59.



261”2711/1
page 188
O

188 Chapter 4. Nonnegative Polynomials and Sums of Squares

on S"~! whose minimum on the unit sphere is at least —1:

IBmzd = {p € R[z]2q ‘ / pdo =0and min p(z) > —1}.
§n—1 reSn—1
It follows that the gauge of ]5,1,2(1 is given by — mingn-1:

Gp,aa(p) = — min p(z). (4.5)

Using Exercise 4.58 we can bound the volume of pn)gd from below:

. 1/N .
7\/01 Fn,24 > / —min(p)d
Vol BN = v P )

Since —mingegn—1 p(x) is bounded above by ||p|| ., we obtain

- 1/N .
Vol Py 24 > / lpll... d
Vol BN =\ Jgwon Ploe @02

as desired. 0

_ From Lemma 4.59 we see that in order to obtain a lower bound on the volume
of Py.2a we need to find an upper bound on the average L>-norm of forms in S¥~1:

/ 1pll., do.
SN-1

It is easy to see that the L°°-norm of any polynomial is bounded from below by any
of its L**-norms:

[IPlloo 2 [lPll2

for all k. Finding upper bounds on the L*-norm of forms in R[z]2q in terms of
their L?*-norms is significantly more challenging.

Exercise 4.60. It was shown by Barvinok in [3] that the following inequality holds
for all p € R[z]2q and all &:

kd+n — 1\
Mol = (%50 ™) Wl

Show that for k¥ = n we have
1Pl < 2v2d + 1|p||2n

for all p € R[z]24.
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Remark 4.61. [t is possible to obtain slightly better bounds for our purposes by
using k = nlog(2d + 1) in the above inequality. See [4] for details.

We use Barvinok’s inequality to convert the problem of bounding the average
L>-norm on SV~! into bounding the average L?>"-norm. In order for this to be
useful we need lower bounds on the average L?*-norms. We will show the following
bound.

Lemma 4.62.

/ pllar dop < V2.
gN-1

Before we proceed with the proof we need some preliminary results.

Exercise 4.63. Let I' denote the gamma function. Show that for £k € N

o, _ T(E)T(k+3)
/gn—1 CClk do = W (4.6)

Now let £: R™ — R be a linear form given by ¢(z) = (z,£) for some vector £ € R".
Use (4.6) to show that

22 dor. — 12 (2 L (E+35)
[ e ean =1 e ey (w7

In order to apply the result of Exercise 4.63 we will need to know the L2-norm
of a special form in My 24.

Lemma 4.64. Let v € S*! be a unit vector and let &, € My 24 be the form such
that

(p,§0) =p(v)  forall p€ My 24
Then

2d —1
l€0]| = /dim My 24 = \/(n+2;l ) —1.

Proof. Consider the following average:

/SN—l pz(v) do, = /SN_1<p, §v>2d0p.

On one hand it is the average of a quadratic form on the unit sphere and by Exercise
4.63 we have

/ pz(v)dcr — ”fUHz
SN-1 b dim Mn 24 .
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On the other hand, by symmetry, this average is independent of the choice of
v € S"~L. Therefore we may introduce an extra average over the unit sphere:

/ v)dop = / / v) dop doy,.
SN— 1 sn—-1 JgN— 1

Now we switch the order of integration:

/ v)do, = / / v) doy, dop.
SN — 1 S§N—-1 Jgn— 1

We observe that fsn,l p?(v)do, =1 for all p € S¥~1 and therefore

/ p*(v)do, = 1.
SN-1

The lemma now follows. 0O
We are now ready to estimate the average L?*-norm on SV—1.

Proof of Lemma 4.62.

[ Whado, = [ (/ p%(a:)dcrgc) i,
SN-1 SN-1 gn—1

By applying the Holder inequality we can move the exponent 21—k outside and obtain

/ Ipll2k dop < (/ / dcrrdcrp) .
SN S —1 Sn— 1

Now we exchange the order of integration:

5%
[ pllwdor, < (/ o da,,d%) |
SN— SN— 1

Consider the inner integral
/ p*F(x) do,. (4.8)
SN-1

By rotational invariance it does not depend on the choice of the point z € S"~1.
Therefore the outer integral over S*~! is redundant and we obtain

/ Ipll2k dop < (/ p*(v) dcr,,) for any v e S (4.9)
SN—-1 SN—-1
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We can rewrite this as

/ ||p||2kdaps(/ <p,€v>2kd0p) |
SN-1 gN-1

Now we see that the integral in (4.8) is actually just the average of the 2kth
power of a linear form and we can apply Exercise 4.63 to see that

L($)L(k+3)

2k _ 2k
AN71<p’€U> dop = 1€l F(%)F(k—i—%)

By Lemma 4.64 we know that ||, ||* = dim My 24 = N.
Putting it all together with (4.9) we see that

LT\
o i = (m) |

We now use the following two estimates to finish the proof:

1

r) \T_ [z reed))”
<m> < N and <w> S\/E.

2

We remark that asymptotically the second estimate is an overestimate by a factor

of e. O

Proof of Theorem 4.55. We first use Lemma 4.59 to see that

_ 1/N .
Vol Py 24 > / lIpl|... do
Vol BN - SN-1 Plloo P '

By Exercise 4.60 we know that for all p € R[z]2q4

1Pl < 2v2d + 1][p]l2n-

Therefore we see that

Vol]5n72d S 1 / plan do -1
Vol BN = 92dr 1 Jan, P2t )

Now we can apply Lemma 4.62 with k£ = n and obtain

Vol Py 24 S
Vol BN T 2VAd+ 2

as desired. a
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4.9.2 Volume of Sums of Squares

We now turn our attention to the cone of sums of squares ¥, 24. Although it will
be somewhat obscured by our presentation, the main reason for our ability to derive
bounds on the volume of 3, 2q comes from the fact that the dual cone Y oq 182
section of the cone of positive semidefinite matrices.

We have just seen how to derive lower bounds on the volume of the cone of
nonnegative forms. These bounds, of course, apply to quadratic forms, and they
can be extended to work for sections of the cone. This gives us a lower bound on
the volume of the dual cone, which can be turned around into an upper bound on
the volume of f]n,zd. The approach to bounding the volume of imzd is therefore
very similar to what we did for nonnegative forms. In fact, the technique in the
proofs of the main bounds in Lemma 4.70 and Lemma 4.62 is nearly identical.

Let D be the dimension of R[z]q. Our main result on the volume of f]n,zd is

as follows.
N 1/N
Vol Xn 24 < gld+1 /@.
Vol BN - N

Remark 4.66. Recall that
N:<n+2d—1)_1 and D:(n—i—d—l)'

Theorem 4.65.

2d d

Therefore, for fixed degree d our upper bound on the volume of in,zd is of the
order n=%2. In Theorem 4.55 we proved a lower bound on the volume of ]5,,72(1 that
is of the order n=/2. Therefore, when the total degree 2d is at least 4, the lower
bound on the volume of Pn,Zd is asymptotically much larger than the upper bound
on the volume of in,zd. Thus we see that if the degree 2d is fized and at least 4,
there are significantly more nonnegative forms than sums of squares.

It is possible to show that the bounds of Theorems 4.55 and 4.65 are asymp-

totically tight for the case of fized degree 2d. See [5] for more details.

In Exercises 4.56-4.58 we showed how to bound the volume of a convex body
K from below using the average of its gauge over the unit sphere S*~!. As we
explained above, we are now dealing with the dual situation, and we need a related
dual inequality that bounds the volume of K from above by the average gauge of
its dual body K°.

Exercise 4.67. Let K C R" be a convex body with 0 in its interior and let K° be
the dual convex body defined as
Ke={zeR" | (x,y)<1 forall yeK}.
Show that the gauge of K° is given by the following formula:
Ggo(x) = max (x,y).
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The following is known as Urysohn’s inequality [26].

Lemma 4.68.

( Vol K

1/n
< () dog.
VolB”) < J,.., Gre(@)do

In order to apply Lemma 4.68 we need a description of the gauge of i;,zd

Let SP~! be the unit sphere in R[z]q with respect to the L? inner product.
Lemma 4.69. We have the following description of the gauge of i;,zdf

Gso  (p) = max (p,q°).

n,2d qesP-1

Proof. By Exercise 4.67 the gauge of i%,zd is given by

Ggo  (p) = max (p,q).

n,2d qEEn,2d

We observe that the maximal inner product max s . (p,q) always occurs at an

extreme point of in)gd. Extreme points of 2n72d are all squares, and therefore
extreme point of ¥, 24 are translates of squares and have the form

¢® —r* with ¢eR[z]q and / ¢ do =1.
Sn—l

The condition fS"—l ¢*>do = 1 corresponds exactly to ¢ lying in the unit sphere of
R[z]q. Since forms p € My 24 have integral zero on the unit sphere S7—1, it follows
that

(p,r?1) =0 forall p€ Myaq.
Combining with the description of the extreme points of in)gd we see that

Gso  (p) = max (p,¢°). O

n,2d qesP-1

Given a form p € R[z]24 we define the associated quadratic form @, on R[z]q:
Qp(q) = p.¢*) for q€R[z]a.

By Lemma 4.69 we see that the gauge of in)gd is given by the maximum of @), on
the unit sphere SP~1 in R[z]q:

Gy, La(P) = Jnax, Qp(q)-

Since @) is a quadratic form on Rlz]q, its L°°-norm is the maximal value it
takes on the unit sphere SP~1:

1Qull.c = max [Q(q)-

q€eS
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Applying Lemma 4.68 we see that

\/()12 Y

n,2d

—_— < Q doy.
( Vol BN ) ,/SN—1|| P||oo p

Now we can apply Barvinok’s inequality to bound ||@,|| ., by high L?*-norms.
Using Exercise 4.60 with k = D we see that

1@l < 2V3]1Qyll2p.

Therefore we obtain

. 1/N

Vol $p 24 /

YOl%nad ) do.
( Vol BN ) <2v3 | Qe doy

The proof is now finished with the following estimate, which proceeds in nearly
the same way as the proof of Lemma 4.62.

2D
/ |Qpllap do, < 24/ =2
SN—l N

Proof. We first write out the integral we would like to estimate:

1/2D
[ 1Qlknde, = | ( [ e daq) dor.
SN-1 sN-1 sD-1

Using the Holder inequality we move the exponent 1/2D outside:

1/2D
[owan, < ([ [ waPasds,)
SN-1 §N-1 JgD-1

Next we interchange the order of integration:

1/2D
[ 1@l oy < ( [ ey, doq) S @)
SN—l SD—I SN—l

Consider the inner integral

Lemma 4.70.

AN_1<p, q2>2D doy. (4.11)

We apply Exercise 4.63 to see that

=

r'($)T(D+3)
Jo P oy < NP1
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The reason that we have an inequality, instead of equality, above is that ¢
does not lie in the hyperplane My, 24, and for equality we should use the norm of
the projection of ¢* into My 24. We now observe that

llg* ]l = llall3-

Since g lies in the unit sphere of SP~! it follows that ||q|| = 1. By a result of
Duoandikoetxea in [9] we know that

lalla < 4*¥lql.
Putting it all together we get

D+
T o+%)

/N 1<p’ q2>2D dO'p S 44dD
SN -

We note that this estimate is independent of ¢ and therefore the outer inte-
gral in (4.10) is redundant and we obtain

< 4% (F(%)F(D+%)>l/2D.

o Nasteodon <\ £ )

As in the proof of Lemma 4.62 we use the estimates

Therefore we have
2D
<2t/ — [
L 1@ulen <2415

4.10 Convex Forms

There is another very interesting convex cone inside R[z]2q, the cone of convex
forms Ch 2q4. A form p € R[z]2q is called convex if p is a convex function on R™:

» (w er y) < p(z) ;Lp(y)

for all =,y € R".

It is an easy exercise to show that Cy, 24 is contained in the cone of nonnegative
forms.

Exercise 4.71. Show that if a form p € R[z]2q is convex, then p is nonnegative.
Show that 323 € P34 is not convex.
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The relationship between convex forms and sums of squares is significantly
harder to understand. An equivalent definition of convexity is that a form p € R[z]2q
is convex if and only if its Hessian V?p is a positive semidefinite matrix on all of
R"™. We can associate with p its Hessian form H,,, which is a form in 2n variables,
with old variables x = (x1,...,x,) and new variablesy = (y1,...,¥n). The Hessian
form H,(z,y) is given by

Hy(z,y) =y" (V’p(x)) y.

We note that H, is a bihomogeneous form; it is quadratic in y and of degree
2d — 2 in z. A form p is convex if and only if its Hessian form H, is nonnegative
on R?",

A form p € R[z]2q is called sos-convez if H, is a sum of squares. Sos-convexity
is a more restrictive condition than being a sum of squares.

Exercise 4.72. Let p € Rlz]2q be an sos-convex form. Show that p is a sum of
squares.

An explicit example of a convex form that is not sos-convex was constructed
in [1]. We will explain below that there exist convex forms that are not sums of
squares. In fact, we will show using volume arguments that asymptotically there
are significantly more convex forms than sums of squares. However, it is still an
open question to find an explicit example of a convex form that is not a sum of
squares.

4.10.1 Volumes of Convex Forms

As before we can take a compact section of Cy 29 with the hyperplane Ly 24 of
forms of integral 1 on S™~1:

C'n,2d = Cn72d N Ln72d~

We also let én)gd be C'mzd translated by subtracting r2d,

Cn,2d = On,2d - Tzd-

The convex body én72d lies in the hyperplane My, 2q of forms of average 0 on
the unit sphere S"~!. We will show the following estimate on the volume of CN’n,zd
that, together with Theorems 4.55 and 4.65, implies that if the degree 2d is fixed
and the number of variables grows then there are significantly more convex forms
than sums of squares. This is the only currently known method of establishing
existence of convex forms that are not sums of squares.

Theorem 4.73.

Vol én’zd 1N > 1
Vol P, 24 = 202d-1)
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4.10. Convex Forms 197

Remark 4.74. From Exercise 4.71 it follows that C'mzd - Pn)gd, Therefore the
estimate of Theorem 4.73 is asymptotically tight for the case of fired degree 2d.

Our first goal is to show that if a form p € R[x]2q is sufficiently close to being
constant on the unit sphere, then p must be convex.

Theorem 4.75. Let p be a form in R[z]aq. If for all v € S*~!

1 1
_ <plv) <14+ ——
q 1 ~PW) = 1H o

1

then p is convexr.

For a point & € S"~! we can think of ¢ as a direction. We will use

dp

to denote the derivative of p in the direction £. A function f : R™ — R is convex if
and only if for all v € R™ and all £ € S"~! we have

82
8—5]2[ (v) > 0.

Since we are working with forms it suffices to restrict our attention to v € S*~1.
We use |Vp| to denote the length of the gradient of p. We will need the following
theorem of Kellogg [13].

Theorem 4.76. Let p be a form in R[z]q. For all v e S"~1

IVp(v)| < dllpll -
Theorem 4.76 implies that for any v € S*~!

dp

'a—gw < d|lpll..

This follows since

Ip
-2 = (Vp,&) < |Vp| - [§| = |Vp|
29
by applying the Cauchy—Schwarz inequality.
We extend Theorem 4.76 to cover the case of higher derivatives, which is
necessary since convexity is a condition on second derivatives:

Lemma 4.77. Let p be a form in R[z]q. For any v and &,...&, € S*71

0Fp d!
‘m(“)} < - lIpl] o -
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Proof. We proceed by induction on the order of partial derivatives k. The base case
k =1 is covered by Theorem 4.76. Now we need to show the induction step. We
assume that the statement holds for all derivatives of order at most k£ and consider
8k+1 P
‘85 SO (“)‘
1 k+1

for some &1, ... &y € SPL

Let
_ 9
o
Using the base case we see that

Also, we know that ¢ is a form in n variables of degree d — 1. Therefore by the
induction assumption

‘ % (d—1) (4.13)

L SR 9 I VAN )
a0 < e el
Putting together (4.12) and (4.13), the lemma follows. 0O

We are now ready to prove Theorem 4.75, which provides a sufficient condition
for a form to be convex.

Proof of Theorem 4.75. Let p be as in the statement of the theorem, and let
q = p — 2%, By the assumptions of the theorem it follows that, for all v € S,
1 1

- < < .
a1 =90 =5

In other words

< .
lall < 57

Then by Lemma 4.77 we know that for any v and £ € S*~!

0%q
In particular, it follows that
9%q
—852 (v) > —2d

for all v and ¢ € S*L.
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It is easy to check that

327,211
8—52(0) = 2d + 4d(d — 1){v,€)? > 2d.

Since we know that p = ¢ + 72 it follows that for all v and & € S*~!

and therefore p is convex. [

We need one more result from convexity to help us with the volume bounds
(see [16]).

Exercise 4.78. Let K be a convex body in R™. The barycenter of K is defined to
be a vector b = (b1,...,b,) € K given by

bi:/ TiXK du,

where x g is the characteristic function of K and p is the Lebesgue measure. Let
K’ be the reflection of K through the barycenter b: K/ =b— (K —b). Show that

Vol KN K\ * 1
Vol K =

Exercise 4.79. The set IBmzd is a convex body in the hyperplane My 2q of all
forms of integral 0 on the unit sphere. Use invariance of ]5n72d under orthogonal
changes of coordinates to show that 0 is the barycenter of Py a2q. Let — Py a4 be
the reflection of pn)gd through the origin. Show that pn)gd N —Pn)gd consists of all
forms in My, 24 whose values on the unit are between —1 and 1, i.e., the forms with
L*°-norm at most 1:

Pn,2dm _Pn72d = {p € Mn,2d | ||p||oo < ]‘}

Proof of Theorem 4.73. Let K, 24 be the set of forms that take values only

1 1 : :
between 1 — 5~ and 1 + 57— on the unit sphere:

<pv) <14 —
2d—1 P\ =T 90

Kp2a = {p € R[z]2a ‘ 1 for all veS" ! } .

We note that Ky 24 is a compact convex set. We let szd be the section of
Kn,2d with Ln,2da

Kn72d = Kn72d N Ln72da
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200 Chapter 4. Nonnegative Polynomials and Sums of Squares

and let szd be the translated section:

% 7 2d
Kn,2d = Kn,2d - .

It follows that K. n,2d consists of all the forms in M, 24 that take values between
_Tlfl and Tlfl on the unit sphere, so forms with L°°-norm at most Tlfl:

1
= < —— 7.
Roza={p€Maza | Ibll. < 57

By Exercise 4.79 it follows that

1 ~
-1 (Pn72d N _Pn72d) C Khn,24-

Using Exercise 4.78 we see that

- - 1/N
Vol Pn,2d n _Pn,2d
Vol Py 24

Vv
N).I —

Therefore it follows that
- 1/N
Vol Kn,2d > 1
Vol P, 24 = 2(2d-1)

On the other hand, by Theorem 4.75 we know that szd is contained in én)gd,
and the theorem follows. 0O
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Chapter 5

Dualities

Philipp Rostalski'! and Bernd Sturmfels!

Dualities are ubiquitous in mathematics and its applications. This chapter compares
several notions of duality that are central to the connections between convexity,
optimization, and algebraic geometry developed in this book. It is meant as a first
introduction and is intended for a diverse audience ranging from graduate students
in mathematics to practitioners of optimization who are based in engineering.

5.1 Introduction

Convex algebraic geometry concerns the interplay between optimization theory and
real algebraic geometry. Its objects of study include convex semialgebraic sets that
arise in semidefinite programming and from sums of squares. This chapter compares
three notions of duality that are relevant in these contexts: duality of convex bodies,
duality of projective varieties, and the Karush-Kuhn-Tucker conditions derived
from Lagrange duality. We show that the optimal value of a polynomial program is
an algebraic function whose minimal polynomial is expressed by the hypersurface
projectively dual to the constraint set. We give an introduction to the algebraic
geometry in the boundary of the convex hull of a compact variety. Our focus lies
on making the polynomials that vanish on that boundary explicit, in contrast to
the representation of convex bodies as projected spectrahedra. We also explore the
geometric underpinnings of semidefinite programming duality.

Duality for vector spaces lies at the heart of linear algebra and functional
analysis. Duality in convex geometry is essentially an involution on the set of

TPhilipp Rostalski was supported by the Alexander-von-Humboldt Foundation through a
Feodor Lynen postdoctoral fellowship.
fBernd Sturmfels was supported by NSF grants DMS-0757207 and DMS-0968882.
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204 Chapter 5. Dualities

Figure 5.1. The cube is dual to the octahedron.

convex bodies: for instance, it maps the cube to the octahedron and vice versa
(Figure 5.1). Duality in optimization, known as Lagrange duality, plays a key role
in designing efficient algorithms for the solution of various optimization problems.
In projective geometry, points are dual to hyperplanes, and this leads to a natural
notion of projective duality for algebraic varieties. Our aim here is to explore these
dualities and their interconnections in the context of polynomial optimization and
semidefinite programming. Toward the end of the introduction, we shall discuss the
context and organization of this chapter. At this point, however, we jump right in
and present a concrete three-dimensional example that illustrates our perspective
on these topics.

5.1.1 How to Dualize a Pillow

We consider the following symmetric matrix with three indeterminate entries:

Q(ﬂc,y,z) = (51)

8 ©O8 =
ow ~ 8
N R, O
— N O8

This symmetric 4x4 matrix specifies a three-dimensional compact convex body

P = {(z,y,2) eR® | Q(z,y,2) = 0}. (5.2)

The notation “> 0” means that the matrix is positive semidefinite, i.e., all four
eigenvalues are nonnegative real numbers. Such a linear matriz inequality always
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Figure 5.2. A three-dimensional spectrahedron P and its dual convex body P°.

defines a closed convex set (as in (5.2)) which is referred to as a spectrahedron.
Positive semidefinite matrices and spectrahedra appear in all chapters of this book.

Our spectrahedron P looks like a pillow. It is shown on the left in Figure 5.2.
The algebraic boundary of P is the surface specified by the determinant

det(Q(z,y,2)) = 2’(y—2)°-22" -y -2"+1 = 0.

At this point we pause to emphasize that Subsection 5.1.1 is intended to be a
first welcome to our readers. The objects of study are introduced here informally,
by way of one concrete example in three dimensions, which may guide the reader
through the following sections. Precise definitions of the general concepts, such as
“algebraic boundary,” “algebraic degree,” etc., will be furnished in the later sections.

The interior of the spectrahedron P in (5.1) represents all matrices Q(z,y, )
whose four eigenvalues are positive. At all smooth points on the boundary of P,
precisely one eigenvalue vanishes, and the rank of the matrix Q(xz,y, z) drops from
4 to 3. However, the rank drops further to 2 at the four singular points

1 1 1
ﬁ(_l’_l’l)’ E(1,—1,1), ﬁ(_l’l’_” (5.3)

We find these from a Grdbner basis of the ideal of 3 x 3 minors of Q(z,y, z):

1
($7y7 Z) = E(]ﬂ 1’ _1)’

{22 -1,22° -1,y +2}.

The linear polynomial y+ z in this Grébner basis defines the symmetry plane of the
pillow P. The four singular points form a square in that plane. Its edges are also
edges of P. All other faces of P are exposed points. These come in two families,
sometimes called protrusions, one above the plane y + z = 0 and one below it.
The protrusions are drawn in two different colors on the left in Figure 5.2.
Note that the surface P is smooth along the four edges that separate the two
protrusions. To be more precise, the four points (5.3) are the only singular points
in 9P. All points in the relative interiors of the four edges are nonsingular in 9P.
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Like all convex bodies, our pillow P has an associated dual convexr body
P° = {(a,b,c) R’ |ax +by+cz <1 forall (z,y,2) € P}, (5.4)

consisting of all linear forms that evaluate to at most one on the convex body P.

The dual pillow P° is shown on the right in Figure 5.2. Note the association
of faces under duality. The pillow P has four one-dimensional faces, four singular
zero-dimensional faces, and two smooth families of zero-dimensional faces. The
corresponding dual faces of P° have dimensions 0, 2, and 0, respectively.

Semidefinite programming was introduced in Chapter 2 as the computational
problem of optimizing a linear function over a spectrahedron. For our pillow P,
this optimization problem takes the form

p*(a,b,c) = max - ax+ by + cz
(z,y,2)ER (55)

subject to  Q(z,y,z) = 0.
We regard this as a parametric optimization problem: we are interested in the

optimal value and optimal solution of (5.5) as a function of (a,b,c) € R3. This
function can be expressed in terms of the dual body P° as follows:

1
d*(a,b,c) = min~y subjectto —-(a,b,c) € P°. (5.6)
~vER Y

We distinguish this formulation from the duality in semidefinite programming.
The dual to (5.5) is the following program with 7 decision variables:

d*(a,b,¢) = min u1 + ug + ug + ur
u€R?
2uq 2uo 2uz  —2uz—a
subject to 2uz 2ua b 2us =0 (57)
J 2us —b 2ug —c -
—2us—a 2us —c 2u7

The derivation of such a dual formulation will be explained in Section 5.5. Since
(5.5) and (5.7) are both strictly feasible, strong duality holds [5, Subsection 5.2.3];
i.e., the two programs attain the same optimal value: p*(a, b, c) = d*(a, b, ¢). Hence,
problem (5.7) can be derived from (5.6), as we shall see in Section 5.5.

We write M (u; a, b, ¢) for the 4x4 matrix in (5.7). The following equations and
inequalities, known as the Karush—Kuhn—Tucker conditions (KKT), are necessary
and sufficient for any pair of optimal solutions:

Q(xa Y, Z) : M(u7 a, ba C)
Q(z,y, 2)
M (u;a,b,c)

0, (complementary slackness)
0,
0.

Y 1Y

We relax the inequality constraints and consider the system of equations

y=ax+by+cz and Q(w,y,2)  M(u;a,b,c) = 0.
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5.1. Introduction 207

This is a system of 17 equations. Using computer algebra, we eliminate the 10
unknowns x, ¥, z,u1, . ..,u7. The result is a polynomial in a, b, ¢, and . Its factors,
shown in (5.8)—(5.9), express the optimal value v* in terms of a, b, c.

At the optimal solution, the product of the two 4x4 matrices Q(z,y, z) and
M (u;a,b,c) is zero, and hence the pair (rank(Q),rank(M)) equals either (3,1) or
(2,2). In the former case the optimal value v* is one of the two solutions of

(b% 4+ 2bc + ¢2) - % — a®b? — a®c® — bt — 2b%¢% — 2bc® — ¢t — 2b3c = 0. (5.8)
In the latter case it comes from the four corners of the pillow, and it satisfies

(292 — a® + 2ab — b2 + 2bc — 2 — 2ac)

- (29* —a? —2ab— b? + 2bc — * + 2ac) = 0. (5.9)

These two equations describe the algebraic boundary of the dual body P°. Namely,
after setting v = 1, the irreducible polynomial in (5.8) describes the quartic surface
that makes up the curved part of the boundary of P°, as seen in Figure 5.2. In
addition, there are four planes spanned by flat two-dimensional faces of P°. The
product of the four corresponding affine linear forms is the expression (5.9). In-
deed, each of the two quadrics in (5.9) factors into two linear factors. These two
characterize the planes spanned by opposite 2-faces of P°.

The two equations (5.8) and (5.9) also offer a first glimpse of the concept
of projective duality in algebraic geometry, defined precisely in Subsection 5.2.4.
Namely, consider the surface in projective space P? defined by det(Q(z,y,2)) = 0
after replacing the ones along the diagonals by a homogenization variable. Then
(5.8) is its dual surface in the dual projective space (P?)*. The surface (5.9) in (P3)*
is dual to the zero-dimensional variety in P? cut out by the 3x3 minors of Q(z,y, 2).

The optimal value function of the optimization problem (5.5) is represented,
in the sense of Section 5.3, by the algebraic surfaces dual to the boundary of P
and its singular locus. We have seen two different ways of dualizing (5.5): the dual
optimization problem (5.7) and the optimization problem (5.6) on P°. These two
formulations are related as follows. If we regard (5.7) as specifying a 10-dimensional
spectrahedron, then the dual pillow P° is a projection of that spectrahedron:

P° = {(a,b,c)€R3|EIuER7 : M(usa,b,c) = 0 and uj + ug + ug +uy = 1}.

Linear projections of spectrahedra, so-called projected spectrahedra, were introduced
in Chapter 2. They are at the heart of several parts of this book, most notably,
Chapters 6 and 7. The dual of a spectrahedron is generally not a spectrahedron,
but it is always a projected spectrahedron. We shall see this in Theorem 5.57.

5.1.2 Context and Outline

Duality is a central concept in convexity and convex optimization, and numerous au-
thors have written about their connections and their interplay with other notions of
duality and polarity. Relevant references include Barvinok’s textbook [1, Section 4]
and the survey by Luenberger [24]. The latter focuses on dualities used in engineer-
ing, such as duality of vector spaces, polytopes, graphs, and control systems. The
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208 Chapter 5. Dualities

objective of this chapter is to revisit the theme of duality in the context of convex
algebraic geometry and semidefinite optimization. In algebraic geometry, there is
a natural notion of projective duality, which associates to every algebraic variety a
dual variety. One of our main goals is to explore the meaning of projective duality
for optimization theory. It is precisely this deeper connection with algebra which
distinguishes this chapter from other treatments of duality in convex optimization.

Our presentation is organized as follows. In Section 5.2 we cover preliminaries
needed for the rest of the chapter. Here the various dualities are carefully defined
and their basic properties are illustrated by means of examples. In Section 5.3
we derive the result that the optimal value function of a polynomial program is
represented by the defining equation of the hypersurface projectively dual to the
manifold describing the boundary of all feasible solutions. This highlights the im-
portant fact that the duality best known to algebraic geometers arises very naturally
in convex optimization. Section 5.4 concerns the convex hull of a compact algebraic
variety in R™. We discuss work of Ranestad and Sturmfels [31, 32] on the hyper-
surfaces in the boundary of such a convex body, and we present several examples
and applications.

In Section 5.5 we focus on semidefinite programming (SDP), and we offer a
concise geometric introduction to SDP duality. This leads us to the concept of
algebraic degree of SDP [12, 27] or, more geometrically, to projective duality for
varieties defined by rank constraints on symmetric matrices of linear forms.

A projected spectrahedron is the image of a spectrahedron under a linear pro-
jection. Its dual body is a linear section of the dual body to the spectrahedron. In
Section 5.6 we examine this situation in the context of sums-of-squares program-
ming, and we discuss linear families of nonnegative polynomials. The figures in
this chapter were made with the software package Bermeja [34], which specializes
in computations in convex algebraic geometry.

We now come to the first round of exercises in this chapter. They are meant for
our readers to “get their hands dirty” right away. The problems can be approached
from first principles. No knowledge of any general algorithms or theorems is needed.
The use of both numerical software and computer algebra tools is encouraged.

Exercises

Exercise 5.1. Maximize the function 2z 4 3y + Ty over the spectrahedron P given
in (5.2). Express the optimal solution in exact arithmetic. Locate the cost function
on the right in Figure 5.2 and locate the optimal solution on the left.

Exercise 5.2. Compute the projections of the spectrahedron P into the (x,y)-
plane and into the (y, z)-plane. Determine polynomials f(z,y) and g(y,z) that
vanish on the boundaries of these two planar convex bodies.

Exercise 5.3. Project P into a random plane and compute the irreducible poly-
nomial of degree eight in two variables that vanishes on the boundary of image.

Exercise 5.4. Does there exist a projected spectrahedron that is not a spectrahe-
dron?
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Exercise 5.5. A correlation matriz is a positive semidefinite real symmetric n x n
matrix whose n diagonal entries are all equal to 1.

(a) Maximize the sum of the off-diagonal entries over correlation matrices with
n = 3. Solve this optimization problem also for n = 4.

(b) Minimize the sum of the off-diagonal entries over correlation matrices with
n = 3. Solve this optimization problem also for n = 4.

(c¢) Does there exist a correlation matrix, of any size n, whose determinant is
larger than 1?7 Find a proof or counterexample.

5.2 Ingredients

In this section we review the mathematical preliminaries needed for the rest of the
chapter, we give precise definitions, and we fix more of the notation. We begin
with the notion of duality for vector spaces and cones therein; then we move on to
convex bodies, polytopes, Lagrange duality in optimization, the KKT conditions,
and projective duality in algebraic geometry, and we conclude with discriminants.

5.2.1 Vector Spaces and Cones

We fix an ordered field K. The primary example is the field of real numbers,
K = R, but we also allow other fields, such as the rational numbers K = Q
or the real Puiseux series K = R{{e}}. The examples in this chapter have their
algebraic representation over the rationals @, but we consider the corresponding
geometric objects over the reals R. However, special geometric features naturally
lead to intermediate fields, e.g., the singular points in (5.3) live over the field Q(1/2).
Puiseux series come in handy when one needs a deformation parameter € to deal
with degeneracies. This is standard for algorithms in real algebraic geometry [2].

Fix a finite-dimensional vector space V over an ordered field K. The dual
vector space is the set V* = Hom(V, K) of all linear forms on V. Let V and W
be vector spaces and ¢ : V — W a linear map. The adjoint ¢* : W* — V* is the
linear map defined by ¢*(w*) = w* o p € V* for every w* € W*. If we fix bases of
both V and W, then ¢ is represented by a matrix A. The adjoint ¢* is represented,
relative to the dual bases for W* and V*, by the transpose AT of the matrix A.

A subset C C V is a cone if it is closed under multiplication with positive
scalars. A cone C need not be convex, but its dual cone

C* = {leV*|forallzeC :l(z)>0} (5.10)

is always closed and convex in V*. If C is a convex cone, then the second dual
(C*)* is the closure of C. Thus, if C' is a closed convex cone in V, then

) = C. (5.11)

This important relationship is referred to as biduality.
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210 Chapter 5. Dualities

Every linear subspace L C V is also a closed convex cone. The dual of L,
when viewed as a cone, is the orthogonal complement of L, viewed as a subspace:

L* = Lt = {leV*|forallze L :1(z)=0}.

The adjoint to the inclusion L C V is the projection 7z, : V* — V*/L*. Given any
(convex) cone C' C V, the intersection C' N L is a (convex) cone in L. Its dual cone
(C'N L)* is the projection of the cone C* into V*/L+. More precisely,

(CNL)* = C*+LL in V" (5.12)

Now, it makes sense to consider this convex set modulo L*. We can thus identify

(CNL)* = 7,(C*) in V*/L*. (5.13)
This formula expresses the fact that projection and intersection are dual operations.

Example 5.6. It is necessary to take the closure of 7z (C*) in (5.12) and (5.13)
because projections of closed convex cones need not be closed. The following simple
example is derived from [18, Example 3.5, p. 196]. Consider the closed convex cone

c* = {(u,x,y,z)€R4:uZO,u—i—xZO,yZO,zEO, and(u+x)y2z2},

and fix the hyperplane L = {(0,7,y,2) : x,9,2 € R} ~ R3. Then 7 is the
projection from R* to R3 given by dropping the u-coordinate. We claim that the
image 77, (C*) is not closed. To see this, we note that for every e > 0 the vector
(1/€,0,¢,1) lies in C*, and hence (0, €, 1) lies in 71, (C*). On the other hand, (0,0,1)
does not lie in 7, (C*) because z = 1 implies (v + z)y > 1 and hence y > 0. N

The results summarized above are fundamental in convex analysis. For proofs
and details we refer to the textbook by Rockafellar [33, Section 16]. The space
V*/L* is the space Hom(L, K) of linear functionals on L. In applications one often
identifies this space with L itself, by means of an inner product on the ambient space
V. The linear map 7y, then becomes the orthogonal projection from V onto L, and
(5.13) is the closure of the image of C under that orthogonal projection.

A subset F' C C of a convex set C' is a face if F is itself convex and contains
any line segment L C C' whose relative interior intersects F. We say that F' is an
exposed face if there exists a linear functional [ that attains its minimum over C
precisely at F'. Clearly, every exposed face of C' is a face, but the converse does not
hold. For instance, the edges of the triangle on the top in Figure 5.6 are nonexposed
faces of the three-dimensional convex body shown there.

An exposed face F' of a cone C' determines a face of the dual cone C* via

F° = {1l € C" |1 attains its minimum over C at F }.
The dimensions of the faces F' of C and F*° of C* satisfy the inequality
dim(F) + dim(F°) < dim(V). (5.14)

If C is a polyhedral cone, then C* is also polyhedral. In that case, the number of
faces F' and F* is finite and equality holds in (5.14). On the other hand, most
convex cones considered in this chapter are not polyhedral; they have infinitely
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many faces, and the inequality in (5.14) is usually strict. For instance, the second-
order cone C = {(z,y,2) € R® : \/22 + y? < 2} is self-dual, each proper face F
of C is one-dimensional, and the formula (5.14) says that 1 +1 < 3.

5.2.2 Convex Bodies and Their Algebraic Boundary

A conver body in V is a full-dimensional convex set that is closed and bounded. If C
is a cone and @ € int(C*), then the hyperplane {p(z) = z} intersects C for all z > 0
and yields a convex body. In this manner, every pointed r-dimensional cone gives
rise to an (r—1)-dimensional convex body by fixing z = 1. The convex body forms
the base of the cone. The cone can be recovered from its base up to a linear iso-
morphism. These transformations, known as homogenization and dehomogenization
with homogenization variable z, respect faces and algebraic boundaries. They allow
us to go back and forth between convex bodies and cones in the next higher dimen-
sion. For instance, the three-dimensional body P in (5.2) is the base of the cone in
R* we get by multiplying the constants 1 on the diagonal in (5.1) with a new variable.
Let P be a full-dimensional convex body in V and assume that 0 € int(P).
Dehomogenizing the definition for cones, we obtain the dual convex body

P = {teV*|forallze P : f(x)<1}. (5.15)

This is derived from (5.10) using the identification I(z) = z — ¢(x) for z = 1. We

note that the dual of a convex body (as opposed to the dual of a cone) is not an

intrinsic construction, but it depends on the position of P relative to the origin.
Just as in the case of convex cones, if P is closed, then biduality holds:

(P°)° = P,

The definition (5.15) makes sense for arbitrary subsets P of V. That is, P need
not be convex or closed. A standard fact from convex analysis [33, Corollary 12.1.1
and Section 14] says that the double dual is the closure of the convex hull with the
origin:

(P°)° = conv(PUO).

All convex bodies discussed in this chapter are semialgebraic, that is, they can
be described by Boolean combinations of polynomial inequalities. We note that if P
is semialgebraic then its dual body P° is also semialgebraic. This is a consequence
of Tarski’s theorem on quantifier elimination in real algebraic geometry [2, 4].

The algebraic boundary of a semialgebraic convex body P, denoted 9, P, is the
smallest complex algebraic variety that contains the boundary dP. In geometric
language, 0, P is the Zariski closure of OP. 1t is identified with the squarefree
polynomial fp that vanishes on 0P. Namely, 0,P = V¢ (fp) is the zero set of the
polynomial fp. Note that fp is unique up to a multiplicative constant. Thus 9, P
is the smallest complex algebraic hypersurface which contains the boundary OP.

A polytope is the convex hull of a finite subset of V. If P is a polytope, then
so is its dual P° [37]. The boundary of P consists of finitely many facets F. These
are the faces F' = v°® dual to the vertices v of P°. The algebraic boundary 0, P is
the arrangement of hyperplanes spanned by the facets of P. Its defining polynomial
fp is the product of the linear polynomials (v, z) — 1.
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Example 5.7. A polytope known to everyone is the three-dimensional cube
P = conv({(£1,£1,£1)}) = {-1<z,y,2 <1}
Figure 5.1 illustrates the familiar fact that its dual polytope is the octahedron
P° = {-1<a+b+c<1} = conv({xey, tey, *es}).

Here e; denotes the ith unit vector. The eight vertices of P correspond to the facets
of P°, and the six facets of P correspond to the vertices of P°. The algebraic
boundary of the cube is described by a degree 6 polynomial

0P = Vo ((x2 — Dy —1)(2* = 1)).
The algebraic boundary of the octahedron is given by a degree 8 polynomial
0,P° = V¢ (H(l —a:l:b:l:c)H(a:l:b:l:c+ 1)) .
Note that P and P° are the unit balls for the norms L, and L; on R3. [ |

Recall that the L,-norm on R™ is defined by |z|, = (31, |z:[?)}/? for
z € R". The dual norm to the L,-norm is the Lg-norm for % + % =1, that is,

lylly = sup{(y, ) [z € R", [lz], <1}.
Geometrically, the unit balls for these norms are dual as convex bodies.
Example 5.8. Consider the case n = 2 and p = 4. Here the unit ball equals
P = {(zx,y) eR? :at 4" <1}

This planar convex set is shown in Figure 5.3. The ordinary boundary 0P of this
convex set is the real curve defined by the quartic polynomial 2% + y* = 1. In this
example, the ordinary boundary coincides with the algebraic boundary 0, P.

Figure 5.3. The unit balls for the Ly-norm and the Ly 3-norm are dual.
The curve on the left has degree 4, while its dual curve on the right has degree 12.
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The dual body is the unit ball for the L, 3-norm on R2:
P° = {(a,b) € R? : |a|*3 + p|*/3 < 1}.
The algebraic boundary of P° is an irreducible algebraic curve of degree 12,
0aP° = V(a"+3a®b*+3a"b°+b"* —3a®+21a'b* —3b%+3a*+3b*-1),  (5.16)

which again coincides precisely with the (geometric) boundary 9P°. This dual
polynomial is easily produced by the following one-line program in the computer
algebra system Macaulay2 due to Grayson and Stillman [13]:

R = QQ[x,y,a,b]; eliminate({x,y},ideal(x"4+y~4-1,x"3-a,y"3-b))

In Subsection 5.2.4 we shall introduce the general algebraic framework for perform-
ing such duality computations, not just for curves, but for arbitrary varieties. H

5.2.3 Lagrange Duality in Optimization

We now come to a standard concept of duality in optimization theory. The treat-
ment here is more general than duality in convex optimization, which was presented
in Chapter 2. Let us consider the following general nonlinear polynomial optimiza-
tion problem:

minimize f(z)

subject to g;(z) <0, i=1,...,m, (5.17)
hj(x)=0, j=1,...,p.
Here the ¢1,...,9m,h1,...,hpy and f are polynomials in R[z1,...,z,]. The La-
grangian associated with the optimization problem (5.17) is the function

L:R"xRP xR — R™,

The scalars A; € Ry and p; € R are the Lagrange multipliers for the constraints
gi(z) <0 and h;(z) = 0. The Lagrangian L(x, A, 1) can be interpreted as an aug-
mented cost function with penalty terms for the constraints. For more information
on the above formulation see [5, Section 5.1].

One can show that the problem (5.17) is equivalent to finding

u* = min max Lz, A\ p).
z€R™ peRP and A>0
The key observation here is that any positive evaluation of one of the polynomials
gi(z), or any nonzero evaluation of one of the polynomials h;(x), would render the
inner optimization problem unbounded.
The dual optimization problem to (5.17) is obtained by exchanging the order
of the two nested optimization subproblems in the above formulation:

vt o= max min Lz, A, u).
pHERP and A>0 x€R™
— ———
(A1)
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214 Chapter 5. Dualities

The function ¢(A, ) is known as the Lagrange dual function to our problem. This
function is always concave, so the dual is always a convex optimization problem.
It follows from the definition of the dual function that ¢(\, pu) < u* for all A, p.
Hence the optimal values satisfy the inequality

' < .

If equality occurs, v* = w*, then we say that strong duality holds. A necessary
condition for strong duality is Afg;(z*) =0 for all i = 1,...,m, where (a*, \*, u*)
denote a primal and dual optimizer. We see this by evaluating the Lagrangian at
an optimizer and taking into account the fact that h;(x) = 0 for all feasible x.

Collecting all inequality and equality constraints in the primal and dual opti-
mization problems yields the following optimality conditions.

Theorem 5.9 (KKT conditions). Let (z*, \*, u*) be primal and dual optimal
solutions with u* = v* (strong duality). Then

m p
*+ZMVM*+Z@VMM
T = T = x

gi(z*) < 0 fori=1,...,m,
X>0 fori=1,...,m,
hi(z*) = 0 forj=1,...,p, (5.18)

Complementary slackness: A - g;(z™)

Vaf

0,

0 fori=1,...,m.

For a derivation of this theorem see [5, Subsection 5.5.2]. Several comments
on the KKT conditions are in order. First, we note that complementary slackness
amounts to a case distinction between active (g; = 0) and inactive inequalities
(g; < 0). For any index 7 with g;(z*) # 0 we need A\; = 0, so the corresponding
inequality does not play a role in the gradient condition. On the other hand, if
gi(x*) = 0, then this can be treated as an equality constraint.

From an algebraic point of view, it is natural to relax the inequalities and to
focus on the KKT equations. These are the polynomial equations in (5.18):

m p
+ Y N Vegi| > Vb
x* x*
=1 Jj=1

hi(z) = -+ = hp(x) = Mg1(z) = -+ = Angm(z) = 0. (5.19)

If we wish to solve our optimization problem exactly, then we must compute the
algebraic variety in R™ x R™ x R? that is defined by these equations.

In what follows we explore Lagrange duality and the KKT conditions in two
special cases, namely in optimizing a linear function over an algebraic variety (Sec-
tion 5.3) and in semidefinite programming (Section 5.5).

Vaf = 0,

xT*

5.2.4 Projective Varieties and Their Duality

In algebraic geometry, it is customary to work over an algebraically closed field,
such as the complex numbers C. All our varieties will be defined over a subfield K

261”2711/1
page 214
—



5.2. Ingredients 215

of the real numbers R, and their points have coordinates in C. It is also customary
to work in projective space P™ rather than affine space C™, i.e., we work with
equivalence classes z ~ ax for all a € C\{0}, x € C""'\{0}. Points (¢ : 21 :
-+ 1 xy,) in projective space P" are lines through the origin in C**!, and the usual
affine coordinates are obtained by dehomogenization with respect to g (i.e., setting
xzo = 1). All points with xy = 0 are then considered as points at infinity. We refer
to [8, Chapter 8] for an elementary introduction to projective algebraic geometry.

Let I = (h1,...,hy,) be a homogeneous ideal in the ring K[zg,z1,..., 2] of
polynomials in n 4+ 1 unknowns with coefficients in K. We write X = V¢(I) for
its variety in the projective space P over C. The singular locus Sing(X) is a
proper subvariety of X. It is defined inside X by the vanishing of the ¢ x ¢ minors
of the px(n+1) Jacobian matrix Jac(X) = (Oh;/0xz;), where ¢ = codim(X). See
[8, Section 9.6] for background on singularities and dimension. While the matrix
Jac(X) depends on our choice of ideal generators h;, the singular locus of X is
independent of that choice. Points in Sing(X) are called singular points of X. We
write Xyeg = X\Sing(X) for the set of regular points in X. We say that the
projective variety X is smooth if Sing(X) = 0 or, equivalently, if X = X,cq.

The dual projective space (P™)* parametrizes hyperplanes in P®. A point
(uo :uy i« :up) € (P")* represents the hyperplane {x € P | > (u;z; = 0}. We
say that u is tangent to X at a regular point & € X,¢g if x lies in that hyperplane
and its representing vector (ug,u1,...,u,) lies in the row space of the Jacobian
matrix Jac(X) at the point .

We define the conormal variety CN(X) of X to be the closure of the set

{(z,u) € P" x (P")* | & € X;eg and u is tangent to X at x }.

The projection of CN(X) onto the second factor is denoted X* and is called the
dual variety. More precisely, the dual variety X™* is the closure of the set

{we (P")* | the hyperplane u is tangent to X at some regular point }.

In our definitions of conormal variety and dual variety, the word “closure” can mean
either Zariski closure or the classical strong closure over the complex numbers. Both
will lead to the same complex projective variety in the situations considered here.

Proposition 5.10. The conormal variety CN(X) has dimension n — 1.

Proof sketch. We may assume that X is irreducible. Let ¢ = codim(X). There
are n—c degrees of freedom in picking a point = in X,es. Once the regular point x

is fixed, the possible tangent vectors v to X at x form a linear space of dimension
c—1. Hence the dimension of CN(X) is (n—c) + (c—1) =n—1. 0O

Since the dual variety X* is a linear projection of the conormal variety CN(X),
Proposition 5.10 implies that the dimension of X* is at most n — 1. We expect X*
to have dimension n — 1. In other words, regardless of the dimension of X, the dual
variety X* is typically a hypersurface in the dual projective space (P™)*. We shall
see many examples of such dual hypersurfaces throughout this chapter.
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216 Chapter 5. Dualities

To compute the dual X* of a given projective variety X, we set up a system
of polynomial equations, and we eliminate some of the variables. This can be done
using Grébner bases [8, 13]. We first illustrate this for a familiar example.

Example 5.11 (Example 5.8 continued). Fix coordinates (x : y : ) on P? and
consider the ideal I = (z* 4+ y* — 2z%). Then X = V/(I) is the projective version of
the quartic curve in Example 5.8. The dual curve X* is the projective version of the
curve 9, P° in (5.16). Hence, X* is a curve of degree 12 in (P?)*.

The equations used to compute X* algebraically consist of the given quartic
% 4+ y* — 2* together with the 2 x 2 minors of the augmented Jacobian matrix

Tac — a b c
= | 4a8 4y —423 )

We write J’ for the ideal generated by these four polynomials in Q[z,y, 2, a, b, c].
We then replace J' by its saturation

J = J {x,y, 2)>™. (5.20)

This has the effect of removing an extraneous component of Vi(J') that corresponds
to the origin (0,0,0) in (z,y, 2)-space. We now eliminate the three unknowns z, y, 2
from J, that is, we compute J N Q[a,b,c|. This elimination ideal is the principal
ideal generated by the homogenization of the degree 12 polynomial in (5.16). N

The steps we described in Example 5.11 to compute the degree 12 curve dual
to the given quartic can be extended to arbitrary instances. The role of the ideal
(x,y, z) in (5.20) is then played by the equations defining the singular locus of X.
This results in the following general algorithm for dualizing projective varieties.

Algorithm 5.1. Computing the dual variety X™.

Require: The input is the homogeneous ideal I of a projective variety X = V(I).
Ensure: The output is the ideal Ig,a1 representing the dual variety X* = V (Iqya1)-
1: Determine the codimension c¢ of the variety X in P".
2: Generate the augmented Jacobian matrix

70 = ("))

. Compute J' = I+ ((c+1) x (¢ + 1) minors of Jac(X)) C K[z, u).
4: Remove the singular locus by computing the saturation ideal

w

J = (J': {cx cminors of Jac(X))>).

ot

: Compute the desired ideal Ijya = J N K[u] by elimination.
6: return Dual variety X* = V(Igyal)-
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The steps in this algorithm can be executed either using exact arithmetic in a
computer algebra system, such as Macaulay?2, or using floating point arithmetic in
the framework of numerical algebraic geometry. Such a numerical implementation
in the software Bertini [3] is currently being developed by Jonathan Hauenstein.

Remark 5.12. The ideal J in step 3 above is bihomogeneous in x and u, respec-
tively. Its zero set in P™ x (P™)* is the conormal variety CN(X).

Theorem 5.13 (Biduality, [11, Theorem 1.1]). Ewvery irreducible projective
variety X C P™ satisfies

(X*)* = X.

Proof sketch. The main step in proving this important theorem is that the conor-
mal variety is self-dual, in the sense that CN(X) = CN(X™*). In this identity, the
roles of x € P™ and u € (P™)* are swapped. It implies (X*)* = X. A proof for the
self-duality of the conormal variety is found in [11, Subsection I.1.3]. 0O

Example 5.14. Suppose that X C P" is a general smooth hypersurface of degree d.
Then X* is a hypersurface of degree d(d — 1)"~! in (P")*. A concrete instance for
d = 4 and n = 2 was seen in Examples 5.8 and 5.11. When X is a hypersurface
that is not smooth, then the dual variety X* is either a hypersurface of degree less
than d(d — 1)"~!, or X* is a variety of codimension at least 2. W

Example 5.15. Let X be the variety of symmetric m X m matrices of rank at
most . Then X™* is the variety of symmetric m x m matrices of rank at most m —r
[11, Subsection I.1.4]. Here the conormal variety CN(X) consists of pairs of symmet-
ric matrices A and B such that A- B = 0. This conormal variety will be important
for our discussion of duality in semidefinite programming in Section 5.5. 1

An important class of examples, arising from toric geometry, is featured in the
book by Gel'fand, Kapranov, and Zelevinsky [11]. A projective toric variety X 4 in
P™ is specified by an integer matrix A of format r x (n+1) and rank r with columns
ap,ai,...,a, and whose row space contains the vector (1,1,...,1). We define X4
as the closure in P" of the set {(t% : ¢ : ... :¢%) |t € (C\{0})"}.

The dual variety X} is called the A-discriminant. It is usually a hypersurface,
in which case we identify the A-discriminant with the irreducible polynomial A 4
that vanishes on X}. The A-discriminant is indeed a discriminant in the sense that
its vanishing characterizes Laurent polynomials

n
pt) = > i tyUty gl
j=0

with the property that the hypersurface {p(¢t) = 0} has a singular point in (C\{0})".
In other words, we can define (and compute) the A-discriminant as the unique
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irreducible polynomial A 4 that vanishes on the hypersurface

X4 = {ce (Pn)* | 3t € (C\{0})" with p(t) = g—fl == gi :0}.

Example 5.16. Let r =2, n = 4, and fix the matrix
4 3 2 1 0

4= (O 1 2 3 4) ‘

The associated toric variety is the rational normal curve

Xa = {(t] o 1 343 1185 1 £3) € P | (81 1 t2) € P}

= V(xoxg—x%,xoxg—xlxg,x0$4—x§,xlxg—xg,x1x4—x2x3,x2x4—x§).
A hyperplane {Zj‘:o cjxj = 0} is tangent to X 4 if and only if the binary form
p(ti,t2) = cots +citits + cotits + catits + cat]
has a linear factor of multiplicity > 2. This is controlled by the A-discriminant

Co C1 C2 C3 Cq 0 0
0 Co C1 Co C3 Cq 0
1 0 0 Co C1 Co C3 Cq
Ag = —-det|ec1 2c0 3c3 4es O 0 01, (5.21)
“ 0 ¢ 2 3¢ 4ea 0 0
0 0 1 2cy 3c3 4ey O
0 0 0 C1 262 303 404

given here in the form of the determinant of a Sylvester matrix, see [9, Section 3].
The sextic hypersurface X% = V(A ,) is the dual variety of the curve X4. 1

Exercises

Exercise 5.17. Let P be a convex body in R? obtained by intersecting a ball and
a cube, where neither of these bodies contains the other. Describe the dual convex
body P°. Can you draw pictures of P and P°?

Exercise 5.18. Determine the irreducible polynomial that vanishes on the Ly /3-
unit sphere in R3. In other words, extend Example 5.8 from n = 2 to n = 3.

Exercise 5.19. Let X be the variety of symmetric m X m matrices of rank at
most r. Determine the dimension of X and describe the singular locus Sing(X).

Exercise 5.20. Find an example of a surface X in P? whose dual variety X* is a
curve.

Exercise 5.21. Study the equation X - Y = 0 when X and Y are unknown sym-
metric 4x4 matrices. This constraint translates into 16 bilinear equations in the
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20 unknown matrix entries. Decompose the algebraic variety defined by these 16
equations into its irreducible components. What is the dimension of each compo-
nent? How do you know that it is irreducible?

5.3 The Optimal Value Function

A fundamental question concerning any optimization problem is how the output
depends on the input. The optimal solution and the optimal value of the problem
are functions of the parameters, and it is important to understand the nature of
these functions. For instance, for a linear programming problem,

maximize (w,z) subjectto A-x =b and x > 0, (5.22)

the optimal solution depends in a convex and piecewise linear manner on the cost
vector w and the right hand side b, and it is a piecewise rational function of the
entries of the matrix A. The area of mathematics which studies these functions
is geometric combinatorics, specifically the theory of matroids for the dependence
on A, and the theory of regular polyhedral subdivisions for the dependence on w
and b. Exercise 5.30 at the end of this section asks for a further exploration.
If we replace (5.22) with the corresponding integer programming problem, where
the coordinates of x are required to be integers, then the dependence on w and
b becomes more subtle and finite Abelian groups enter the picture. The optimal
value function of an integer program has a certain arithmetic behavior, in addition
to the polyhedral structures which govern the parametric versions of the linear
programming problem.
For a second example, consider the following basic question in game theory:

Given a game, compute its Nash equilibria. (5.23)

If there are only two players and one is interested in fully mixed Nash equilibria,
then this is a linear problem and in fact closely related to linear programming. On
the other hand, if the number of players is more than two, then the problem (5.23) is
universal in the sense of real algebraic geometry: Datta [10] showed that every real
algebraic variety is isomorphic to the set of Nash equilibria of some three-person
game. A corollary of her construction is that, if the Nash equilibria are discrete,
then their coordinates can be arbitrary algebraic functions of the given input data.
Our third motivating example concerns maximum likelihood estimation in
statistical models for discrete data. Here the optimization problem is as follows:

maximize p1(0)*1p2(0)*2 - - p,(0)"" subject to § € O, (5.24)

where O is an open subset of R™, the p;(0) are polynomial functions that sum to
one, and the u; are positive integers (these are the data). The optimal solution 6,
which is the maximum likelihood estimator, depends algebraically on the data:

(Ur, ..oy tn) = O(ug, ..., up). (5.25)

Catanese et al. [7] give a formula for the degree of this algebraic function under
certain hypotheses on the polynomials p;(6) which specify the statistical model.
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In this section we study this issue for the polynomial optimization problem
(5.17). We shall assume throughout that the cost function f(z) is linear and that
there are no inequality constraints g;(x). The purpose of these restrictions is to
simplify the presentation and focus on the key ideas. Also, this is compatible with
Chapter 7, which offers an algebraic method for the important problem of computing
lower bounds on the optimal value function. Our analysis can be extended to the
general problem (5.17), and we discuss this briefly at the end of this section.

To be precise, we consider the problem of optimizing a linear cost function
over a compact real algebraic variety X in R™. This is written formally as follows:

¢y = min {c,x)
® (5.26)
subject to = € X ={v e R"|h1(v) =--- = hyp(v) =0}.
Here hy, ho, ..., hy are fixed polynomials in n unknowns 21, ..., z,. The expression
(c,x) = c1x1+- - +Cny is alinear form whose coefficients ¢q, . . ., ¢, are unspecified
parameters. Our aim is to compute the optimal value function cj. Thus, we regard
the optimal value cj as a function R™ — R of the parameters cy,...,c,. We seek

to derive an exact symbolic representation of this algebraic function.

The hypothesis that X be compact has been included to ensure that the
optimal value function cjj is well-defined on all of R"™. Again, also this hypothesis
can be relaxed. We assume compactness here just for convenience.

Our problem is equivalent to that of describing the dual convex body P° of
the convex hull P = conv(X), assuming that the latter contains the origin in its
interior. Indeed, P° is precisely the set of points (c1,...,¢,) at which the value of
the function ¢ is less than or equal to 1. Hence the optimal value function of P
computes the gauge of the dual body P°. A small instance of this was seen in (5.6).

Since our convex body P is a semialgebraic set, Tarski’s theorem on quanti-
fier elimination in real algebraic geometry [2, 4] ensures that the dual body P° is
also semialgebraic. This implies that the optimal value function cj is an algebraic
function, i.e., there exists a polynomial ®(cg, c1,...,c,) in n+ 1 variables such that

O(ch,c1,y...,0n) = 0. (5.27)

Our aim is to compute such a polynomial ¢ of least possible degree. The input
consists of the polynomials hq,...,h, that cut out the variety X. The degree of
® in the unknown ¢y is called the algebraic degree of the optimization problem
(5.17). This number is an intrinsic algebraic complexity measure for the problem of
optimizing a linear function over X. For instance, if ¢, ..., ¢, are rational numbers,
then the algebraic degree indicates the degree of the field extension K over Q that
contains the coordinates of the optimal solution.

We illustrate our discussion by computing the optimal value function and its
algebraic degree for the trigonometric space curve featured in [31, Section 1].

Example 5.22. Let X be the curve in R3 with parametric representation
(z1,22,23) = (cos(f),sin(26), cos(30)).
In terms of equations, our curve can be written as X = V' (hq, ha), where

hy = 33%—33%—131{133 and hy = x3—4x?+3x1.
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The optimal value function for maximizing cix1+coxo+csrs over X is given by

o = (11664c§) ey + (86401 3 + 1512010263 — 19440¢3 ¢4
+576¢1c5¢3 — 1296¢1 ¢33 + 64¢5 — 2527202 03 — 3499203)
+ (160103 + 8010203 — 11520103 — 1920010 2¢2 + 820801 e — 724010203 + 144010203
+cieh — 172800103 —80c3c§ — 2802c1 c3c3 — 3456¢3c3ch + 3888¢3c§ — 1120616203
+540¢1 cac3 + 55080¢: ¢3¢ — 128c2 - 208c c§+15417c c§+15552c cg—|—3499203)

+ (= 160103 — 8010203 + 2560103 - 0102 + 328010203 - 16000103 + 114010203
—2856¢5 ¢3¢ + 4608¢5 ¢ + 12¢tcS — 1959¢i cacs + 9192c§*c§c§ — 4320c¢t ¢S
—528c3cSes + 76443 ches — 77040%0%03 — 69120‘;’05 48¢2 02 —|— 3592¢2 cgcg

—4863c2caca — 13608c¢3 ¢3S + 15552¢3 ¢S + 800c; cSes — 400¢: 0203 —10350¢1 0203
+16200c¢1 c3¢h 4 64c3’ + 80c5¢3 — 1460c5 ¢ + 135¢3cS + 9720c3 5 — 11664¢3°).

The optimal value function cj is the algebraic function of ¢, c2, c3 obtained by solv-
ing ® = 0 for the unknown ¢g. Since ¢y has degree 6 in ®, we see that the algebraic
degree of this optimization problem is 6. Note that there are no odd powers of ¢g
in ®. Thus, ® is a cubic polynomial in ¢2, and this implies that we can write the
optimal value function c¢f as an expression in radicals in ¢1,c2,c3. B

We now come to the main result in this section. It will explain what the
polynomial ® means and how it was computed in the previous example. For the
sake of simplicity, we shall first assume that the given variety X is smooth, i.e.
X = X,eg, Where the set X,z denotes all regular points on X.

Theorem 5.23. Let X* C (P™)* be the dual variety to the projective closure of a
real affine variety X in R™. If X is irreducible, smooth, and compact in R™, then X*
is an irreducible hypersurface, and its defining polynomial equals ®(—co,c1,. .., ¢p)
where ® represents the optimal value function as in (5.27) of the optimization prob-
lem (5.26). In particular, the algebraic degree of (5.26) is the degree in co of the
irreducible polynomial that vanishes on the dual hypersurface X*.

Here the change of sign in the coordinate ¢y is needed because the equation
co = c1x1 + -+ + cpxy, for the objective function value in R™ becomes the homog-
enized equation (—cp)xg + 121 + -+ + ¢px, = 0 when we pass to P™.

Proof. Since X is compact, for every cost vector ¢ there exists an optimal solution
x*. Our assumption that X is smooth ensures that x* is a regular point of X, and
, fori=1,... p. In other words,
the KKT conditions are necessary at the point z*:

SR
;

* 9

hi(z*) = for 1=1,2,.

The scalars uj, ..., u,; express c as a vector in the orthogonal complement of the
tangent space of X at z*. In other words, the hyperplane {z € R" : (c,z) = ¢}
contains the tangent space of X at z*. This means that the pair

(x*,(—66:01:-~-:cn))
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lies in the conormal variety CN(X) C P™ x (P™)* of the projective closure of X. By
projection onto the second factor, we see that (—cf :c1:---:¢,) lies in the dual
variety X*.

Our argument shows that the boundary of the dual body P° is a subset of X*.
Since that boundary is a semialgebraic set of dimension n — 1, we conclude that
X* is a hypersurface. If we write its defining equation as ®(—cg,c1,...,¢,) = 0,
then the polynomial ® satisfies (5.27), and the statement about the algebraic degree
follows as well. 0O

Theorem 5.23 tells us that the minimal polynomial ® which represents the
desired optimal value function ¢ can be computed using Algorithm 5.1.

The KKT condition for the optimization problem (5.26) involves three sets of
variables, two of which are dual variables, to be carefully distinguished:

1. Primal variables x1, ..., x, to describe the set X of feasible solutions.

2. (Lagrange) dual variables p1,...,pu, to parametrize the linear space of all
hyperplanes that are tangent to X at a fixed point z*.

3. (Projective) dual variables cg, ¢1, . . ., ¢, for the space of all hyperplanes. These
are coordinates for the dual variety X* and the dual body P°.

We can compute the equation ® that defines the dual hypersurface X* by eliminat-
ing the first two groups of variables = (z1,...,2,) and p = (1, ..., 4p) from the
following system of polynomial equations:

co = (¢,x) and hi(z) =---=hp(z) =0 and ¢ = i Vzhi + -+ ppVahp.

Example 5.24 (Example 5.8 continued). We consider (5.26) withn =2, p =1,
and hy = 2} + 23 — 1. The KKT equations for maximizing the function

Co = C1X1 + C2X2 (528)
over the “T'V screen” curve X = V'(hy) are
c1 = py -4, ey = pp-4xd, at4al=1. (5.29)

We eliminate the three unknowns x1,z2, 1 from the system of four polynomial
equations in (5.28) and (5.29). The result is the polynomial ®(—cg, ¢1, ¢2) of degree
12 which expresses the optimal value cjj as an algebraic function of ¢; and c;. We
note that ®(1, ¢, ce) is precisely the polynomial in (5.16). H

It is natural to ask what happens with Theorem 5.23 when X fails to be
smooth or compact or if there are additional inequality constraints. Let us first
consider the case when X is no longer smooth, but still compact. Now, X,eg is a
proper (open, dense) subset of X. The optimal value function ¢ for the problem
(5.26) is still perfectly well-defined on all of R™, and it is still an algebraic function
of ¢1,...,¢c,. However, the polynomial ® that represents ¢ may now have more
factors than just the equation of the dual variety X*.
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Example 5.25. Let n = 2 and p = 1 as in Example 5.24, but now we consider a
singular quartic. The bicuspid curve, shown in Figure 5.4, is defined by

hy = (@2 —1)(z1 — 12 + (23 - 1)? = 0.

The algebraic degree of optimizing a linear function cix1 + caxe over X = V(hq)
equals 8. The optimal value function ¢§ = c(c1, ¢2) is represented by

® = (co —c1 + 02) . (co —c — 02) . (1603 —48(c3 + c3)c}
+(24c3c3 + 213 + 64ct)cd + (Bderc3+32c])co + 8ctcd—3cic3+11c5).

The first two linear factors correspond to the singular points of the bicuspid curve X,
and the larger factor of degree six represents the dual curve X*. N

Figure 5.4. The bicuspid curve in Example 5.25.

This example shows that, when X has singularities, it does not suffice to just
dualize the variety X but we must also dualize the singular locus of X. This process
is recursive, and we must also consider the singular locus of the singular locus etc.
We believe that, in order to characterize the value function ®, it always suffices to
dualize all irreducible varieties occurring in a Whitney stratification of X but this
has not been worked out yet. In our view, this topic requires more research, both
on the theoretical side and on the computational side.

The following result is valid for any variety X in R™.

Corollary 5.26. If the dual variety of X is a hypersurface then its defining poly-
nomial contributes a factor to the value function of the problem (5.26).

This result can be extended to an arbitrary optimization problem of the form
(5.17). We obtain a similar characterization of the optimal value ¢} as a semial-
gebraic function of ¢y, co, ..., c, by eliminating all primal variables x1,...,z, and
all dual (optimization) variables A1,..., Am, 1, .., 1p from the KKT equations.
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Again, the optimal value function is represented by a unique square-free polyno-
mial ®(cop,c1,...,cn), and each factor of this polynomial is the dual hypersurface
Y* of some variety Y that is obtained from X by setting g;(x) = 0 for some of
the inequality constraints, by recursively passing to singular loci. In Section 5.5 we
shall explore this for semidefinite programming.

We close this section with a simple example involving A-discriminants.

Example 5.27. Consider the calculus exercise of minimizing a polynomial
q(t) = it + cat? + cat + cqt
of degree four over the real line R. Equivalently, we wish to minimize
Co = C1T1 + CoTy + C3T3 + C4T4

over the rational normal curve X N {xg = 1} = V(22 — 29,23 — 23,27 — 14),
seen in Example 5.16. The optimal value function cjj is given by the equation
Aa(—co,c1,c2,c3,¢4) = 0, where Ay is the discriminant in (5.21). Hence the alge-
braic degree of this optimization problem is equal to three. N

Exercises

Exercise 5.28. Consider the plane curve Y = {(sin(26), cos(36) : § € R} obtained
from Example 5.22 by projection onto the last two coordinates. Determine the
optimal value function for maximizing a linear function over Y.

Exercise 5.29. Maximize 2z + 3y + 7z subject to z* + y* + z* = 1. Can you
express the optimal solution and the optimal value in terms of radicals?

Exercise 5.30. What is the algebraic degree of finding the global minimum of a
polynomial function of degree 4 in two variables?

Exercise 5.31. Characterize the optimal value functions arising in linear program-
ming.

Exercise 5.32. Let X denote the Veronese surface in five-dimensional projective
space P° that has the parametric representation (1 : z : y : 22 : a2y : y?). Com-
pute the conormal variety CN(X) and the dual variety X*. Verify the biduality
theorem (X*)* = X for this example.

5.4 An Algebraic View of Convex Hulls

The problem of optimizing arbitrary linear functions over a given subset of R",
discussed in the previous section, leads naturally to the geometric question of how to
represent the convex hull of that subset. In this section we explore this question from
the perspective of algebraic geometry. To be precise, we shall study the algebraic
boundary 9, P of the convex hull P = conv(X) of a compact real algebraic variety
X in R™. Biduality of projective varieties (Theorem 5.13) will play an important
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5.4. An Algebraic View of Convex Hulls 225

role in understanding the structure of 9, P. The results to be presented are drawn

from [31, 32]. In Section 5.6 we shall briefly discuss the alternative representation

of P as a projected spectrahedron, a topic much further elaborated in Chapter 7.
We begin with the seemingly easy example of a plane quartic curve.

Example 5.33. We consider the following smooth compact plane curve:
X = {(z,y) € R? | 1442™ + 144y* — 225(z® + y*) + 3502°y* + 81 = 0 }. (5.30)

This curve is known as the Trott curve. It was first constructed by Michael
Trott in [36], and is illustrated above in Figure 5.5. A classical result of algebraic
geometry states that a general quartic curve in the complex projective plane P2 has
28 bitangent lines, and the Trott curve X is an instance where all 28 lines are real
and have a coordinatization in terms of radicals over Q. Four of the 28 bitangents
form edges of conv(X). These special bitangents are

/48050 + 4341/9389
248

The boundary of conv(X) alternates between these four edges and pieces of the
curve X. The eight transition points have the floating point coordinates

{(z,y) eR?*| £ 2 + y = v}, where v = = 1.2177....

(£0.37655...,+£0.84122...) , (£0.84122...,+0.37655...).

These coordinates lie in the field Q(vy) and we invite the reader to write them in the
form ¢; + g2y, where ¢; € Q. The Q-Zariski closure of the 4 edge lines of conv(X)
is a curve Y of degree 8. Its equation has two irreducible factors:

(9922* 396823y +595222y% —39682y>+992y* — 155022 +31002y —1550y%+117),
(992244-396823y+595222y% +39682y°+992y* — 155022 —31002y— 1550y %+117).

\

N\

Figure 5.5. A quartic curve in the plane can have up to 28 real bitangents.
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Each reduces over R to four parallel lines (cf. Figure 5.5), two of which contribute
to the boundary. The point of this example is to stress the role of the (arithmetic
of) bitangents in any exact description of the convex hull of a plane curve. N

We now present a general formula for the algebraic boundary of the convex hull
of a compact variety X in R™. The key observation is that the algebraic boundary
of P = conv(X) will consist of different types of components, resulting from planes
that are simultaneously tangent at k different points of X, for various values of the
integer k. For the Trott curve X in Example 5.33, the relevant integers were k = 1
and k = 2, and we demonstrated that the algebraic boundary of its convex hull P
is a reducible curve of degree 12:

8.(P) = XUY. (5.31)

In the following definitions we regard X as a complex projective variety in P".
Let X% be the variety in the dual projective space (P™)* which is the closure of
the set of all hyperplanes that are tangent to X at k regular points which span a
(k — 1)-plane in P". This definition makes sense for k = 1,2,...,n. Note that X1
coincides with the dual variety X*, and X[? parametrizes all hyperplanes that are
tangent to X at two distinct points. Typically, X% is an irreducible component of
the singular locus of X* = X1l We have the following nested chain of projective
varieties in the dual space:

x c x=1 c ... c xI ¢ xl ¢ (P")*.

We now dualize each of the varieties in this chain. The resulting varieties (X [*)*
live in the primal projective space P". For k = 1 we return to our original variety,
i.e., we have (X[)* = X by biduality (Theorem 5.13). In the following result we
assume that X is smooth as a complex variety in P, and we require one technical
hypothesis concerning tangency of hyperplanes.

Theorem 5.34 ([32, Theorem 1.1]). Let X be a smooth and compact real alge-
braic variety that affinely spans R™, and such that only finitely many hyperplanes are
tangent to X at infinitely many points. The algebraic boundary 0, P of its convex
hull, P = conv(X), can be computed by biduality as follows:

0.P < |J(xty. (5.32)
k=1

Since 0, P is pure of codimension one, in the union we need only indices k
having the property that (X*)* is a hypersurface in P". As argued in [32], this
leads to the following lower bound on the relevant values to be considered:

[m] (5.33)

The formula (5.32) computes the algebraic boundary 9, P in the following sense. For
each relevant k we check whether (X*)* is a hypersurface, and if so, we determine
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its irreducible components (over the field K of interest). For each component we
then check, usually by means of numerical computations, whether it meets the
boundary 0P in a regular point. The irreducible hypersurfaces which survive this
test are precisely the components of 9, X.

Example 5.35. When X is a plane curve in R?, (5.32) says that
P C X U(XE)*, (5.34)

Here X[ is the set of points in (P?)* that are dual to the bitangent lines of X, and
(X2h* is the union of those lines in P2. If we work over K = Q and the curve X
is general enough then we expect equality to hold in (5.34). For special curves the
inclusion can be strict. This happens for the Trott curve (5.30) since Y is a proper
subset of (X[2)*. Namely, Y consists of two of the six Q-components of (X [)*,
However, a small perturbation of the coefficients in (5.30) leads to a curve X with
equality in (5.34), as the relevant Galois group acts transitively on the 28 points
in X2 for general quartics X. See [28] for more details. We conclude that the
algebraic boundary of X over Q is a reducible curve of degree 32 =28 +4. 1

If we are given the variety X in terms of equations or in parametric form,
then we can compute equations for X* by an elimination process similar to the
computation of the dual variety X* in Algorithm 5.1. However, expressing the
tangency condition at k different points requires a larger number of additional
variables (which need to be eliminated afterwards) and thus the computations are
quite involved. The subsequent step of dualizing X*! to get the right-hand side of
(5.32) is even more forbidding. The resulting hypersurfaces (X*)* tend to have
high degree and their defining polynomials are very large when n > 3.

The article [31] offers a detailed study of the case when X is a space curve in
R3. Here the lower bound (5.33) tells us that 9, X C (X[2)*U(XP)*. The surface
(X2h* is the edge surface of the curve X, and (X[)* is the union of all tritangent
planes of X. The following example illustrates these objects.

Example 5.36. We consider the trigonometric curve X in R? parametrized by
x = cos(f), y = cos(26), z = sin(30). This is an algebraic curve of degree six. Its
implicit representation equals X = V' (hq, ha), where

hi = 22°> —y—1 and hy = 49> +22% — 3y — 1.

The edge surface (X[2)* has three irreducible components. Two of the compo-
nents are the quadric V' (h;) and the cubic V' (hs2). The third and most interesting
component of (X[)* is the surface of degree 16 with equation hs =

— 419904x1%y? + 664848x12y* — 41990421090 + 13219248¢® — 207362810 + 129621412

— 466562422 + 3732482124222 — 69984x10y* 22 —2246428 022 + 432020y 22 +31104212 24

+ 518421092 2% + 475228 y*2* + 172821025 + 6998402y — 46656z 2y> — 90201620y°

+69465628y” —209088z%y? —11508482 104> 22 +27993628 y° 22 +1728045y7 22— 403221 ° 22

— 984962 0y2* 4 2707224y — 11522213 — 419904212y 22 — 259202893 2% — 4608454524

“malin’’
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— 172828928 — 2916002 — 169128z 2y? — 256608z y* + 9568802%y® — 618192xy8

+ 14882424 y10 — 1312042y '2 + 256y + 392688z 1222 + 671976509222 + 145497628y 22
— 292608201522 — 4272241822 4+ 101622y1022 116208z 1024 +13543228y% 24 +18144x0 % 24
+ 1264z*y82* — 56162528 + 504284226 — 1108080z 2y + 92534421043 + 2151362345
—6721922%y7 + 331920z%y° — 5424022y " + 2304y '3 +273456210y22+28252825 5 22

— 1185408x59° 22 + 14937621y " 22 — 36822y° 2% — 32911 22427345628 y2* —67104x53 24

— 4704z%y% 2% — 6422y72* + 475225928 — 32249320 + 747225212 + 636660z '0y>

— 908010z8y* — 6534025¢% + 2914652%y® — 10171222y + 8256y — 818100z 0 22

— 14058362 y% 22 — 90563415 y* 2% + 583824x% %22 — 3931822y 22 + 368y'0224+1938062° 2*
— 282996202 2% + 1545024 y* 2% + 71622902 + y82% + 6876526 — 1140249225 + 222y* 26
+ z%2® + 50738420y — 8095682 y> + 569592285 — 272162%y7 — 71648x2y° + 13952yt

+ 55576828 y22 + 86904028y 22 + 688512z y° 22 — 15412822y 7 22+4416y° 22— 34322425 y2*
+ 12736024y 2% — 165622y°2* — 64y7 2% — 45362*y20+4822y3 20 — 77517020 —19180825 4>
+ 599022z%y* — 2457002448 + 31608z2y® + 7872y1° + 76507228 22 + 589788z0y2 22

— 66066z y* 22 — 23425222522 + 16632y8 22 — 17319625 2* + 248928z%y%2* — 26158z y*2*
—32y0%2* — 39042425 + 80422220 + 2% 2% — 22228 + 583248y + 9828025y — 2194562 y°
+ 7207222y" — 8064y° — 724032x5y2% — 51576021322 — 996722:2y° 22 + 29976y 7 22

+ 225048z yz* — 7621622y 2% + 1912¢° 2% + 169622 y28 — 32y28 + 4113452% — 660962512
—62532z* y* +29388221% —11856y° —3653462° 22 +19812z* y? 22 +10492222 y* 22 +24636y° 22
+ 85090z 2% —10458022y? 248282y 2 +101422 26— 14492 20 + 28 —3974420y4+619922%¢>
+ 2304z2y® + 576y" + 305328z y22 + 8664022y> 22 + 960y° 2% — 73480x2y2* + 16024y> 24
— 200y2% — 1149662° + 24120z*y? — 5958z2y* + 6192y°® + 85494z* 22 — 3969622y 22

— 11970y* 2% — 2161022 2% + 16780y%2* — 9420 — 36722y — 110242%y> + 272¢°

— 4690422 y22 — 4632y3 2% + 9368yz* + 152462 — 8422y% — 1908y* — 6892x222

+ 22041222 + 22152% + 321622y + 168y + 904y22 — 664z2 + 292y — 28222 — 96y + 9.

The boundary of P = conv(X) contains patches from all three surfaces V (hy),
V(hs), and V(h3). There are also two triangles, with vertices at (v/3/2,1/2,+1),
(v/3/2,1/2,41), and (0,—1,+1). They span two of the tritangent planes of X,
namely, z = 1 and z = —1. The union of all tritangent planes equals (X[)*. Only
one triangle is visible in Figure 5.6. It is colored yellow. The curved blue patch
adjacent to one of the edges of the triangle is given by the cubic hg, while the other
two edges of the triangle lie in the degree 16 surface V' (hg). The curve X has two
singular points at (z,y,z) = (£1/2,—1/2,0). Around these two singular points, the
boundary is given by four alternating patches from the quadric V' (h;) highlighted
in red and the degree 16 surface V' (h3) in green. We conclude that the edge surface
(XB)* = V(h1hyhs) is reducible of degree 21 = 2 + 3 + 16, and the algebraic
boundary 9, (P) is a reducible surface of degree 23 =2+21. 1§

In our next example we examine the convex hull of space curves of degree four
that are obtained as the intersection of two quadratic surfaces in R3.
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Figure 5.6. The convex hull of the curve (cos(f),cos(20),sin(30)) in R>.

Example 5.37. Let X = V(hq, h2) be the intersection of two quadratic surfaces in
3-space. We assume that X has no singularities in P3. Then X is a curve of genus
one. According to recent work of Scheiderer [35], the convex body P = conv(X)
can be represented exactly using Lasserre relaxations, a topic we shall return to
when discussing projected spectrahedron in Section 5.6. If we are willing to work
over R, then P is in fact a spectrahedron, as shown in [31, Example 2.3]. We here
derive that representation for a concrete example.

Lazard et al. [23, Section 8.2] examine the curve X cut out by the two quadrics

hi =2+ y2 +22—1 and hy=192% + 22y2 + 2122 —20.
Figure 5.7 shows the two components of X on the unit sphere V (k).
The dual variety X* is a surface of degree 8 in (P3)*. The singular locus of

X* contains the curve X2 which is the union of four quadratic curves. The duals
of these four plane curves are the singular quadratic surfaces defined by

hy = a® — 2% — 2%, hy = 222 — 9> — 1, hs = 3y°> + 222 — 1, hg = 322 + 22— 2.
The edge surface of X is the union of these four quadrics:

(X2 = V(hg) U V(hg) U V(hs) U V(he).
The algebraic boundary of P consists of the last two among these quadrics:

8.P = V(hs) U V(hg).
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Figure 5.7. The curve on the unit sphere discussed in Examples 5.37 and 5.61.

These two quadrics are convex. From this we derive a representation of P as a
spectrahedron by applying Schur complements to the quadrics hs and hg:

1+V3y V22 0 0
3 V22  1—/3y 0 0
= -
P (z,y,2) €R 0 0 V2is Ve =0
0 0 V3z  V2-z

An extension of this example is suggested in Exercise 5.42 below. N

Exercises

Exercise 5.38. Give an example of a compact algebraic curve of degree six in the
plane R? whose convex hull has more than 8 straight edges in its boundary. It is an
interesting problem to determine the maximal number u(d) of edges in the convex
hull of any curve of degree d in R?. For instance, u(6) > 9.

Exercise 5.39. If X is a surface in 3-space, then its algebraic boundary consists
of three surfaces (X[M)* (X)* and (X[Bl)*. Describe the geometric meaning of
these surfaces. Show that all three of them are needed for some X.

Exercise 5.40. Let P be the convex hull of the union of two circles in three-
dimensional space, where the first circle is defined by 22 +y? = 5/4 and z = 0, and
the second circle is defined by 22 + 22 = 1 and y = 0. Compute the irreducible
polynomial in z,y, z that vanishes on the boundary of P.

Exercise 5.41. Describe an algorithm for computing the variety X% from the
equations of X. Apply your algorithm to the curve X = V'(hq, ha) in Example 5.22.
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Exercise 5.42. Intersect the unit sphere in 3-space with a general quadratic
surface. Show that the convex hull of the resulting curve is a spectrahedron.

5.5 Spectrahedra and Semidefinite Programming

Spectrahedra and semidefinite programming (SDP) have already surfaced numerous
times throughout this book. In this section we take a systematic look at these topics
from the point of view of duality. We write S™ for the space of real symmetric

nxn-matrices and S for the cone of positive semidefinite matrices in S™ ~ r("2Y),
This cone is self-dual with respect to the inner product (U, V) = Tr(U - V).
A spectrahedron is the intersection of the cone ST with an affine subspace
K = C + Span(Aj, Ag, ..., Ap).
w

Here C, A4, ..., A, are symmetric n X n matrices, and we assume that W is a linear
subspace of dimension m in ™. Recall from Chapter 2 that we may also think of
a spectrahedron as a set in the Euclidean space as follows:

P = {xERm ‘ C—inAi>0} ~ KNSt (5.35)
i=1
We shall assume that C is positive definite or, equivalently, that 0 € int(P). The
dual body to our spectrahedron is written in the coordinates on R™ as
P° = {yeR™|(y,z) <1 forall z € P}.
We can express P° as a projection of the (";1)

Q = {Ues | (U,C)<1}. (5.36)

-dimensional spectrahedron

While @ is not literally a spectrahedron when regarded as a set of nxn matrices, we
will identify it with the spectrahedron consisting of all symmetric positive semidef-
inite (n+1) x (n+ 1) matrices U = (Y 0) that satisfy the equation (U, C)+z = 1.

To write P° as a projection of the spectrahedron @, we consider the linear
map dual to the inclusion of the linear subspace W = Span(A4;, Aa, ..., A,,) in the
("+")-dimensional real vector space S™:

T S8" = S"/WE ~ R™
U~ (<U,A1>, <U, A2>, ey <U, Am>)
Remark 5.43. The convex body P° dual to the spectrahedron P is affinely isomor-

phic to the closure of the image of the spectrahedron @ in (5.36) under the linear
map Ty, i.e., P° ~my(Q).

This result in Remark 5.43 is due to Ramana and Goldman [30]. In summary,
while the dual to a spectrahedron is generally not a spectrahedron, it is always a
projected spectrahedron. We shall return to this issue in Theorem 5.57.
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232 Chapter 5. Dualities

Figure 5.8. The elliptope P = &3 and its dual convex body P°.

Example 5.44. The elliptope &, is the spectrahedron consisting of all correlation
matrices of size n; see [20]. These are the positive semidefinite symmetric nxn
matrices whose diagonal entries are 1. We consider the case n = 3:

1 =z y
E3 = { (x,y,2) eR? xz 1 z|>05. (5.37)
y z 1

This spectrahedron of dimension m = 3 is shown on the left in Figure 5.8. The
algebraic boundary of & is the cubic surface X defined by the vanishing of the 3 x 3
determinant in (5.37). That surface has four isolated singular points

Xeing = {(1,1,1),(1,-1,-1),(-1,1,-1), (=1, -1, 1) }.

The six edges of the tetrahedron conv(Xging) are edges of the elliptope 3. The dual
body, shown on the right of Figure 5.8, is the projected spectrahedron

U —a —b
& = S (a,b,c) €R® | Ju,veR: | —a v —c =05. (5.38)
b —c 2—u—v

The algebraic boundary of £5 can be computed by the following method. We form
the ideal generated by the determinant in (5.38) and its derivatives with respect to
u and v, and we eliminate u,v. This results in the polynomial

(a®V? + b2 + a4 2abc)(a+b+c—1)(a—b—c—1)(a—b+c+1)(a+b—c+1).

The first factor is the equation of Steiner’s quartic surface X*, which is dual to
Cayley’s cubic surface X = 0,E3. The four linear factors represent the arrangement
(Xsing)™ of the four planes dual to the four singular points.
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5.5. Spectrahedra and Semidefinite Programming 233

Thus the algebraic boundary of the dual body &5 is the reducible surface
0485 = X* U (Xaimg)® < (P?)*. (5.39)

We note that £5 is not a spectrahedron as it fails to be a basic semialgebraic set;
i.e., it cannot be described by a conjunction of polynomial inequalities g; > 0. Since
the algebraic boundary of £5 is uniquely defined by (the irreducible polynomial)
equation ¢(a, b, ¢) = 0, such a description would contain the inequality ¢(a, b, c) > 0.
This is not possible since the Steiner surface has a regular point in the interior of
the dual convex body £5. 1

Semidefinite programming (SDP) is the branch of convex optimization that is
concerned with maximizing a linear function b over a spectrahedron:

p* = max (b,x) subject to x € P. (5.40)

Here P is as in (5.35). As the semidefiniteness of a matrix is equivalent to the simul-
taneous nonnegativity of its principal minors, SDP is an instance of the polynomial
optimization problem (5.17). Lagrange duality theory applies here by [5, Section 5].
We shall derive the optimization problem dual to (5.40) from

1
d* := minimize v subject to —b € P°. (5.41)
v Y

Since we assumed 0 € int(P), strong duality holds and we have p* = d*.

The fact that P° is a projected spectrahedron implies that the dual optimiza-
tion problem is again a semidefinite optimization problem. In light of Remark 5.43,
the condition %b € P° can be expressed as follows:

AU : U =0, (C,U) <1and b; =~(A;,U) for i =1,2,...,m.

Since the optimal value of (5.41) is attained at the boundary of P°, we can here
replace the condition (C,U) < 1 with (C,U) = 1. Indeed, assume that (C,U*) =
a < 1 at the optimum, then we could scale U* by é and the optimal cost v*
by the factor o and obtain a feasible solution with a smaller cost function value,
a contradiction.

This is in fact what was done to obtain (5.38). If we now set Y = U, then
(5.41) translates into

d* = mini};nize (C)Y)
subject to (A;,Y) =b; for i=1,...,m (5.42)
and Y € SY.

We recall that W = Span(A;, Ag, ..., A,,) and we fix any matrix B € 8" with
(Ai,B) =b; for i =1,...,m. Then (5.42) can be written as follows:

d* = minimize (C,Y') subject to ¥ € (B + whHnsr. (5.43)
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The following reformulation of (5.40) highlights the symmetry between the primal
and dual formulations of our SDP problem:

p* o= max (B,C — X) subject to X € (C+W)NS} (5.44)
Then the following variant of the KKT conditions holds.

Theorem 5.45 ([5, Section 5.9.2]). If both the primal problem (5.44) and its
dual (5.43) are strictly feasible, then the KKT conditions take the following form:

Xe(C+W)nsyt,
Y € (B+WH) NSy,
X Y =0 (complementary slackness).

These conditions characterize all the pairs (X,Y) of optimal solutions.

This theorem can be related to the general optimality conditions (5.18) by
regarding the entries of Y € S™ as the (Lagrangian) dual variables to the posi-
tive semidefinite constraint X = C' — Z?; x;A; = 0. The three KKT conditions
in Theorem 5.45 are both necessary and sufficient for optimality. This holds be-
cause SDP is a convex problem and every local optimum is also a global optimal
solution.

In order to study algebraic and geometric properties of SDP, we will relax the
conic inequalities X,Y € 8% and focus only on the KKT equations

XeC+W,YeB+W? and X Y =0. (5.45)

Given the data B,C, and W, our problem is to solve the polynomial equations
(5.45). The theorem ensures that, among its solutions (X,Y), there is precisely one
pair of positive semidefinite matrices. That pair is the one desired in SDP.

Example 5.46. Consider the problem of minimizing a linear function Y — (C,Y")
over the set of all correlation matrices Y, that is, over the elliptope &, of Example
5.44. Here m = n, B is the identity matrix, C' is any symmetric matrix, W is
the space of all diagonal matrices, and W+ consists of matrices with zero diagonal.
This problem is dual to maximizing the trace of C — X over all matrices X € S7
such that C'— X is diagonal. Equivalently, we seek to find the minimum trace t* of
any positive semidefinite matrix that agrees with C in its off-diagonal entries.
For n = 4, the KKT equations (5.45) can be written in the form

r1 Ci2 C13 Ci4 1 Y12 Y13 Y14
1
X.VY = Ci2 T2 C23 Co4 | | W12 Y23 Y24 - 0. (5.46)
C13 C23 T3 C34 Y13 Y23 1 Y34
Cl4 C24 C34 T4 Y14 Y24 Y34 1

This is a system of 16 quadratic equations in 10 unknowns. For general values of
the 6 parameters c;;, these equations have 14 solutions. Eight of these solutions
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5.5. Spectrahedra and Semidefinite Programming 235

have rank(X) = 3 and rank(Y) = 1 and they are defined over Q(c;;). The other
six solutions form an irreducible variety over Q(c;;) and they satisfy rank(X) =
rank(Y’) = 2. This case distinction reflects the boundary structure of the dual body
to the six-dimensional elliptope &4:

0.7 = A{rank(Y) <2}* U {rank(Y) = 1}". (5.47)

Indeed, the boundary of &, is the quartic hypersurface {rank(Y’) < 3}, its singular
locus is the degree 10 threefold {rank(Y) < 2}, and, finally, the singular locus of
that threefold consists of eight matrices of rank 1:

{rank(Y) =1} = { (w1, ug, ug, uq)? - (w1, ug, uz, ug) : u; € {—1,+1} I3

The last two strata are dual to the hypersurfaces in (5.47). The second component
in (5.47) consists of eight hyperplanes, while the first component is irreducible of
degree 18. The corresponding projective hypersurface is defined by an irreducible
homogeneous polynomial of degree 18 in seven unknowns cy2, €13, €14, C23, C24, C34, t*.
That polynomial has degree 6 in the special unknown ¢*. Hence, the algebraic degree
of our SDP, i.e., the degree of the optimal value function, is 6 when rank(Y’) = 2.
We note that {rank(Y) < 3}* does not appear as a component in the union
(5.47) since it is not a hypersurface. Nevertheless, it is still a subset of 9,€;. W

In algebraic geometry, it is natural to regard the matrix pairs (X,Y’) as points
in the product of projective spaces P(S™) x P(S™)*. This has the advantage that
solutions of (5.45) are invariant under scaling, i.e., whenever (X,Y") is a solution,
then so is (aX, 8Y') for any nonzero «, 8 € R. In that setting, there are no worries
about complications due to solutions at infinity.

For the algebraic formulation we assume that, without loss of generality,

by=1, bo=0, b3=0,...,by=0.

This means that (A7, X) = 1 plays the role of the homogenizing variable. Our SDP
instance is specified by two linear subspaces of symmetric matrices:

L = Span(As, As, ..., Ay) C U =Span(C, A1, As, ..., An) C S™
Note that we have the following identifications:
RC+W =U and RB+W?* = RB+ (LT NAT) = £+
With the linear spaces £ C U, we write the homogeneous KKT equations as
XeUu, YeLltand X Y =0. (5.48)
Here is an abstract definition of SDP that might appeal to some of our alge-

braically inclined readers: Given two nested linear subspaces £L C U C S™ with
dim(U/L) = 2, locate the unique semidefinite point in the variety (5.48).
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For instance, in Example 5.46 the space £ consists of traceless diagonal ma-
trices and U/ L is spanned by the unit matrix B and one off-diagonal matrix C. We
seek to solve the matrix equation X - Y = 0 where the diagonal entries of X are
constant and the off-diagonal entries of Y are proportional to C.

The formulation (5.48) suggests that we study the variety {XY = 0} for pairs
of symmetric matrices X and Y. In [27, Equation (3.9)] it was shown that this
variety has the following decomposition into irreducible components:

(XY =0} = D (XY =0} C P(S") x P(S™)*.

r=1

Here {XY = 0}" denotes the subvariety consisting of pairs (X,Y) where rank(X) <
r and rank(Y) < n—r. This is irreducible because, by Example 5.15, it is the conor-
mal variety of the variety of symmetric matrices of rank < r. See also Exercise 5.19
at the end of Section 5.2.

The KKT equations describe sections of these conormal varieties:

{XY =0} n (PU) xP(LY)). (5.49)

All solutions of a semidefinite optimization problem (and thus also the boundary of
a spectrahedron and its dual) can be characterized by rank conditions. The main
result in [27] describes the case when the section in (5.49) is generic:

Theorem 5.47 ([27, Theorem 7]). For generic subspaces L C U C S™ with
dim(£) =m — 1 and dim(U) = m + 1, the variety (5.49) is empty unless

(5 e (203

In that case, the variety (5.49) is reduced, nonempty, and zero-dimensional and at
each point the rank of X andY is r and n—r, respectively (strict complementarity).
The cardinality of this variety depends only on m, n, and r.

The generic choice of nested subspaces £ C U corresponds to the assumption
that our matrices Ay, As, ..., Ay, B, C lie in a certain dense open subset in the space
of all SDP instances. The inequalities (5.50) are known as Pataki’s inequalities.
If m and n are fixed, then they give a lower bound and an upper bound for the
possible ranks r of the optimal matrix of a generic SDP instance. The variety
(5.49) represents all complex solutions of the KKT equations for such a generic

SDP instance. Its cardinality, denoted §(m,n,r), is known as the algebraic degree
of SDP.

Corollary 5.48. Consider the variety of symmetric nxn matrices of rank < r that
lie in the generic m-dimensional linear subspace P(U) of P(S™). Its dual variety is
a hypersurface if and only if Pataki’s inequalities (5.50) hold, and the degree of that
hypersurface is 6(m,n,r), the algebraic degree of SDP.
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5.5. Spectrahedra and Semidefinite Programming 237

Proof. The genericity of U ensures that {XY = 0}" N (PU) x P(U)*) is the
conormal variety of the given variety. We obtain its dual by projection onto the
second factor P(U)* = P(S"/U*). The degree of the dual hypersurface is found by
intersecting with a generic line. The line we take is P(£*/U*). That intersection
corresponds to the second factor P(£1) in (5.49). 0O

We note that the symmetry in the equations (5.48) implies the duality

5(m,n,7“) = 5(<n—2|—1) —m,n,n—r),

first shown in [27, Proposition 9]. See also [27, Table 2]. Bothmer and Ranestad
[12] derived an explicit combinatorial formula for the algebraic degree of SDP. Their
result implies that §(m,n,r) is a polynomial of degree m in n when n — r is fixed.
For example, in addition to [27, Theorem 11], we have

1

5(6,n,m—2) = 5(11nﬁ — 81n° + 185n" — 75n® — 1961 + 156n).

The algebraic degree of SDP is important because it represents a universal
upper bound on the intrinsic algebraic complexity of optimizing a linear function
over any m-dimensional spectrahedron of nxn matrices. The algebraic degree can
be much smaller for families of instances involving special matrices A4;, B, or C.

Example 5.49. Fix n =4 and m = 6 = dim(&,). Pataki’s inequalities (5.50) state
that the rank of the optimal matrix is 7 = 1 or » = 2, and this was indeed observed
in Example 5.46. For r = 2 we had found the algebraic degree six when solving
(5.46). However, here B is the identity matrix and A;, Ay, A3, A4 are diagonal.
When these are replaced by generic symmetric matrices, then the algebraic degree
jumps from six to §(6,4,2) = 30. N

We now state a result that elucidates the decompositions in (5.39) and (5.47).

Theorem 5.50. If the matrices A1, ..., Ay and C in the definition (5.35) of the
spectrahedron P are sufficiently generic, then the algebraic boundary of the dual
body P° is the following union of dual hypersurfaces:

9.P° < |J {XecrL|rank(X)<r} (5.51)
rasin (5.50)

Proof. Let Y be any irreducible component of 9,P° C (P™)*. Then Y NIP° is a
semialgebraic subset of codimension 1 in P°. We consider a general point in that
set. The corresponding hyperplane H in the primal R™ supports the spectrahe-
dron P at a unique point Z. Then r = rank(Z) satisfies Pataki’s inequalities, by
Theorem 5.47. Moreover, the genericity in our choices of Ay,..., A, C, H ensure
that Z is a regular point in {X € £|rank(X) < r}. Bertini’s theorem ensures that
this determinantal variety is irreducible and that its singular locus consists only
of matrices of rank < r. This implies that {X € £]|rank(X) < r} is the Zariski
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238 Chapter 5. Dualities

closure of {X € P|rank(X) =7} and hence also of a neighborhood of Z in that
rank stratum. Likewise, } is the Zariski closure in (P™)* of Y N 9P°. An open
dense subset of points in ) N JP° corresponds to hyperplanes that support P at a
rank r matrix. We conclude Y* = {X € £ |rank(X) < r}. Biduality completes the
proof. O

Theorem 5.50 is similar to Theorem 5.34 in that it characterizes the algebraic
boundary in terms of dual hypersurfaces. Just as in Section 5.4, we can apply this
result to compute 9,P°. For each rank r in the Pataki range (5.50), we need to
check whether the corresponding dual hypersurface meets the boundary of P°. The
indices r which survive this test determine 9, P°.

When the data that specify the spectrahedron P are not generic but special
then the computation of 9, P° is more subtle and we know of no formula as simple
as (5.51). This issue certainly deserves further research.

We close this section with an interesting three-dimensional example.

Example 5.51. The cyclohezatope is a spectrahedron with m = 3 and n = 5 that
arises in the study of chemical conformations [14]. Consider the following Schéonberg

matriz for the pairwise distances y/D;; among six carbon atoms:

2D12
D12+D13—Da3
Di2+D1s—Day
D12+D15—Das
D12+D16—D2s

Di2+D13—Da3
2D:3
D13+D1s—D3y
D13+D15—D3s
D13+D16—D3s

Di2+D1s—Day
D13+D14—D3y
2D14
D1s+D15—Days
D1s+D16—Das

Di2+D15—Das
D13+D15—Dss
D1s+D15—Days
2Ds5
D15+Dse—Dse

D12+D1s—Das
D13+D16—D3s
D1s+D16—Das
D15+4Ds6—Dse

The D;; are the squared distances among six points in R3 if and only if this matrix
is positive semidefinite of rank < 3. The points represent the carbon atoms in
cyclohexane CgHyo if and only if D; ;41 = 1 and D, ;4o = 8/3 for all indices 4,
understood cyclically. The three “diagonal” distances * = Di4,y = D25, and
z = Dgsg are unknowns, so, for cyclohexane conformations, the above Schonberg
matrix equals

2 8/3 x-—5/3 11/3—y —2/3

8/3 2 5/3+x 8/3 11/3— =

Co(r,y,2) = x—5/3 5/3+x 16/3 x+4+5/3 x-5/3
11/3—y 8/3 x+5/3 2y 8/3

“2/3° 11/3—2 x-5/3  8/3 16/3

The cyclohezatope Cycg is the spectrahedron in R? defined by Cg(z,y,2) = 0. Its
algebraic boundary decomposes as 9,Cycs = V(f) UV (g), where

f = 2Txyz — 75z — Ty — 75z — 250 and
g = 3xy+3xz+3yz — 22z — 22y — 222 + 121.

The conformation space of cyclohexane is the real algebraic variety

{(z,y.2) € Cycg | rank(Ce(2,y,2)) <3} = V(f.9) U V(g)sine-
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5.6. Projected Spectrahedra 239

The first component is the closed curve of all chair conformations. The second
component is the boat conformation point (x,y,z) = (%, %, %) These are well-
known to chemists [14]. Remarkably, the cyclohexatope coincides with the convex
hull of these two components. This spectrahedron is another example of a convex
hull of a space curve, now with an isolated point. SDP over the cyclohexatope
means computing the conformation which minimizes a linear function in the squared

distances D;;. 1

Exercises

Exercise 5.52. Maximize the sum of the off-diagonal entries over all positive
semidefinite 4 x4 matrices with trace 1. Formulate this as a pair of primal and dual
problems and solve the KKT equations. For both primal and dual, determine the
set of all optimal solutions, and verify Theorem 5.45.

Exercise 5.53. A result in classical algebraic geometry states that every smooth
cubic surface contains 27 lines and is obtained by blowing up P? at six points. Are
these statements still true for Cayley’s cubic surface X = 9,&3 as in Example 5.447

Exercise 5.54. Determine the positive integer §(5,7,5). Explain in your own
words what this number means for SDP on 7x7 matrices.

Exercise 5.55. Compute the right-hand side of (5.51) for the spectrahedron P in
(5.2).

Exercise 5.56. The analytic center of a spectrahedron is the symmetric matrix in
its interior that maximizes the determinant function. Compute the analytic center
of the three-dimensional spectrahedron

T z+1 z4+y+=z
z+1 Y r—y > 0.
r+y+z z—y l—xz—y

Determine the values x*, y*, and z* for the optimal matrix as floating point numbers.
Make sure that you have at least twenty accurate digits. If this is possible, write
z*,y*, and z* in terms of radicals over Q.

5.6 Projected Spectrahedra

A projected spectrahedron is the image of a spectrahedron under a linear map. The
class of projected spectrahedra is much larger than the class of spectrahedra. In
fact, it has even been conjectured that every convex basic semialgebraic set in R™
is a projected spectrahedron [17]. See Chapter 6 for a detailed discussion.

Our point of departure is the result that the convex body dual to a projected
spectrahedron is again a projected spectrahedron [15, Proposition 3.3].

Theorem 5.57. The class of projected spectrahedra is closed under duality.
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240 Chapter 5. Dualities

Proof (Construction). A projected spectrahedron can be written in the form

m p
P = {zeR™|IycR” with C+ Y A+ y;B; = 0
i=1 j=1

An expression for the dual body P° is obtained by the following variant of the
construction in Remark 5.43. We consider the same linear map as before:

7:8Y = R™, U ((AL,U),..., (A, U)).
We apply this linear map 7 to the spectrahedron
QR = {UES_? | (C,U) <1 and (Bl,U>:-~-:<Bp,U>:O}.

The closure of the projected spectrahedron 7(Q) equals the dual convex body P°.
This closure is itself a projected spectrahedron, e.g., by using the “extended
Lagrange—Slater dual” formulation proposed by Ramana [29]. 0O

We now consider the following problem: Given a real variety X C R”, find a
representation of its convex hull conv(X) as a projected spectrahedron. A system-
atic approach to computing such representations was introduced by Lasserre [21]
and further developed by Gouveia et al. [16]. It is based on the relaxation of
nonnegative polynomial functions on X as sums of squares in the coordinate ring
R[X]. This approach is known as moment relaxzation (also Lasserre relaxation; see
Chapter 7) in light of the duality between positive polynomials and moments of
measures.

We shall begin by exploring these ideas for homogeneous polynomials of even
degree 2d that are nonnegative on R™. These form a cone in a real vector space
of dimension (2d+"_1). Inside that cone lies the smaller sos cone of polynomials p

2d
that are sums of squares of polynomials of degree d:

p = GH+a+ o+ (5.52)

By Hilbert’s theorem [25, Theorem 1.2.6], this inclusion of convex cones is strict
unless (n,2d) equals (1,2d) or (n,2) or (2,4). The sos cone is easily seen to be a
projected spectrahedron. Indeed, consider an unknown symmetric matrix Q € SV
and write p = vTQu, where v is the vector of all N monomials of degree d. The
matrix @ is positive semidefinite if it has a Cholesky factorization Q = CTC. The
resulting identity p = (Cv)” (Cv) can be rewritten as (5.52). Hence the sos cone is
the image of Sj_v under the linear map Q +— v7Qu.

The boundaries of our two cones and their duals have been described in detail
already in Chapter 4, and here we want only to briefly make some connections to
our previous discussion about dualities. In the work of Nie [26] the structure of
these boundaries was approached by computations with discriminants, encountered
at the end of Section 5.2.4.

Proposition 5.58 (Theorem 4.1 in [26]). The algebraic boundary of the cone
of homogeneous polynomials p of degree 2d that are nonnegative on R™ is given
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5.6. Projected Spectrahedra 241

by the discriminant of a polynomial p whose coefficients are indeterminates. This
discriminant is the irreducible hypersurface dual to the Veronese embedding

PPl s PV (2 ey e (@24 22 gy s 229,
The degree of this discriminant is n(2d — 1)"~1.
Proof. The discriminant of p vanishes if and only if there exists € P*~! with

p(z) =0 and Vp|w = 0. If p is in the boundary of the cone of positive polynomials
then such a real point x exists. For the degree formula, see [11]. O

Results similar to Proposition 5.58 hold when we restrict ourselves to poly-
nomials p that lie in linear subspaces. This is why the A-discriminants A from
Section 5.2.4 are relevant. We show this for a two-dimensional family of polynomials.

Example 5.59. Consider the two-dimensional family of ternary quartics
fan(z,y,2) = 2 +y* + ax®z + ay?2? + bydz + ba?2? + (a +b)2h

Here a and b are parameters. Such a polynomial is nonnegative on R? if and only if
it is a sum of squares, by Hilbert’s theorem. This condition defines a closed convex
region C in the (a,b)-plane R?. It is nonempty because (0,0) € C. Its boundary
0,C is derived from the A-discriminant A, where

4 0 3 00 2 0
A = 0402 3 0 0]. (5.53)
0 01 21 2 4

This A-discriminant is an irreducible homogeneous polynomial of degree 24 in the
seven coefficients. What we are interested in here is the specialized discriminant
which is obtained from A 4 by substituting the vector of coefficients (1,1, a, a,b,b, a+
b) corresponding to our polynomial f, 5. The specialized discriminant is an inhomo-
geneous polynomial of degree 24 in the two unknowns a and b, and it is no longer
irreducible. A computation reveals that it is the product of four irreducible factors
whose degrees are 1, 5, 5, and 13.
The linear factor equals a + b. The two factors of degree 5 are

25602 —27a°+512ab+144a3b—27a*b+256b% —128ab® +144a2b* —128b% —4a2b°+16b*,
256a2—128a>+16a*+512ab—128a%b+256b% +144a%b* —4a>b>+144ab> —27ab* —27b°.

Finally, the factor of degree 13 in the specialized discriminant equals

2916a1b? + 19683a°b* + 19683a°b® + 2916a"b°® + 2916a°b” + 19683a°b8
+19683a*b® 4+ 2916a%b'! — 11664a'? — 104976a'°b% — 136080a°b® — 27216a%b*
—225504a7b% — 419904a°b°® — 225504a°b” — 27216a*b® — 136080a>b°
—104976a%b'° — 11664b'2 + 93312a* + 217728a'°b + 760324a°b?
+1133568a®b® + 197683247 b* + 891648a°b° + 891648a°b°® + 1976832a*b”
+1133568a>b® + 76032a%b° + 217728ab'° + 9331201 — 2419204 1°
—1368576a°b — 2674944a3b? — 1511424a7b% — 4729600a°b* — 93690884°b°
—4729600a*b® — 1511424a3b” — 2674944a%b® — 1368576ab° — 241920b°
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+663552a° + 2949120a8b + 1053900847 b? + 177274884553 + 9981952a°b*
+9981952a*b° + 17727488a%b°® + 10539008427 + 2949120ab® + 663552b°
—2719744a® — 88473600 b — 14974976a°b? — 36503552a°b> — 56360960a* b*
—36503552a°b° — 1497497642 b° — 8847360ab’ — 2719744b% + 45875204
+25821184a°%b 4 52035584a°b? + 50724864a*b%+50724864a°b*+52035584a2b°
+25821184ab® + 458752067 — 6291456a° — 31457280a°b — 94371840a*b?
—138412032a%b% — 94371840a2b* — 31457280ab® — 6291456b° + 167772164°
+50331648a*b + 67108864a°b? + 67108864a2b° + 50331648ab* + 16777216b°
—16777216a* — 67108864a>b — 100663296a%b% — 67108864ab® — 16777216b%.

The relevant pieces of these four curves in the (a, b)-plane are depicted in Figure 5.9.
The line a + b = 0 is seen in the lower left, the degree 13 curve is the swallowtail
in the upper right, and the two quintic curves form the upper-left and lower-right
boundaries of the enclosed convex region C.

Figure 5.9. The discriminant in Example 5.59 defines a curve in the (a,b)-
plane. The projected spectrahedron C is the set of points where the ternary quartic
fa,b is sos. The ranks of the corresponding sos matrices Q are indicated.

For each (a,b) € C, the ternary quartic f,, has an sos representation

fa,b(xvyaz) = (x27xy7y27xzayzaz2) ' Q ' (x27xy7y27xzayzaz2)T7 (554)

where () is a positive semidefinite 6 x6 matrix. This identity gives 15 independent
linear constraints which, together with @ > 0, define an eight-dimensional spectra-
hedron in the (21 4 2)-dimensional space of parameters (Q, a,b). The projection of
this spectrahedron onto the (a,b)-plane is our convex region C. This proves that
C is a projected spectrahedron. If (a,b) lies in the interior of C, then the fiber of
the projection is a six-dimensional spectrahedron. If (a,b) lies in the boundary 9C,
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then the fiber consists of a single point. The ranks of these unique matrices are
indicated in Figure 5.9. Notice that OC has three singular points, at which the rank
drops from 5 to 4 and 3, respectively. N

We now turn our attention to the question of approximating the convex hull
of a variety by a nested family of projected spectrahedra. Let I be an ideal in
R[z1,...,2,] and VR(I) the variety it defines in R™. Consider the set of affine-
linear polynomials that are nonnegative on Vi(I):

P(I) = {feR[z1,...,zx)1 | f(x)>0forall x € Vr(I)}.

In light of the biduality theorem for convex sets (cf. Section 5.2.2), we can charac-
terize the (closure of) the convex hull of our variety as follows:

conv(Vg(I)) = {ze€R"|f(z)>0forall fe (1)}
The geometry behind this formula is shown in Figure 5.10.

Figure 5.10. Convez hull as intersection of half spaces.

The hard constraint that f(x) be nonnegative on Vg(I) can now be relaxed
to the (hopefully easier) constraint that f(x) be a sum of squares in the coordinate
ring Rz, ..., x,]/I; see [16]. Introducing a parameter d that indicates the degree
of the polynomials allowed in that sos representation, we consider the following set
of affine linear polynomials:

SUD) = {f1f—aE——q2 €I for someq; € Rlan,...,anla }.
The following chain of inclusions holds:
NI € B2(1) C THI) € - € P(D). (5.55)

We now dualize the situation by considering the subsets of R™ where the various f
are nonnegative. The dth theta body of the ideal I is the set

THq(I) = {2z € R"|f(z) >0 for all f € X{(I)}.
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The following reverse chain of inclusions holds among subsets in R"™:
TH;(I) 2 THy(I) 2 TH3(I) 2 --- D conv(Vg(I)). (5.56)

This chain of outer approximations can fail to converge in general, but there are
various convergence results when the geometry is nice. For instance, if the real
variety Vi(I) is compact then Schmiidgen’s Positivstellensatz [35, Section 3] ensures
asymptotic convergence. When Vg (I) is a finite set, so that conv(Vr(I)) is a poly-
tope, then finite convergence follows from [19], that is, 3d : TH4(I) = conv(Va(I)).
More information on theta bodies and related constructions is given in Chapter 7.
The main point we wish to record here is the following;:

Theorem 5.60 ([16, 22]). Each theta body THy(I) is a projected spectrahedron.

Proof. We may assume, without loss of generality, that the origin 0 lies in the
interior of conv(Vik(I)). Then X¢(I) is the cone over the convex set dual to THg(1).
Since the class of projected spectrahedra is closed under duality, and under in-
tersection with affine hyperplanes, it suffices to show that 3¢(I) is a projected
spectrahedron. But this follows from the formula f —¢7 —--- —¢? € I by an
argument similar to that given after (5.52). O

In this chapter we have seen two rather different representations of the con-
vex hull of a real variety, namely, the characterization of the algebraic boundary
in Section 5.4, and the representation as a theta body suggested above. The rela-
tionship between these two is not yet well understood. A specific question is how
to efficiently compute the algebraic boundary of a projected spectrahedron. This
leads to problems in elimination theory that seem to be particularly challenging for
current computer algebra systems.

We conclude by revisiting one of the examples we had seen in Section 5.4.

Example 5.61 (Example 5.37 continued). We revisit the curve X = V(hq, ha)
with

hi :a:2+y2+22—1,

ho = 1922 + 21y% + 2222 — 20.

Scheiderer [35] proved that finite convergence holds in (5.56) whenever I defines
a curve of genus 1, such as X. We will show that d = 1 suffices in our example;
i.e., we will show that TH;(I) = conv(X) for the ideal I = (hq, hs).

We are interested in affine linear forms f that admit a representation

f = 14+ux+vy+wz = prhy + pshe + z:ql2 (5.57)

Here 7 and jug are real parameters. Moreover, we want f to lie in X1(I), so we
require deg g; = 1 for all 7. The sum of squares can be written as

S @ = (Lay,2)-Q-(Laoy2)T,  where Q€ S
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After matching coefficients in (5.57), we obtain the projected spectrahedron

21 = < (u,v,w) € R?| 3pa, o :

1+ p1 + 202 u v w
u —p1 — 19u2 0 0
v 0 —p1 — 21ps 0 =0
w 0 0 —H1 — 22;1,2

Dual to this is the theta body TH;(I) = $1(I)°. It has the representation

]. €T y z
3 x z_ lU4 U1 Uo
THi(I) = $ (z,y,2) € R?| Juy, uz, us, uy : 373 .M =0
Y U1 3 — 3U4 U3
z U2 us Uy

To show that TH;(I) = conv(X), we use the general approach outlined in Remark
5.62 below. We consider the ideal generated by this 4x4 determinant and its deriva-
tives with respect to w1, us, us, uys, we saturate by the ideal of 3x3 minors, and then
we eliminate uq,us, us, us. The result is the principal ideal (h4hshg), with h; as in
Example 5.37. This computation reveals that the algebraic boundary of conv(X)
consists of quadrics, and we can conclude that TH;(I) = conv(X).

8 u

Figure 5.11. Convex hull of the curve in Figure 5.7 and its dual convex body.

Pictures of our convex body and its dual are shown in Figure 5.11. Diagrams
such as these can be drawn fairly easily for any projected spectrahedron in R?. To
be precise, the matrix representation of TH;(I) and ¥1(I) given above can be
used to rapidly sample the boundaries of these convex bodies, by maximizing many
linear functions via SDP. |}

Remark 5.62. It would be desirable to develop a practical algorithm for comput-
ing the algebraic boundary of a projected spectrahedron. After a linear change of
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coordinates, we may assume that the given spectrahedron is represented by a sym-
metric matriz whose entries are linear forms in some unknowns, and our task is to
eliminate a subset of these unknowns. To do this, we consider the ideal generated by
the determinant and its partial derivative with respect to the unknowns to be elim-
inated. The variety of this ideal contains the ramification locus of the projection,
but it also contains the singular locus of the determinantal hypersurface. The main
difficulty in the computation is that we need to remove that singular locus before we
eliminate the unknowns. Frequently, like in the previous example, the singular locus
is given by the vanishing of the comaximal minors. However, this need not always
be the case. A concrete example is discussed below in FEzxample 5.63. Thus, one
issue is how to best represent the singular locus of the algebraic boundary of a spec-
trahedron, in order to perform the saturation step. Once we have the correct ideal
for the ramification locus, then we can compute the branch locus by elimination,
and the result will be the desired hypersurface.

Example 5.63. Consider the surface in 3-space defined by

T y+z x y

det y+ez L v 1 = 0.
T Y z T
Y 1 z 1

Its singular locus is the line x —y = 2z = 0. This does not coincide, in this example,
with the variety defined by the vanishing of the (comaximal) 3 x 3 minors which
consist only of the two points (0,0,0) and (1,1,0). N

Exercises

Exercise 5.64. Find an explicit symmetric 6x6 matrix @), with entries that are
linear in a and b, that satisfies the identify (5.54). Is your matrix @ unique?

Exercise 5.65. The polynomial p(z) = 1+z+2?+2®+2*+2°5+2% is nonnegative
on the real line. What is its minimum value? Write p(z) as a sum of squares. The set
of all sums of squares representations of p(x) is a three-dimensional spectrahedron.
Draw a picture of this spectrahedron. Determine all possible representations of p(z)
as a sum of two squares.

Exercise 5.66. Let C denote the convex set of all points (u,v) € R? such that
fuw(®) = 2 +uz® + vr + 1 is a sum of squares. Draw a picture of C, express C
as a projected spectrahedron, and compute a polynomial g(u,v) that vanishes on
the boundary of C.

Exercise 5.67. Let I = (hy), where h; = (22 —1)(21—1)?+ (23 —1)? is the bicuspid
curve in Example 5.25. Compute and draw the second theta body THa(I).
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Exercise 5.68. The A-discriminant A4 of the 3 X 7 matrix in (5.53) is a homo-
geneous polynomial of degree 24 in seven indeterminates. Can you compute A4
explicitly? How many monomials appear in the expansion of A4?

Notes. This chapter grew out of the notes for three lectures given by Bernd Sturm-
fels on March 22-24, 2010, at the spring school on Linear Matrix Inequalities and
Polynomial Optimization (LMIPO) at UC San Diego. Later that spring, Bernd
Sturmfels lectured on convex algebraic geometry at the Universita de Roma 3. This
led to the publication of a first version of the material in this chapter under the
title “Dualities in Convex Algebraic Geometry” in Rendiconti di Matematica, Serie
VII, 30:285-327, 2010.
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Chapter 6

Semidefinite
Representability

Jiawang Nie'

It is natural to ask which convex optimization problems can be formulated as
semidefinite programs. If such a formulation exists, how can we find it? The
answer to these questions is equivalent to finding an exact representation of a con-
vex set as a spectrahedron or projected spectrahedron. Whenever this can be done,
we say that the convex set has a semidefinite representation or it is semidefinite
representable.

6.1 Introduction

We begin by examining the question of when a convex set S is a spectrahedron. Since
a spectrahedron is defined by a linear matrix inequality, the points on the boundary
of S must satisfy a polynomial equation given by the determinant of its linear pencil.
Therefore, only convex sets whose boundaries have a polynomial description can be
spectrahedra. In fact, being a spectrahedron is even more restrictive and we will
examine some of these restrictions in this chapter. In particular, we will present
a complete characterization of two-dimensional spectrahedra due to Helton and
Vinnikov. In higher dimensions a full characterization of which convex sets are
spectrahedra is unknown.

The class of projected spectrahedra is considered next. We will provide some
natural necessary conditions for a set to be a projected spectrahedron. Deriv-
ing sufficient conditions brings us to explicit construction methods for semidefinite
representations. A general technique for constructing such representations and ap-
proximations of a convex set S given by polynomial equations and inequalities is
to use moments. The basic idea is that we introduce an independent variable for

tJiawang Nie was supported by NSF grants DMS-0757212 and DMS-0844775.
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every monomial, so that the defining inequalities of S become linear inequalities in
the new variables. We then consider a set consisting of points satisfying the defin-
ing inequalities of S in the new variables, and some extra positive semidefiniteness
conditions coming from moment matrices. The moment approach is equivalent, via
duality, to showing that every linear polynomial nonnegative on S has a weighted
sum-of-squares representation with uniform degree bounds. Therefore, the sum-of-
squares theory will naturally appear in studying semidefinite representability. We
will examine in detail the power of the moment approach to provide exact repre-
sentations of convex sets. In particular, under some local boundary conditions we
obtain exact semidefinite representations.

Another approach for constructing semidefinite representations is called local-
ization. If we can divide a convex set S into several parts and find a semidefinite
representation for each piece, then these representations can be glued together to
provide a semidefinite representation for S. The main tool for this approach is
building a single semidefinite representation for the convex hull of the union of
several projected spectrahedra.

Sufficient conditions will follow from combining localization with the moment
approach. While at this time we do not have a full understanding of semidefinite
representability of convex semialgebraic sets, the necessary and sufficient conditions
derived in this chapter are reasonably close to each other.

6.2 Spectrahedra

Recall from Chapter 2 that a set S C R”™ is called a spectrahedron if it can be
described by a linear matriz inequality as

S={zeR": Ag+x141 + -+ 2,4, = 0}. (6.1)

Here, each A; is a constant symmetric matrix, and if the origin is in the interior of
S, then Ay can be chosen to be positive definite. Furthermore, if Ag = 0, we can
apply a congruence transformation to the matrices Ay, ..., A, and make Ay = I.
For instance, if Ay = BBT with B nonsingular, then S can be described by

I+2B*AB T+ ... 4+2,B7'4,B7T = 0.

When Ay = I, the linear matrix inequality in (6.1) is said to be monic and the origin
is in the interior of S. Conversely, if S defined by (6.1) has nonempty interior, we
may assume Ay is positive definite by translating an interior point to the origin. The
expression Ag + x1 A1 + -+ + x, A, is called a symmetric linear matriz polynomial
or a linear pencil.

6.2.1 Examples of Spectrahedra

We begin by giving examples of spectrahedra that naturally arise in optimization.
e Ellipsoids. An ellipsoid £ is a set in R™ that can be described as
E={zecR": (z—c)TE Yz —c) <1}
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for a symmetric positive definite matrix £ € S, and a vector ¢ € R". The
vector c is called the center of £, and F is called the shape matrix of £. An
ellipsoid £ is a spectrahedron because a point z is in £ if and only if it satisfies
the linear matrix inequality

[ N A Sy

2

We can use Schur complement to verify that the above linear matrix inequality
describes £. Ellipsoids have wide applications in optimization [3, 7, 8, 32].

e Second order cones. The set {(z,f) € R™ x Ry : ||z[j2 < t} is called the
second order cone (also Lorentz cone or ice cream cone). We have already
seen this cone in Chapter 2. It is a spectrahedron, because it is defined by
the linear matrix inequality

tl, = - 0 e I, 0
|:{ET t} ;xl el 0 +t 0 1 =0
1=
Second order cones also have wide applications in optimization (cf. [2]).
e Convex quadratic sets. More general convex sets than ellipsoids and sec-

ond order cones are defined by quadratic inequalities. Let @ := {z € R" :
¢(z) <0} be a nonempty set, with

q(z) =a2TBzx+bTx + ¢

being a quadratic function. Here B is a symmetric matrix. It is interesting
to note that the set @) is convex if and only if it is a spectrahedron. We leave
this as an exercise to the readers.

e Matrices with bounded eigenvalues or singular values. Denote by
Amin (+) and Apaz(+), respectively, the minimum and maximum eigenvalues of
a symmetric matrix. Let X € R™*". If X is symmetric, then A4, (X) <t if
and only if
tI-X >0

and Apin(X) >t if and only if
X —tlI>=0.

If X is not symmetric, then its maximum singular value g4, (X) < ¢t if and
only if

tI X
XT ¢

B

These linear matrix inequalities all define spectrahedra in the space of (X, ).
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e Fractional linear-quadratic inequalities [3]. Fractional linear-quadratic

inequalities can be used to define interesting convex sets. Let

2
|Bz + flI3 <

F:{xER” T 7CT"E+d, aTx+b>0}
atx+b

be a nonempty set defined by a, b, ¢, d, f, B. Note that the denominator a” z+b
is positive on F. The closure of F' is a spectrahedron since by Schur comple-
ment it can be described by the linear matrix inequality

(aTz +b)I Bx+f -0
(Bx+ )T To+d| =

Quadratic matrix inequalities [3]. Let V be a symmetric positive definite
matrix and £(X) : R™*" — S* be a linear operator. Consider the following
quadratic matrix inequality on matrix pairs (X,Y) with Y symmetric:

XVIXT +L(X) =Y.
By Schur complement, it is equivalent to the linear matrix inequality

[)‘? Y —XCT(X)} =0

which defines a spectrahedron in the space of (X,Y).

Matrix cubes parameterized by eigenvalues [30]. Consider the linear
matrix polynomials By(z),..., Bn(z). Let

d-Ao+ Y tpAr = 0 whenever

_ n k=1
C = {@AER"XR |\ Be(2) < tr < Aman(Br(@)) ([’

for k=1,2,...,m

where every Ay is a constant symmetric matrix. The set C is a spectrahedron
(cf. [30]), because there exists a symmetric linear matrix polynomial £(x,d)
in (z,d) such that

C = {(z,d) eR"xR: L(z,d) = 0}.

The construction of £(z,d) is given in [30].

A special case of matrix cubes is the k-ellipse, which consists of all points
in the plane that have a constant sum of distances to a set of given foci (cf.
[31]). We have already encountered the k-ellipse in Section 2.1.3. For instance,
the 3-ellipse with foci (0,0),(1,0), (0,1) and radius d = 5 is defined by the
equation

\/x%—i—:c%—i—\/(x1—1)2+w§+\/x%+(x2—1)2:5.
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The region surrounded by this 3-ellipse is convex and can be described by the
linear matrix inequality:

-6 — 3I1 X2 Xro — 1 0 X2 0 0 0

T2 6 —x1 0 o — 1 0 T2 0 0
o — 1 0 6 —x1 T2 0 0 T2 0

0 xo — 1 T2 6+ x1 0 0 0 T2 -0
T2 0 0 0 4—x T2 o — 1 0 -
0 T2 0 0 T2 44z 0 To — 1
0 0 T2 0 xo — 1 0 4+ x4 T2

L O 0 0 T2 0 T2 —1 T2 4 + 31

Therefore, this convex region is a spectrahedron. A defining polynomial for
this 3-ellipse is given by the determinant of the above matrix.

6.2.2 Spectrahedra and Algebraic Interiors

Let S be a spectrahedron defined as in (6.1), and p;(x) denote the principal minor
of the linear pencil
A(x) = Ag+ A1z + -+ Apzy,

whose rows and columns are indexed by a nonempty set I C {1,2,...,m}, where
m is the size of the matrices A;. Then, a point z € S if and only if all the principal
minors are nonnegative at x:

pr(z) >0 forall T C{1,2,...,n}.

Therefore, S is a basic closed semialgebraic set (defined by finitely many weak
polynomial inequalities). The boundary of S lies on the determinantal hypersurface

det A(z) = 0.

If Ay > 0 (the origin is in the interior of S), then S is the closure of the connected
component of the set

{z : det A(z) > 0}

containing the origin.

The above observation leads to the definition of algebraic interior, which was
introduced by Helton and Vinnikov [17]. A subset T of R" is an algebraic interior
if it equals the closure of a connected component of the set {z : p(x) > 0} for
some polynomial p. The polynomial p is called a defining polynomial of T. The
defining polynomial of an algebraic interior is not unique. However, the one of
the smallest degree is unique up to a positive constant factor, and divides all the
defining polynomials of T'. Its degree is called the degree of T'.

Example 6.1. Consider the spectrahedron defined by

1 r1 X2
X1 1 T3 t 0.
T2 I3 1
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It is the elliptope &3, which we have previously seen in Chapter 2 and Chapter 5,
and an algebraic interior defined by the cubic polynomial inequality

P{1,2,3}(7) = 2210223 — z2 — 2 — x% +1>0.
This spectrahedron is a basic closed semialgebraic set defined by the four polynomial
inequalities:

Pi23y(2) >0, pruoy=1-21>0, ppus=1-23>0, pps=1—23>0.
A picture of this elliptope is shown in Chapter 5, Figure 5.8. §

A spectrahedron defined by a monic linear pencil is convex and an algebraic
interior. We will now consider the converse of this statement. Suppose a set S C R"”
is convex and equals the closure of a connected component of the set

{z : p(z) > 0}

for some polynomial p. Does it follow that S is a spectrahedron? As we will see, a
spectrahedron satisfies a stronger condition called rigid convezity.

6.2.3 Rigid Convexity

Suppose S is a spectrahedron defined by a monic linear pencil A(z). Then S is
an algebraic interior with defining polynomial p(z) = det A(x). Given an arbitrary
real direction 0 # w € R™, consider the line x(t) := tw passing through 0. Note
that

p(x(t)) =det(I +tW), W= szAz

Since W is symmetric, the equation p(x(t)) = 0 has only real roots. This is an
important property satisfied by spectrahedra.

A polynomial p € R[z] is called real zero with respect to a point u with
p(u) > 0 if for every 0 # w € R™ the univariate polynomial p(u + tw) € R[t] has
only real zeros. If u = 0, we simply say that p is real zero. Real zero polynomials are
nonhomogeneous versions of hyperbolic polynomials. A homogeneous polynomial
h(z) is hyperbolic with respect to a direction u € R™ with h(u) > 0 if for every
0 # w € R" the univariate polynomial h(u + tw) € R[t] has only real zeros. If a
form h(z) is hyperbolic with respect to u = (1, us, ..., uy), then the dehomogenized
polynomial h(1,xa,...,x,) is real zero with respect to (usg, ..., uy).

Example 6.2. (i) The cubic polynomial from Example 6.1,
211 Toxy — 25 — x5 — a3 + 1,
is real zero, because it is the determinant of a monic linear pencil.

(ii) The polynomial p(z) = 1 — (x{ + z3) is not real zero [17]. For every 0 #
(w1, wz) € R?, the univariate polynomial in ¢

p(tw) = (1= 2wt +wh)/?) (1+ 2w +wi)/?)

has two nonreal zeros. The origin lies in the interior of {z : p(z) >0}. N
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Figure 6.1. The TV screen {(z1,72) : o + z3 < 1}.

Suppose an algebraic interior S C R" is defined by a polynomial p. Then S
is called rigidly convex if p is real zero with respect to an interior point u of S. If
so, we say S passes the line test with respect to u; i.e., every real line ¢ passing
through w intersects the hypersurface p(z) = 0 at only real points. The properties
of rigidly convex sets are summarized in the following theorem due to Helton and
Vinnikov.

Theorem 6.3 ([17]). Suppose S is an algebraic interior.

(i) If S passes the line test with respect to a point u € int(S), then it must be
convec.

(ii) If S is rigidly convex with respect to a point u € int(S), then S is rigidly
convez with respect to every point v € int(.S).

Not all convex algebraic interiors are rigidly convex. As we saw above, the
TV screen (see Figure 6.1)

{(z1,22) : 1 —a] — 23>0}

does not pass the line test and hence is not rigidly convex (cf. Example 6.2). Here
is another such example.

Example 6.4 ([17]). Consider the polynomial
p(z) = 2] — 3a3z) — (27 + 23)".

The inequality p(z) > 0 defines three bounded convex components shown in Fig-
ure 6.2. Let S be the closure of the component lying in the half space 1 > 0. It is
an algebraic interior of degree 4 and is shaded in Figure 6.2. The point u = (0.5,0)
lies in the interior of S. Figure 6.2 shows a line passing through u and intersecting
the curve p(z) = 0 in only two real points. Thus, S is not rigidly convex.
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051

15 . . . . . . . . .
-08 -06 -04 -02 0 02 04 06 08 1

Figure 6.2. A line passing through (0.5, 0) intersects the curve x3—3x3z1 —
(22 + 23)2 = 0 in only 2 real points.

The relationship between spectrahedra and rigid convexity is described by the
following fundamental result of Helton and Vinnikov. It completely characterizes
two-dimensional spectrahedra.

Theorem 6.5 ([17]). If an algebraic interior S C R™ is a spectrahedron, then S is
rigidly convexr. When n = 2, the converse is also true, and S can be represented by
a monic linear matrix inequality whose size equals the degree of its boundary 0S.

The first statement in Theorem 6.5 has been shown at the beginning of this
subsection: the determinant of a monic linear pencil must be real zero. In the
two-dimensional case (n = 2), the converse statement is established by showing
that every real zero bivariate polynomial of degree d is the determinant of a monic
linear pencil of size d x d. Finding a spectrahedral representation of a rigidly convex
algebraic interior S is equivalent to finding a representation of a defining polynomial
of S as the determinant of a monic linear pencil. This naturally leads to studying
determinantal representations of polynomials.

6.2.4 Symmetric Determinantal Representations

Given a polynomial p € R[z], we say it has a symmetric determinantal representa-
tion if there exists a linear pencil

L(z):=Lo+x1 L1+ -+ x,L,

such that p = det L(z) and every L; is symmetric. If Ly > 0, we say that p
admits a monic symmetric determinantal representation . An important result due
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6.2. Spectrahedra 259

to Helton, McCullough, and Vinnikov is that every polynomial p can be expressed
as the determinant of a linear pencil (not necessarily monic).

Theorem 6.6 ([16]). FEvery polynomial p (with p(0) # 0) admits a symmetric
determinantal representation of the form

p(x) = c-det (Lo + Lixzy + -~ + Lpxy), (6.2)

where Lo is a “signature matriz” (Lo is diagonal and L3 = I) and c is a nonzero
constant.

Clearly, if deg(p) = d, the size of matrices L; should be at least d. When
n > 2, typically the size of L; has to be larger than d. This can be shown by a
dimension comparison. Suppose L; has dimension N x N and Ly is diagonal. The
dimension of the space of degree d polynomials is (”jd), while the dimension of
the space of pencils L(z) is N +nN(N + 1)/2. For any fixed n > 2, the former
dimension grows significantly faster than the latter if N = O(d). So we should

expect N > O(d) when n > 2.

Example 6.7. (i) The polynomial 1 + x? + 23 has the symmetric determinantal
representation

1 0 T
1+a22+25 = —det|0 1
X1 X9 -1

This linear pencil is clearly not monic.
(ii) Consider the following bivariate quartic polynomial:

1+ 22 + 22 + 422wy — 42l + o} — 20320 — 20123 — 2322 4 2.
It is the determinant of the following linear pencil which is also not monic:

1 X1 i) xTo

X1 -1 X1 X9 .
X9 X1 —1 X1 ’

X9 X9 T 1

In the context of semidefinite representations it is natural to ask whether a
real zero polynomial admits a monic symmetric determinantal representation. For
the general case n > 2, a counterexample was found by Brandén [9]. He further
showed that there are real zero polynomials p for which there is no power k > 0
such that p* admits a monic symmetric determinantal representation. Simpler
counterexamples were found by Netzer and Thom [26]. For instance, for every
n > 4, the simple quadratic polynomial (1 + 21)? — 22 —--- — 22 does not admit a
monic symmetric determinantal representation (cf. [26, Example 3.5]).

It follows from Theorem 6.3 that for n = 2, a degree d real zero polynomial
always has a monic symmetric determinantal representation of size d x d. The proof
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260 Chapter 6. Semidefinite Representability

uses complexification of projective algebraic curves and the constructions are mostly
theoretical. Computational aspects of these constructions are discussed in [35].

When S C R™ (n > 2) is an algebraic interior that is rigidly convex, its min-
imum degree defining polynomial p might not admit a monic symmetric determi-
nantal representation. However, this does not exclude the possibility of a multiple
of p having a monic symmetric determinantal representation. If this is true, then S
would be a spectrahedron. Indeed, Helton and Vinnikov [17] conjectured that every
rigidly convex algebraic interior of R™ is a spectrahedron.

6.2.5 Exercises

Exercise 6.8. Let C = {x € R" : f(z) < 0} be a nonempty convex set defined by a
smooth function f : R™ — R. Suppose u lies on the boundary of C' and V f(u) # 0.
Show that the following is true:

(i) The Hessian V2 f(u) is positive semidefinite in the tangent space of C' at u, i.e.,
vIV2f(u)v >0 for all v € Vf(u)t := {w: Vf(u)Tw = 0}.

(ii) The set C belongs to the half space V f(u)? (z —u) < 0.

Exercise 6.9. Let Q = {x € R" : ¢1(2) > 0,...,¢n(z) > 0} be a nonempty set
with each ¢; being a quadratic polynomial. Show that @ is convex if and only if it
is a spectrahedron.

Exercise 6.10. Decide whether the following polynomials are real zero or not with
respect to the vector (1,...,1) of all ones:

(a) &1 - xp —1/2;

(b) ©

(¢) w1+ xn(l/x1+ -+ 1/2,);
)

(d) (n+1)ab  —af —---— 2P, (p>1is an integer).

Exercise 6.11. Find a smallest size symmetric determinantal representation for
the following polynomials:

(a) 1—af — a3 — a3
(b) 1+x1 + 3;
(c) 1—af—a3;
(d)

Exercise 6.12. Consider the 3-ellipse with foci (0,0), (—1,0), (0, —1) and radius 3:

\/x2{+x§+\/(x1+1)2+x§+\/x%+(x2+1)2:3.
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6.3. Projected Spectrahedra 261

Represent the convex region surrounded by this 3-ellipse by a linear matrix inequal-
ity in variables 1 and x5 only. What is the polynomial of smallest degree (up to a
constant factor) vanishing on this 3-ellipse?

Exercise 6.13. Suppose S is a spectrahedron. Show that every face of S is
exposed. (A face F' of S is called ezposed if either F' = S or there exists a supporting
hyperplane H of S such that H NS = F.)

6.3 Projected Spectrahedra

A set S C R" is called a projected spectrahedron if there exists a spectrahedron
P C R""* guch that

S = {xeR"‘(x,y) € P for someyeRk}. (6.3)

In the above, y is called a lifting vector and P a lifting spectrahedron of S. Using
the linear matrix inequality defining P, we can write S as

n k
S =<xeR" Ao—l—zgciAi—i—Zijj > 0 for some y € R* 3 . (6.4)
i=1 j=1

Projected spectrahedra are a much larger class of convex sets than spectrahedra,
with significantly greater modeling power. Unlike in the case of spectrahedra where
rigid convexity is a natural requirement, no nontrivial obstructions to being a pro-
jected spectrahedron are known. In the remainder of this chapter we discuss repre-
sentability of convex sets as projected spectrahedra.

6.3.1 Examples of Projected Spectrahedra

We now give several examples of projected spectrahedra, many of which are impor-
tant in applications.

e The TV screen {(z1,72) : 1 — 21 — 23 > 0} of Example 6.2 is a projected
spectrahedron since it admits the semidefinite representation

BlockDiag [ |1 791 ¥2 Lo | bowey
Y2 1—wyi| ' |z1 y1] |22 y2|) =

It has two lifting variables, and we have seen that the TV screen is not a
spectrahedron.

e The three-dimensional hyperboloid H = {x € R:_’,_ D X1X2T3 > 1} is a projected
spectrahedron, since it admits the semidefinite representation

BlockDiag  |“1 Y|, |"® ¥2| |¥ 1 = 0.
y1 w2’ |y2 1 1y
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There are two lifting variables. The hyperboloid H is not a spectrahedron,
because its defining polynomial x1x2x3 — 1 is not real zero with respect to
(1,1,2), an interior point of H.

For any rational r € [0,1/m] the set
H(m,r) = {(z,t) e R xR:t < (@1 2p)"} (6.5)

is a projected spectrahedron (cf. [3, Section 3.3]). As we will see below, the
sets H(m,r) are useful in constructing semidefinite representations for convex
sets.

Sums of largest eigenvalues [3]. In optimization one often needs to min-
imize the sum of k largest eigenvalues over an affine subspace of symmetric
matrices. This optimization problem is convex and can be formulated as a
semidefinite program. For X € 8™, let \;(X) be the ith largest eigenvalue
of X. Define s5(X) = A (X) + -+ + Ag(X) to be the sum of k largest
eigenvalues of X. Denote the set

Sp = {(X,1) € " x R : s4(X) < t}.

Note that si(X) < t if and only if there exists (Z,7) € S™ x R such that [3,
Section 4.2]
t—kr—Tr(Z) >0,
Z =0, (6.6)
Z —-X+71l, =0.

It can be checked that (6.6) implies si(X) < ¢t. Conversely, if sp(X) < ¢,
then we can find a pair (Z,7) € S™ x R satisfying (6.6). To see this, we may
assume that X is diagonal (up to an orthogonal transformation) and choose

7 =M(X), Z=Diag\(X)—7,...., \e_1(X)—7,0,...,0).

Hence, (6.6) is a semidefinite representation of S}, and S} is a projected
spectrahedron.

A semidefinite representation similar to (6.6) can be constructed for the set
of all pairs (X,t) € ™ x R satisfying

Akt (X) 4o+ A (X) > ¢t

by using the relation A,_;(X) = —A;11(—X). This means that maximizing
the sum of k smallest eigenvalues over an affine subspace of symmetric matrices
can also be formulated as a semidefinite program.

Sums of largest singular values [3]. Another frequently encountered op-
timization problem is to minimize the sum of k largest singular values of
matrices in an affine subspace. This problem can also be formulated as a
semidefinite program in a similar way. For X € R™*" denote by o;(X) the
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ith largest singular value of X. Note that

o = (2 1)

A semidefinite representation as in (6.6) can be similarly constructed for the
set of all pairs (X, t) satisfying

o1(X)+ -+ op(X) <t.

e Powers of determinants [3]. In many applications, such as matrix com-
pletion problems, one often needs to maximize the determinant of a positive
semidefinite matrix over an affine subspace. This problem can also be formu-
lated as a semidefinite program. For a rational number r € [0, 1/n], the set

D= {(X,t) € S} xR: (det X)" >t}

is a projected spectrahedron, because (X, t) € D if and only if there exists a
lower triangular matrix L € R™*™ satisfying
X L
. .
I D] =0 @) 0 € Hwn)

Here H(n,r) is as in (6.5). This was shown in [3, Section 4.2].

e Sums of squares polynomials. In Chapter 3, we have seen that sos poly-
nomials are very useful in global optimization of polynomial functions. Recall
that ¥,, 24 is the set of sos polynomials of degree 2d in n variables. We already
know that a polynomial f € ¥, o4 if and only if there exists a Gram matrix
X > 0 such that

fla) = [a]§ X[z]la, X =0,
where [z]4 denotes the column vector of monomials of degree at most d:
T
[$]d = [1 xl e x% xlxz .o xi}

Note that the Gram matrix X is usually not unique for a given f. The
above implies ¥, 24 is a projected spectrahedron, which we have also seen in
Chapter 4.

For instance, the set 3; 4 of univariate quartic sos polynomials is the set

4
Zfixi>0VxeR}.

=0

{(foaf1,f27f3,f4) €R®

It admits the following semidefinite representation with one lifting variable pu:

e Truncated quadratic modules and preordering. In constrained polyno-
mial optimization, weighted sos polynomials are very useful in representing
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polynomials that are nonnegative on a set. For a tuple of polynomials g :=

(91,---,9m), its kth order truncated quadratic module is defined as
_ - deg(o,g;) < 2k for alli
qmodule; (g) = {Zo 7igi 00, ..,0m are sos ’ (6.7)
and its kth order truncated preorder is defined as
] ¥ deg(ov9,) < 2k,
preorder;(g) = Z TvIv| o, is sos for every v [ (6.8)
ve{0,1}™
In the above, we denote g, := g7*---g4m and go = 1. The set of all sos

polynomials with a fixed degree is a projected spectrahedron, as shown in
the preceding example. Therefore, both gqmodule,(g) and preorder,(g) are
projected spectrahedra.

For instance, in the case of two variables (n = 2), gqmodule, (1 — 2% — x3)

admits the semidefinite representation with one lifting variable A:

T T Q—A b
{a—|—2b z+x' Cx [bT O+>\IZ]>O,/\>O}.

6.3.2 Necessary Conditions

The geometry of the boundary is very important in investigating semidefinite rep-
resentability of convex sets. The notion of curvature plays a crucial role.
Let f be a polynomial in R[z]. Consider its real variety

Ve(f) = {z € R": f(x) = 0}

and a point u € Vr(f). We say f is nonsingular at u if V f(u) # 0. If f is nonsingular
at u € Vr(f), we say Vr(f) has positive curvature at u if for either s =1 or s = —1

s-vTV2f(u)v > 0 for all0 # v € Vf(u)t. (6.9)

Here Vf(u)' denotes the orthogonal complement of the subspace spanned by
V f(u). When Vg(f) has positive curvature at v and s = —1 in (6.9) (respectively,
s = 1), the intersection {f(x) > 0} N B(u, d) (respectively, {f(xz) < 0} N B(u,?)) is
convex for a small § > 0. The definition of positive curvature of a nonsingular hyper-
surface Z is independent of the choice of its defining functions (cf. [13, Section 3]).
Geometrically, when f is nonsingular at a point u € Vg(f), the variety Vg (f) has
positive curvature at u if and only if there exists a neighborhood O of u such that
Ve(f) N O is the graph of a strictly convex function (here strict convexity means
the Hessian is positive definite). For a subset V' C Vr(f), we say Vr(f) has positive
curvature on V if f(x) is nonsingular everywhere on V' and Vi(f) has positive cur-
vature at every u € V. When > is replaced by > in (6.9), we similarly say Vk(f)
has nonnegative curvature at u. We refer to [39] for more properties of curvature.

Example 6.14. Consider the TV screen 1 — 2} — 23 > 0. Note that

—vT (V2(1 — 2] — 23))v = 12(270] + 230v3) > 0 for allv € R®.
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6.3. Projected Spectrahedra 265

Its boundary has zero curvature on four points (£1,0),(0,£1) and has positive
curvature everywhere else. W

A polynomial function f(x) is said to be strictly quasi-concave at wu if the

condition (6.9) holds for s = —1. For a subset V' C R™, we say f(z) is strictly
quasi-concave on V' if f(z) is strictly quasi-concave on every point of V. When > is
replaced by > in (6.9) for s = —1, we can similarly define f(x) to be guasi-concave.

Similarly, quasi-convezity and strict quasi-convexity are defined by requiring s = 1
in (6.9). Our definitions of quasi-convexity and quasi-concavity are slightly less
demanding than the ones in the existing literature (e.g., [8, Section 3.4.3]).

Example 6.15. Consider the two-dimensional hyperboloid
H:={zeR%: zz—1>0}
We see that
—7 (Vz(ajlxg — 1))1} = —2viv9 > 0

whenever 0 # v | z and x122 = 1. Hence the boundary 0H has positive curvature.
The defining polynomial is not convex anywhere, but it is strictly quasi-concave on
the boundary of H. 1

Now we present some necessary conditions for a set to be a projected spectra-
hedron. We are interested in closed semialgebraic sets:

S=JTe, Te={zeR":gfx)>0,..., gk (x) >0}
k=1

Each gf is a polynomial and the sets T}, are called basic closed semialgebraic. Denote
by 0T}, the boundary of T} in the standard Euclidean topology. For any u € 9Ty,
the active set Iy (u) := {1 <i < my : gF(u) = 0} is nonempty.

The description of a semialgebraic set by polynomials is usually not unique,
and its boundary might have singularities. We say w is a nonsingular point of 0T},
if [Iy(u)] = 1 and VgF(u) # 0 for i € Ij(u); otherwise, we say u is a singular
point of 9T). A point u on 97T} is called a corner point of Ty, if |I(u)| > 1. For
u € 08 and i € Iy (u) # 0, we say gF is irredundant at u with respect to S (or just
irredundant at u if the set S is clear from the context) if there exists a sequence
of nonsingular points {uyx} C V(g¥) NS of 0T} such that uy — u; otherwise, we
say gF is redundant at u. We say gF is at u if VgF(u) # 0. Geometrically, when
gf is nonsingular at u € 95, gf being redundant at u means that the inequality
g¥(x) > 0 is not necessary for describing S in a small neighborhood of .

Example 6.16. Consider the convex set that is drawn in the shaded area of Fig-
ure 6.3. It is the union of the following two basic closed semialgebraic sets:

Ty = {gi(z) =22 >0, gj(z) =1 — 22 > 0, gi(z) := a5 — 2§ >0},
Ty = {gi(z) =21 >0, g5(z) := 1L — 2 > 0, gj(x) := 1023 — 2} > 0}.
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0.5

Figure 6.3. The shaded area is the union of T1 and T in Fxample 6.16.

The corner points of T; are (—1,1),(0,0),(1,1). The polynomial g3 is ir-
redundant at (—1,1) and (0,0) but redundant at (1,1). The polynomials g} in
nonsingular at (—1,1) but singular at (0,0). The polynomial g} is redundant at
(0,0). The corner points of T are (0,0), (0,1), (+/10,1). The polynomial g2 is ir-
redundant at both (0,0) and (¥/10,1). It is nonsingular at (v/10,1) but singular
at (0,0). The polynomial ¢g? is redundant at (0,1) and (0,0). Both g3 and g3 are
irredundant on the section x5 = 1 of the boundary. N

Now we present necessary conditions for semidefinite representability.

Theorem 6.17 ([13]). Let S C R™ be a projected spectrahedron. Then S is convex
and has the following additional properties:

(a) The interior int(S) of S is a finite union of basic open semialgebraic sets, i.e.,

int(S) = U Ty, Tp={zeR": gf(z)>0,..., gk (x) >0}
k=1

(b) The closure S of S is a finite union of basic closed semialgebraic sets:
S=UUT Tu={zeR":glf@) >0,..., g} (x)>0}
k=1

(The polynomials g¥ may be different from those in (a).)

(c) For eachu € 0S and i € I(u) # 0, if gF from (b) is irredundant and nonsin-
gular at u, then g¥ is quasi-concave at u.
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Theorem 6.17 says that a projected spectrahedron must be convex and semi-
algebraic, and its boundary must have nonnegative curvature at smooth points. In
particular, the first two parts establish the necessary algebraic structure of projected
spectrahedra, while nonnegativity of curvature follows from convexity. In other
words, convexity and being semialgebraic are necessary conditions for semidefinite
representability. It is not clear whether they are also sufficient. Indeed, it was
conjectured in [13] that every conver semialgebraic set in R™ is semidefinite repre-
sentable.

Proof of Theorem 6.17. The convexity of S is obvious. Parts (a) and (b)
immediately follow from the Tarski-Seidenberg quantifier elimination [6].

(c) Let u € SN ATk. Note that S is a convex set and has the same boundary
as S. (If a set is not closed, then its boundary is defined to be the boundary of its
closure.)

First, consider the case that u is a smooth point. Since S is convex, 85 has a
supporting hyperplane u + w* = {u + 2 : wTz = 0}. S lies on one side of u + w*
and so does Ty, since T}, is contained in S. Since u is a smooth point, Iy (u) = {i}
has cardinality one. For some § > 0 sufficiently small, we have

Tp N B(u,8) = {z € R" : g¥(x) > 0,62 — ||lz — ul|* > 0}.

Note u + w is also a supporting hyperplane of T} passing through u. So, the
gradient Vg% (u) must be parallel to w, i.e., Vg¥(u) = afw for some nonzero scalar
a¥ # 0. Thus, for all 0 # v € w and € > 0 small enough, the point u + mv is not

in the interior of Ty N B(u, d), which implies
€

gr (u+mv) <0 for all0 # v € wh = Vgk(u)

L

By the second order Taylor expansion, we have
—vTV2gF (u)v > 0 for all0 # v € ng(u)J';

that is, g¥ is quasi-concave at u.

Second, consider the case that u € 95 is a corner point. By assumption that
gf is irredundant and nonsingular at wu, there exists a sequence of smooth points
{un} C Z(gF) N 0S such that ux — u and VgF(u) # 0.

So Vgk(un) # 0 for N sufficiently large. From the above, we know that

—0TV2gF(un)v > 0 for all 0 # v € ng(uN)L

Note that the subspace ng(uN)L equals the range space of the matrix R(uy)
where

R(v) := I, — |V(g; (v)[|z% - Vg7 (v) Vg (v)".
So the quasi-concavity of g¥ at uy is equivalent to

—R(un)" Vg (un)R(un) = 0.
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Since Vg¥(u) # 0, we have R(ux) — R(u). Therefore, letting N — oo, we get
~R(u)" V2§ (u)R(u) = 0,
which implies
— 0T V2gF(u)v >0 forall 0 £ v e ng(u)L;
that is, g¥ is quasi-concave at u. [

In part (c) of Theorem 6.17, the condition that g is irredundant cannot be
dropped. We show this in the following example.

Example 6.18. Consider the basic closed semialgebraic set
epe| 9@ =l —m — - @ - a)? >0
goz) =i +23-1>0 '
It is shaded in Figure 6.4. The point v = (1,0) lies on the boundary of the set.
The real variety of g; is not connected and has two components, so the inequality
g2(x) > 0 cannot be dropped in the description of this semialgebraic set. The

polynomial g5 is redundant at u, and it is not quasi-concave at u. Indeed, go is
strictly convex since its Hessian is always positive definite. Wl

Given a semidefinite representation of a projected spectrahedron S, finding
polynomials g¥ as in Theorem 6.17 is generally very difficult. However, for some

25

-2 -1 0 1 2 3

Figure 6.4. The semialgebraic set of Example 6.18.
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simple cases, they could be obtained by eliminating lifting variables. Techniques
for doing so were presented in Chapter 5, and we also refer the readers to Tarski—
Seidenberg quantifier elimination [6]. We show how to do this in the following
example.

Example 6.19. Let S be the projected spectrahedron defined by

1 0 I
0 1 x2—y| = 0.
ry T2 —Y Yy

Its picture is shown in the shaded area of Figure 6.5. The above linear matrix
inequality is equivalent to

flzy) =]+ (22 —y)* —y <0,

where f(x,y) is the determinant of the defining linear pencil. If a point « lies on the
boundary of S, then there exists y such that f(z,y) = 0 and y is a local maximizer
of the function y — f(z,y), which implies

fy=—222+2y—1=0.
Eliminating y from f(z,y) = fy(z,y) = 0 gives the equation
g(x) :=1+4(xy — 22) = 0.

On the other hand, for every z satisfying g(x) > 0, the equation f(x,y) = 0 has
a real solution y and the pair (z,y) satisfies f(z,y) < 0. Therefore, we get an
equivalent description for S as

S ={(a1,22) : 1+ 422 —af) > 0}.

25

20

Figure 6.5. Projected spectrahedron defined in Example 6.19.
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The defining polynomial g(z) is concave. The boundary of S has positive curvature
everywhere. W

6.3.3 Exercises

Exercise 6.20. Are the following sets projected spectrahedra?
(a) {Xe8": 0= X?+2X2-2X < I,,}.
(b) {X €R™" : | X[lpg <1} (p,g > 1 being integers).
() {(X,)Y) €82 xS : XY +YX = I}
(d) {(X,Y)e&*x8%: X1+ V' < L}.

If yes, find a semidefinite representation for it; if no, give reasons.

Exercise 6.21. Describe the following projected spectrahedra in (x1,x2)-space in
terms of polynomials in (x1, z3).

1 =1y 1 oy 1 L v v
(@): |z1 1 2| =0; (b):|yr 1 wyof =0; (¢): |y1 y2 1| =0.
Yy i) 1 1 Y2 T2 Y2 T1 T2

Verify your description by drawing the above projected spectrahedra in
Matlab.

Exercise 6.22. For each integer m > n > 1, find a semidefinite representation for
the hyperboloid:
{(x,t) eRY xRyt xy -y 2™}

Exercise 6.23. If a convex cone K C R” is a projected spectrahedron, show that
its dual cone K* is also a projected spectrahedron.

Exercise 6.24. Let P be the convex cone in the space R®:
P = {(f07f17f27f37f4)  fo+ fiz+ fox® + fax® + frat >0 for allz € -1, 1]}
Find a semidefinite representation for P and its dual cone P*.
Exercise 6.25. Let ) be the convex cone:
Q= {(A,b, ) €S" xR" xR : 2T Az + 2672 + ¢ > 0 for all||z])s < 1}.
Find a semidefinite representation for ) and its dual cone Q*.
Exercise 6.26. A symmetric matrix A € 8" is called copositive if 7 Az > 0 for

all x € R"}. Find a semidefinite representation for the cone C3 of all 3 x 3 copositive
matrices and its dual cone C5. Repeat this for the 4 x 4 case.
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Exercise 6.27. Is the convex set (n > 1)
{(A,B,C) € (S")?: A+22B +22C = 0 for allz € R}

a projected spectrahedron? If yes, find a semidefinite representation for it; if no,
give reasons.

6.4 Constructing Semidefinite Representations

A general approach for constructing explicit semidefinite representations is to use
moments. This was originally proposed in [19, 33]. We first describe a basic moment
construction of a possible semidefinite representation, and then present tighter mo-
ment constructions. The basic construction produces a semidefinite representation
when the convex set is sos-convex. The tighter constructions produce semidefinite
representations for convex sets whose boundaries have positive curvature. In many
applications, a convex set is defined by rational function inequalities, or polynomial
matrix inequalities. In these cases semidefinite representations can also be con-
structed by using moments in a similar way. We describe these constructions and
the conditions under which they work.

6.4.1 A Basic Moment Construction

To illustrate the basic idea of moment constructions, we begin with a simple example
of a one-dimensional convex set defined by a single quartic inequality

ag +arx + asx? + aga:?’ + aqgx* > 0.

We introduce a new variable y; for each monomial 2' and convert the defining
quartic inequality to the following system:

apyo + a1y1 + asys + azys + agys > 0,

2
Yo Y1 Y2 1 z =z
_ 2 .3
Yi Y2 ys|=|r x° T
2 .3 .4
Y2 Ys Y4 - x x
The matrix
1 z 22
x z2 28
2 oz 2t

is always positive semidefinite. Therefore we can relax the above system to

1 z ys
ap + a1 + agys + azys + asys > 0, z Y2 ys| =0,
Y2 Ys Y4

which yields a projected spectrahedron with lifting variables ya, y3, ya.
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This construction can be readily applied in higher-dimensional cases. Let S
be a convex basic closed semialgebraic set given by

S={zeR": g1(x) >0,...,9m(x) >0} (6.10)
Let
d = max{[deg(g1)/2], ..., [deg(gm)/2]}- (6.11)
Write every g; as
@) = 3 g
|| <2d

If we let y, = x® for every «, then S is equal to the set
{a: €R": Ly (y)>0,...,Lg,.(y) >0, yo =z for all |af < 2d}.
The linear functionals L, (y) are linearizations of the polynomials g;:
Lo) = > 9.
o] <2d

The vector y is called a truncated moment vector, indexed by o« € N™ with || < 2d.
Now we define a linear pencil My (y) by substituting y, = x® into [z]q[z]] and call
M4(y) a moment matriz of order d in n variables. Since the matrix inequality

[#]ale]g =0
holds, we also get that My(y) = 0. Thus, the set S defined in (6.10) can be

equivalently described as

S = {QJERTL

Lg,(y) 2 0,..., L, (y) >0,
Ma(y) = 0, yo = z* for all |a| < 2d

Note that 3o = 2° = 1. As before, we can obtain a relaxation of S by dropping the
constraints y, = z* with |a| > 1 and get the projected spectrahedron

Lg1(y) 20?"'7L9m(y) ZO?
R=<(¢zxeR" yo=1, My(y) =0, . (6.12)
L1 = Yeys--3Tn = Ye,

The lifting variables in R are yo, where |a] > 2.

Example 6.28. Consider the set S = {(z1,22) € R? : 1 — 2} — 23 — 2222 > 0}.
The construction (6.12) gives a semidefinite relaxation R of S defined by

1 w1 x2 Y0 Y11 Yo
1 Y20 Y11 Y30 Y21 Y12
T2 Y11 Yo2 Y21 Y12 Yo3
1-— - - > 07 = 0.
Y40 Yor T = Y20 Y30 Y21 Y40 Y31 Y22
Y11 Y21 Y12 Y31 Y22 Y13

Yo2 Y12 Yo3 Y22 Y13 Yo4

There are 12 lifting variables y;;, and the equality R = S holds for this example, as
will be shown in Section 6.4.3. N
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Example 6.29 ([14]). Consider the set
S={zeR":1— (zH)TBz? >0},

d

T .
n} . The basic moment

where B is a symmetric matrix and % := [x‘li rd o x
relaxation R is

{xeR"

When B is positive semidefinite with nonnegative entries and d is even, the equality
S = R holds, which will be shown in Section 6.4.3. N

1=320 21 BijYa(e+ey) 2 0, }
yo=1,My(y) = 0,21 = Ye,s .-, Tn = Ye,

6.4.2 Tighter moment constructions

In general, the semidefinite relaxation R given by (6.12) does not equal S, except in
the special case of sos-convex sets (defined in the next subsection). Hence tighter
constructions by using higher order moments are necessary. We describe two ba-
sic types of refined moment constructions: Putinar and Schmidgen semidefinite
relaxations.

To describe them, we need to define localizing matrices. Let p be a polynomial
with deg(p) < 2N. Write

p@)alv-kleliy = D AN (k= [deg(p)/2]);

la|<2N

then define a linear pencil LéN)(y) by linearizing y, = = as before,

LMy = Y ANy,
la|<2N

The pencil LéN)(y) is called the Nth order localizing matriz of p. If p is nonnega-

tive on S, then for every x € S we have

N : _
Lz() )(y) = 0 ifevery y, = z“.

Note that go = 1 and L%) = M,(y) as before. Since all gg, g1, .., gm are nonnega-
tive on S, for every N the set S is contained in the projected spectrahedron

) () -
S’NZ{:CER” Lo (y) =0,i=0,1,...,m } (6.13)

Yo=1,2T1=Yer, - -, Tn = Ye,

The set Sy is called a Putinar semidefinite relazation of S.

The product of polynomials from any subset of g1, ..., g, is also nonnegative
on S. For every v € {0,1}™, define g, := g7* - - - gvm. Each g, is nonnegative on S.
So every x € S satisfies

N m : @
yo = 1, Léu)(y) = 0 forallve{0,1} if every yo = x“.
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This implies that for every N the set S is contained in the projected spectrahedron

Sy = {x €R" (6.14)

Lguv)(y) = 0 for all v € {0,1}™, }
yO:Lxl:yel,---;mn:yen

The setNS' n is called a Schmiidgen semidefinite relazation of S. Clearly, for every N,
Sy C Sy because (6.14) has extra conditions in addition to those in (6.13). We
have the nesting relation

S 2 -+ D2 Sy DO .- DO 8
U U T
S 2 -+ D Sy D -~ D 8

Later we will see that both S‘N and S’N are equal to S for IV large enough, under
some general conditions. Typically, it is very difficult to get explicit bounds on N
for which Sy = S or Sy = S. In some special cases, such bounds can be estimated,
e.g., in [29, Section 3.

Example 6.30. Consider the convex set S defined by
gi(z) =2 — 27 >0, go(x) :=xp + 27 > 0.
The relaxation S5 is given by

3) _Z/01 — Y30 Y11 —Y40 Yo2 — y31_
Ly, (Z/) = |y11 — Y10 Y21 —¥Yso Y12 —yau| =0, x1=y10, T2=Yo1,
[Y02 — Y31 Y12 — Y41  Yo3 — Y32

®) (Y01 + Y30 Y11 + Y40 Vo2 + Y31 ]
Lg/(y) = |y11 +va0 y21+ys0 vi2+yar| =0, wyoo=1, Ms(y)>=0.
Yoz + Y31 Y12+ Y41 Yo3 + Y3z

In addition to the above, the relaxation S5 has the extra inequality
Léﬂ (y) = Yo2 —yeo > 0.

Higher order relaxations Sy and Sy can be constructed in a similar way. N

6.4.3 Sos-convex Sets

A symmetric matrix polynomial P € R[z]"*" is a sum of squares if there exists a

matrix polynomial W such that P(z) = W(x)TW(x). A polynomial f is called
s0s-conver if the matrix polynomial given by its Hessian V2 f is a sum of squares.
Similarly, f is called sos-concave if —f is sos-convex. If for the set S defined in
(6.10) every g; is sos-concave, then we say that S is sos-convez.

Theorem 6.31 ([12]). Let S be defined as in (6.10) with nonempty interior. If
every defining polynomial g; is sos-concave, then the projected spectrahedron R given
by (6.12) is a semidefinite representation of S.
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6.4. Constructing Semidefinite Representations 275

In the rest of this subsection we present the proof of this result. It gives a
general framework for proving that moment relaxations provide semidefinite rep-
resentations. A typical approach for proving equality of two convex sets is to use
duality theory via separating hyperplanes. Let S be as in Theorem 6.31. Suppose
a’z +b=0(a # 0) is a supporting hyperplane of S, then

aTx—i—bZOforalleS, aTu+b=0 for some u € S.

The point u is a minimizer of a” 2+b over S and belongs to the boundary 9S. Since S
has nonempty interior, there exists a point v € R™ such that every g;(v) > 0 (Slater’s
condition) and every g; is concave. So, the first order optimality condition holds
at u (cf. [5, Proposition 5.3.5]); i.e., there exist Lagrange multipliers A; > 0, ...,
Am > 0 such that

a=XMVgi(u) + -+ A Vgm(u), Xigi(u) =0 (1 <i<m).
Clearly, the Lagrangian
L(x):=aTs+b—A\gi(z) = = Angm(x) (6.15)
is convex and nonnegative everywhere and vanishes at w, and the gradient

VL(u) = 0. Interestingly, the Lagrangian L(z) is sos if every g; is sos-concave.
This is the key point in proving Theorem 6.31.

Lemma 6.32 ([12]). If a symmetric matriz polynomial P € R[z]"*" is sos, then
for any u € R™, the symmetric matriz polynomial

/Ol/OtP(u—i—S(x—u))dsdt

is sos. In case of r = 1, the above integral is an sos polynomial.
Proof. This is left as an exercise. 0O

Lemma 6.33 ([12]). Let p be a polynomial such that p(u) =0 and Vp(u) =0 for
some u € R™. If its Hessian V?p is sos, then p is also 50s.

Proof. Let q(t) = p(u + t(z — u)) be a univariate polynomial in ¢. Then
¢"(t) = (z — )" Vp(u+ t(x — u))(z — u).

Thus, p(z) = ¢(1) has the expansion

()T (/OlfotVQp(u+s(x—u))dsdt> (z — ).

Since V?p(z) is sos, the double integral above is sos by Lemma 6.32. Thus p(z) is
also sos. O
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Using the above lemmas we now prove Theorem 6.31.

Proof. We have already seen that S C R. If S # R, there must exist ¢ satisfying
(6.12) and & = (Gey,---,Ye,) ¢ S. Since S is closed, there exists a supporting
hyperplane a”2 + b = 0 of S separating & strictly from S:

alz+b>0 forallze S, ali+b<0, aTu+b=0 for some u e dS.

The point v minimizes a’x + b over S. Since int(S) # () and each g; is concave, the
first order optimality condition holds (cf. [5]) and there must exist (A1,...,Ap) >0
such that the Lagrangian £(z) in (6.15) is a convex nonnegative polynomial satis-
fying £(u) = 0 and VL(u) = 0. Furthermore, its Hessian

V2L(z) = Y Ai(=V3gi(x))

i=1
is sos, and Lemma 6.33 implies £(z) is sos. The degree of L(x) is at most 2d. So
there exists a symmetric matrix W > 0 such that

ale +b= Zx\igi(a:) + [2])T W z]q.
i=1
The above is an identity in . Replacing each z by ¢, results in
T, _ - A N
a’i+b=> NiLg,(§) +Tr(W - Ma(3)) >0,
i=1

which contradicts the previous assertion that a”’2 +b < 0. Thus S =R. 0O

Example 6.34. Consider the set in Example 6.28. The defining polynomial there is
sos-concave, because the Hessian V?(—1+21+ 24 +2723) has the sos decomposition

1] [z1]" 2z ? x ?
LA S RS
T2| [T2 T 2x9
By Theorem 6.31, the projected spectrahedron R given by (6.12) is a semidefinite

representation for S. N

Example 6.35. The set in Example 6.29 is sos-convex because the Hessian of
(x¥)T Bz? has the decomposition

Diag(z4~1) - W - Diag(z9~!) + Diag(a;(z), . . ., an(x)),
where W and each a;(x) are given as

W = 2d°B + 2d(d — 1)Diag(B), a;(z) =2d(d—1)» Bzl *x.
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If B> 0andd > 1, then W = 0 and must be sos; if each B;; > 0 and d > 0 is even,
then all a;(z) are sos. Therefore, when B > 0, every B;; > 0 and d > 0 is even, the
form (24)T Bx? is sos-convex, and by Theorem 6.31 the projected spectrahedron R
given by (6.12) is a semidefinite representation for S. Nl

Sos-convexity is a very strong condition, and not all convex polynomials are
sos-convex. An explicit example is given in [1]. More generally, a nonnegative
convex polynomial need not be a sum of squares (cf. Chapter 4). Generally, the
projected spectrahedron R given by (6.12) does not equal S if g; are not sos-concave.
On the other hand, sos-convexity can be verified by semidefinite programming.
A polynomial f is sos-convex if and only if its Hessian V2f is sos. This can be
checked numerically by solving a single SDP feasibility problem, and therefore, sos-
convexity is a favorable condition in practice.

6.4.4 Strictly Convex Sets

When S is not sos-convex, the basic moment relaxation R given by (6.12) might
not be a semidefinite representation of S. The projected spectrahedra Sy in (6.13)
and Sy in (6.14) are better candidates for a semidefinite representation of S. We
now examine weaker conditions than sos-convexity that guarantee that Sy =25 (or
Sy = S) for some finite N.

A sufficient condition for S’N = Sor SN = S is the bounded degree representa-
tion (BDR) introduced by Lasserre in [19]. BDR is typically very difficult to check.
More easily checkable conditions are strict convexity and strict quasi-convexity. We
now discuss these cases.

Bounded Degree Representation Condition

A general approach for showing that a moment relaxation produces a semidefinite
representation is given in the proof of Theorem 6.31. The key point is to prove a
weighted sos representation with uniform degree bounds for all linear functionals
nonnegative on S. If a linear functional a”x + b is positive on S, then Putinar’s
Positivstellensatz [37] says that

alz+b=o09+0191++ Omgm, (6.16)

where each o; is an sos polynomial. To make sure that (6.16) holds, we require that
the presentation of S satisfies the archimedean condition: there exist sos polynomials
80,81, .,8m and a number M > 0 such that

M — ||$H§ = S0+ 5191+ + Smgm-

The archimedean condition implies that S is compact, but the reverse is not nec-
essarily true. However, the presentation of any compact set S can be strength-
ened to satisfy the archimedean condition by adding a “redundant” ball constraint
M — ||z||3 > 0 for a sufficiently large M. Generally, the degrees of the polynomials
o; in (6.16) go to infinity as the minimum value of a”z + b on S tends to zero.
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Moment relaxations present the dual side of sum of squares relaxations. If we
have Sy = S for some N then any linear functional positive on S is also posi-
tive on Sy. Linear functionals positive on Sy have a weighted sum of squares
representation with bounded degree 2/V:

alz+b>00n8S = dlz+b=0o+01g1+ -+ Omgm

with o; sos and deg(o;9;) < 2N for all ¢. If almost all positive linear functionals
on S have such a representation, then we say that the presentation of S admits a
Putinar—Prestel bounded degree representation (PP-BDR) of order N (cf. [19]).

For the Schmiidgen moment relaxation Sy in (6.14), to guarantee that Sy=25
for some order N, we need a Schmiidgen bounded degree representation (S-BDR) of
order N (cf. [19]): for almost every pair (a,b) € R™ x R

a"z+b>00nS = alz+b= Z OuGy,
ve{0,1}m

with every o, being sos and deg(o,¢g,) < 2N.

Theorem 6.36 ([19]). Suppose S is defined by (6.10) and is compact.
(a) If PP-BDR of order N holds for S, then conu(S) equals Sy.

(b) If S-BDR of order N holds for S, then conv(S) equals Sy

Proof. We sketch the proof given by Lasserre in [19].

(a) We have already seen in the construction of (6.13) that S C Sy, regardless
of whether S is convex. Therefore, conv(S) C Sn. Now we prove the reverse
containment by contradiction. Suppose there exists a ¢ satisfying the linear matrix
inequalities in (6.13) and & = (Je,, ..., Ye,) ¢ conv(S). Since conv(S) is closed,
there exists a hyperplane strictly separating & from conv(S): there exist a nonzero
a € R” and b € R such that

alz+b>0foralzebs, als+b<0.

Since conv(.S) is compact, we can choose the above (a, b) generically. Since PP-BDR
of order N holds for the presentation of S, there exist sos polynomials og,...,0m
such that (6.16) is true and deg(c;g;) < 2N. For each i, we can find a symmetric
Wi = 0 such that o;(z) = [z]§_4, Wilz]n_q, with d; = [deg(g;)/2]. Replacing each
monomial z% by 7., we get

aTi+b=Tr (L GWo) + -+ Tr (L (@)W ) = 0,

which contradicts the previous assertion that a” #+b < 0. Therefore, conv(S) = Sy.
Part (b) is proved in almost exactly the same way. O
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Generally, it is quite difficult to check PP-BDR for a given semialgebraic set.
In the definition of PP-BDR, we require that almost every linear polynomial a”x+b
positive on S admits a representation like (6.16) with uniform degree bounds on the
sos polynomials ¢;. This is almost impossible to check in practice. Indeed, to check
PP-BDR, one often needs to prove that the BDR holds for every linear polynomial
a”x + b that is nonnegative on S. Interestingly, this stronger version of PP-BDR
is satisfied under some general conditions (cf. [12]). The situation for S-BDR is
similar.

Theorem 6.37 ([12]). Suppose S = {x € R" : gi(x) > 0,...,gm(z) > 0} is
compact and convex and has nonempty interior. Assume each g;(x) is concave on
S and let S; := {z : g;(x) > 0}.

(i) Suppose for each i, either —V2g;(x) is sos or —V2gi(u) = 0 for all u €
0S; N OS. Then there exists N > 0 such that if a¥x + b is nonnegative on S,

then
alz+b = Z ouGy
ve{0,1}™

for some sos polynomials o, satisfying deg(o,9,) < 2N. Thus, the S-BDR of
order N holds for S.

(ii) If, in addition, S satisfies the archimedean condition, then the PP-BDR of
some order N’ holds for S.

A detailed proof of Theorem 6.37 is given in [12]. We sketch the basic ideas
behind the proof. Suppose a”z + b is nonnegative on S and a’u 4 b = 0 for some
point w € S. Under some general assumptions, the KKT conditions hold at u, i.e.,
there exist Lagrange multipliers A\; > 0, ..., A, > 0 such that

a= Zx\ngi(u), Agi(u) =+ = Amgm(u) = 0.
i=1

Let L(z) be the Lagrangian defined in (6.15). Note that £(u) = 0 and VL(u) = 0.
By Taylor expansion

L(z) = (z —u)T Z)\i/o/ov2gi(u+s(x—u))dsdt (x —u).

=1

H;(z,u)

For any fixed u, H;(z,u) is a matrix polynomial in x. If each H;(x,u) is an sos
matrix in z, then £(x) must be sos since each A; > 0. This further implies that
a” z+Db has the desired Putinar- or Schmiidgen-type representation. Conditions such
as sos-convexity or strict convexity ensure that each matrix polynomial H;(z,u)
admits a Putinar- or Schmiidgen-type weighted sos representation with uniform
degree bounds that are independent of u, and hence the PP-BDR, or S-BDR holds.
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We close by noting that if the set S is convex, then Theorem 6.37 gives concrete
conditions under which Sy and Sy give semidefinite representations of S.

Convex sets with positively curved boundaries

When a semialgebraic set S is convex its defining polynomials are not necessarily
concave. For instance, the hyperboloid {z € R? : z122 —1 > 0} is convex, while its
defining polynomial is neither concave nor convex. However, because of convexity,
the boundary of S must have nonnegative curvature at smooth points (see Theo-
rem 6.17). Therefore, the defining polynomials are quasi-concave at smooth points.
This observation leads to weaker conditions, such as strict quasi-concavity of the
defining polynomials.

Theorem 6.38 ([15]). Assume that the set S defined in (6.10) is compact and
convezx and has nonempty interior. If each g;(x) is either sos-concave or strictly
quasi-concave on S, then Sy equals S for N sufficiently large. If, in addition, the
archimedean condition holds, then Sy equals S for N sufficiently large.

The proof of Theorem 6.38 is based on Theorem 6.37. The basic idea is that
we are able to find a different set of strictly concave defining polynomials for S by
using strict quasi-concavity. When g;(x) is strictly quasi-concave on S, we can find
a polynomial h;(z) positive on S such that p;(z) = g;(z)h;(x) is strictly concave
on S. We refer to [15] for the details of the proof but provide an example below.
Consider the set

1
S:{x€R2 gi(x) = —1 >0, go(x) ::§—(x1—1)2—(a:2—1)220}.

The set S is compact and convex. The polynomial g; is strictly quasi-concave, but
not concave. However, the set S can also be equivalently described as

. 2 pi(z) == (z122 — 1)(3 — z122) > 0
S_{ < } 92(x):=%—(x1—1)2—(x2—1)2>0}’

where p; () is strictly concave on S.

For a convex basic closed semialgebraic set S, the Putinar moment relaxation
produces a semidefinite representation of S only if all faces of S are exposed (cf.
[25]). There are further different conditions under which Sy or Sy gives semidefinite
representations of S (cf. [20, 28]).

6.4.5 Generalizations

In many applications convex sets are naturally defined by rational function inequal-
ities or polynomial matrix inequalities. In these cases semidefinite representations
can also be constructed by using moments. We show some examples without going
into the details. Further results on these topics can be found in [28, 29].
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Figure 6.6. The conver set defined by x2 + x3 > x} + 2222 + 23.

First, we consider the case of a convex set defined by a rational function
inequality, f(xz) > 0. Of course, one could describe this set by polynomial in-
equalities. However, by doing so, one might lose some nice properties of f (e.g.,
concavity of the defining inequalities could be lost). As we have seen in the pre-
ceding subsections, convexity plays a crucial role in constructing valid semidefinite
representations. When f is rational, to construct a semidefinite relaxation, we need
moments with fractional weights. The general constructions are described in [28].
Here is an example.

Example 6.39 ([28]). Consider the two-dimensional set S defined by the polyno-
mial inequality 22 + 23 — o1 — 2223 — 23 > 0. Its defining polynomial is not concave
in R? (it is actually convex near the origin). This set is drawn in Figure 6.6. Clearly,

S can also be described by the rational inequality

af + atal 4 x5
=== >0.
r] + x5

fle)=1-

Interestingly, the rational function f(x) is concave everywhere. It satisfies a so-
called first order sos-concavity condition, and the set S admits the following semidef-
inite representation (cf. [28]):

Ely = (yij)rz = (zij)v s.t.
z € R? 12> y20 + 204 )

L]_(Ji,y,Z) + LZ(:E7 y72> = 0

2012/11/
page 281
O



282 Chapter 6. Semidefinite Representability

where L1, Ly are linear pencils defined as

0 0 0 1 0 0
0 1 0 X1 i) 0
0 0 0 X9 0 0
Ll(xv Y, Z) = 1 ’
1 X2 Y20 —Yo2 Y11 Yo2
0 zo O Y11 Yoz O
0 0 0 Yo2 0 0
200 210 201 —Z02 211 202
210 202 211 —TX12  —203 212
Lg(x y z) _ 201 211 202 203 212 203
7 —Zp2 —Z12 —Z03 204 —Z13 —Z04
211 —Z03 212 —Z13 —Z204 213
L 202 212 203 —Z204 213 204 |

The lifting variables y;; correspond to regular moments, while z;; correspond to
moments with the weight (22 + x3)71, i.e., the integrals of type

T;Tj
d
/x%+x§ ni@)

with respect to some positive measure p on R™. The details of constructing Lq, Lo
are described in [28]. N

Now we consider the case of a convex set defined by a polynomial matrix in-
equality. A semidefinite relaxation as in (6.12) can be constructed by using moments.
Under a matriz sos-convexity condition, this construction gives a semidefinite rep-
resentation of the convex set (cf. [29]).

Example 6.40 ([29]). Consider the set S defined by the polynomial matrix in-
equality:

2 — x% — 2;10% 1+ 2129 T1T3
1+z120 2—;10% —2;10% 14+ xox3 = 0.
xr123 14+ zox3 2 — x% — 2$%

The above quadratic matrix polynomial is matrix sos-concave (cf. [29]). A picture of
this set is drawn in Figure 6.7. As in (6.12), a basic moment semidefinite relaxation
of §'is

2 — y200 — 2%002 1 + Y110 Y101
1+y110 2—yo20 — 2%200 1+ Yo11 =0
Y101 T+9yo11 2 — Yooz — 2yo20
Hyijk s.t.

r€R3
1 X1 To I3

1 Y200 Y110 Y101 ~ 0
T2 Y110 Yo20 Yoi1|
3 Y101 Yoi1r Yoo2

Indeed, the above is a semidefinite representation of S, as shown in [29]. Therefore,
S is a projected spectrahedron. N
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Figure 6.7. The convex set in Example 6.40.

6.4.6 Convex Hulls of Unions

Suppose we can divide a convex set S into several parts and find a semidefinite rep-
resentation for each piece. Then a natural question is whether these representations
can be glued together to provide a semidefinite representation of S. This brings us
to the main question of this section: Is the convex hull of a union of projected
spectrahedra a projected spectrahedron? If so, how can we construct a semidefinite
representation of it? Interestingly, there exist positive answers to these questions.

A simple implementation of the above idea is to cover the compact set by
finitely many balls. If the intersection of each ball with the convex set is a pro-
jected spectrahedron, then we can glue them together to get a uniform semidefinite
representation for the whole convex set. This approach is called localization. The
necessary tool is building a single semidefinite representation for the convex hull of
several projected spectrahedra. Since balls (ellipsoids) are spectrahedra, the ques-
tion of semidefinite representability of a convex set reduces to the representability
of the intersections of balls with the boundary of the set. Thus we can focus on
local properties of the boundary.

Let W1, ..., W,, C R™ be convex sets. Their Minkowski sum is the convex set
defined as

k=1

Wi+ +W, ::{Zxk

zp € W, k=1,...,m}.

If each W}, is a projected spectrahedron described by

n Ny
Ly (a: y(k)) =AM 13" 2,BM 3 yWo o, (6.17)
i=1 j=1
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then a semidefinite representation for the Minkowski sum W7 + --- + W,, is

{Zx(k) Ly, (x(k),y(k)) > 0 for pairs (x(l), y(l)) ey (a:(m),y(m))} .
k=1

Lemma 6.41. If Wy,..., W,, are nonempty convez sets, then
conv (U Wk> = U MWL+ -+ A W), (6.18)
k=1 AEA,,

where Ay = {X €RT © AL + -+ 4+ A\, = 1} is the standard simplex.

Proof. The proof follows readily from the definitions of convex hull and Minkowski
sum. See, for instance, [13]. O

Using Lemma 6.41, we can get a single semidefinite representation for the
convex hull conv(Uj; Wy) from those of the individual Wy.

Theorem 6.42 ([13]). Let Wh,..., Wy, be nonempty projected spectrahedra defined
in (6.17), and W := conv(Ujr_, Wy) be the convex hull of their union. Define

I, u® (E=1,...,m)
C:= ZN) Myoo s Am 20, A4+ Ay, =1, . (6.19)
NA® 4 T B |5 00
Then W C C and C = W. If, in addition, every Wy is bounded, then C = W.

Proof. This is left as an exercise. [0

Example 6.43. Let Wi, W5 be the spectrahedra defined by

2411 wxo+1 T To — 1
[ocg—i—l —xl]io’ [xg—l 2—x1]i0'

They are unit balls centered at +(1,1). The convex hull of their union has the
semidefinite representation

2\ + xgl) a:gl) + A\ -0
xgl) + A\ —xgl) o
— (1 (2) 2 2
et [ ]

ng) — /\2 2)\2 — {E§2)

A+ =1,A1,A >0
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Setting (2 = (u1,us2), we get a projected spectrahedron with three lifting variables:

|:2/\1+5C1—u1 CCQ—Ug-f—)\l] <0

To —u2 + A1 up — 1
$€R2 U1 us + A —1 “ 0 [ |
U +A1—1 2—2\ —u1| —

AM>0, 1-X >0

When some Wy, are unbounded, C and the convex hull W may not be equal,
but they have the same closure and interior. Note that both C and W are not
necessarily closed even when all W; are.

Example 6.44 ([13]). (i) Consider the following spectrahedra:

le{er: [“”11 1] >0}, W, = {0}.

€2
Their convex hull is
conv(Wy UWs) = {z € Ra_ i xp =22 =0 or x129 > 0}.

However, the set C in (6.19) is

2, T A _ 2
{xeR :3 0< A <1, l:/\l M}to}_&.

So, C # conv(WW; U Wa), but they have same interior. Both W and Ws are closed
while conv(W; U W) is not.

(ii) Consider the projected spectrahedra

_ 2. 1 1+ 2
Wl—{xER :Jdu >0, {1—1—952 1_’_”}50}

and Wy = {0}. We have
conv(Wy UWy) ={z € R*: 21 >0, or z; =0 and — 1 < x5 <0},

conv(Wy, UWs) = {z € R?: z; >0},

and hence, conv(W; UWS3) is not closed. However, one can verify that the projected
spectrahedron C is equal to conv(W; UWs,). N

As seen above, the equality C = W is possible even if Wy,...,W,, are not
all bounded. In particular, we always have C = W if every W} is homogeneous
(i.e., A®) = 0 in the semidefinite representation of Wj). This fact is implied by
Lemma 6.41.
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Example 6.45 ([13]). Consider the two spectrahedra in R? defined by

—I 1 I 1
- -
[ 1 xg] 707 [1 $2:| = 0.
The convex hull of their union is the open half space {« : x5 > 0}, which is precisely
equal to the projected spectrahedron C. The description of C can be simplified to

Uy — I1 /\1 :| 0 |: U1 1—)\1

—
/\1 T — U 1—)\1 U :|0

r € R? [
ueRZ 0< A\ <1
This is a semidefinite representation with three lifting variables.
Putting all of the above together we obtain the following result.
Theorem 6.46 ([13]). Let S C R™ be a compact convex set. Then S is a projected

spectrahedron if and only if for every uw € OS there exists § > 0 such that the
intersection S N B(u,d) is a projected spectrahedron.

Proof. The “only if” part is trivial, because the closed ball

B(u,0) ={z: ||z — ulls < 6}

is a spectrahedron. For the “if” part, suppose for every u € 95 and some §,, > 0,

the set SN B(u,d,) is a projected spectrahedron. Note that {B(u,d,) : u € S} is
an open cover for the compact set 3S. So there are a finite number of balls, say,
B(uy,01),...,B(ur,0r), to cover 9S. Note that

L

L
S = conv(9S) = conv (U (0S N B(ug, 5k))> C conv <U (S N B(ug, 5k))> cSs.
k=1

k=1

The sets S N B(ug, ;) are all bounded. By Theorem 6.42, we see that

L
S = conv (U SN B(uk,ék)>

k=1
is a projected spectrahedron. 0O

6.4.7 Sufficient Conditions for Semidefinite Representability

We now have all the tools to present a sufficient condition for a compact convex
semialgebraic set S C R"™ to be a projected spectrahedron. The condition essentially
requires that the boundary of S has positive curvature.

Theorem 6.47 ([13]). Suppose S C R™ is a compact convez set defined by

S = UTk::{xeR":gf(a:)z(),...,gﬁlk(a:)ZO},
k=1
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where g¥ are polynomials. If for every u € 9S and every g¥ satisfying g¥(u) = 0,
Ty, has interior near u (i.e., for any 6 > 0, the ball B(u, ) intersects the interior
of Ty,) and g¥(x) is strictly quasi-concave at u, then S is a projected spectrahedron.

Theorem 6.47 is proved by applying Theorem 6.46. It is enough to show that
for every u € 0S5, there exists a ball B(u,d) so that SN B(u,d) is a projected
spectrahedron. Note that SN B(u,d) is a finite union of intersections T3, N B(u, d).
By Theorem 6.38, every Ty N B(u,d) is a projected spectrahedron, under the as-
sumption of strict quasi-concavity of the defining polynomials. A complete proof of
this result can be found in Theorem 4.5 of Helton and Nie [13].

In Theorem 6.47, if the set S is not convex, but the other conditions are sat-
isfied, then we can conclude that the convex hull of S is a projected spectrahedron.

Here we give some remarks on the conditions in Theorems 6.31, 6.37, and 6.47.
Theorem 6.31 assumes that all g; are sos-concave, which is the strongest assump-
tion, but its conclusion is also the strongest: (6.12) is an explicit representation of S
as a projected spectrahedron. Theorem 6.37 assumes that g; are either sos-concave
or strictly quasi-concave, which is weaker than Theorem 6.31, and its conclusion
is also weaker: Sy or Sy provides a representation of S as a projected spectrahe-
dron for some large enough N. Theorem 6.47 assumes the weakest condition, but
its conclusion is also the weakest: there exists a semidefinite representation of S
(an explicit description is typically quite complicated).

By comparing Theorems 6.17 and 6.47, we can see that the presented necessary
and sufficient conditions for semidefinite representability are not too far away from
each other. The difference between them is nonnegative versus positive curvature
and singularity versus nonsingularity.

6.4.8 Exercises
Exercise 6.48. Prove Lemma 6.32.

Exercise 6.49. Show that a polynomial f(z) is sos-convex if and only if the
following polynomial in (z,y) is sos:

f@) = f(y) = V@) @ —y).
Exercise 6.50. Show that a univariate polynomial f(x) is sos-convex if and only
if it is convex everywhere. Show that this is also true if f(z) is a bivariate quartic
polynomial.
Exercise 6.51. Let f(x) be a cubic polynomial that is concave over R} and

S:{QJER": xlzo,,ajnzo,f(aj)ZO}

Show that the equality Sy = S holds for some order N, where Sy is given by (6.13).
What is the smallest value of such an N7
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Exercise 6.52. Consider the following convex set
S={recR?®: 2, >0,20 > 0,27 + x5 <1}.

Find a semidefinite representation for S with the smallest number of lifting variables.
Exercise 6.53. Consider the following basic closed semialgebraic set:

S={reR?: 2} — 23 — (27 +23)* > 0,21 > 0}.
Does there exist an order N > 0 such that Sy = S, where Sy is given by (6.13)?
If so, what is the smallest N making the equality occur? If no, give reasons. How
about Sy given by (6.14)?
Exercise 6.54. For each of the following cases, find a semidefinite representation

with the smallest number of lifting variables for the convex hull of the union of the
given convex sets:

(a) Two balls B(—1,1),B(1,1/2) in R™ (1 is the vector of all ones).
(b) Three pairwise touching balls in R?:

(r1+1)2+23<1, (m1—-1)2+23<1, af+(x2—-2)7<(V6-1)>~

(c) Two elliptopes in R3:

1 1 X2 1 33'1—1 ,132—1
T 1 I3 EO, xl—l 1 $3—1 EO
o z3 1 To—1 x3—1 1

(d) The semidefinite cone and nonnegative orthant embed in R?:

X X T1
Lol =0, |32| >0
o X3 T3

Exercise 6.55. Let P be the set of univariate quadratic polynomials that are either
nonnegative on [—1,0] or nonnegative on [0, 1]. Find a semidefinite representation
for the convex hull of P with the smallest number of lifting variables.

Exercise 6.56. Prove Theorem 6.42. (Hint: use Lemma 6.41.)
Exercise 6.57. Let T be a compact nonconvex set in R™. Its convex boundary is

defined as 0.1 := 0T N dconv(T). Show that conv(0.T) = conv(T). Is this also
true if T' is not compact?



261”2711/1
page 289
O

Bibliography 289

Bibliography

[1] A. A. Ahmadi and P. A. Parrilo. A convex polynomial that is not sos-convex.
Math. Program., 135:275-292, 2012.

[2] F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Pro-
gram., 95:3-51, 2003.

[3] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications, MPS/SIAM Ser. Optim.
STAM, Philadelphia, 2001.

[4] G. Blekherman. Convex forms that are not sums of squares. Preprint, 2009.
http://arxiv.org/abs/0910.0656.

[5] D.P. Bertsekas. Convex Optimization Theory. Athena Scientific, Belmont, MA,
2009.

[6] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, Springer,
Berlin, 1998.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz In-
equalities in System and Control Theory, STAM Stud. Appl. Math. 15, SIAM,
Philadelphia, 1994.

[8] S. Boyd and L. Vandenberghe. Conver Optimization. Cambridge University
Press, Cambridge, UK, 2004.

[9] P. Brandén. Obstructions to determinantal representability. Adv. Math.,
226:1202-1212, 2011.

[10] J. B. Conway. A Course in Functional Analysis. Grad. Texts in Math. Springer,
Berlin, 1985.

[11] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra, 3rd
edition, Undergrad. Texts in Math. Springer, New York, 2007.

[12] J. W. Helton and J. Nie. Semidefinite representation of convex sets. Math.
Program., 122:21-64, 2010.

[13] J. W. Helton and J. Nie. Sufficient and necessary conditions for semidefinite
representability of convex hulls and sets. SIAM J. Optim., 20:759-791, 2009.

[14] J. W. Helton and J. Nie. Structured semidefinite representation of some convex
sets. Proceedings of 47th IEEE Conference on Decision and Control (CDC),
Cancun, Mexico, Dec. 9-11, 2008, pp. 4797-4800.

[15] J. W. Helton and J. Nie. Semidefinite representation of convex sets and convex

hulls. In M. Anjos and J. Lasserre, editors, Handbook on Semidefinite, Cone
and Polynomial Optimization: Theory, Algorithms, Software and Applications,
to appear.



261”2711/1
page 290
O

290 Chapter 6. Semidefinite Representability

[16] J. W. Helton, S. McCullough, and V. Vinnikov. Noncommutative convexity
arises from linear matrix inequalities. J. Funct. Anal., 240:105-191, 2006.

[17] J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets.
Comm. Pure Appl. Math., 60:654—674, 2007.

[18] J. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM J. Optim., 11:796-817, 2001.

[19] J. Lasserre. Convex sets with semidefinite representation. Math. Program.,
120:457-477, 2009.

[20] J. Lasserre. Convexity in semialgebraic geometry and polynomial optimization.
SIAM J. Optim., 19:1995-2014, 2009.

[21] P. Lax. Differential equations, difference equations and matrix theory. Comm.
Pure Appl. Math., 6:175-194, 1958.

[22] M. Marshall. Representation of non-negative polynomials, degree bounds and
applications to optimization. Canad. J. Math., 61:205-221, 20009.

[23] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in Con-
vex Programming, SIAM Stud. Appl. Math. 13. SIAM, Philadelphia, 1994.

[24] A. Nemirovskii. Advances in convex optimization: conic programming. Plenary
Lecture, International Congress of Mathematicians (ICM), Madrid, Spain,
2006.

[25] T. Netzer, D. Plaumann, and M. Schweighofer. Exposed faces of semidefinitely
representable sets. STAM J. Optim., 20:1944-1955, 2010.

[26] T. Netzer and A. Thom. Polynomials with and without determinantal repre-
sentations. Linear Algebra Appl., 437:1579-1595, 2012.

[27] J. Nie and M. Schweighofer. On the complexity of Putinar’s Positivstellensatz.
J. Complexity, 23:135-150, 2007.

[28] J. Nie. First order conditions for semidefinite representations of convex sets
defined by rational or singular polynomials. Math. Program. Ser. A, 131:1-36,
2012.

[29] J. Nie. Polynomial matrix inequality and semidefinite representation. Math.
Oper. Res., 36:398-415, 2011.

[30] J. Nie and B. Sturmfels. Matrix cubes parametrized by eigenvalues. STAM J.
Matriz Anal. Appl., 31:755-766, 2009.

[31] J. Nie, P. A. Parrilo, and B. Sturmfels. Semidefinite representation of the
k-ellipse. In A. Dickenstein, F.-O. Schreyer, and A. Sommese, editors, Algo-
rithms in Algebraic Geometry. Springer, New York, 2008, pp. 117-132.



Bibliography 291

[32]

[33]

[34]

[35]

J. Nie and J. Demmel. Minimum ellipsoid bounds for solutions of polynomial
systems via sum of squares. J. Global Optim., 33:511-525, 2005.

P. A. Parrilo. Exact semidefinite representation for genus zero curves. Talk at
the Banff Workshop “Positive Polynomials and Optimization”, Banff, Canada,
October 8-12, 2006.

P. A. Parrilo and B. Sturmfels. Minimizing polynomial functions. In S. Basu
and L. Gonzalez-Vega, editors, Proceedings of the DIMACS Workshop on Algo-
rithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics
and Computer Science (March 2001), American Mathematical Society, Provi-
dence, RI, 2003, pp. 83-100.

D. Plaumann, B. Strumfels, and C. Vinzant. Computing linear matrix represen-
tations of Helton-Vinnikov curves. In H. Dym, M. de Oliveira, and M. Putinar,
editors, Mathematical Methods in Systems, Optimization, and Control, Oper.
Theory Adv. Appl., Birkhauser, Basel, 2011.

S. Prajna, A. Papachristodoulou, P. Seiler, and P. Parrilo. SOSTOOLS User’s
Guide. Website: http://www.mit.edu/~parrilo/sosTOOLS/.

M. Putinar. Positive polynomials on compact semi-algebraic sets, Indiana Univ.
Math. J., 42:969-984, 1993.

K. Schmiidgen. The K-moment problem for compact semialgebraic sets. Math.
Ann., 289:203-206, 1991.

M. Spivak. A Comprehensive Introduction to Differential Geometry. Vol. 11,
2nd edition. Publish or Perish, Inc., Wilmington, DE, 1979.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidef-
inite Programming. Kluwer, Amsterdam, 2000.

261”2711/1
page 291
O



2012/11/
page 292
O



Chapter 7

Spectrahedral
Approximations of

Convex Hulls of
Algebraic Sets

Jodo Gouveia' and Rekha R. Thomas

This chapter describes a method for finding spectrahedral approximations of the
convex hull of a real algebraic variety (the set of real solutions to a finite system
of polynomial equations). The procedure creates a nested sequence of convex ap-
proximations of the convex hull of the variety. Computations can be done modulo
the ideal generated by the polynomials which has several advantages. We examine
conditions under which the sequence of approximations converges to the closure of
the convex hull of the real variety, either asymptotically or in finitely many steps,
with special attention to the case in which the very first approximation yields a
semidefinite representation of the convex hull. These methods allow optimization,
or approximation of the optimal value, of a linear function over a real algebraic
variety via semidefinite programming.

7.1 Introduction

A central problem in optimization is to find the maximum (or minimum) value of
a linear function over a set .S in R™. For example, in a linear program

maximize {(c, z) : Az < b}

with ¢ € R", A € R™*" and b € R™, the set S = { € R” : Az < b} is a
polyhedron, while in a semidefinite program,

maximize { (c,x) : Ap + ZAJZ bt O}
i=1

tJodao Gouveia was partially supported by NSF grant DMS-0757371 and by Fundagdo para a
Ciéncia e Technologia.
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with ¢ € R™ and symmetric matrices Ag, A1, ..., A,, the feasible region is the set
S ={xeR": Ay + >, Ajz; = 0} which is a spectrahedron. In both cases,
S is a convex semialgebraic set as it is convex and can be defined by a finite list
of polynomial inequalities. A real algebraic variety, which is the set of all real
solutions to a finite list of polynomial equations, is a special case of a semialgebraic
set. Optimizing a linear function over any set S C R™, in particular, a real algebraic
variety, is equivalent to optimizing the linear function over the closure of conv(\S),
the convex hull of S. In this chapter we describe a method to construct semidefinite
approximations of the closure of the convex hull of a real algebraic variety.

Representing the convex hull of a real algebraic variety is a multifaceted prob-
lem that arises in many contexts in both theory and practice. In Chapter 5 we
saw a method using dual projective varieties for explicitly finding the polynomials
that describe the boundary of the convex hull of a real variety. These bounding
polynomials use the same variables as those describing the variety and can be highly
complicated. Their computation boils down to eliminating variables from a larger
polynomial system and can be challenging in practice, although they can be com-
puted using existing computer algebra packages in examples with a small number of
variables. If one is allowed to use more variables than those describing the variety,
then there is more freedom in finding representations and approximations and the
key idea then is to express the convex hull implicitly as the projection of a higher-
dimensional object. This approach is more flexible than the former and has the
potential to yield a representation of a complicated set as the projection of a simple
set in higher dimensions. The method we will describe adopts this philosophy for
finding approximations and representations of the convex hull of a real algebraic
variety.

We present a procedure for finding a sequence of approximations of the convex
hull of a real algebraic variety (sometimes just called an algebraic set) in the form of
projected spectrahedra. While the convex hull of a real algebraic variety is a convex
semialgebraic set, recall from Chapter 6 that it is not known which convex semial-
gebraic sets are projected spectrahedra. Regardless, we will develop an automatic
method that finds semidefinite representations (as projected spectrahedra) for a
sequence of outer approximations of conv(S), when S is an algebraic set. In many
cases, these approximations will converge to conv(S). If our procedure yields an
exact representation of conv(S) as a projected spectrahedron, then as a by product
we can optimize a linear function over S by solving a semidefinite program. In the
nice cases where the representation uses spectrahedra of small size (relative to the
size of 5), semidefinite programming becomes an efficient method for optimizing a
linear function over S. In fact, there are several families of algebraic sets where this
spectrahedral approach yields polynomial time algorithms for linear optimization.
Similarly, the spectrahedral approach can, in some cases, yield efficient algorithms
for finding good approximations of the optimal value of a linear function over S.

While we will see many examples of real algebraic varieties (and their defining
ideals) for which our method yields an exact representation of its convex hull in a
few iterations of our procedure, many open questions remain. For instance, there
is no complete understanding of when the method is guaranteed to converge to the
convex hull of the variety in finitely many steps of the procedure. Even in the
cases where finite convergence is guaranteed, good upper bounds on the number of
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iterations required by the procedure are lacking. The work presented in this chapter
was inspired by a question posed by Lovész in [19] that asked for a characterization
of ideals for which the first approximation in our hierarchy will yield a semidefinite
representation of the convex hull of the variety of the ideal. In Section 7.3 we answer
this question for finite varieties. The case of infinite varieties is far less understood.
We identify conditions that prevent finite convergence of these approximations to
the closure of the convex hull of the variety. However, again a full characterization
is missing. Thus, the material in this chapter offers both advances in spectrahedral
representations of algebraic sets as well as many avenues for further research.

This chapter is organized as follows. In Section 7.2 we explain the proce-
dure for finding spectrahedral approximations of the convex hull of an algebraic
set. These techniques were developed in [8], coauthored with Parrilo. One of the
key theorems needed in this section (Theorem 7.6) was strengthened in this presen-
tation with the help of Greg Blekherman. We illustrate the method with various
examples and explain the underlying computations. In Section 7.3 we discuss the
situations in which this method converges, either asymptotically or finitely, to an
exact semidefinite representation of the convex hull of the variety. The most useful
scenario is when the first approximation yields an exact semidefinite representation
of the convex hull of the variety. We characterize all finite varieties for which this
happens. We conclude in Section 7.4 with examples from combinatorial optimiza-
tion where the underlying varieties are all finite. The methods we describe have
algorithmic impact on certain classes of combinatorial optimization problems and
the algebra becomes endowed with rich combinatorics in these cases.

7.2 The Method

Let f1,..., fm € Rlx1,...,2,] =: R[z] be polynomials and

W(f1,- oy fm) ={z e R" : fi(x) = falx) =+ = fi(x) =0}
be their set of real zeros. We are interested in representing conv(Ve(f1,..., fm)),
the convex hull of Vr(f1,..., fm) in R™ as projected spectrahedra.
Recall that the ideal generated by fi,..., fi, in R[z] is the set

I=<f1,...,fm>={Zgifi . gi € Rlz], meN} C Rz].

i=1

The real variety of I is the set Vr(I) := {z € R™ : h(z) = 0 for all h € I} of
real zeros of all polynomials in I. Note that if s € Vk(f1,..., fm), then s € V(1)
since fi(s) = 0 implies that h(s) = >, gi(s)fi(s) = 0 for all h € I. Con-
versely, if s € Vg(I), then for all ¢ = 1,...,m, fi(s) = 0 since f; € I. Therefore,
Ve(f1,---, fm) = Vk(I), and our goal can be viewed more generally as wanting to
find semidefinite representations of the convex hull of the real variety of an ideal in
R[], or approximations of it.

For any set S C R", the closure of conv(S) is exactly the intersection of all
closed half spaces {x € R™ : I(x) > 0} as [ varies over all linear polynomials that
are nonnegative on .S. Throughout this chapter, linear polynomials include affine
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296 Chapter 7. Convex Hulls of Algebraic Sets

linear polynomials (those with a constant term). In particular, given an ideal I,

cl(conv(Vg(I))) = N {z : I(z)>0}.

U linear, Iy (1)>0

It is not so clear how to work with this description. Even for a single linear polyno-
mial /, checking whether [(x) is nonnegative on Vg(I) is a difficult task. A natural
idea is to relax the condition |y, ;) > 0 to something easier to check, at the risk
of losing some of the {(z) in the above intersection, and obtaining a superset of
cl(conv(Vg(I))). As seen already in Chapters 3 and 4, the classical method to
certify the nonnegativity of a polynomial on all of R™ is to write it as a sum of
squares (sos) of other polynomials. In our case, we just need to certify that I(z) is
nonnegative on Vg([), a subset of R™.

Let ¥ denote the set of all sos polynomials in R[z], R[z]; the set of all poly-
nomials in R[z] of degree at most k, and Yoy the set of all sos polynomials > h?,
where h; € R[z];. Nonnegativity of I(z) on Ve(I) is guaranteed if

l(z) = o(z) + ) gi(z) fi(e) (7.1)
i=1

for o(z) € ¥ and ¢; € R[z], since then for all s € Vr(I), I(s) = o(s) > 0. In
Chapter 3 we saw that semidefinite programming can be used to check whether a
polynomial is sos. In (7.1) we need to find both o(z) and the polynomials g; to
write [(x) as sos mod I. Therefore, to check (7.1) in practice, we impose degree
restrictions and proceed in one of two possible ways.

(i) In the first method, we ask that o € oy and g; f; € R[z]a, for a fixed positive
integer k and, if so, say that I(z) is k-sos mod {f1,..., fm}. This is the basic
idea that underlies Lasserre’s moment method for approximating the convex
hull of a semialgebraic set described in Chapter 6.

(ii) In the second method, we ask only that o € Yo for a fixed positive integer k
which reduces (7.1) to l(x) = o(x)+h(x) where h(z) € I. If this is the case, we
say that I(z) is k-sos mod I. This method is more natural if one is interested
in the geometry of Vg (I) and conv(Vr(I)) as it removes the dependence of the
method on the choice of a particular generating set of I. The only issue is if
the computation can be done in practice at the level of the ideal I and not
the input f1,..., fm-

Both methods yield a hierarchy of convex relaxations of conv(Vk(I)) obtained
as the intersection of all half spaces {z : I(xz) > 0} as I(z) ranges over the linear
polynomials that are k-sos in the sense of the method. Since if I(z) is k-sos mod
{f1,--., fm} then it is also k-sos mod I, method (ii) yields a relaxation that is no
worse than that from method (i) for each value of k. On the other hand, method
(ii) requires the knowledge of a basis of R[z]/T as we will see below, which for some
problems may be hard to compute in practice. To see the computational differences
that can occur between the two methods, consult Remark 7.14.
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In this chapter we focus on method (ii). The kth iteration of (ii) yields a
closed convex set, called the kth theta body of I, defined as

THy(I) := {z € R" : I(z) > 0 for all  linear and k-sos mod I}.

Clearly Vk(I), and hence cl(conv(Vg(I))), is contained in TH(I) for all k. Thus the
theta bodies of I form a hierarchy of closed convex approximations of conv(Vg(I))
as follows:

TH; (1) D THy(I) D +++ D THi(I) 2 THegr (I) 2 -+ D cl(conv(Vi(I))).

An immediate question is when this hierarchy converges to cl(conv(Vr(I))) either
finitely or asymptotically. Finite convergence allows an exact representation of
cl(conv(Vr(I))) as a theta body which would be extremely useful if we can represent
and optimize over a theta body efficiently. We will show in Section 7.2.2 that each
THy(I) is the closure of a projected spectrahedron. This enables optimization
over a real variety using semidefinite programming. In Section 7.4, we will learn
the motivation for the name “theta bodies.” We begin with some background on
working modulo a polynomial ideal.

7.2.1 Sum of Squares Modulo an Ideal

Let I C R[z] be an ideal and Vg (I) be its real variety. For two polynomials f, g €
R[z], if f — g € I, then f(s) = g(s) for all s € Vg(I). If f —g € I, then f and ¢
are said to be congruent mod I, written as f = g mod I. Congruence mod I is an
equivalence relation on R[z]. The equivalence class of f is denoted as f+ I, and the
set of equivalence classes is denoted as R[z]/I. The set R[z]/I is both an R-vector
space and a ring over R where addition, scalar multiplication, and multiplication
are defined as follows. Given f,g € Rz and A e R, (f+ 1)+ (g+1) = (f +9)+1,
Mf+D)=XMf+1,and (f+1)(g+1I)= fg+I. We will denote vector space bases
of R[z]/I by B in this chapter. By the degree of an equivalence class f + I, we mean
the smallest degree of an element in the class. With this definition, we may assume
that the elements of B are listed in order of increasing degree. Further, for each
k € N, the set By, of all elements in B of degree at most k is then well-defined.
Computations in R[z]/I can be done via Grobner bases of I. Recall that if
G is any reduced Grobner basis of I, then a polynomial h lies in [ if and only
if the normal form of h with respect to G is zero. Therefore, f = g mod I if
and only if the normal form of f — g with respect to G is zero, or equivalently,
f and g have the same normal form with respect to G. This provides an algorithm
to check whether two polynomials are congruent mod /. The unique normal form
of all polynomials in the same equivalence class serves as a canonical representative
for this class given G. If M is the initial ideal of I corresponding to the reduced
Grobner basis G, then recall that the standard monomials of M form an R-vector
space basis for R[z]/I. Therefore, the normal form of a polynomial with respect
to G can be written as an R-linear combination of the standard monomials of the
initial ideal M. The vector space R[z]/I has many other bases, some of which may
be better suited for computations than the standard monomial bases coming from
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298 Chapter 7. Convex Hulls of Algebraic Sets

an initial ideal of I. See Chapter 3 for a discussion of alternative bases of R[z] and
hence R[z]/I. In this chapter we will use only a standard monomial basis of R[z]/I.
A quick tour of the algebraic notions needed in this chapter can be found in the
appendix. For a thorough introduction to the theory of Grobner bases and related
notions, we refer the reader to [6].

We now come to sum of squares polynomials modulo an ideal I, and the ques-
tion of how to check whether a polynomial f € R[z] is k-sos mod I. A polynomial
f € Rz] is sos mod I if f = Y h% mod I for some h; € Rlz], and k-sos mod I
if h; € R[z]y for all j. Hence, the equivalence classes of polynomials that are sos
mod I (respectively, k-sos mod I) are precisely those in

Y/ I:={c+1:0€X}

(respectively, Yok /I). It is worthwhile to note that many polynomials that are not
sos in R[z] can become sos mod an ideal I. For instance, the univariate linear
polynomial z is congruent to z* mod the ideal (z — z?) C Rx].

Let [z], denote the vector of all monomials in R[x]; in a fixed order, say degree
lexicographic. Recall from Chapter 3 that a polynomial f € g if and only if there
exists a positive semidefinite matrix A, denoted A = 0, such that f = [z]L A[z]k.
The matrix A can be solved for using semidefinite programming and a Cholesky
factorization of it as A = VTV yields an sos expression Y h3 for f, where hj(x)
is the inner product of the jth row of V and the vector of monomials [z];. This
method can be adapted to check whether f is k-sos mod I as follows. The vector
[z]x can be replaced by the vector of monomials from By, denoted as [z]p,, since
R[z]x/I is spanned by By. Since the size of By is no larger than the size of a
basis of R[z]x, this can decrease the size of the unknown matrix A considerably,
making the final SDP much smaller than before. Setting up A as a symmetric
matrix of indeterminates A;; and multiplying out [z]} A[z]s, , we get a polynomial
g € R[z]ag. Let the normal forms of f and g with respect to a reduced Grobner
basis G of I be f’ and ¢’, respectively. Then since f = f/ and g = ¢’ mod I and [’
and ¢’ are fully reduced with respect to G, we have that f = g mod [ if and only if
/' = ¢'. Therefore, to check if f is k-sos mod I, we equate the coefficients of f’ and
g’ for like monomials and check whether the resulting linear system in the A;;’s has
a solution with A > 0.

Example 7.1. Consider the polynomial f(x,y) = 2% + y* + 22%y? — 22 + 32 and
the principal ideal I = (f) C R[z,y|. The real variety Vg(I), which is the set of real
zeros of f, is a Bernoulli lemniscate (shown in Figure 7.1) with foci (:l:\/i57 0).

It is easy to check that the horizontal line y = % is a bitangent to Vg (I) and

that l(x,y) := —y + \/ig is nonnegative on Vg(I). Since f has degree 4 and [ has
degree 1, [ cannot be 1-sos mod I but has a chance to be 2-sos mod I. We apply
the method described above to verify this.

The set {f} is a reduced Grobuner basis of I with respect to every term order.
The initial ideal of I under the total degree order with ties broken lexicographically
with # > v, is generated by 2*. Hence a basis B for Rz, y]/I is given by the infinite
set of standard monomials of (z*) C Rz, y] which are all the monomials in z and y
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Figure 7.1. The lemniscate z* + y* + 22%y? — 22 + y? = 0 with a bitangent.

that are not divisible by x*. In particular, By = {1,z,y}, B2 = {1,z,y, 2%, xy, y°},
and [z]p, = (1 x y 2% 2y y?).
The general 2-sos polynomial mod I is therefore of the form

a11 aiz2 G113 a4 a5 aie

12 Q22 A23 0424 425 Q26

< 8 =

a13 @23 G33 a34 azs Aa36

kS
Il

o

o

x a1y G4 G34 (44 Q45 G46 z
zry zy
y2 ais Qg5 a3s Q45 As5 (56 y2

aie a2 (36 Q46 56 466

where A = (a;;) > 0. Multiplying out the above expression we get that

g = a1l + 2a12T + 2a13y + (2&14 =+ a22)$2 =+ (2&23 + 2a15)a:y + (2&16 + a33)y2
+ 2a947% + (2a34 + 2a95)7%y + (2a26 + 2a35)7y? + 2a36y° + agrt + 204523y
+ (as5 + 2a46)2%y? + 2a562y> + asey’.

We now reduce g by the Grobner basis {f}, which means replacing every
occurrence of z* with

gt = 2uy? a2

and obtain the normal form of g, which is

g = a1 + 2a127 + 2a13y + (2a14 + a2 + aaa)2?® + (2a23 + 2a15)zy + (2a16 + a3z
— a44)y? + 2a242% + (2a34 + 2a25)7%y + (2a26 + 2a35)7y? + 2a36y> + 2a452%y
+ (ass + 2a46 — 2a44)2%y* + 2a562y> + (a6 — aa)y®.

Since I(z,y) = —y + % is already reduced with respect to {f}, if [ is 2-sos

mod I, then I = ¢/, and hence to verify this, we need to check whether there exists
A = 0 such that ay; = %, 2a13 = —1, and all other coefficients of ¢’ equal zero.

Writing out all the linear conditions, we need to check whether there exists a positive



261”2711/1
page 300
O

300 Chapter 7. Convex Hulls of Algebraic Sets

semidefinite matrix of the form

ﬁ 0 -3 auu a5 a
0 ax —ays O ags Q26
-3 —a15  asz  —as —ag 0
aiq 0 —ags Q44 0 ag
a5 azs —agz 0 ass 0
aie G2 0 a46 0 au

that satisfies the conditions
2014 +a22 +agqa =0, 2a16+asz3 —asa =0, ass5+ 2a46 — 2a44 = 0.

Check that the matrix

273/2 0 —1/2 —273/2 (0 —273/2

00 0 00 0

A -1/2 0 212 00 0
272 0 0 27Y¥2 o 272
00 0 00 0

—273/2 0 2712 ¢ 27172

is positive semidefinite and satisfies the conditions given above. This matrix A
factors as A = VTV with

v _2—5/4 0 0 2—1/4 0 2—1/4
T 274 o 24 00 0]’

and hence,

(\/ig—y) zﬁ(2x2+2y2—1)2+\/§<y—%)2 mod 1.

In general, finding exact sos expressions, as above, is difficult. This particular sos
decomposition was found by Bruce Reznick using a series of tricks. He showed that

(5 =0+ B2 @ =)
= 4—\1/5(2332—#21/2—1)2—#\/5(24—%)

In practice, one can use an SDP solver to find A. Using MATLAB, to do this
computation in YALMIP [17] we input the following code:

sdpvar al4 alb al6 a22 a25 a26 a33 a44 a46 abb
A=[ 1/sqrt(8) 0 -1/2 ald alb al6;

0 a22 -alb5 0 a2b a26;
-1/2 -al5 a33 -a25 -a26 0 ;
al4d 0 -a256 a44 O ad6;
alb a2b -a26 0 abb 0 ;
al6 a26 0 a46 0 add] ;
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11=2xal4 + a22 + ad4;
12=2xal6 + a33 - ad4;
13=abb + 2*ad6 -2xad4;
solvesdp([A>0,11==0,12==0,13==0],0);

We ran this code with SeDuMi 1.1 as the underlying SDP solver in YALMIP. The
matrix can now be recovered by simply typing double (A) and we obtain

0.3536  0.0000 —0.5000 —0.4052 0.0000 —0.1985
0.0000  0.1034  0.0000  0.0000 —0.2924 0.0000
—0.5000  0.0000 1.1041  0.2924  0.0000  0.0000
—0.4052 0.0000  0.2924 0.7071  0.0000  0.2936
0.0000 —0.2924 0.0000  0.0000  0.8270  0.0000
—0.1985 0.0000  0.0000  0.2936  0.0000  0.7071

in which the entries are shown up to four digits of precision. After factorizing A as
VTV we obtain the sos decomposition:

(0.5946427499 — 0.8408409925 y — 0.6814175403 2 — 0.3338138740 y?)°
(0.3215587038 = — 0.9093207446 zy)*
(0.6301479392 y — 0.4452348146 22 — 0.4454261796 2)

(0.2110357686 22 — 0.6263671431 y2)”
0.0001357833655 %y
+ 0.004928018144 ¢,

+
+
+
+

which simplifies to

0.3536000000 — ¥
+ 0.707(z* + 22%y% + y* — 22 +9?)
+  1071(8.089965190 2%y — 3.247827064 y°).

This provides fairly strong computational evidence that [ = % —y is 2-sos mod [
even though it is not an exact 2-sos representation of [ mod I.

The above approach becomes cumbersome as we search for higher and higher
degree sums of squares modulo an ideal. Luckily there are ways of using the existing
software to simplify our input. In our example, checking whether [ is 2-sos modulo
I is the same as checking if there exists some A € R such that I(x,y) + Af(z,y) is
sos, which can be done via YALMIP with the following commands:

sdpvar x y lambda
f=x"4+y " 4+2%x" 2%y " 2-x"2+y " 2;
1=1/sqrt(8)-y;
F=sos(1+lambdax*f) ;
solvesos(F,0, [],lambda) ;
sdisplay(sosd(F))

The last command will actually display a list of polynomials whose squares
sum up to (approximately) I(z,y) + Af(z,y). In our example, the following output
is obtained
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’-0.5919274724+0.8880*y+0.6222%x~2+0.357 1%y~ 2’
’-0.03240303655-0.5699%y+0.4037*x~2+0.6602%y "2’
?-0.3036%x+0.8587*x*y’
’-0.0461010126-0.1559*y+0.3963*x~2-0.3792%y"~2’
’9.2958e-05*x+3.2868e-05*x*y’
’3.789017278e-05+1.3396e-05*y+1.4209e-05*x"2+4.7355e-06*y "2’

which should be interpreted as saying that I(x,y) is the sum of squares of the
polynomials shown on each line. Note that the last two polynomials in the list
above again point to the fact that the software only provided reasonable evidence
that I(x,y) is 2-sos mod I. N

The above computations also give a glimpse into the intertwining of algebraic
and numerical methods that is prevalent in convex algebraic geometry. The question
of whether a polynomial is a sum of squares modulo an ideal is purely algebraic.
However, the search for an sos expression is done via semidefinite programming
which is solved using numerical methods. The answer provided by these numerical
solvers is often not exact. Massaging the numerical information into a certifiable
answer can sometimes be an art.

Example 7.2. Consider the polynomial g(z,y) := y?(1 — 2?) — (2% + 2y — 1)? and
the ideal I = {(g(x,y)) defining the bicorn curve shown in Figure 7.2. It is clear
that y > 0 over the curve. Instead of checking if y is k-sos mod I for some k (which
is never the case as we will see in the next section), it is in general more useful to
search for the smallest u such that y + p is k-sos mod I. That way, if y is not sos
mod I, we will at least obtain a valid inequality y + x> 0 on Vg (I) which will then
be valid for THy (7). In general, y+ p is k-sos mod I if there exists some polynomial
h(z,y) of degree 2k — 4 such that (y + p) + h(z,y)g(z,y) is sos. As before, this can
be checked easily using YALMIP.

k=2;

sdpvar x y mu
[h,c]=polynomial([x y],2*k-4);
g=y 2% (1-x72) - (x"2+2%y-1)"2;
F=sos (y+mu-hx*g) ;
solvesos(F,mu, [], [mu;cl);

Figure 7.2. A bicorn curve.
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By successively setting k£ to be 2, 3, and 4, we get that the minimum value of p
(recovered using double (mu)) is 0.1776, 0.0370, and 0.0161, respectively. So while
u is approaching 0, it seems that y is at least not 4-sos mod 7. N

7.2.2 Theta Bodies

We now come back to theta bodies of the ideal I and their representations. Recall
that the kth theta body of I is

TH(I) := {z € R" : I(z) > 0 for all [ linear and k-sos mod I}.

Given any polynomial, it is possible to check whether it is k-sos mod I using Grébner
bases and semidefinite programming as seen in Section 7.2.1. The bottleneck in us-
ing the definition of THy(I) in practice is that it requires knowledge of all the linear
polynomials (infinitely many) that are k-sos mod I. To overcome this difficulty we
will now derive an alternative description of TH(I) as a projected spectrahedron
(up to closure) which enables computations via semidefinite programming.

We may assume that there are no linear polynomials in the ideal I since
otherwise, some variable x; is congruent to a linear combination of other variables
mod I, and we may work in a smaller polynomial ring. Therefore, R[z]; /I = R[x];
and {1+ I,z1 +1I,...,z, + I} can be completed to a basis B of R[z]/I. Recall
the definition of degree of f + I. We will assume that each element in a basis
B = {fi+1} of R[z]/I is represented by a polynomial whose degree equals the degree
of its equivalence class, and that B is ordered so that deg(f; + I) < deg(fi+1 + I).
Further, Bj, denotes the ordered subset of B of degree at most k.

Definition 7.3. Let I C Rz] be an ideal. A basis B={fo+1I, fi+1,...} of R[z]/I
is a 0-basis if it has the following properties:

1. Bi={1+1L,x1+1I,...,2, +1}.
2. Ifdeg(f; +1),deg(f; +1) <k, then f;f; + 1 is in the R-span of Boy.

Our goal will be to first express the kth theta body THg(I) as the closure
of a certain set of linear functionals on the k-sos polynomials mod I. This will be
achieved in Theorem 7.6. In the case where I contains the polynomials z? — x;
for all i = 1,...,n, the closure can be removed (Theorem 7.8). Such ideals appear
in combinatorial optimization and hence this result will have an important role in
Section 7.4. After this, we use a 6-basis of the quotient ring Rlz]/I to turn the
description of TH(I) in Theorem 7.6 to an explicit semidefinite representation.
This allows concrete computations and examples. We proceed toward Theorem 7.6.

In what follows, we identify a linear polynomial « + (a,z) € Rlz]; with the
vector (o, a) € R** L. Let 2¥(I) := {f+1I : f € R[], f ksos mod I}. Then X¥(I)
is a cone in the vector space R[z]1/I = R[z];, and its dual cone ¥¥(I)* lives in
(R[z],/1)* = Rlx]; = R*HL. Thus,

YR = {(t,x) R xR"™ : at + {a,z) > 0 for all (o, a) € ZH(I)}.
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Consider the hyperplane H := {(1

,z) : x € R"} in R"™1. We may think of H also
as H={L e (R[z|:/I)* : L(1+ 1) =

1}. Tt then follows immediately that
{1} x THR(I) = Z¥(I)* n H. (7.2)
Lemma 7.4. The hyperplane H intersects the relative interior of X5 (I)*.

Proof. A sufficient condition for a hyperplane L to intersect the relative interior of
a closed convex cone P is that cl(cone(relint(P N L))) = P. If L does not intersect
the relative interior of P, then P N L is contained in some proper face F' of P
(possibly the empty face). Therefore, cl(cone(relint(P N L))) is also contained in
this face which is a proper subset of P.

By (7.2), C := {(\,Az) : A > 0,z € relint(TH(I))} is the cone over the
relative interior of ¥ (I)*NH. We will show that cl(C) = X% (I)*. Let (o, a) € X¥(I)
and z € relint(THg(I)). Then since x € THi(I), 0 < a + (a,z) = {(a,a), (1,z))
which implies that 0 < ((a, a), (A, Az)) for all A > 0. Hence C C ¥#¥(I)*, and since
YE(I)* is closed, cl(C) C SF(I)*.

Suppose Y¥(I)* Z cl(C). Then there exists (t,z) € X¥(I)*\cl(C). Since the
constant polynomial 1 lies in X¥(I) and (t,x) € ¥(I)*, t > 0. Also, since cl(C)
is closed and there exists (s,y) € C with s > 0, we can find a small enough ¢ > 0
such that (t,x) + e(s,y) € L¥(I1)*\cl(C), and the first coordinate of (¢, z) + €(s,y)
is positive. Scaling this element, we may assume that there is an element (1,z) €
YE(I)*\el(O). Since (1,z) € Z¥(I)*, a+ (a,z) > 0 for all (o, a) € X¥(I), which
implies that © € TH(I) and hence (1, z) € cl(C), which is a contradiction. 0O

We will also need the following lemma which can be proved using standard
tools of convex geometry.

Lemma 7.5. Let P be a closed convex cone and QQ be a convex subcone of P such
that cl(Q) = P. Then relint(P) C Q, and for any affine hyperplane H passing
through the relative interior of P, PN H = cl(Q N H).

We now examine the cone ¥¥(I)* more closely. Let ¥*(I) denote the set of
all f+ I such that f is k-sos mod I. Then XF(I) = Yo /I is a cone in R[x]ay /1,
and X¥(I) = ©*(I)NR[z];/I. Therefore, the dual cone of £¥(I) in (R[z]/I)* is the
closure of the projection of ¥*(I)* into (R[z];/I)* as explained in Section 2.1 of
Chapter 5. Hence we may identify YX¥(I)* with the closure of the set

Sp(D) :={(LA+I),L(xy +1I),...,L(z, + 1)) : LeXkU)*}).
Further, define Qy(I) := {(L(z1 +1),...,L(z, + 1)) : L € SF(I)*, L(1+1) =1},
We will see shortly that Qg (I) is a projected spectrahedron, but first we establish

the connection between THy(I) and Qg(I).

Theorem 7.6. TH(I) = cl(Qx(1)).
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Proof. Since {1} x Qr(I) = Si(I) N H, we have {1} x cl(Qx(I)) = cl(Sx(I) N H).
Therefore, the theorem will follow if we can show that
cd(Sp(I))NH = cl(Sp(I)N H).

By Lemma 7.5, this equality holds if H intersects Si(I) in its relative in-
terior. Again, by Lemma 7.5, relint(X%(I)*) C Si(I). Lemma 7.4 showed that H
intersects the relative interior of ¥¥(I)* and hence the relative interior of Si(I). 0O

We now focus on an important situation where the closure is not needed in
Theorem 7.6. In many cases in practice, we are interested in finding the convex hull
of a set S C R" that may not be presented as the real variety of an ideal. However,
the approximation THy(I) of conv(S) is defined with respect to an ideal I whose
real variety is S. In this case, the canonical choice for such an ideal is the vanishing
ideal of S, denoted as I(S), which consists of all polynomials in R[z] that vanish
on S. The real radical of an ideal I C Rx] is the ideal

VT = {feR[x]:fZ’”Jng? eI,meN,gieR[x]}a

and the ideal T is said to be real radical if I = v/T. The real Nullstellensatz [21]
states that I is real radical if and only if I = I(Vg([)). This is the analogue of
Hilbert’s Nullstellensatz for real algebraic varieties. Computing any ideal I such that
Ve(I) = S might be hard, and in general, computing I(5), given S, might also be
hard. However, in many cases of practical interest, I(.5) is available. A large source
of such examples is combinatorial optimization, where S is usually a finite set of
0/1 points for which a generating set for I(.S) can be computed using combinatorial
arguments. We will see several such examples in Section 7.4. If S is a subset of
{0,1}" and I = I(S), then Theorem 7.6 can be improved to Theorem 7.8. We first
prove a lemma.

Lemma 7.7. Let J be any ideal that contains x? — x; for all i =1,...,n. Then
L+ J is in the relative interior of X*(J) = {f +J : f is k-sos mod J).

Proof. Let T := (x? — z; for alli = 1,...,n). We will first show that 1+ Z is in
the relative interior of ¥*(Z) C R[z]ox/Z. The cone X¥(J) is a projection of X*(7)
since Z C J, and hence, if 1+ Z € relint(3*(Z)), then 14 J € relint(X*(J)). 14+ T
is in the relative interior of ¥*(Z), which is a cone in the vector space R[x]ay /Z.

We will show that for any polynomial p € R[z]ak, (1 + ep) +Z € ZF(Z) for
some € > 0. Since we are working modulo Z, we may assume that every monomial
in p is square-free. Further, since every monomial is a square modulo Z, it suffices
to show that (1 —eq) +Z € X*(Z) for any square-free monomial ¢ of degree at most
2k and some € > 0. Write g = q1¢2 for some square-free monomials ¢1, g2 of degree
at most k. Now note that

(1—q)?=1-2¢2+q¢5=1— g mod Z, and
Ql—g4+@)P?=1+¢+¢ —2q1+2¢ —2q1¢2 =1 — 1 + 3g2 — 2¢1¢> mod L.
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Therefore, (1 —q1 + q2)? +3(1 — q2)?> + ¢ = 4 — 2q1q2 = 4 — 2¢ mod Z. Since
1,42 € Rlz], it follows that (4 —2¢) +Z € £¥(Z), which implies that (1—)+7 €
SHZ). O

Theorem 7.8. If S C {0,1}" and I = I(S), then THy(I) = Qx(I).

Proof. Since S C {0,1}", its vanishing ideal I = I(S) contains z? — x; for all
i = 1,...,n, and so by Lemma 7.7, 1 + I is in the relative interior of X*(I).
Hence, ¥%(I)* = Sk(I). (No closure operation is needed by [24, Corollary 16.4.2].)

Therefore,
{1} x THL(I) = 2¥()* N H = Sp(I) N H = {1} x Qi (I),
and the result follows. a

We have thus far seen that the kth theta body THy (1) is the closure of Qg ().
However, this description is still abstract and in order to work with theta bodies
in practice, we now give an explicit (coordinate based) description of Q(I) using
a basis of R[z]/I which will make it transparent that Qx(I) is the projection of
a spectrahedron. This involves the theory of moments and moment matrices as
explained below.

Fix a 0-basis B = {f; + I} of R[z]/I and define [z]g, to be the column vector
formed by all the elements of By in order. Then [z]s,[z]§, is a square matrix
indexed by By and its (4, j)-entry is equal to f;f; +I. By hypothesis, the entries of
2], [x]5, lie in the R-span of Byg. Let { A} ; } be the unique set of real numbers

such that f;f; +1 = ZfLJrIeB% )\é)j(fl +1).

Definition 7.9. Let I, B, and { )‘é,j } be as above. Lety be a real vector indexed
by Bar with yo = 1, where yo is the first entry of y, indexed by the basis element

1+ 1. The kth reduced moment matrix Mp, (y) of I is the real matriz indexed by
By, whose (i, j)-entry is (Mg, (y))i,; = Zfz+1652k )\ﬁ)jyl.

We now give examples of reduced moment matrices. For simplicity, we often
write f for f 4+ I. Also, in this chapter we consider only monomial bases of R[z]|/I
(i.e., fi is a monomial for all f; + I € B) which we can obtain via Grobner basis
theory. In this case, [z]p, is a vector of monomials and we identify the vector [z]g,
with the vector of monomials that represent the elements of By,. The method is to
compute a reduced Groébner basis of I and take B to be the equivalence classes of
the standard monomials of the corresponding initial ideal. If the reduced Grébner
basis is with respect to a total degree ordering, then the second condition in the
definition of a #-basis is satisfied by B.

Example 7.10. Consider the ideal I generated by f := (x + 1)z(z — 1)%. Clearly,
Vr(I) = {-1,0,1} with a double root at 1, and conv(Vg(I)) = [-1,1]. The poly-
nomial f = z* — 2% — 22 + 2 is the unique element in every reduced Grébner basis

of I with (%) as initial ideal. The standard monomials of this initial ideal are
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L,z,22,2%, and hence B = {1 + I,x + I,2% + I, 23 + I} is a 6-basis for R[xz]/I.
The biggest reduced moment matrix we could construct is Mg, (y), whose rows and

columns are indexed by Bs = B.
We have [z]p, = (1 z 2% 23) and

1 xz z? 2°
[QJ]B [$]T _ r x2 3 It
3 | T]B; 22 23 g4 25|
3 ozt 2® S
which is entrywise equivalent mod I to
1 T x? x3
x x? x3 2+ -z
x? x3 B+ -z 203 — x
2 B4z 2% — & 223 + 22 — 2z

We now linearize using y = (1,y1,y2,ys) and obtain

1 Y1 Y2 Y3
Y1 Y2 Y3 ys +y2 —y1
M, =
5 (9) Y2 Y3 ys+y2 — Y1 2ys — 1

Ys Ys+y2—u1 2ys — 11 2ys +y2 — 241

The reduced moment matrices Mg, (y) and Mp,(y) are the upper left 2 x 2
and 3 x 3 principal submatrices of Mp,(y). B

Example 7.11. Consider the ideal I = (z* — % — 22, 2% + 22 + y? — 1). Using a
computer algebra package such as Macaulay2 [10] one can calculate a total degree
reduced Grobner basis of I as follows:

Macaulay2, version 1.3

i1 : R = QQ[x,y,z,Weights => {1,1,1}];

i2 : I = ideal(x"4-y~2-z72, x"4+x"2+y~2-1);
i3 : G =gens gb I

03 = | x2+2y2+z2-1 4y4+4y2z2+z4-5y2-3z2+1 |

which says that this Grobner basis consists of the two polynomials
2?2+ 2%+ 22— 1 and 4y +49%2% + 2t —5y? — 327 4+ 1.

A Dasis for the quotient ring R[z, y, z]/I is given by the standard monomials of the
initial ideal (22, y*), which gives the following partial bases:

By ={1,z,y,z},

By = By U{zy,y? 22,9z, 2%},

Bs = B U {zy?, i3, xyz, y22, 222 y22, 23},

By = B3 U {zy?, xy?z,y%2, wy2?, 4?22, 223 y23, 24}
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Linearizing the elements of By, we get the following table:

2 2 3 2 2

1 = y z zy y2 Tz Yz =z Ty Y TYz yQZ xrz Yz 4
1 y1 v ys w4 Ys Y6 Yz Ys Yo Yo Y11 Y12 Y13 Y14 Y15
xy3 xy2z y3z xy22 y2z2 x23 yz3 24
Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23

We can now calculate various reduced moment matrices. For instance,

1 y1 ¥Y2 ¥Ys Ya Ys Yo Y7 Us
Ty ys ye T2 yo T3 y11 ¥13
Ys Yr Yo Yo Y1 Y12 Y4
Ys Y11 Yi2 Y1z Yia Y15

Mg, (y) = Ty yie Ts w17 Y19 |,
Ts yi17 Y18 Y20
Tr  yi9 Y21
Y20 Y22

L Y23 |

where we have filled in only the upper triangular region
stand for the following expressions:

. The unknowns 74,75, ...

Ty = —2ys —ys + 1,

Ty = —2y10 — Y14 + Y2,

T3 = —2y12 — Y15 + Y3,

Ty =yg+ 428 — 36 — 3 4 1
Ts = —2y18 — Y22 + 1,

To = —yoo — 128 4 2o 4 35 _ 1
T7 = —2y20 — Y23 + ¥s.

The T;’s can be calculated using Macaulay2 by first finding the normal form of the

needed monomial with respect to the Grobner basis that was calculated and then

linearizing using the y;’s. For instance, T5 is the linearization of the normal form

of 2%y, which by the calculation below, is —2y3 — yz2 + v.

i6 : x"2%yuG
3

- 2y

2
- yxz +y

06 [ |

The reduced moment matrix Mp, (y) can also be defined in terms of linear
functionals on R[z]ax/I. For a vector y = (yp) € RP2* define L, € (R[z]ax/I)*
as Ly(b) = yp for allb € By,. Then every L € (R[z]ox/I)* is equal to L, for
y=(L(b) : b€ Bay) € RB2+ Tfy € RB2 et yo := Y141, Yi := Yo,or fori =1,...,n.
Further, let mg» be the projection map that sends y € R52+ to (yy,...,y,) € R™.
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Lemma 7.12.

1. For a vector y € RB2x with yo = 1, the entry of Mg, (y) indezed by b;,b; € By,

2. M, (y) =0 Ly(f2+1)>0 for all f +1 € Rlz];/I.
Proof. The first part follows from the definition of Mp, (y) and L,. For f+1 €

R[z] /1, let f be the unique vector in RB* such that f+1 = D b, eBy f;b;. Therefore,
PPHT=3,  cp, fif;(bib;) which implies that
L(fP+D)= Y fifiL, = "Mz, (y)f
bi,bj €By,

Therefore, Mp, (y) = 0 Ly(f2+ 1) >0 for all f+1 € Rlz]y/I. O

Putting all this together, we obtain the following specific semidefinite rep-
resentation of Qx(I), and hence THy(I) up to closure. We will use this explicit
coordinate based description of TH () in the the calculations below.

Theorem 7.13. The kth theta body of I, THy(I), is the closure of
Qr(I) = mrn {y € R%* : Mp,(y) = 0, yo =1} .

Proof. Recall that Q(I) is the set

{(L(x1+1),...,L(g;n+1)); L(g+1) =0 forall g+ I € Zox /I, }

LA+1)=1
Equivalently, Qx(I) is the set

{(L(b) cbe BI\{1+1}): EE{Z_:—])I):ZlO for all f+ I € Rlz]x/1, }

By Lemma 7.12 (2), it then follows that
Qr(I) = man {y € RP* : Mg, (y) =0, yo=1} =: Qp,(I). O

When working with a specific basis B, we use @, (I) instead of Q(I) to make
the choice of basis clear. In the examples that follow, please bear in mind that this
abuse of notation is simply to keep track of which 6-basis of R[z]/I was used in
the explicit semidefinite representation of Qx(I). The proof of Theorem 7.13 shows
that any 6-basis of R[z]/I can be used to coordinatize Q(I).

Example 7.10 continued. We write down Qp, (I) for £k = 1,2,3 for the ideal
I = {(x+1)z(z —1)?) from Example 7.10. Using the matrix Mz, (y) (with yo = 1)
that was already computed we see that

Qe (I) ={y1 : 3(y1,y2) € R?* s.t. yo > 47},

261”2711/1
page 309
O



2012/11/
page 310

—®
310 Chapter 7. Convex Hulls of Algebraic Sets
Figure 7.3. The spectrahedra {y € RB2 : yo = 1, Mg, (y) = 0} for
k=1,2,3 for I = {(z + 1)x(x — 1)?) and their projections to the y;-azis.
which is the projection onto the y;-axis of the convex hull of the parabola y = y?.
Therefore, Qp,(I) = R and hence THy(I) = R, which is a trivial relaxation of
conv(Ve (1)) = [-1,1].

The body Qp,(I) = {y1 : Jy € R s.t. Mp,(y) = 0}. We know the exact form
of the moment matrices so we can use YALMIP to find cl(@g, (1)), by minimizing
x and —z over that body.
sdpvar yl y2 y3
M=[1 y1 y2;

vyl y2 y3;
y2 y3 y3+y2-yil;
solvesdp(M>0,y1);
double(y1)
solvesdp(M>0,-y1);
double(y1)
We then get cl(Qp,(I)) ~ [-1.0000,1.0417], and we will later see that it is actually
exactly [—1, 2].

To finish, we compute Qp,(I) = {y1 : Jy € R3 s.t. Mg, (y) = 0}. This is the

projection onto the yi-coordinate of the spectrahedron in R?® described by all the
—®
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Figure 7.4. The variety of Example 7.11 and its first theta body.

Figure 7.5. The second theta body from Example 7.11.

inequalities obtained from the condition Mp,(y) = 0. This body is the convex hull
of the moment vectors (z,22,23) evaluated at * = —1,0, 1, which is the triangle
with vertices (—1,1,—1),(0,0,0), (1,1,1). Projecting onto the y;-coordinate, we get
cl(@Qg,(I)) = [-1,1]. See Figure 7.3 for Qp,(I), i = 1,2,3, and their spectrahedral

preimages.
Example 7.11 continued. We now draw a few theta bodies of the ideal
T=(a*—y? 222+ 22 +y - 1)

from Example 7.11, where we calculated the second reduced moment matrix Mg, (y).
This allows us to write down Qg, (I) and @Qg, (I).

From the Grobner basis of I that we computed, we see that the polynomial
224 2y% 4+ 22 — 1 is in I. We will see in Example 7.36 that the first theta body of I
is the ellipsoid {(z,y,2) € R® : 2? +2y* + 2? < 1}. This ellipsoid along with V(1)
(the two black rings) is shown in Figure 7.4. The second theta body is shown in
Figure 7.5 and it appears to equal conv(Vg([)).

Remark 7.14. This example shows the difference between Lasserre’s method to
convexify Ve(I) and the reduced moment method that underlies theta bodies. Recall
that in step k of Lasserre’s method, the relazation of conv(Ve(I)) that is com-
puted is the common intersection of all half spaces I(x) > 0 containing Ve(I) and
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312 Chapter 7. Convex Hulls of Algebraic Sets

Figure 7.6. The second Lasserre relaxation for Example 7.11.

l(z) =o(z) + >0 gi(z) fi(z), where o(z) is a k-sos polynomial and g;(z)f;(x) €
R(x]2k. Using the software package Bermeja [25] we can draw the second relaxation
in Lasserre’s method which is shown in Figure 7.6.

Now that we have seen several examples of theta bodies of ideals, we give a
few comments and examples to point out some of the subtleties involved. We start
with an example to show that @Qp,(I) may not be closed, which emphasizes the
need to take its closure to get THy(I).

Example 7.15. Consider the principal ideal I = (z3zy — 1) C R[z1,22]. Then
conv(Vr(I)) = {(s1,82) € R? : sy > 0}, which is not a closed set. Any linear
polynomial that is nonnegative over Vg(I) is of the form axs + S, where a, 8 > 0.
Since azs + B = (Varix)? + (v/B)? mod I, THa(I) = cl(conv(Vi(I))).

The set B = Uizt + 1,25 + I, 2125 + I} is a 6-basis for Rz, 22]/1 for
which

2 2 2 3 3 3 4 4
64 = {1,%1,ZL‘Q,$1,$1$2,$2,$1$2,ZIJ1,ZE2,ZL‘1$2,ZL‘1,ZL‘2} + 1.
The reduced moment matrix Mg, (y) for y = (1,y1,...,y11) € RB* is

1 z1 x x% T2 x%

1 1 vi Y2 ys ya Us
x1 Y1 Ys Ya ye 1 yr
T2 y2 ya Ys 1 yr ys
3 ys ye 1 Yoy w2

T1T2 yao 1 y7 vy y2 Yo
35% Ys Yr Ys Y2 Yo Y11

If Mp,(y) = 0, then the principal minor indexed by z; and xjzo implies that
y2ys > 1, and so in particular, yo # 0 for all y € Qp,(I). However, since Qp,(I) 2

conv(Vr(I)) = {(s1,52) € R? : s3 > 0}, it must be that Qp,(I) = conv(Vr(I)),
which shows that Qp,(I) is not closed. N

We will see in the next section that when S is a finite set of points in R™,
the ideal I = I(S) of all polynomials that vanish on S, has the property that
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TH;(I) = conv(Vgr(I)) = conv(S) for a finite [ that depends on I. However, since
conv(S) C @Qp,(I) € THy(I), we also get that Qp,(I) is closed. Even in this case,
@5, (I) may not be closed for some k < I.

Example 7.16. Consider the finite set of points S = {(£t,1/t%) : t = 1,...,7}

lying on the curve z2x9 = 1. Then

I(S) = (wizz — 1, (2§ — 1)(af — 4)(a — 9)(a] — 16)(aF — 25)(] — 36) (a7 — 49)).
This is a zero-dimensional ideal, and a basis for R[z1, z2]/I(S) is given by
B = {17 X1,T2, x%a 12, x%a xlxga lesa xg7 xlxgﬂ x%? l’%, l’?, xlxg} + I

In particular, By is the same as the B, in Example 7.15 and the initial ideal of I(.S)
whose standard monomials are the monomials in B is generated by {z%zs,x3, 2%}
Therefore, Mp,(I(S)) and Qg,(I(S)) agree with those in Example 7.15, which im-
plies that Qg,(I(95)) is not closed. W

Another natural question is whether the theta bodies of different ideals with
the same real variety can have drastically different behaviors, especially with respect
to convergence to the convex hull of the variety. For instance, an ideal I and its
real radical v/ have the same real variety and I C /I, TH(¥/T) C TH.(I)
for all k.

Theorem 7.17. Fiz an ideal I. Then there exists a function ¥ : N — N such that
THy (1) C THy(VI) for all k.

We refer the reader to [9, Section 2.2] for a proof. The main message to take
away from this result is that whether or not the theta body hierarchy of an ideal
converges to cl(conv(Vr(l))) is determined by the real variety of I. In particular,
whether the theta body sequence of an ideal converges to cl(conv(V(I))) in finitely
many steps, or not, is determined by V1.

7.2.3 Possible Extensions

The focus of this chapter is on polynomial equations, and sums of squares relax-
ations. However, all this theory can potentially be adapted to work in some more
complicated cases. In this section we give examples of some constructions that give
a flavor of possible extensions. Similar constructions were also seen in Chapter 6,
and we refer to [22] for a more systematic study of the types of techniques we will
see below (in a slightly different setting).

Example 7.18. The theta body sequence can be modified to deal with poly-
nomial inequalities, using Lasserre’s ideas. Given an ideal I and some polyno-
mials ¢1,...,9:, we might want to find the convex hull of the semialgebraic set
S ={z e W) :gi(zx) >0,...,q(x) > 0}. To do this we use shifted reduced
moment matrices in addition to the reduced moment matrices of I.
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Figure 7.7. Sum of squares approzimation to the half-lemniscate of Gerono.

Recall that to obtain the kth reduced moment matrix Mg, (y) of I, we would
take the matrix [z]p, [x]}, , write it in terms of a basis B of R[xz]/I, and linearize
using the new variables y with yo = 1. To define the shifted reduced moment matrix
Mg, (g *y) (with respect to g), we take the matrix g(z)[z]p, [z]}, and do precisely
as before.

Consider for example the ideal I = <;1c —x%+ y2> of the lemniscate of Gerono,
together with the inequality > 0. The semialgebraic set S in this case is the right
half-lemniscate shown in Figure 7.7. The second reduced moment matrix of I is
given by

4

0 1 2
1 z y Wy wy  wj
T wg w} wg w% w%
1 2 1 2 3
Yy wp wy w3 wy Wy
b
w) wi wy wy—wy wy wj
wi wy wi  wy  wy wi
2 2 3 2 3 4
Wy Wi Wy wa wy Wy

where w] is the linearization of z'y’. The combinatorial moment matrix shifted by

z and truncated at k =1 is

T wy wi
wy wh o wy
1 1,2

w; Wy wi

If we force both matrices to be positive semidefinite and project over the x, y coordi-
nates, we get an approximation of the convex hull of the right half of the lemniscate,
as shown in Figure 7.7. By increasing the truncation parameter of the reduced mo-
ment matrix and the shifted moment matrix we get better approximations to the
convex hull.

Note that in this example we are essentially searching for certificates of non-
negativity of the form I(z,y) = oo(z,y) + zo1(x,y) mod I, where og and oy are
2-sos and 1-sos, respectively. W
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Example 7.19. Consider the teardrop curve given by p(z,y) := z* — 2% + y? = 0.
We will see in Corollary 7.45 that the singularity at the origin will prevent the theta
bodies of (p) from converging in a finite number of steps to the convex hull of the
curve. We can, however, get rid of that problem by strengthening the hierarchy in
a simple way. Recall that the second theta body in this case will be obtained as the
closure of the set of all points (x,y) € R? for which there exists a positive definite
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matrix of the form

0 1 2
1 =z gy Wy wy Wy
T wg w} wg w% w%
1 2 1 2 3
Yy wy wy wa wy Wy
w) wi wy w§—wi wy wi|’
wi wy wi  wy  wy wi
2 2 3 2 3 4
Wy Wi Wy wa wy Wy

where w?

is a variable that linearizes the monomial x'y7, and so the rows and

columns are indexed by {1,x,y, 22, xy,y?}. One can in this case strengthen the
condition by adding a new row and column to the matrix, indexed not by a monomial
but by the fraction £ that we linearize as w! ;. We then use the same strategy as

before, of linearizing all resulting products modulo the relation z* = 23 — 32 (which
2

2
allows us to get rid of wy,) and the relations y; =z
eliminates two more variables). This new pseudomoment matriz is given by

2
— 2% and % = 2 — 2® (which

1 T Y wy wi Wi wh
zoowh wy o wy o wy v
y o owi wg wy o wioowh o wy—uwf
M(z,y,w) = | wy wy — wy  wy—wj wy wi o wy
wi wy i wy o wyoowp o wg
W w? wd w2 owd wd  wd,
why oy wd—wd wi wg owd, oz —wd

Since the original moment matrix is a submatrix of M (x,y,w), the body Q =
{(z,y) : Jwst. M(z,y,w) = 0} must be contained in THa({p)), and a simple
numeric computation seems to show that @ actually matches the convex hull of the
real variety Vr(p), as we can see in Figure 7.8. In this figure we see a comparison
of the second theta body and @, drawn numerically using YALMIP. The fact that
@ seems to be exact is related to the fact that we can now use the term % to get

sos certificates. For example, z = 2? + ({)? modulo the new identities that we
introduced. W

Exercise 7.20. Let I = <x2>
1. Show that x is not k-sos mod I for any k.

2. Show that for any € > 0, the polynomial x + € is 1-sos mod I.
3. Describe TH; (I).
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Figure 7.8. In the darker color we see THo((p)), while in the lighter color
we see the strengthening Q as defined in Example 7.19. In black we see the variety
itself.

Figure 7.9. Lemniscate of Gerono.

Exercise 7.21. Using YALMIP or other software, find the smallest € such that
x + € is 2-sos modulo the ideal I = (z* — 2% 4 y?). What about 3-sos? What about
4-sos?

Exercise 7.22. The lemniscate of Gerono is given by the equation 2* — 22 +y2 = 0

shown in Figure 7.9. Using YALMIP give an approximate 2-sos decomposition of
z 4+ 1 modulo the equation of the curve. Can you find an exact one?

Exercise 7.23. Using reduced moment matrices, give semidefinite descriptions of
the following bodies:

1. @B, (I) for the ideal of the lemniscate of Gerono.
2. Qp,(I) and Qp,(I) where I = (y* —z — 1,22 —y —1).

3. Qp, (I) where I is the vanishing ideal of the vertices of the 0/1 cube in R3.
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Exercise 7.24. Let I be the vanishing ideal of a finite set of points in R™.

1. Prove that p(x) is nonnegative over Vg(I) if and only if it is a sum of squares
modulo the ideal I.

2. Using the above fact, prove that for B, a 6-basis of R[x]/I, the spectrahedron
{y € R® : Mpg(y) = 0,y = 1} is the simplex whose vertices are the vectors
(fi(s) : fi+1 € B) as s varies over the finitely many points in V().

7.3 Convergence of Theta Bodies

One of the main questions after defining a sequence of approximations to a convex
set is if they actually approximate the set, and further, if some approximation in
the sequence is guaranteed to coincide with the set. In this section we examine
conditions under which the sequence of theta bodies of an ideal I converges, either
finitely or asymptotically, to conv(Vk(I)).

Definition 7.25. Let I C Rlz] be an ideal.

1. The theta body sequence of I converges to cl(conv(Vr(I))) if

ﬁ TH(I) = cl(conv(Va(I))).
k=1

2. For a finite integer k, the ideal I is THy-exact if THy(I) = cl(conv(Vr(I))).

3. If I is THy-exact for a finite integer k, then we say that the theta body se-
quence of I converges to cl(conv(Vr(I))) in finitely many steps. If the theta
body sequence of I converges to cl(conv(Vr(I))) but there is no finite k for
which I is THy-exact, then we say that the theta body sequence of I converges
asymptotically to cl(conv(Vr(I))).

We will see in Section 7.3.1 that if Vg([) is finite, then there is always some
finite k for which I is THy-exact. However, tight bounds on & for which I is THy-
exact are not known in general. The best scenario is when [ is THj-exact. We
characterize finite varieties whose real radical ideal is TH;-exact. Recall from the
discussion following Theorem 7.17 that there is no loss of generality in passing to
the real radical of I in discussing convergence.

When Vg(I) is infinite, much less is understood about the convergence of
the theta body sequence of I. In Section 7.3.2 we explain what we know about
this case. The best general result is that when Vg(I) is compact, the theta body
sequence is guaranteed to converge to cl(conv(Vk(I))) asymptotically. However,
finite convergence, and even convergence in the first step are sometimes possible for
infinite varieties, although no characterization is known in either case. We show that
certain singularities can prevent finite convergence when the variety is compact.
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7.3.1 Finite Real Varieties

Theorem 7.26. Let I be an ideal such that Vg(I) is finite; then there exists some
k such that THy(I) = conv(Vr(I)).

Proof. First note that by Theorem 7.17 we just need to prove the existence of
such a k for J = v/I. Let Vg(I) := {P1,...,Pn} C R™ and, for each P;, let g;
be a polynomial such that ¢;(P;) = 1 and ¢;(P;) = 0 for j # 4. Then given any
polynomial f(z) that is nonnegative on V(1) we have that

r@ -3 ( f(Pj)qj(x))2

j=1

vanishes at all P;, and hence it belongs to J, and f is sos modulo J. So all non-
negative polynomials on Vg(J) are sos modulo J, which in particular implies that
each of them is nonnegative over some THy(J). Since the convex hull of Vi(I)
is a polytope, it is cut out by a finite number of linear inequalities. Pick k& large
enough for all these linear inequalities to be valid on THy(J) simultaneously. Then
conv(Vr(l)) = THx(J). 0O

Clearly, Theorem 7.26 implies that when Vi (I) is finite, the ideal I is THy-
exact for some finite k. When the ideal I is also radical, finite convergence of
its theta body sequence to the convex hull of the variety was proved by Parrilo
(see Theorem 2.4 in [16]). Having established finite convergence of the theta body
sequence of I when Vg(I) is finite, one can ask the more ambitious question of when
such an [ is TH;-exact. This is the most useful and computationally practical case
of finite convergence. If the ideal defining a finite set of points is always assumed to
be the vanishing ideal of the variety (and hence real radical), we can give a complete
geometric characterization of when they are THj-exact. We will need the following
fact about real radical ideals.

Lemma 7.27 ([8]). If I C Rx] is a real radical ideal, then a linear inequality
l(xz) > 0 is valid for THi(I) if and only if I(x) is k-sos modulo I.

In order to characterize real radical ideals with finite real varieties, we need a
new definition.

Definition 7.28. Given a polytope P, we say that P is 2-level if for each facet F
of P and its affine span Hp, all vertices of P are either in F' or in a unique translate
Of HF .

Example 7.29. In R3, up to affine equivalence there are five three-dimensional
2-level polytopes, shown in the upper part of Figure 7.10. It is easy to see that a
2-level polytope must be affinely equivalent to a 0/1-polytope. In the bottom of
Figure 7.10 we show the three remaining 0/1-polytopes (up to affine equivalence)
with a face that fails to verify the 2-level condition highlighted. W
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Figure 7.10. The top row contains all 0/1 three-dimensional 2-level poly-
topes (up to affine equivalence). The bottom row contains all 0/1 three-dimensional
polytopes (up to affine equivalence) that are not 2-level.

Theorem 7.30. Let I be real radical with S := Vg(I) finite. Then I is TH;-exact
if and only if S is the set of vertices of a 2-level polytope.

Proof. Assume without loss of generality that S spans the entire space and let
fi(xz) > 0,..., fm(x) > 0 be a minimal list of linear inequalities describing P :=
conv(S), i.e., each f; corresponds to a facet F; of P and is zero on that facet. By
Lemma 7.27, I is THi-exact if and only if all f; are 1-sos mod I, since every affine
linear polynomial that is nonnegative on S is a nonnegative linear combination of
the f;’s.

If I is THj-exact, for each i = 1,...,m, we have fi(z) = >_(hx(x))?> mod I,
where all hy are linear. But since f; vanishes on S N F; so must all hy and
therefore, since they are linear, they must vanish on the affine space generated
by F;. This means that they are actually just scalar multiples of f; and we have
fi(z) = M(fi(z))? mod I, for some nonnegative \. In particular, all points P € S
must satisfy either f;(P) =0 or f;(P) = 1/X proving the 2-level condition.

Suppose now that P is 2-level. Then for each f;, all points P € S must satisfy
fi(P) =0 or f;(P) = )\, for some fixed \; > 0. But then f;(f; — \;) vanishes on
S, and therefore belongs to I. This implies f; = (1/A\;)f? mod I and f; is 1-sos
modulo 7. 0O

Theorem 7.30 will turn out to be very useful in the context of combinatorial
optimization as we will see in the next section. Polytopes with integer vertices
that are 2-level are called compressed polytopes in the literature [34, 35] and play an
important role in other research areas. Being 2-level is a highly restrictive condition
that immediately gives us much information on the polytope. Since all the vertices
of a 2-level polytope in R™ can be assumed to be 0/1 vectors, it is clear that they
have at most 2" vertices. It was shown in [8] that they also have at most 2™ facets
which is not obvious. There are many infinite families of 2-level polytopes such as
simplices, hypercubes, cross polytopes, and hypersimplices.
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320 Chapter 7. Convex Hulls of Algebraic Sets

Figure 7.11. Cusp and its convex hull.

7.3.2 Infinite Real Varieties

We begin by showing that unlike for finite varieties, the theta body approximations
can fail drastically when Vg(I) is infinite. The following simple example is adapted
from Example 1.3.2 in [21].

Example 7.31. Consider the ideal I = (22 — y3) defining the cusp in Figure 7.11.
The closure of the convex hull of this curve is the upper half-plane, so the only linear
inequalities valid on the curve are of the form I, (z,y) = y+¢, where € > 0. Suppose
there exists some l. with an sos certificate modulo I, then I.(z,y) = Y pi(z,y)?
mod [ for some polynomials p;. Note that any polynomial p has a unique standard
form of the type a(y)+2b(y) modulo this ideal, which we can obtain by reducing all
multiples of 22, using the fact that 22 = y> mod I. Two polynomials are the same
modulo the ideal if they have the same standard form. Since I.(z,y) is already in
this form, we can simply reduce the right-hand side in the congruence relation to its
standard form too. Suppose each p; = a;(y) + xb;(y). Then it is easy to check that

D pi@y)? =) (ai(®)® +v*bi()?) + Y (27ai(y)bi(y)) mod I.

Since the right-hand side is in standard form, to be congruent to [, it must be the
same as [.. Looking at the maximum degree of y in the first sum on the right, we
see that it is smaller than two only if the a;’s are all constants and the b;’s are all
zero, since the highest degree terms cannot all cancel. In particular we get y+¢ is a
constant, which is clearly a contradiction. This proves that THy(I) = R? for all k,
and the theta bodies are completely ineffective in approximating conv(Vg(1)). In
fact, the same proof would work for any curve of the form 22 — p(y) where p has
odd degree. W

However, despite the existence of “badly behaved”varieties such as the one
presented above, there is a large, very interesting class of infinite real varieties
where such behavior never occurs, namely, compact varieties.

Theorem 7.32. Let I be an ideal such that Vr(I) is compact. Then the theta body
sequence of I converges to the convex hull of the variety Vr(I) in the sense that

() THx(I) = conv(Vi(I)).
k=1
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Figure 7.12. Strophoid curve and its convezr hull.

This is an immediate consequence of Schmudgén’s Positivstellensatz (see Chap-
ter 3). To see the connection, just consider any set of generators {g1,...,g:} for I
and the semialgebraic set S = {x € R® : £¢g; >0,...+¢; > 0} = Vg(I). When ap-
plied to S, Schmudgén’s Positivstellensatz guarantees that every linear polynomial
that is strictly positive over Vg(I) is sos modulo I.

Example 7.33. The existence of varieties as in Example 7.31 does not imply that
for all unbounded varieties we have problems with the theta body sequence. Con-
sider the strophoid curve given by p(z,y) := (1 — y)z? — (1 + y)y? = 0, shown in
Figure 7.12. The closure of the convex hull of this variety is the band B defined by
—1 <y < 1. We claim that THy(I) = B. To show this it is enough to prove that
both 1 —y and 1 + y are 2-sos modulo I, which is true since

2
l+y= <1 + %y — %y2> + % (Fy—v?)" + % (xy —2)° + %(y— Dp(z,y). B

In what follows we concentrate our efforts on the compact case, where asymp-
totic convergence of the theta body sequence is guaranteed. The next natural
question when Vg(I) is infinite but compact is whether we can understand when
the theta body sequence converges in finitely many steps to cl(conv(Vx(I))). Fi-
nite convergence would prove that conv(Vg (1)) is the projection of a spectrahedron,
which is an important feature of a convex semialgebraic set as seen in Chapter 6.
There is no complete understanding of this situation, but in the remainder of this
section, we discuss the known results.

TH;-exactness. We begin by discussing the strongest scenario within finite con-
vergence, namely TH;-exactness of an ideal. In spite of the strength of this property,
there are surprisingly many interesting examples of such ideals with infinite real va-
rieties. We begin by taking a general look at the notion of THj-exactness for all
ideals. Roughly speaking, TH;-exact ideals are those whose quadratic elements are
enough to describe their convex geometry, a statement that will be made precise
shortly. We start with a small lemma concerning convex quadrics.

Lemma 7.34. If p € R[z] is a convex quadric polynomial, then (p) is TH;-ezxact.
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Proof. This result will follow from Proposition 7.41, where we will show that the
first theta body of any quadric is simply the convex hull of its graph intersected
with the z-plane. This intersection is precisely conv(p) if p is convex. 0O

We now give an alternative characterization of TH; (I) for any ideal I.

Proposition 7.35. For any ideal I C R[z], TH1(I) equals the intersection of
conv(Vr(p)) as p varies over all convexr quadrics in I.

Proof. The inclusion TH;(I) C conv(Vr(p)) for all convex quadrics p € I is
easy, since a linear inequality is valid over the second set if and only if it is 1-sos
modulo (p), which immediately implies that it is 1-sos modulo I and therefore valid
on TH;(]). For the second inclusion note that if {(z) is 1-sos mod I, then

l(z) = o(x) + g(),

where ¢ is a sum of squares and ¢ is a quadric in I. But note that —V2g =
V20 = 0 which implies —g is a convex quadric in I, and I(z) is 1-sos modulo {—g).
Therefore, {(z) > 0 is valid on conv(Vk(—g)) and hence also valid on the intersection
of conv(Vg(p)) as p varies over all convex quadrics in I. 0O

Example 7.36. Consider the ideal I = (z* —y? — 2%, 2* + 2% + y? — 1) that we
introduced in Example 7.11. This is the intersection of two quartic surfaces in R3.
The Grobner basis computation we did then shows that there exists a single quadric
in this ideal (up to scalar multiplication), which is the polynomial —1+ 2% +2y2+22.
Therefore, TH; (I) equals the ellipsoid {(z,y,2) € R : 22 + 2y* + 2% < 1}, as seen
in Figure 7.4. 1

Proposition 7.35 can sometimes be used to prove TH;-exactness.

Example 7.37. Consider the ideal I = (2 + y? + 2% — 4, (x — 1) + y? — 1), from
Example 7.47. Note that the quadratic polynomials p; = (z — 1) +y? — 1 and
p2 = 2z + 2% — 4 belong to I. Write I; = (p;) and Iz = (p2). Then we claim that

conv(Vr(I)) = conv(Vr(I1)) Nconv(Vr(I2)),

and therefore I is THj-exact. To see this note that the variety Vr(I) can be writ-
ten as

{(z,£/1— (x —1)2, V4 —2z) : 0 < 2 < 2}.

In particular for each fixed = we get four points, and the rectangle they form must
be contained in the convex hull of V(7). This means

{(z,y,2) € R? : lyl < /1= (x—1)2|2] < V4 —22,0 <z <2} Cconv(Vr(])),
but it is clear that this set can be rewritten as
{(z,y,2) € R :¢y?2<1— (x — 1)2,z2 <4 — 2z} = conv(Vg(I1)) N conv(Vr(13)),

which contains conv(Vg(I)), so we get the intended equality. Nl
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An important open question concerning TH-exactness of varieties comes from
oriented Grassmannians and illustrates that the TH; relaxation can be surprisingly
powerful. For the purposes of this discussion, we define the oriented Grassmannian

G, to be the set of all oriented k-subspaces of R", embedded in R(}) by taking
Pliicker coordinates, i.e., by picking an oriented basis of the space, writing the
vectors as an n x k matrix, and taking all £ x k& minors and scaling them by a
positive scalar to a point on the sphere S’(:)*l.

The ideal I}, ,,, generated by all the quadratic relations among the k x k minors
of an n x k matrix, is called the Plicker ideal. The Grassmann variety is then
the compact real variety of the ideal I = I,, 1 + <1 — Hoc||2>7 so it makes sense to
approximate it with theta bodies. It is unknown whether all Grassmann varieties
are TH;-exact, in fact even the Gs ¢ case is unknown, but numerical simulations
seem to say it is, at least for the relatively small examples for which numerical
computations are doable. Unpublished work by Sanyal and Rostalski [26] makes
connections between THj-exactness of these ideals and some classical open questions
of Harvey and Lawson on calibrated geometries [12].

Exactness in one step for principal ideals. Principal ideals are the simplest
ideals with infinite varieties. However, even in this case, TH;-exactness is not to be
expected. In fact, if p has degree d and 2k < d, THy(p) is the full ambient space R",
since any k-sos linear inequality would verify I(z) = o(x) + g(z) with degree of the
sums of squares o less than or equal to 2k. But the degree of g € I must be at
least d so there would be no cancellation of the highest degree and the sum could
never be a linear polynomial. An interesting question in this case is whether and
when the first meaningful theta body would equal conv(Vk(p)) when I = (p). We
will focus on the following problem: given a polynomial p of degree 2k, decide if (p)
is THi-exact. In this generality there is a simple necessary criterion, but we have
to introduce a few definitions in order to state it.

Definition 7.38. Consider a polynomial p € Rlxy,...,x,] and define p = xog —
p(x1,...,2n) € Rlzo,21,...,2,]. Consider the convex set C = conv(Vr(p)), which
is simply the convex hull of the graph of p, and define the shadow area of p, denoted
by sh(p), as the intersection of C with the plane xo = 0.

This shadow area clearly contains conv(Vg(p)) since it is convex and contains
the variety. However we can easily establish a more interesting inclusion.

Proposition 7.39. For p € Rz] of degree 2k, sh(p) C THy((p)). In particular
if sh(p) strictly contains the closure of the convex hull of Vk(p), then (p) is not
THy. -exact.

Proof. Let I(z) be k-sos modulo (p), i.e., l(z) = o(z) + A here o is a sum
of squares of degree at most 2k and A € R. Then I(z) — ) = o(z) implies
I(x) — Ap(z) > 0 everywhere and therefore I(xg,z) := I(x) — Azo is valid over
Ve((p)) and hence over its convex hull too. But by intersecting with 2o = 0 we

pla) w
Ap(a
)_
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Figure 7.13. Scarabaeus curve and its third theta body.

get that I(x) > 0 must be valid on sh(p). From the definition of TH(I) it follows
immediately that sh(p) C THy(I) as intended. 0O

Despite the simplicity of the criterion, it is a handy tool to prove that a princi-
pal ideal is not exact at the first step, without relying on numerical approximations.

Example 7.40. Consider the scarabaeus curve given by
pla,y) = (@ +y°)(@® + y* +42)° — (2 —*)* = 0.

A simple numerical computation with an SDP solver shows us that THs((p)) does
not match the convex hull of the curve, as can be seen in Figure 7.13. To provide
a short exact proof, one just has to point out that p(—4,0) = 256 and p(1,0) = 24,
and since the point (%, 0,0) lies in the segment between (—4,0,256) and (1,0, 24),
the point £ = (2,0) must be contained in sh(p) and therefore in THs((p)). It
is, however, easy to calculate that the maximum value that x attains on the
curve is (—50 + 111/22)/27 =~ 0.06, which implies that the convex hull must not

contain ¢&. N

In some very special cases we can actually say a bit more about the first
meaningful theta body.

Proposition 7.41. Let p be a polynomial in n variables and degree 2d. Then
L ifn =1, sh(p) = THa((p));
2. if d =1, sh(p) = TH1((p));
3. if n=2 and d = 2, sh(p) = THa2((p)).
Proof. We just have to prove that in these cases sh(p) 2 THy((p)). To do this

let I(x) > 0 be a valid linear inequality over sh(p). This means that the line
L = {(xo,z) : »o = 0,l(x) = 0} does not intersect C' = conv(Vr((p))). By the
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Figure 7.14. On the left we see the cardioid p(z) = 0 and its convex hull.
On the right we see the graph of p, its intersection with the plane z = 0 and the
ellipsoidal region where the graph and the boundary of its convex hull differ.

separation theorem for convex sets we can therefore take a hyperplane H that
strictly separates L and C. Since H does not touch the graph of p, it depends
on g, and since it does not touch L, it must be parallel to it. Therefore we have
a hyperplane of the form I'(zg,x) := xo + A(l(z) —¢) = 0, with A # 0, ¢ > 0.
Since p(xg,x) = xo — p(x), this means that o(z) := p(z) + A(l(z) — ¢) is always
nonnegative or always nonpositive. Without loss of generality assume it is always
nonnegative (which implies A > 0). Since the degree and number of variables of
this polynomial fall under Hilbert’s result (see Chapter 4), o(z) is a sum of squares.
Hence, I(z) = o(z)/X + ¢ — p(x)/\ is d-sos modulo the ideal, which implies that
[(xz) > 0 is valid over THy((p)), proving the inclusion. O

Example 7.42. We use the above result to prove THs-exactness of the following
principal ideal. Consider

p(z.y) = (@* +y* + 22)* — 4(z” +y*)
defining a cardioid, and the function

plx,y) if (x+1)*+y* >3,

q(x,y) =
8r—4 if (x+1)2+y?<3.

One can check that ¢ is smooth and convex by noticing that p(x,y) = ((x+1)*+y*—
3)2 48z —4 and by looking at its Hessian. Furthermore, the convex hull of the graph
of p is just the region above the graph of q. Therefore sh(p) = {(z,y) : ¢(x,y) < 0},
and we can see in Figure 7.14 that sh(p) is the convex hull of the cardioid.

Even for one-variable polynomials this result is interesting.
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Figure 7.15. Graph of the polynomial x — 2% — 3 + 2, its convex hull,
and intersection with the x-azis.

Example 7.43. Consider the polynomial p(z) = z — 2% — 2 + z*. In Figure 7.15
we can see that this polynomial is not THs-exact, and why that happens. The
double root at x = 1 forces the convex hull of the graph to include some points
to the right of x = 1. In fact one can compute precisely the double tangent that
defines the boundary of the convex hull and show that THa((p)) = [-1,22]. B
Singularities and convergence. We now return to the more general question
of finite convergence of the theta body sequence for an ideal with an infinite real
variety. There is no complete understanding of the obstructions to finite conver-
gence, but we now show that if Vg(I) has certain types of singularities, then finite
convergence is not possible.

Given an ideal I and a point P on the real variety of I, we define the normal
space Np(I) to be the linear space {Vf(P) : f € I}.

Proposition 7.44. Let l[(x) be an affine polynomial such that I(P) = 0 for some
P in V(I). If VI & Np(I), then | is not a sum of squares modulo I.

Proof. Suppose [ is a sum of squares. Then
lz) = o(x) + g(z) (7.3)
for some sum of squares ¢ and some polynomial g € I. By evaluating at P we

get that o(P) = 0, which immediately implies Vo(P) = 0. By differentiating (7.3)
we get

Vi =Vo(z)+ Vg(x), (7.4)
and by evaluating at P we get that VI = Vg(P) € Np(I). 0O
If I is real radical we can say even more.
Corollary 7.45. If I is real radical and I(z) > 0 is a linear inequality valid on

Wr(I) with I(P) = 0 at a point P € Vg(I) such that VI & Np(I), then I is not
THy-ezact for any k.
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Figure 7.16. THy(I), TH3(I), TH4(I), and TH5(I): all contain the origin
in their interior.

Proof. This follows from the previous proposition and Lemma 7.27. 0O

Example 7.46. Let p(z,y) = (22 + y*)? — (z + 5y)z? and I = (p). This ideal
defines a bifolium with a singularity at the origin, which implies No,0)(/) = {(0,0)}.
Furthermore the linear inequality « + 5y > 0 is valid on the variety and holds
with equality at the origin. Since (1,5) & No,0)(/) we immediately have that this
inequality does not hold for any theta body relaxation of this ideal. In Figure 7.16
we can see THy(I) for k = 2,3,4,5, and see that in fact the inequality does not
hold for any of them. W

Corollary 7.45 essentially tells us that certain singularities of the ideal I that
are in the boundary of the convex hull of Vg(I) affect the convergence of the theta
bodies of I. For a point P € Vg(I), the expected dimension of the normal space
Np(I) is the codimension of Vg(I). A reasonable notion of a singularity of I is a
point P € Vg(I) for which Np(I) has smaller dimension than expected. The next
example will show that just the existence of singularities of I on the boundary of
conv(Vg(I)) is not enough for Corollary 7.45 to apply.

Example 7.47. Consider the variety Vi (I) in R? defined by the ideal
I=(?+y*+22—4,(x—1)? +4y* - 1).

As seen in Figure 7.17, this variety looks like a curved figure-eight and has a
singularity at the point p = (2, 0,0), which belongs to the boundary of conv(Vx([)).
This happens since Np(I) = R{(1,0,0)} has dimension one, smaller than the codi-
mension of the variety, which is two. However, (2,0,0) does not cause problems
for the convergence of theta bodies since the only linear polynomial that is zero at
p and nonnegative on Vg(I) is the polynomial 2 — z, whose gradient is in Np(I).
Indeed, the first theta body of I already equals conv(Vk(I)), as we will see in
Example 7.37. 1
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Figure 7.17. The curved eight variety and its convex hull.

A better, more refined, way of looking at singularities was introduced by
Omar and Osserman in [23]. They introduce a stronger notion of nonnegativity
over varieties that yields a stronger necessary condition for finite convergence of the
theta body hierarchy. As a byproduct they prove the following result.

Theorem 7.48. Let f(x) be a polynomial such that there exists some positive
integer n and an R-algebra homomorphism ¢ : Rlz]/I — Rle]/ {e™) for which
o(f) = ao + aie + - + an_1e"" L. If the first nonzero (leading) coefficient a;
is megative, then f is not a sum of squares modulo I.

Proof. Just note that homomorphisms send sums of squares to sums of squares, and
sums of squares in R[e]/ (¢") always have their leading coefficient nonnegative. 0O

Again this immediately gives us a new criterion.

Corollary 7.49. Let I be a real radical ideal and l(x) > 0 a linear inequality valid
on Vr(I). If there exists an R-algebra homomorphism ¢ : R[z]/I — Rle]/ (™) for
which (1) has negative leading coefficient, then I is not THy-exact for any k.

This corollary is much stronger than Corollary 7.45, and examples showing
the difference are presented in [23]. In our next example we just show that we can
recover Corollary 7.45 from Corollary 7.49 for the variety in Example 7.46 but, in
fact, we can do so for any variety just by considering maps to R[e]/ (¢?).

Example 7.50. Let p(z,y) = (z*+y?)?—(z+5y)2? and I = (p) as in Example 7.46.
Then the map ¢ : R[z,y]/I — Re]/ (?) defined by ¢(z) = ¢(y) = —¢ is well
defined, since p(p) = 0. However, ¢(x+5y) = —6¢ has a negative leading coefficient
despite = + 5y > 0 being valid on the variety. Hence, (p) is not THy-exact for
any k. N

One should keep in mind that singularities are not necessarily the only things
that prevent finite convergence of the theta body sequence to cl(conv(Vg(I))). For
compact smooth curves and surfaces, Scheiderer proved that nonnegativity and
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Figure 7.18. Serpentine curve and the closure of its convexr hull.

sums of squares modulo the ideal are equivalent [28, 29]. However, even in these
cases, it is an open question if one can bound the degree needed to represent every
nonnegative affine polynomial as a sum of squares modulo the ideal. Thus there
might be examples of smooth curves and surfaces with no finite convergence of the
theta body hierarchy to conv(Vk(I)). The only cases where we know a little more
is when the genus of the curve is one.

Proposition 7.51 (Theorem 2.1 [30]). If Vr(I) is a smooth curve of genus 1
with at least one nonreal point at infinity, then I is THy-exact for some k.

Genus zero curves can be rationally parametrized which allows semidefinite
representations of their convex hulls by means of sums of squares, as seen in [13].
However such constructions do not automatically translate to finite convergence
of the theta body sequence to the convex hull of the curve, even in the smooth
case.

For varieties of dimension greater than two, there always exist nonnegative
polynomials that are not sums of squares modulo any ideal that defines them, even
in the smooth compact case, as seen in [27]. It is therefore very natural to expect
examples of smooth compact varieties with no finite convergence of the theta body
hierarchy, but we do not know a concrete example at this point.

Exercise 7.52. Consider the serpentine curve given by p(z) := y(2?2 + 1) —2 =0,
depicted in Figure 7.18. The closure of its convex hull is the band cut out by the
inequalities —1/2 < y < 1/2. Show that the ideal I = (p) is THa-exact by giving
an exact expression of 1 — 2y and 1 + 2y as 2-sos polynomials modulo I.

Exercise 7.53. Using Proposition 7.35 show that the first theta body of the
vanishing ideal of the points {(0,0), (1,0),(0,1),(2,2)} is cut out by precisely two

polynomial inequalities, and write them explicitly.

Exercise 7.54. Consider the ideal I = <y2 T a:3>. The inequality z > 0 is
valid on the variety Vr(I).

1. Can we use Proposition 7.44 to prove that z is not k-sos modulo [ for any k7

2. Use Theorem 7.48 to prove that z is not k-sos modulo I for any k.
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Exercise 7.55. Similarly to our definition of 2-level polytope, we can define a
k-level polytope to be one where given a facet F', and the affine plane Hp that it
spans, all vertices of the polytope are contained either in Hg or in one of k — 1
parallel translates of Hp. Prove that if S is the set of vertices of a (k + 1)-level
polytope then the vanishing ideal of S, I(S), is THg-exact.

Exercise 7.56. Consider the univariate quartic polynomial p(z) = 2* — 323 + 322 —
3z + 2 which has two real roots, 1 and 2. Compute THy((p)) exactly. Is the ideal
THy-exact?

Exercise 7.57. Consider the bifolium given by p(z,y) := (22 +%?)? —yx? = 0. This
curve has a singularity at the origin, which is also on the boundary of its convex
hull and satisfies the conditions of Corollary 7.45, and hence we know that its theta
body hierarchy does not converge. Using the same ideas as in Example 7.19, add

to the second moment matrix of I = (p) a row and a column indexed by 12—2 Plot
the resulting approximation and compare it with the convex hull of the curve.

7.4 Combinatorial Optimization

In this final section, we focus on combinatorial optimization where a typical problem
involves optimizing a linear function over all combinatorial objects of a certain kind.
Many of these problems are modeled using graphs and can sometimes be studied
combinatorially. However, a more systematic approach is to model these problems
as integer or linear programs, which puts an emphasis on the underlying geometry.
These models work as follows. The combinatorial objects of interest are typically
defined as subsets of the ground set [n] := {1,2,...,n} and the object T C [n] is
recorded via its characteristic vector xT € {0,1}" defined as x} = 1if i € T and
xF = 0 otherwise. This creates a simple bijection between the objects and certain
elements of {0,1}". Then, for a vector ¢ € R", maximizing ), ¢; over all the
objects {T'} is equivalent to maximizing Y c;z; over the characteristic vectors {x7}
which in turn is equivalent to maximizing >_ ¢;z; over conv({x”}) which is a 0/1
polytope by construction. (Recall that a 0/1 polytope in R™ is the convex hull of
vectors in {0,1}™.) In principle this is a linear program but the difficulty is that
no description of conv({xT}) is usually known, and one resorts to relaxations of
conv({xT}) over which " ¢;z; is maximized to obtain an upper bound on the value
of max{{c,z) : x € conv({x*})}.

The theory of integer programming offers general methods to construct poly-
hedral relaxations of conv({x?}) by first finding a polytope whose integer points
are precisely {x7}. See [31, Chapter 23] for linear programming—based methods.
Polyhedral relaxations can sometimes be found using combinatorial arguments that
depend explicitly on the structure of the problem. Automatic methods for con-
structing relaxations have also come about from lift-and-project methods that find
a sequence of polyhedral or spectrahedral relaxations of conv({x?}). Some exam-
ples of lift-and-project methods besides, the theta body method described in this
chapter, can be found in [2, 14, 20, 33] (see also [15]). Theta bodies construct
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relaxations of conv(Vg([I)) for an ideal I. In the special case of the combinatorial
optimization model described above, the starting point is the finite set {x? } which
is a finite algebraic variety, and we typically take its vanishing ideal as the ideal
whose theta bodies are to be computed. As we saw in Section 7.3.1, these real
radical ideals are always THy-exact for some finite k. We take a closer look at some
combinatorial optimization problems whose theta bodies have been explored.

7.4.1 Stable Sets in a Graph

An example that is at the heart of the history of theta bodies is the mazimum
stable set problem in an undirected graph G = ([n], E') with vertex set [n] and edge
set E. A stable set in G is a set U C [n] such that for all 4,5 € U, {i,j} ¢ E. The
maximum stable set problem seeks the stable set of largest cardinality in G, the
size of which is the stability number, a(G), of G.

The maximum stable set problem can be modeled as follows. For each sta-
ble set U C [n], let xY € {0,1}" be its characteristic vector defined as xY = 1 if
i € U and x¥ = 0 otherwise. Let Sg C {0,1}" be the set of characteristic vectors
of all stable sets in G. Then STAB(G) := conv(Sg) is called the stable set poly-
tope of G and the maximum stable set problem is, in theory, the linear program
max{> . x; : * € STAB(G)} with optimal value a(G). However, STAB(G) is
not known a priori, and so one resorts to relaxations of it over which to optimize
D1 Ti-

Polyhedral relaxations of STAB(G) can be constructed from combinatorial
arguments. For instance, a well-known relaxation is the polytope

FRAC(G) :={z € R" : z; +z; <1lforall {i,j} € E, x; >0 for all i € [n]},

where the constraint z; + z; < 1 for {i,j} € E comes from the fact that both
endpoints of an edge cannot be in a stable set. It can be checked that STAB(G) is
exactly the convex hull of the integer points in FRAC(G). The polytope FRAC(G)
and several tighter polyhedral relaxations of STAB(G) have been studied extensively
in the literature; see [11, Chapter 9].

Since the set S is an algebraic variety, the theta bodies of its vanishing ideal
offer convex relaxations of STAB(G). This vanishing ideal is:

Ig = (z7 — x;for all i € [n], x;x;for all {i,j} € E) C Rlzy,...,2n].

For U C [n], let 2V := [I;cy zi- From the generators of I it follows that if
f € R[z], then f = g mod Ig where g is in the R-span of the set of monomials
{2V : U is a stable set in G}. In particular,

B:= {2V + I : U stable set in G}

is a #-basis of R[z]/I¢ (containing 1+ Ig,z1 + Ig, ..., Zn + Ig). This implies that
By = {2V + I : U stable set in G, |U| < k}, and for 29 + I, 2% + I € By,
their product is VY + I, which is 0 + I if U; U U; is not a stable set in G.
This product formula allows us to compute Mp, (y), where we index the element
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2V + I € By by the set U. Since Sg C {0,1}" and I(G) is the vanishing ideal of
Sa, by Theorems 7.8, we have that

IM = 0, M e RIB:IXIBrl such that
My =1,

THi(Ig) = y €R™ © Mypy = Mg = My = v
Myy, = 0if UUU’ is not stable in G
Myy: = Myw if UUU = WU W

In particular, indexing the one-element stable sets by the vertices of G,

IM = 0, M € ROHDX(+D) guch that
Moo =1,

Mo = Mo = M;; =y; Vi€ [n]

M;; =0forall {i,j} € E

THy(Ig) = { y € R" :

Example 7.58. Let G = ([5], {{1,2},{2,3},{3,4},{4,5},{1,5}}) be a 5-cycle. The
vanishing ideal of the characteristic vectors of stable sets in G is

2 .
I = (x122, XT3, T3Tg, T4x5, 125,25 — x; for all i = 1,...,5),
and a 6-basis for R[z]/I¢ is given by
B = {1,21, 20,73, 24, %5, 2173, 2124, ToTy, TaTs5, 325} + Iq.

Let y € R0 be the vector of variables whose coordinates are indexed by B in the
given order and with yo = 1. Then

TH(I¢) = {y € R® : Jys,...,y10 s.t. Mp,(y) = 0},
where

1 vy y2 ys wya Us
yi y1 0 wye wyr O
y2 0 2 0 ys w9
M, =
5 (y) y3s y6 0 w3 0 w0
ys yr ys 0 ya O
ys 0 w9 wyio 0 ys

Note that z; = 22 and 1 — z; = (1 — ;)% mod I for any graph G, so TH;(Ig) is
always contained in the [0,1] cube. N

The first example of an SDP relaxation of a combinatorial optimization prob-
lem was the theta body of a graph G = ([n], E') constructed by Lovész in [18] while
studying the Shannon capacity of graphs. The theta body of G, denoted as TH(G),
is a relaxation of STAB(G) that was originally defined as the intersection of the
infinitely many half spaces that arise from the orthonormal representations of G.
Several equivalent definitions can be found in [18] and [11, Chapter 9]. However,
none of them point to an obvious generalization of the construction to other discrete
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optimization problems. In [20], Lovdsz and Schrijver observe that TH(G) can be
formulated via semidefinite programming exactly as the formulation for TH; (/)
shown above. This is still specialized to the stable set problem. Then in [19], Lovész
observes that, in fact, TH(G) is cut out by all linear polynomials that are 1-sos mod
the ideal Ig. For the stable set problem, this fact can be proven without all the
machinery introduced in this paper. This connection leads naturally to the defini-
tion of THy (1) for any positive integer k and more generally THy (I) for any ideal
I C R[z] and any k. Problem 8.3 in [19] (roughly) asks to characterize all ideals
I C R[x] such that cl(conv(Vg(I))) equals TH;(I) or more generally, THy(I). It
was this problem that motivated us to study theta bodies in general and develop
the methods in this chapter.

Example 7.59. Let us return to the example Example 7.58. When Lovész intro-
duced the theta body of a graph G, he also introduced the concept of theta number
of a graph, ¥(G) (c.f. Chapter 2). This is just the number

max {ixz :x € TH(G) = THl(IG)} )

i=1

which is an upper bound (and approximation) for the stability number «(G) of
a graph. We can now easily compute 9(C5), the theta number of the 5-cycle,
numerically using YALMIP, since we have the precise structure of the reduced
moment matrix.

y=sdpvar(1,10);

M=[1 y() y(2) y(3) y&) y() ;
y( y@ o y(6) y( 0 ;
y(2) 0 y(2) 0 y(8) y(9) ;
y(3) y() 0 y(@3) 0 y(10);
y(@4) y(7) y(@® 0 y(4) 0 ;
y(5) 0 y(9) y(10) 0 y(&) 1;

obj=y (1) +y(2)+y(3)+y(4)+y(5);

solvesdp(M>=0,-0bj);

double (obj)

This will return the answer 9(Cs) ~ 2.361. Note that a(Cs) = 2, so we do get an
upper approximation as expected, but it is clear that I, is not THi-exact. W

A particular reason for Lovdsz’s interest in [19, Problem 8.3] was due to the
fact that STAB(G) = TH(G) if and only if G is a perfect graph [11, Corollary 9.3.27].
Recall that a graph is perfect if and only if it has no induced odd cycle of length at
least five or its complement [4]. Since TH(G) = TH; (Ig) for all graphs G, it follows
that I is THy-exact if and only if G is perfect. The pentagon in Example 7.58
is not perfect, which justifies our observation that its ideal Is is not THj-exact.
Chvétal and Fulkerson had shown that STAB(G) = QSTAB(G) if and only if G is
a perfect graph where

QSTAB(G) := {a: €R™ : x; >0 forall i € [n], Z x; < 1 for all cliques K in G} .
i€eK
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A clique in G is a complete subgraph in G. Since every edge in G is a clique,
FRAC(G) D QSTAB(G) D STAB(G) in general. A hexagon is perfect, in which
case, FRAC(G) = QSTAB(G) since the only cliques in G are its edges. Therefore,
for the hexagon, STAB(G) = TH(G) = TH;(I¢) = QSTAB(G) = FRAC(G). Since
I is THi-exact if and only if G is perfect, by Theorem 7.30, we also have that
STAB(G) is 2-level if and only if G is perfect.

The above discussion leads naturally to the question of which graphs G have
the property that I is THs-exact, or more generally, THy-exact. These problems
are open at the moment, although isolated examples of THy-exact ideals are known
for specific values of £ > 1. In practice it is quite difficult to find examples of
graphs G for which I is not THs-exact although such graphs have to exist unless
P = NP. Recent results of Au and Tuncel prove that if G is the line graph of the
complete graph on 2n + 1 vertices, then the smallest & for which I5 is THy-exact
grows linearly with n [1].

7.4.2 A General Framework

The stable set problem and many others in combinatorial optimization can be mod-
eled as arising from a simplicial complex. A simplicial complex or independence
system, A, with vertex set [n], is a collection of subsets of [n], called the faces of
the A, such that whenever S € A and T' C S, then T' € A. The Stanley—Reisner
ideal of A is the ideal Ja generated by the square-free monomials z;, x;, - - - ;, such
that {i1,42,...,ix} C [n] is not a face of A. If In := Ja + (z7 —z; : i € [n]),
then Ve(Ia) = {s € {0,1}"™ : support(s) € A}. The support of a vector v € R”
is the set {i € [n] : v; # 0}. Further, for T C [n], if &7 := [[,cp i, then
B:= {27 +In : T € A} is a §-basis of R[z]/Ia. This implies that the kth theta
body of I is

THy,(Ia) = mra{y € RP* : Mp, (y) = 0, yo = 1}.

Since B is in bijection with the faces of A and x? — x; € I for all i € [n], the theta
body can be written explicitly as

IM = 0, M € RIBeIXIBrl guch that
My = 1,

THr(Ia) =Sy €R™ © Mygy = Myye = My = i,
My =0if UUU’ ¢ A,
Myyr = Myw ifUUU =W UW'

If the dimension of A is d — 1 (i.e., the largest faces in A have size d), then I is
THg-exact since all elements of B have degree at most d and hence the last possible
theta body THg4(Ia) must coincide with conv(Vr(Ia)) as Vr(Ia) is finite. However,
in many examples, Ia could be THg-exact for a £ much smaller than d.

In the case of the stable set problem on G = ([n], E), A is the set of all stable
sets in G. This is a simplicial complex with vertex set [n] whose nonfaces are the sets
T C [n] containing a pair ¢,j € [n] such that {4,j} € E. Hence the minimal non-
faces (by set inclusion) are precisely the edges of G and so Ja = (z;z; : {3,j} € E).
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Then In = Ja+(2?—z; : i € [n]), which is precisely the ideal I from Section 7.4.1,
and the remaining facts about the #-basis B used in Section 7.4.1 and the structure
of the theta bodies of I follow from the general set up described above.

An example from combinatorial optimization that does not follow the simpli-
cial complex framework is the maximum cut problem of finding the largest size cut
in a graph. Recall that a cut in G is the collection of edges that go between the two
parts of a partition of the vertices of G. Note that a subset of a cut is not necessarily
a cut and hence the set of cuts in a graph do not form a simplicial complex. In
[7] the theta body hierarchy for the maximum cut problem, and more generally for
binary matroids, is studied. In this case, a §-basis for the ideal in question is not
obvious as in the simplicial complex model.

7.4.3 'Triangle-free Subgraphs in a Graph

We finish the chapter with a second example from combinatorial optimization that
fits the simplicial complex model. A subgraph H of a graph G = ([n], F) is triangle-
free if it does not contain a triangle (K3, the complete graph on 3 vertices). Given
weights on the edges of G, the triangle-free subgraph problem in G asks for a triangle-
free subgraph of G of maximum weight. If all the edge weights are one, then the
problem seeks a triangle-free subgraph in G with the most number of edges. The
triangle-free subgraph problem is known to be NP-hard [36] and is relevant in various
contexts within optimization.

The integer programming formulation of the triangle-free subgraph problem
optimizes the linear function Zee g WeTe, where w, is the weight on edge e € E, over
the characteristic vectors {x’ : H is triangle-free in G'}. This is equivalent to max-
imizing ) . p wex, over

Py(G) == conv{x™ : H is triangle-free in G},

the triangle-free subgraph polytope of G. Note that Pi(G) is a full-dimensional 0/1
polytope in R?. The triangle-free subgraph polytope of a graph has been studied by
various authors (see, for instance, [3, 5]), and a number of facet defining inequalities
of the polytope are known, although a full inequality description is not known or
expected.

Taking A to be the simplicial complex on E consisting of all triangle-free
subgraphs in G, and [¢(G) := Ia, we have that

Ve(Iit(G)) = {x* : H is triangle-free in G7}.

Hence the theta bodies of Ii¢(G) provide convex relaxations of the triangle-free
subgraph polytope Pi(G). From the general framework in Section 7.4.2, B =
{z# +1i¢(G) : H triangle-free in G} is a 6-basis of R[z]/I;¢(G). Therefore, the rows
and columns of Mp, (y) are indexed by the triangle-free subgraphs in G with at most
k edges. For ease of exposition, let us denote the entry of Mg, (y) corresponding
to row indexed by z* and column indexed by x2 by Mp, (Y) g1, 1,0 let Hi U Ha
denote the subgraph of G whose edge set is the union of the edge sets of H; and Hs,

261”2711/1
page 335
O



336 Chapter 7. Convex Hulls of Algebraic Sets

and yg denote the entry of y € RE corresponding to the basis element z + I¢(G).
Then

IM = 0, M € RIB:IXIBxl guch that
Mgy =1,

THy(It(G)) = { y € R
My, g, = {

0 if H; U Hs has a triangle
YH,UH, Otherwise

Since all subgraphs of G with at most two edges are triangle-free, and By =
{14 Iis(G)} U{ze. + Iis(G) : e € E}, TH1(I+(G)) is exactly the same as the first
theta body of the ideal (z2 — z. : e € E) which is THj-exact by Theorem 7.30.
Hence TH; (Ii+(G)) = [0,1]F, and I+(G) is THy-exact if and only if every subgraph
of G is triangle-free, or equivalently, G is triangle-free.

For graphs G that contain triangles, the second theta body of Ii¢(G) is more
interesting as triples and quadruples of edges in G can contain triangles which forces
some of the entries in Mg, (y) to be zero.

Example 7.60. Suppose G = K3 with edges labeled 1,2,3. Then Pi(G) is the
convex hull of all 0/1 vectors in R? except (1,1, 1) which is the first polytope shown
in the second row of polytopes in Figure 7.10. This polytope is THs-exact since

BQ - {1,3:1,1:2,3:3,3:13:2,3:11;3,3:21;3} + Itf(G) - B

Denoting y € RP2, with first entry one, to be y = (1,1, Y2, Y3, Y12, Y13, Y23), We
have that
1 Y Y2 Ys Yi2 Y1z Y23
Y1 Y1 Y12 Y13 yiz2 Y13 O
Y2 Y12 Y2 Y23 iz 0 o3
Mp,(y) =1 y3 w13 %23 ¥3 0 913 %23
yi2 Y12 Y12 0 yi2 0 0O
yis vz 0 w3 0 wyiz O
Y23 0 y23 y23 0 0  yo3

Hence the triangle-free subgraph polytope of K3 has the spectrahedral description
Py(G) = {(y1,y2,93) : Mp,(y) =0}. N

Several families of facet inequalities for the triangle-free subgraph polytope
of a graph can be found in the literature, and a complete facet description of
Pit(G) for an arbitrary graph is unknown. An easy class of facets of Piy(G) come
from the obvious fact that in any triangle in G at most two edges can be in a
triangle-free subgraph. Mathematically, if a,b,c¢ € E induce a triangle in G, then
2 -z, —xp —x. >0 is a valid inequality for Pi¢(G). We now show that this in-
equality is valid for THa(I4(G)). First check that

(1 =2 —xqmp) = (1 — 2, — 247p)* mod Iiy(G)
and also

(1 -z —xp + xaxp) = (1 — g — xp + $a33b)2 mod [i(G).
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Figure 7.19. 5-wheel, partial 5-wheel, and Petersen graph.

This implies that 2 — x4 —xp — 2. = (1 — g — Tp + Tawp) + (1 — 2o — ToTp) 18 2-808
mod Ii(G) and hence 2 — z, — xp — . > 0 is valid for THy (I1£(G)).

Exercise 7.61. We saw in Example 7.59 how to compute ¥(G) numerically for a
graph G. Find ¥(G) for the graphs in Figure 7.19.

1. G a 5-wheel;
2. G the 5-wheel with two missing nonconsecutive rays;

3. G the Petersen graph.

Exercise 7.62. Compute the value of 9(G) for the 5-cycle exactly. (Hint: take
advantage of the symmetries of the graph.)

Exercise 7.63. Prove that for any graph G, TH;(Ig) € QSTAB(G). Note that it
is enough to prove that x; and 1 — Ziec x; are 1-sos mod I for all vertices i and
all cliques C.

Exercise 7.64. It is known that the stable set polytope of Cay41, the odd cycle of
2k + 1 nodes, is defined by the inequalities z; > 0 for all i € 2k + 1], z; + z; <1
for all {i,j} € E, which by the previous exercise are 1-sos mod I, and the single
odd cycle inequality > x; < k [32, Corollary 65.12a].

1. Show that Cj is THy-exact.

2. Show that Cogy1 is THe-exact for all k.

Exercise 7.65. In Exercise 7.55 we have shown that the vanishing ideal of the set of
vertices of a (k+ 1)-level polytope is THy-exact. We also have seen in Theorem 7.30
that the reverse implication is true for £ = 1: if a real radical ideal is TH;-exact,
then its variety must be the set of vertices of a 2-level polytope. Using what we
know of the theta body approximations to the stable set polytope, show that the
reverse implication (THg-exact = k-level) fails for k > 2.

Exercise 7.66. The triangle-free subgraph problem is closely related to another
important problem in combinatorial optimization, the K3-cover subgraph problem.
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A subgraph of G is said to be a Ks-cover if it contains at least an edge of every
triangle of G. What is the relation between a maximum triangle-free subgraph
and a minimum Kj3-cover? How is that reflected in the polytopes underlying those
combinatorial problems?

Exercise 7.67. A (2k 4 1)-odd wheel is the graph on 2k + 2 vertices with 2k + 1
of the vertices forming a 2k + 1-cycle and the last vertex connected to each of the
vertices of the cycle. Such a wheel yields the inequality D . gy ze < 3k + 1 that is
valid for the triangle-free subgraph polytope of G. For example, an induced 5-wheel
in a graph gives the inequality

T12 + T23 + T34 + Tas + X15 + T16 + Tog + T36 + Tag + Tse < T,

which is valid for the triangle-free subgraph polytope of the graph.

1. Use YALMIP to see that the 5-wheel and 7-wheel inequalities appear to be
2-sos mod I#(G), where G is the corresponding wheel.

2. Can you express them exactly as 2-sos modulo the ideals?

3. Can you prove that all odd wheel inequalities are 2-sos modulo its ideal?

Exercise 7.68. Another version of the triangle-free subgraph problem is vertex-
based. Given a subset of nodes of G we say it is triangle-free if its induced subgraph
is triangle-free. This also falls into the simplicial complex model, so we know how
to construct reduced moment matrices. Using the first theta body, compute an
approximation for the maximum triangle-free subset of nodes of the 4-wheel.
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Chapter 8

Free Convex Algebraic
Geometry

J. William Helton', Igor Klep?,
and Scott McCullough®

A new development is extension of the algebraic certificates of real algebraic geom-
etry to noncommutative polynomials, thereby giving a theory of noncommutative
polynomial inequalities. Here we shall focus on convexity aspects of noncommuta-
tive real algebraic geometry, and we shall see this leads to a very rigid structure.
Our subject pertains to optimization problems where the unknowns are matrices.

8.1 Introduction

This chapter is a tutorial on techniques and results in free convex algebraic geometry
and free positivity. As such it also serves as a point of entry into the larger field of
free real algebraic geometry and makes contact with noncommutative real algebraic
geometry [27, 30, 32, 33, 38, 47, 48, 53, 59, 62, 63], free analysis and free probability
(lying at the origins of free analysis; cf. [64]), and free analytic function theory and
free harmonic analysis [28, 29, 34, 54, 60, 69, 70, 46].

The term free here refers to the central role played by algebras of noncommut-
ing polynomials R<z> in free (freely noncommuting) variables z = (z1,...,zy).
A striking difference between the free and classical settings is the following Posi-
tivstellensatz.
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342 Chapter 8. Free Convexity

Theorem 8.1 (Helton [27]). A nonnegative (suitably defined) free polynomial is
a sum of squares.

The subject of free real algebraic geometry flows in two branches. One, free
positivity is an analogue of classical real algebraic geometry, a theory of polyno-
mial inequalities embodied in Positivstellensétze. As is the case with the sum of
squares result above (Theorem 8.1), generally free Positivstellenséitze have cleaner
statements than do their commutative counterparts; see, e.g., [53, 27, 39, 33| for a
sample. Free convexity, the second branch of free real algebraic geometry, arose in
an effort to unify a torrent of ad hoc techniques which came on the linear systems
engineering scene in the mid 1990s. We will soon give a quick sketch of the engi-
neering motivation, based on the slightly more complete sketch given in the survey
article [13]. Mathematically, much as in the commutative case, free convexity is
connected with free positivity through the second derivative: A free polynomial is
convex if and only if its Hessian is positive.

The tutorial proper starts with Section 8.2. In the remainder of this intro-
duction, motivation for the study of free positivity and convexity arising in linear
systems engineering, quantum phenomena, and other subjects such as free probabil-
ity is provided, as are some suggestions for further reading.

8.1.1 Motivation

While the theory is both mathematically pleasing and natural, much of the ex-
citement of free convexity and positivity stems from its applications. Indeed, the
fact that a large class of linear systems engineering problems naturally lead to free
inequalities provided the main force behind the development of the subject. In this
motivational section, we describe in some detail the linear systems point of view.
We also give a brief introduction to other applications.

Linear systems engineering

The layout of a linear systems problem is typically specified by a signal flow diagram.
Signals go into boxes and other signals come out. The boxes in a linear system
contain constant coefficient linear differential equations which are specified entirely
by matrices (the coefficients of the differential equations). Often many boxes appear
and many signals transmit between them. In a typical problem some boxes are
given, and some we get to design subject to the condition that the L2-norm of
various signals must compare in a prescribed way; e.g., the input to the system has
L?-norm bigger than the output. The signal flow diagram itself and corresponding
problems do not specify the size of matrices involved. So ideally any algorithms
derived apply to matrices of all sizes. Hence the problems are called dimension free.

An empirical observation is that system problems of this type convert to in-
equalities on polynomials in matrices, the form of the polynomials being deter-
mined entirely by the signal flow layout (and independent of the matrices involved).
Thus the systems problem naturally leads to free polynomials and free positivity
conditions.

For yet a more detailed discussion of this example, see [13, Section 4.1]. Those
who read Chapter 2 saw a basic example of this in Section 2.2.1. Next we give more
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of an idea of how the correspondence between linear systems and noncommutative
polynomials occurs. This is done primarily with an example.

Linear systems

A linear system § is given by the constant coefficient linear differential equations

d
d—f:Aw—FBu,
y = Cu,

with the vector

e x(t) at each time t being in the vector space X called the state space,
e u(t) at each time ¢ being in the vector space U called the input space,

e y(t) at each time ¢ being in the vector space Y called the output space,

and A, B, C being linear maps on the corresponding vector spaces.

Connecting linear systems

Systems can be connected in incredibly complicated configurations. We describe
a simple connection and this goes a long way toward illustrating the general idea.
Given two linear systems §, &, we describe the formulas for connecting them in
feedback.

One basic feedback connection is described by the diagram

u +m e Y

-

B |«

called a signal flow diagram. Here u is a signal going into the closed loop system
and y is the signal coming out. The signal flow diagram is equivalent to a collection
of equations. The systems § and & themselves are, respectively, given by the linear
differential equations

dx d¢
E_Aa:—l—Be, E—Qf‘FRwa
y = Cu, v=_S¢.

The feedback connection is described algebraically by
w=y and e=1u—uv.

Putting these relations together gives that the closed loop system is described by
differential equations

dx

Y — Ar - BS¢+B

o x S€ + Bu,

d§
E:Q€+Ry=Q§+RO$7
y=Cu,
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which is conveniently described in matrix form as
dilz| _| A -BS||z n B "
dt [£] T [RC Q| |¢ 0]
—[c o] |*],

where the state space of the closed loop systems is the direct sum X & ) of the
state spaces X of § and Y of &. From (8.1), the coefficients of the ODE are
(block) matrices whose entries are (in this case simple) polynomials in the matrices
A B,C,Q,R,S.

This illustrates the moral of the general story:

(8.1)

System connections produce a new system whose coefficients are matrices with
entries which are noncommautative polynomials (or at worst “rational expressions”)
in the coefficient matrices of the component systems.

Complicated signal flow diagrams give complicated matrices of noncommuta-
tive polynomials or rationals. Note that in what was said the dimensions of vector
spaces and matrices A, B,C, Q, R, S never entered explicitly; the algebraic form of
(8.1) is completely determined by the flow diagram. Thus, such linear systems lead
to dimension free problems.

Next we turn to how “noncommutative inequalities” arise. The main con-
straint producing them can be thought of as energy dissipation, a special case of
which are the Lyapunov functions already seen in Section 2.2.1.

Energy dissipation

We have a system § and want a condition which checks whether

/ |u|2dt2/ Gul2dt,  2(0) =0,
0 0

holds for all input functions u, where §u = y in the above notation. If this holds §
is called a dissipative system.

L?[0, 0] 7 L?]0, ]

The energy dissipative condition is formulated in the language of analysis, but
it converts to algebra (or at least an algebraic inequality) because of the following
construction, which assumes the existence of a “potential energy”-like function V'
on the state space. A function V' which satisfies V' > 0, V(0) = 0, and

ta

Via(t) + / Tu@Pdt > Viat) + / y(t) 2dt

t1 t1
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for all input functions u and initial states x; is called a storage function. The dis-
played inequality is interpreted physically as

potential energy now + energy in > potential energy then + energy out.

Assuming enough smoothness of V', we can differentiate this integral condition
and use £x(t;) = Axz(t;) + Bu(t;) to obtain a differential inequality

0 > VV(2)(Az + Bu) + |Cz|® —|ul? (8.2)

on what is called the “reachable set” (which we do not need to define here).
In the case of linear systems, V' can be chosen to be a quadratic. So it has the
form V(z) = (Fx,z) with E > 0 and VV (z) = 2Ex.

Theorem 8.2. The linear system A, B, C' is dissipative if inequality (8.2) holds for
allu € U,z € X. Conversely, if A, B,C is “reachable,” then dissipativity implies
that inequality (8.2) holds for allu e U, x € X.

In the linear case, we may substitute VV (z) = 2Ex in (8.2) to obtain
0 > 2(Ez)T(Ax + Bu) + |Cz|* — |u|?
for all u,x. Then maximize in z to get
0>2"[EA+ ATE+ EBBTE 4 C™(Cax.
Thus the classical Riccati matriz inequality
0> FA+ATE+ EBBTE+CTC  with E*>0 (8.3)

ensures dissipativity of the system and, it turns out, is also implied by dissipativity
when the system is reachable.

It is inequality (8.3), applied in many many contexts, which leads to positive
semidefinite inequalities throughout all of linear systems theory.

As an aside we return to the very special case of dissipativity, namely Lya-
punov stability, described in Section 2.2.1. Our discussion starts with the “miracle
of inequality (8.3)”: when B = 0 it becomes the Lyapunov inequality. However,
this is merely magic (no miracle whatsoever); the trick being that the if input u
is identically zero, then dissipativity implies stability. The converse is less intu-
itive, but true: stability of & = Ax implies existence of a “virtual” potential energy
V(z) = (Ez,z) and output C making the “virtual” system dissipative.

Schur complements and linear matrix inequalities

Using Schur complements, the Riccati inequality of (8.3) is equivalent to the in-
equality
_|PA+ATE4+CTC EB

L(E) = j L

LA mild technical condition.
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Here A, B, C describe the system and E is an unknown matrix. If the system is
reachable, then A, B, C is dissipative if and only if L(E) <0 and E > 0.

The key feature in this reformulation of the Riccati inequality is that L(E) is
linear in E, so the inequality L(F) < 0 is a linear matriz inequality in E.

Putting it together

We have shown two ingredients of linear system theory, connection laws (algebraic)
and dissipation (inequalities), but have yet to put them together. It is in fact a
very mechanical procedure. After going through the procedure one sees that the
problem a software toolbox designer faces is this:

(GRAIL) Given a symmetric matrix of noncommutative polynomials

k
p(a,x) = [ng(avx)} . ’
1,j=1
and a tuple of matrices A, provide an algorithm for finding X making
p(A, X) = 0 or, better yet, as large as possible.

Algorithms for doing this are based on numerical optimization or a close relative,
so even if they find a local solution there is no guarantee that it is global. If p is
convex in X, then these problems disappear.

Thus, systems problems described by signal flow diagrams produce a mess of
matrix inequalities with some matrices known and some unknown and the con-
straints that some polynomials are positive semidefinite. The inequalities can
get very complicated as one might guess, since signal flow diagrams get compli-
cated. These considerations thus naturally lead to the emerging subject of free real
algebraic geometry, the study of noncommutative (free) polynomial inequalities,
and free semialgebraic sets. Indeed, much of what is known about this very new
subject is touched on in this chapter.

The engineer would like for these polynomial inequalities to be convex in the
unknowns. Convexity guarantees that local optima are global optima (finding global
optima is often of paramount importance) and facilitates numerics.

Hence the major issues in linear systems theory are as follows:

1. Which problems convert to a convex matrix inequality? How does one do the
conversion?

2. Find numerics which will solve large convexr problems. How do you use special
structure, such as most unknowns are matrices and the formulas are all built of
noncommutative rational functions?

3. Are convexr matriz inequalities more general than linear matriz inequalities?

The mathematics here can be motivated by the problem of writing a toolbox
for engineers to use in designing linear systems. What goes in such toolboxes
are algebraic formulas with matrices A, B, C' unspecified and reliable numerics for
solving them when a user does specify A, B, C' as matrices. A user who designs a
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controller for a helicopter puts in the mathematical systems model for his helicopter
and puts in matrices, for example, A is a particular 8 x 8 real matrix etc. Another
user who designs a satellite controller might have a 50-dimensional state space and
of course would pick completely different A, B, C. Essentially any matrices of any
compatible dimensions can occur. Any claim we make about our formulas must be
valid regardless of the size of the matrices plugged in.

The toolbox designer faces two completely different tasks. One is manipulation
of algebraic inequalities; the other is numerical solutions. Often the first is far more
daunting since the numerics is handled by some standard package (although for
numerics problem size is a demon). Thus there is a great need for algebraic theory.
Most of this chapter bears on questions like (3) above, where the unknowns are
matrices. The first two questions will not be addressed. Here we treat (3) when
there are no a variables. When there are a variables, see [26, 1]. Thus we shall
consider polynomials p(x) in free noncommutative variables x and focus on their
convexity on free semialgebraic sets.

What are the implications of our study for engineering? Herein you will see
strong results on free convexity but what do they say to an engineer? We fore-
shadow the forthcoming answer by saying it is fairly negative, but postpone further
disclosure till the final page of these writings not so much to promote suspense but
for the conclusion to arrive after you have absorbed the theory.

Quantum phenomena

Free Positivstellensidtze—algebraic certificates for positivity—of which Theorem 8.1
is the grandfather, have physical applications. Applications to quantum physics are
explained by Pironio, Navascués, and Acin [59], who also consider computational
aspects related to noncommutative sum of squares. How this pertains to operator
algebras is discussed by Klep and Schweighofer in [47]. The important Bessis—
Moussa—Villani conjecture (BMV) from quantum statistical mechanics is tackled in
[48, 7]. Doherty et al. [12] employ noncommutative positivity and the Positivstellen-
satz [37] of the first and the third author to consider the quantum moment problem
and multiprover games.

A particularly elegant recent development, independent of the line of history
containing the work in this chapter, was initiated by Effros. The classic “perspec-
tive” transformation carries a function on R” to a function on R"*!. It is used for
various purposes, one being in algebraic geometry to produce “blowups” of singu-
larities, thereby removing them. It has the property that convex functions map to
convex functions. What about convex functions on free variables? This question
was asked by Effros and settled affirmatively in [18] for natural cases as a way to
show that quantum relative entropy is convex. Subsequently, [19] showed that the
perspective transformation in free variables always maps convex functions to convex
functions.

Miscellaneous applications

A number of other scientific disciplines use free analysis, though less systematically
than in free real algebraic geometry.
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Free probability. Voiculescu developed it to attack one of the purest of mathe-
matical questions regarding von Neumann algebras. From the outset (about 20 years
ago) it was elegant and it came to have great depth. Subsequently, it was discovered
to bear forcefully and effectively on random matrices. The area is vast, so we do
not dive in but refer the reader to an introduction [64, 71].

Nonlinear engineering systems. A classical technique in nonlinear systems the-
ory developed by Fliess is based on manipulation of power series with noncommu-
tative variables (the Chen series). The area has a new impetus coming from the
problem of data compression, so now is a time when these correspondences are being
worked out; cf. [21, 22, 52].

8.1.2 Further Reading

We pause here to offer some suggestions for further reading. For further engineering
motivation we recommend the paper [65] or the longer version [66] for related new
directions. Descriptions of Positivstellensétze are in the surveys [31, 13, 43, 63],
with the first three also briskly touring free convexity. The survey article [40] is
aimed at engineers.

Noncommutative is a broad term, encompassing essentially all algebras. In
between the extremes of commutative and free lie many important topics, such as
Lie algebras, Hopf algebras, quantum groups, C*-algebras, von Neumann algebras,
etc. For instance, there are elegant noncommutative real algebraic geometry results
for the Weyl algebra [62]; cf. [63].

8.1.3 Guide to the Chapter

The goal of this tutorial is to introduce the reader to the main results and techniques
used to study free convexity. Fortunately, the subject is new and the techniques
not too numerous so that one can quickly become an expert.

The basics of free, or noncommutative, polynomials and their evaluations are
developed in Section 8.2. The key notions are positivity and convexity for free poly-
nomials. The principal fact is that the second directional derivative (in direction h)
of a free convex polynomial is a positive quadratic polynomial in A (just like in the
commutative case). Free quadratic (in h) polynomials have a Gram-type represen-
tation which thus figures prominently in studying convexity. The nuts and bolts of
this Gram representation and some of its consequences, including Theorem 8.1, are
the subjects of Sections 8.4 and 8.5, respectively.

The Gram representation techniques actually require only a small amount of
convexity, and thus there is a theory of geometry on free varieties having signed
(e.g., positive) curvature. Some details are in Section 8.6.

A couple of free real algebraic geometry results which have a heavy convexity
component are described in the last section, Section 8.7. The first is an optimal
free convex Positivstellensatz which generalizes Theorem 8.1. The second says that
free convex semialgebraic sets are free spectrahedra, giving another example of the
much more rigid structure in the free setting.
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Section 8.3 introduces software which handles free noncommutative computa-
tions. You may find it useful in your free studies.

In what follows, mildly incorrectly but in keeping with the usage in the liter-
ature, the terms noncommutative and free are used synonymously.

8.2 Basics of Noncommutative Polynomials and
Their Convexity

This section treats the basics of polynomials in noncommutative variables, non-
commutative differential calculus, and noncommutative inequalities. There is also
a brief introduction to noncommutative rational functions and inequalities.

8.2.1 Noncommutative Polynomials

Before turning to the formalities, we give, by examples, an informal introduction to
noncommutative polynomials.

A noncommutative polynomial p is a polynomial in a finite set * = (1, ..., x4)
of relation free variables. A canonical example, in the case of two variables z =
(z1,x2), is the commutator

c(x1,22) = X129 — T2T71. (8.4)

It is precisely the fact that x; and z2 do not commute that makes ¢ nonzero.

While a commutative polynomial ¢ € R[t1, 2] is naturally evaluated at points
t € R?, noncommutative polynomials are naturally evaluated on tuples of square
matrices. For instance, with

0 1 10
Xl_L 0}’ XQ_{O 0}’

and X = (X1, X5), one finds
01
o(X) = [_1 0] .

Importantly, ¢ can be evaluated on any pair (X,Y) of symmetric matrices of
the same size. (Later in the section we will also consider evaluations involving not
necessarily symmetric matrices.) Note that if X and Y are n x n, then ¢(X,Y) is
itself an n x n matrix. In the case of ¢(x,y) = zy — yx, the matrix ¢(X,Y) = 0
if and only if X and Y commute. In particular, c is zero on R? (2-tuples of 1 x 1
matrices).

For another example, if d(x1,x2) = 1+z12221, then with X7 and X5 as above,
we find

10
Ad(X) =1, + X1 X2 Xy = [o 2} .

Note that although X is a tuple of symmetric matrices, it need not be the
case that p(X) is symmetric. Indeed, the matrix ¢(X) above is not. In the present

261”2711/1
page 349
O
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context, we say that p is symmetricif p(X') is symmetric whenever X = (X1,..., X,)
is a tuple of symmetric matrices. Another more algebraic definition of symmetric
for noncommutative polynomials appears in Section 8.2.2.

Noncommutative convexity for polynomials

Many standard notions for polynomials, and even functions, on RY extend to the
noncommutative setting, though often with unexpected ramifications. For example,
the commutative polynomial q € R[ty, 5] is convex if, given s,t € R?

s+ t)

S (as) +a(0) 2 o5

There is a natural ordering on symmetric n X n matrices defined by X > Y if
the symmetric matrix X — Y is positive semidefinite, i.e., if its eigenvalues are all
nonnegative. Similarly, X > Y if X —Y is positive definite, i.e., all its eigenvalues
are positive. This order yields a canonical notion of convex noncommutative poly-
nomial. Namely, a symmetric polynomial p is convez if for each n and each pair
of g tuples of n x n symmetric matrices X = (X1,...,Xy) and ¥ = (¥7,...,Y)),
we have

(p(X) + (1)) = p(=

N~

Equivalently,

p(X) ;Lp(Y) _p(X ;r Y)

Even in one variable, convexity for a noncommutative polynomial is a serious
constraint. For instance, consider the polynomial z%. It is symmetric, but with

ol g 8

= 0. (8.5)

2 2 0 0

it follows that

Xt+vt 1 1 A% [164 120
2 (§X * §Y) [120 84
is not positive semidefinite. Thus z* is not convex.

Noncommutative polynomial inequalities and convexity

The study of polynomial inequalities, real algebraic geometry or semialgebraic ge-
ometry, has a noncommutative version. A basic open semialgebraic set is a subset
of RY defined by a list of polynomial inequalities; i.e., a set S is a basic open semi-
algebraic set if

S={teR%:pi(t) >0,...,px(t) >0}

for some polynomials p1,...,pr € Rlt1, ..., 4]
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ncTV(1) = {(t1,t2) € R*: 1 —t] —t5 > 0}.

Because noncommutative polynomials are evaluated on tuples of matrices,
a noncommutative (free) basic open semialgebraic set is a sequence. For positive
integers n, let (S"*™)9 denote the set of g-tuples of n x n symmetric matrices. Given
symmetric noncommutative polynomials p1, ..., pg, let

Pn)={X € (S"™)9: p1(X) = 0,...,pr(X) = 0}.

The sequence P = (P(n)) is then a noncommutative (free) basic open semialgebraic
set. The sequence

ncTV(n) = {X € (S*™*™)?: I, — X! — X3 = 0}

is an entertaining example. When n = 1, ncTV(1) is a subset of R? often called
the TV screen. Numerically it can be verified, though it is rather tricky to do so
(see Exercise 8.23) that the set ncTV(2) is not a convex set. An analytic proof that
ncTV(n) is not a convex set for some n can be found in [15]. It also follows by
combining results in [38] and [44]. For properties of the classical commutative TV
screen, see Chapters 5 and 6 of this book.

Example 8.3. Let p. := €2 — ?:1 x? Then the e-neighborhood of 0,

N = U {X € (S"*™)9: p(X) = 0},

neN

is an important example of a noncommutative basic open semialgebraic set.
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352 Chapter 8. Free Convexity

8.2.2 Noncommutative Polynomials: The Formalities

We now take up the formalities of noncommutative polynomials, their evaluations,
convexity, and positivity.

Let z = (z1,...,x4) denote a g-tuple of free noncommuting variables and let
R<ax> denote the associative R-algebra freely generated by z, i.e., the elements of
R<ax> are polynomials in the noncommuting variables  with coefficients in R. Its
elements are called (noncommutative) polynomials. An element of the form aw,
where 0 # a € R and w is a word in the variables z, is called a monomial and a its
coefficient. Hence words are monomials whose coefficient is 1. Note that the empty
word () plays the role of the multiplicative identity for R<z>.

There is a natural involution T on R<z> that reverses words. For example,
(2 — 32229w3)T = 2 — 32z3w22%. A polynomial p is a symmetric polynomial if pT = p.
Later we will see that this notion of symmetric is equivalent to that in the previous
subsection. For now we note that of

c(x) = r1xe — To1,

j(x) = 122 + 2277,
7 is symmetric, but ¢ is not. Indeed, ¢T = —c. Because a:JT = x; we refer to the
variables as symmetric variables. Occasionally we emphasize this point by writing
R<z = 27> for R<z>.

The degree of a noncommutative polynomial p, denoted deg(p), is the length
of the longest word appearing in p. For instance the polynomials ¢ and j above
both have degree 2 and the degree of

r(z) =1—3z129 — 3021 — 23:%3:333%

is 8. Let R<x>) denote the polynomials of degree at most k.

Noncommutative matrix polynomials

Given positive integers d,d’, let R4 < 2> denote the d x d’ matrices with en-
tries from R<z>. Thus elements of R <x> are matriz-valued noncommu-
tative polynomials. The involution on R<x> naturally extends to a mapping
1R <> 5 RYXAcp> | In particular, if

dd’

P = I:plj]zj:1 S RdXd <>,
then
d,d, d xd
PT = [pmi_j:l € R X <>,

In the case that d = d’, such a P is symmetric if PT = P.

Linear pencils
Given a positive integer n, let S**" denote the real symmetric n x n matrices. For

Ao, A, ..., Ay € S9%d the expression

g
L(QI) = Ay + ZAJ'QIJ' S SdXd<$> (86)

j=1
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8.2. Basics of Noncommutative Polynomials and Their Convexity 353

in the noncommuting variables x is a symmetric affine linear pencil. In other words,
these are precisely the symmetric degree one matrix-valued noncommutative poly-
nomials. If Ay = I, then L is monic. If Ag = 0, then L is a linear pencil. The
homogeneous linear part Z?:l Ajz; of a linear pencil L as in (8.6) will be denoted

by LM,

Example 8.4. Let

0100 00 00 00 0 0
100 0 0010 00 0 0
A=10 000" “={o1 0 0> |00 01
00 00 00 00 001 0
Then
1$100

o I 1 xTo 0
I+ZA]$]_ 0 xZo 1 I3

0 0 I3 1
is the corresponding monic affine linear pencil. W

Polynomial evaluations

Ifp e R4 <z> is a noncommutative polynomial and X € (S"*")9, the evalu-
ation p(X) € RAnxd'n g defined by simply replacing x; by X;. Throughout we
use lowercase letters for variables and the corresponding capital letter for matrices
substituted for that variable.

Example 8.5. Suppose p(z) = Azjze where A = [*g (2)] . That is,

p(a})z —4$1$2 2$1$2
3x122 0 '

Thus p € R2*2<z> and one example of an evaluation is

(ol o ) =ae (ol o )= ()

0 4 0 —2
-4 02 o0
"o 30 0

3 00 0

Similarly, if p is a constant matrix-valued noncommutative polynomial, p(z) =
A, and X € (S"*™)9, then p(X) = A® I,,. Here we have taken advantage of the
usual tensor (or Kronecker) product of matrices. Given an ¢ x ¢’ matrix A = (4, ;)
and an n x n’ matrix B, by definition, A ® B is the n x n’ block matrix

AR B = [ALJB] s
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with £ x ¢/ matrix entries. We have reserved the tensor product notation for the
tensor product of matrices and have eschewed the strong temptation of using A® x
in place of Azy when z, is one of the variables. W

Proposition 8.6. Suppose p € R<x>. In increasing levels of generality,
1. if p(X) =0 for all n and all X € (S**™)9, then p =0;

2. if there is a nonempty noncommutative basic open semialgebraic set O such that
p(X) =0 on O (meaning for every n and X € O(n), p(X) =0), then p =0;

3. there is an N, depending only upon the degree of p, so that for any n > N if
there is an open subset O C (S™*™)9 with p(X) =0 for all X € O, then p =0.

Proof. See Exercises 8.28, 8.31, and 8.34. [
Exercise 8.7. Use Proposition 8.6 to prove the following statement.

Proposition 8.8. Suppose p € R<x>. Show p(X) is symmetric for every n and
every X € (S"*™)9 if and only if pT = p.

8.2.3 Noncommutative Convexity Revisited and
Noncommutative Positivity

Now we return with a bit more detail to our main theme, convexity. A symmetric
polynomial p is matriz convex if, for each positive integer n, each pair of g-tuples
X=(X,...,Xy)and Y = (Y3,...,Y,) in (S"*")9, and each 0 < t < 1,

tp(X) + (1= )p(Y) — p(tX + (L~ 1)Y) = 0.

where, for an n X n matrix A € R"*™ the notation A > 0 means A is positive
semidefinite. Synonyms for matrix convex include both noncommutative convex
and simply convex.

Exercise 8.9. Show that the definition here of (matrix) convex is equivalent to
that given in (8.5) in the informal introduction to noncommutative polynomials.

As we have already seen in the informal introduction to noncommutative
polynomials, even in one variable, convexity in the noncommutative setting dif-
fers from convexity in the commutative case because here Y need not commute
with X. Thus, although the polynomial z* is a convex function of one real variable,
it is not matrix convex. On the other hand, to verify that x? is a matrix convex
polynomial, observe that

tX2 4+ (1 -t)Y? — (tX + (1 - t)Y)?
=t(1-t)(X? = XY - YX+YH) =t(1-t)(X -Y)* = 0.

A polynomial p € R<z> is matriz positive, synonymously noncommutative
positive or simply positive, if p(X) = 0 for all tuples X = (X1,...,X,) € (§S"*")9.
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8.2. Basics of Noncommutative Polynomials and Their Convexity 355
A polynomial p is a sum of squares if there exists k € N and polynomials hq, ..., hg
such that

k
p=Y_hlh;.
j=1

Because, for a matrix A, the matrix ATA is positive semidefinite, if p is a sum of
squares, then p is positive. Though we will not discuss its proof in this chapter, we
mention that, in contrast with the commutative case, the converse is true [27, 53].

Theorem 8.10. If p € R<z> is positive, then p is a sum of squares.

As for convexity, note that p(x) is convex if and only if the polynomial ¢(z, y)
in 2g noncommutative variables given by

qlx,y) = %(p(w) +p(y)) —p(w er y)

is positive.

8.2.4 Directional Derivatives Versus Noncommutative
Convexity and Positivity

Matrix convexity can be formulated in terms of positivity of the Hessian, just as in
the case of a real variable. Thus we take a few moments to develop a very useful
noncommutative calculus.

Given a polynomial p € R<x>, the (th directional derivative of p in the
“direction” h is

d’p(z + th)

pO@)h) = ==

t=0
Thus p) (x)[h] is the polynomial that evaluates to

d'p(X +tH)

g for every choice of X, H € (S"*™)9.

=0
We let p'(z)[h] denote the first derivative, and the Hessian, denoted p”(z)[h] of
p(z), is the second directional derivative of p in the direction h.

Equivalently, the Hessian of p(x) can also be defined as the part of the poly-
nomial

r(x)[h] == 2(p(z + h) — p(x))
R<az>[h] :=R<z1,...,24, h1,...,hg>

that is homogeneous of degree two in h.

If p” # 0, that is, if p = p(x) is a noncommutative polynomial of degree two
or more, then the polynomial p”(x)[h] in the 2¢ variables x1,...,24,h1 ..., hy is
homogeneous of degree 2 in h and has degree equal to the degree of p.
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356 Chapter 8. Free Convexity

Example 8.11.
(1) The Hessian of the polynomial p = 235 is

p"(z)[h] = 2(hizs + hiz1he + 21hiho).

(2) The Hessian of the polynomial f(z) = z* (just one variable) is
f"(x)[h] = 2(h*2® + hahx + ha’h + xhah + xh?z + 22h%). B
Noncommutative convexity is neatly described in terms of the Hessian.

Lemma 8.12. p € R<x> is noncommutative convez if and only if p”(x)[h] is
noncommutative positive.

Proof. See Exercise 8.26. [

8.2.5 Symmetric, Free, Mixed, and Classes of Variables

To this point, our variables x have been symmetric in the sense that, under the
involution, xJT = z;. The corresponding polynomials, elements of R<x> are then
the noncommutative analogue of polynomials in real variables, with evaluations
at tuples in S”*". In various applications and settings it is natural to consider
noncommutative polynomials in other types of variables.

Free variables

The noncommutative analogue of polynomials in complex variables is obtained by
allowing evaluations on tuples X of not necessarily symmetric matrices. In this case,
the involution must be interpreted differently, and the variables are called free.

In this setting, given the noncommutative variables = (z1,...,24), let 2T =
(z,...,2]) denote another collection of noncommutative variables. On the ring
R<x,x7> define the involution T by requiring z; x}; ij — xj; T reverses the
order of words; and linearity. For instance, for

g(z) =14 z]zy — xJa € R<z, 27>,

we have
q"(z) =1+ 2z — aJzs.

Elements of R<z,zT7> are polynomials in free variables, and in this setting the
variables themselves are free.

A polynomial p € R<z, 27> is symmetric provided pT = p. In particular, ¢
above is not symmetric, but

p=1+a]zs +alzy (8.7)

is.
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8.2. Basics of Noncommutative Polynomials and Their Convexity 357

A polynomial p € R<z, 27> is analytic if there are no transposes, i.e., if p is
a polynomial in z alone.

Elements of R<x, 27> are naturally evaluated on tuples X = (X,...,X,) €
(R*4)9. For instance, if p is the polynomial in (8.7) and X = (X1, X5) € (R?*2)2,

where
0 0

X1 = L J = X2

then
1%9<)=={g ?}-

The space R4 <z 27> is defined by analogy with R4*4' <z>, and evaluation
of elements in R*? <z, 27> at a tuple X € (R**%)9 is defined in the obvious way.

Exercise 8.13. State and prove analogues of Propositions 8.6 and 8.8 for R<x, 7>
and evaluations from (R**#)9.

Mixed variables

At times it is desirable to mix free and symmetric variables. We won’t introduce
notation for this situation, as it will generally be understood from the context. Here
are some examples:

Example 8.14.

3
p(z) = zfz1 + 22 + Z$1$2$.1r7 Ty = ; (8.8)

ric(a, as, ) = a1 + za] — zasalz, x=aT.

In the first case 1 is free, but xo is symmetric; and in the second a; and as are
free, but x is symmetric. Two additional remarks are in order about the second
polynomial. First, it is a Riccati polynomial ubiquitous in control theory. Second,
we have separated the variables into two classes of variables, the a variables and the
x variable(s); thus p € R<a,z = 27>. In applications, the a variables can be chosen
to represent known (system parameters), while the x variables are unknown(s). Of
course, it could be that some of the a variables are symmetric and some free and
ditto for the x variables. N

Example 8.15. Various directional derivatives of p in (8.8) are

3 3 3
Dy, p(x)[h1] = h]xq +x{h1+1h1x2x1+1x1x2h1, D,,p(z)[ha] = hg—f—zﬁlhgﬁ.{,

3 3 3
D.p(z)[h] = hlzy +xThy + ha + Zhlxsz + lethI + lehza:{, [ |

Continuing with the variable class warfare, consider the following matrix-
valued example.
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358 Chapter 8. Free Convexity

Example 8.16. Let

T T
a1 +xay  ayx
a1, az,7) = { Taz 1

We consider L € R2*2<q, x = xT>; i.e., the a variables are free, and the z-variables
symmetric. Note that L is linear in x if we consider aq, as fixed. Of course, if a1, as,
and x are all scalars, then using Schur complements tells us there is a close relation
between L in this example and the Riccati of the previous example. N

8.2.6 Noncommutative Rational Functions

While it is possible to define noncommutative functions [67, 64, 69, 70, 60, 61, 46,
28, 29], in this section we content ourselves with a relatively informal discussion of
noncommutative rational functions [10, 11, 41, 45].

Rational functions, a gentle introduction

Noncommutative rational expressions are obtained by allowing inverses of polyno-
mials. An example is the discrete time algebraic Riccati equation

-1
r(a,z) = alza; — (a]zaz)ai(as + alxas) " (alzar) + ay, x=2T.

It is a rational expression in the free variables ¢ and the symmetric variable z, as

is 1. An example, in free variables, which arises in operator theory is

s(z) =2T(1 — z2T) "L (8.9)

Thus, we define (scalar) noncommutative rational expressions for free non-
commutative variables z by starting with noncommutative polynomials and then
applying successive arithmetic operations—addition, multiplication, and inversion.
We emphasize that an expression includes the order in which it is composed, and
no two distinct expressions are identified, e.g., (1) + (=x1), (—=1) + (((z1) 1) (21)),
and 0 are different noncommutative rational expressions.

Evaluation on polynomials naturally extends to rational expressions. If r is a
rational expression in free variables and X € (R*)9, then r(X) is defined—in the
obvious way—as long as any inverses appearing actually exist. Indeed, our main
interest is in the evaluation of a rational expression. For instance, for the polynomial
s above in one free variable, s(X) is defined as long as I — X X7 is invertible and
in this case,

s(X)=XT(I - XXT)~L,

Generally, a noncommutative rational expression r can be evaluated on a g-tuple X
of n X n matrices in its domain of reqularity, domr, which is defined as the set of
all g-tuples of square matrices of all sizes such that all the inverses involved in the
calculation of (X)) exist. For example, if 7 = (2175 — 2221) 7!, then domr = {X =
(X1, X2): det(X1Xs — X2X3) # 0}. We assume that domr # (. In other words,
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8.2. Basics of Noncommutative Polynomials and Their Convexity 359

when forming noncommutative rational expressions we never invert an expression
that is nowhere invertible.

Two rational expressions 1 and ro are equivalent if r1(X) = ro(X) at any X
where both are defined. For instance, for the rational expression ¢ in one free
variable,

tx) = (1 —aTz) taT,

and s from (8.9), it is an exercise to check that s(X) is defined if and only if ¢(X)
is and moreover in this case s(X) = ¢(X). Thus s and ¢ are equivalent rational
expressions. We call an equivalence class of rational expressions a rational function.
The set of all rational functions will be denoted by R€x>.

Here is an interesting example of a noncommutative rational function with
nested inverses. It is taken from [2, Theorem 6.3].

Example 8.17. Consider two free variables z,y. For any r € R€z, y> let
W(r) = c(z,c(z,r)?) - c(, c(a, 7")71)_1 € R€x, y>. (8.10)

Recall that ¢ denotes the commutator (8.4). Bergman’s noncommutative rational
function is given by

b:=W(y) W(c(z,y)) - W(c(x, c(z, y))fl) : W(c(w, c(z, c(x,y)))fl)
€ Rz, yy. 1 (8.11)
Exercise 8.18. Consider the function W from (8.10). Let R, X be n X n matrices
and assume c(X ,o(X, R)*l) exists and is invertible. Prove the following:
(1) If n =2, then W(R) = 0.
(2) If n =3, then W(R) = det(c(X, R)).

Exercise 8.19. Consider Bergman’s rational function (8.11).
(1) Show that on a dense set of 2 x 2 matrices (X,Y), b(X,Y) =0.
(2) Prove that on a dense set of 3 x 3 matrices (X,Y), b(X,Y) = 1.

The moral of Exercise 8.19 is that, unlike in the case of polynomial identities,
a noncommutative rational function that vanishes on (a dense set of) 3 x 3 matrices
need not vanish on (a dense set of) 2 x 2 matrices.

Matrices of rational functions; LDLT

One of the main ways noncommutative rational functions occur in systems engi-
neering is in the manipulation of matrices of polynomials. Extremely important is
the LDLT decomposition. Consider the 2 x 2 matrix with noncommutative entries

a bT
=l .
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360 Chapter 8. Free Convexity

where a = aT. The entries themselves could be noncommutative polynomials or
even rational functions. If @ is not zero, then M has the following decomposition:

I 0| |a 0 I a7
— T —
M = LDLT = [ba‘1 I] [O c— ba‘le] {O I ] ‘

Note that this formula holds in the case that c is itself a (square) matrix noncom-
mutative rational function and b (and thus bT) are vector-valued noncommutative
rational functions. On the other hand, if both a = ¢ = 0, then M is the block

matrix
0 b
M= [m 0].

If M is a k x k matrix, then iterating this procedure produces a decomposition
of a permutation IIMTIIT of M of the form IIMIIT = LDLT, where D and L have
the form

d 0 0 0 0 0 0
0 0 0 0
0 dp 0 0 0
D=1|0 0 Dyt 0 0 (8.12)
: : 0 0
0 0 0 Dy, 0
| 0 0 0 0 FEj
and
1 0 0 0 0 0 0]
0O 0 0 0
1 0 0 0 O
L = k 12 O O O 5 (8'13)
* 0 0
x x  x Iy 0
L * g

where d; are symmetric rational functions, and the D; are nonzero 2 x 2 matrices
of the form
0 b
o=y 4.

E is a square 0 matrix (possibly of size 0 x 0 and thus absent), and I5 is the 2 x 2
identity and the *’s represent possibly nonzero rational expressions (in some cases
matrices of rational functions), some of the 0’s are zero matrices (of the appropriate
sizes), and a is the dimension of the space that E acts upon. The permutation II
is necessary in cases where the procedure hits a 0 on the diagonal, necessitating a
permutation to bring a nonzero diagonal entry into the “pivot” position.
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Theorem 8.20. Suppose M(x) € R€x}**¢ is symmetric, and IIMIT = LDLT
where L, D are £ x ¢ matrices with noncommutative rational entries as in (8.13)
and (8.12) and L, respectively. If n is a positive integer and X € (S"*™)9 is in the
domains of both L and D, then M (X) is positive semidefinite if and only if D(X)
is positive semidefinite.

Proof. The proof is an easy exercise based on the fact that a square block lower
triangular matrix whose diagonal blocks are invertible is itself invertible. In this
case, L(X) is block lower triangular, with the n x n identity I,, as each diagonal
entry. Thus M(X) and D(X) are congruent and thus have the same number of
negative eigenvalues. [

Remark 8.21. Note that if D has any 2 x 2 blocks Dj, then D(X) > 0 if and
only if each D;(X) = 0. Thus, if D has any 2 x 2 blocks, generically D(X), and
hence M (X), is not positive semidefinite. (Recall that we assume, without loss of
generality, that D; are not zero.)

More on rational functions

The matrix positivity and convexity properties of noncommutative rational func-
tions go just like those for polynomials. One only tests a rational function r on
matrices X in its domain of regularity. The definition of directional derivatives
goes as before and it is easy to compute them formally. There are issues of equiva-
lences which we avoid here, instead referring the reader to [10, 45] or our treatment
in [41].

We emphasize that proving the assertions above takes considerable effort, be-
cause of dealing with the equivalence relation. In practice one works with rational
expressions, and calculations with noncommutative rational expressions themselves
are straightforward. For instance, computing the derivative of a symmetric non-
commutative rational function r leads to an expression of the form

k
Dr(x)[h] = symmetrize lz ag($)hbg($)] ,
=1

where ay, by are noncommutative rational functions of x, and the symmetrization of

. . . . . T
a (not necessarily symmetric) rational expression s is S£-.

8.2.7 Exercises

Section 8.3 gives a very brief introduction on noncommutative computer algebra
and some might enjoy playing with computer algebra in working some of these
exercises.

Define for use in later exercises the noncommutative polynomials

2,2 2,2
P =T7Ty — T1X2X1T2 — T2X1T2X1 — T,

q = T1T2X3 + T2X3T1 + T3T1X2 — T1X3T2 — T2T1X3 — T3L2T1,

S = T1X3Ly — X2T3X1.
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Exercise 8.22.

(a) What is the derivative with respect to x1 in direction h; of ¢ and s?
(b) Concerning the formal derivative with respect to z7 in direction hi,

1

(i) show the derivative of r(xy) = 2~ is —x] thyzy

(ii) what is the derivative of u(xy,r2) = x2(1 + 221) 71?7

Exercise 8.23. Consider the polynomials p, ¢, s and rational functions r, v from
above.

(a) Evaluate the polynomials p, ¢, s on some matrices of size 1 x 1, 2 x 2, and 3 x 3.
(b) Redo part (a) for the rational functions r, u.

Try to use Mathematica or MATLAB.

Exercise 8.24. Show that ¢ = x1x9 — w2z is not symmetric by finding n and
X = (X1, X2) such that ¢(X) is not a symmetric matrix.

Exercise 8.25. Consider the following polynomials in two and three variables,
respectively:

hi = ¢ = (z122)% — 10221 — Toxixy + (2271)?,

hQ = hlilig — $3h1.

(a) Compute hi(X7,X2) and ho(X7, Xo, X3) for several choices of 2 x 2 matrices
X;. What do you find? Can you formulate and prove a statement?

(b) What happens if you plug in 3 x 3 matrices into h; and ho?

Exercise 8.26. Prove that a symmetric noncommutative polynomial p is matrix
convex if and only if the Hessian p”(z)[h] is matrix positive by completing the
following exercise.

Fix n, suppose /¢ is a positive linear functional on §"*™, and consider

f=Llop: (Snxn)g — R.
(a) Show f is convex if and only if w >0att=0foral X,H e (S**")9.

Given v € R™, consider the linear functional ¢(M) := vTMv and let f, = £op.

(b) Geometric: Fix n. Show, each f, satisfies the convexity inequality if and only
if p satisfies the convexity inequality on (S™*™)9.

(c) Analytic: Show, for each v € R™, f//(X)[H] > 0 for every X,H € (S"*")9 if
and only if p”(X)[H] = 0 for every X, H € (S"*"™)9.
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Exercise 8.27. For n € N let

Sn = Z SigH(T)ZIIT(l) © o Tr(n)

TESym,,

be a polynomial of degree n in n variables. Here Sym,, denotes the symmetric group
on n elements.

(a) Prove that sy is a polynomial identity for 2 x 2 matrices. That is, for any choice
of 2 x 2 matrices X1,..., X4, we have

S4(X1, ‘e ,X4) =0.
(b) Fix d € N. Prove that there exists a nonzero polynomial p vanishing on all
tuples of d x d matrices.

Several of the next exercises use a version of the shift operators on Fock space.
With g fixed, the corresponding Fock space, F = F, is the Hilbert space obtained
from R<z> by declaring the words to be an orthonormal basis; i.e., if v,w are
words, then

<Ua w> - 5v,wa

where d,, = 1 if v = w and is 0 otherwise. Thus Fj is the closure of R<x> in this
inner product. For each j, the operator S; on F,; densely defined by S;p = z;p, for
p € R<z> is an isometry (preserves the inner product) and hence extends to an
isometry on all of F;. Of course, S; acts on an infinite-dimensional Hilbert space
and thus is not a matrix.

Exercise 8.28. Given a natural number k, note that R<xz > is a finite dimensional
(and hence closed) subspace of F = F;. The dimension of R<z>y, is

o(k) = Zgj. (8.14)

Let V : R<ax>), — F denote the inclusion and
T, =VTS;V.

Thus T does act on a finite-dimensional space, and T' = (T4, ...,Ty) € (R"*")9 for
n = o(k).

(a) Show that if v is a word of length at most k — 1, then
Tjv = x;v,
and Tjv = 0 if the length of v is k.

(b) Determine 7.
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(c) Show that if p is a nonzero polynomial of degree at most k and Y; = Tj + TjT7
then p(Y)0 # 0.

(d) Conclude that if, for every n and X € (S"*™)9, p(X) =0, then p is 0.

Exercise 8.28 shows there are no noncommutative polynomials vanishing on
all tuples of (symmetric) matrices of all sizes. The next exercise will lead the reader
through an alternative proof inspired by standard methods of polynomial identities.

Exercise 8.29. Let p € R<z>, be an analytic polynomial that vanishes on
(R™*™)9 (same fixed n). Write p = po +p1 + - - - + pn, where p; is the homogeneous
part of p of degree j.

(a) Show that p; also vanishes on (R™*™)9.

(b) A polynomial ¢ is called multilinear if it is homogeneous of degree one with
respect to all of its variables. Equivalently, each of its monomials contains all
variables exactly once, i.e.,

q= Z aTI'Xﬂ(l) T Xﬂ'(n)
TESy

Using the staircase matrices Fi1, Fho, Fag, Fas, ..., Ep_1n, Eny show that a
nonzero multilinear polynomial ¢ of degree n cannot vanish on all n xn matrices.

(c) By (a) we may assume p is homogeneous. By induction on the biggest degree
a variable in p can have, prove that p = 0. Hint: What are the degrees of the
variables appearing in

plx1 + 21, 22,...,24) — p(z1, 22, ..., 24) — p(T1,T2,...,24)7

Exercise 8.30. Redo Exercise 8.29 for a polynomial
(a) p € R<z,zT>, not necessarily analytic, vanishing on all tuples of matrices;

(b) p € R<z> vanishing on all tuples of symmetric matrices.

Exercise 8.31. Show that if p € R<az> vanishes on a nonempty basic open
semialgebraic set, then p = 0.

Exercise 8.32. Suppose p € R<z>, n is a positive integer, and O C (S"*™)9
is an open set. Show that if p(X) = 0 for each X € O, then P(X) = 0 for each
X € (S"*™)9. Hint: Given X € O and X € (S"*™)9, consider the matrix valued
polynomial,

q(t) = p(Xo + tX).

Exercise 8.33. Suppose r € R€z} is a rational function and there is a nonempty
noncommutative basic open semialgebraic set O C dom(r) with r|o = 0. Show that
r=0.
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Exercise 8.34. Prove item (3) of Proposition 8.6. You may wish to use Exercises
8.32 and 8.28.

Exercise 8.35. Prove the following proposition.
Proposition 8.36. If 7 : R<a> — R™ ™ 4s an involution preserving homo-
morphism, then there is an X € (S**™)9 such that w(p) = p(X); i.e., all finite
dimensional representations of R<x> are evaluations.
Exercise 8.37. Do the algebra to show

2T(1—22T) b= (1 —2Tz) 12T,
(This is a key fact used in the model theory for contractions [55].)
Exercise 8.38. Give an example of symmetric 2 x 2 matrices X,Y such that
X =Y =0but X2 Y2

This failure of a basic order property of R for is closely related to the
rigid nature of positivity and convexity in the noncommutative setting.

S’IZXTL

Exercise 8.39. Antiderivatives.

(a) Is g(x)[h] = xh+ hax the derivative of any noncommutative polynomial p? If so,
what is p?

(b) Is q(x)[h] = hhx + hxh + zhh the second derivative of any noncommutative
polynomial p? If so, what is p?

(c) Describe in general which polynomials ¢(x)[h] are the derivative of some non-
commutative polynomial p(zx).

(d) Check you answer against the theory in [23].
Exercise 8.40. (Requires background in algebra) Show that R€x Y is a division

ring; i.e., the noncommutative rational functions form a ring in which every nonzero
element is invertible.

Exercise 8.41. In this exercise we will establish that it is possible to embed the
free algebra R<zq,...,z4,> into R<z,y> for any g € N.

(a) Show that the subalgebra of R<z,y> generated by xy™, n € Np, is free.
(b) Ditto for the subalgebra generated by
v =, v2=c(,y), T3=c(T2,Y), oy Tn=C(Tn-1,Y)s-- -

Here, as before, ¢ is the commutator, ¢(a,b) = ab — ba.
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A comprehensive study of free algebras and noncommutative rational functions
from an algebraic viewpoint is developed in [10, 11].

Exercise 8.42. As a hard exercise, numerically verify that the set
ncTV(2) = {X € (S***)?:1 - X{ — X5 = 0}

is not convex. That is, find X = (X7, X2) and Y = (¥1,Y3), where X1, X5,Y7,Y5
are 2 X 2 symmetric matrices such that both

1-X! X530 and 1-Y{'-Y)'=0

but

X +n\' /X +Ye\?
1_(1-51)_(2;# 2) 2 0.

You may wish to write a numerical search routine.

8.3 Computer Algebra Support

There are several computer algebra packages available to ease the first contact with
free convexity and positivity. In this section we briefly describe two of them:

(1) NCAlgebra running under Mathematica;
(2) NCSOStools running under MATLAB.

The former is more universal in that it implements manipulation with noncommuta-
tive variables, including noncommutative rationals, and several algorithms pertain-
ing to convexity. The latter is focused on noncommutative positivity and numerics.

8.3.1 NCAIlgebra

NCAlgebra [42] runs under Mathematica and gives it the capability of manipulating
noncommuting algebraic expressions. An important part of the package (which we
shall not go into here) is NCGB, which computes noncommutative Groebner bases
and has extensive sorting and display features as well as algorithms for automatically
discarding “redundant” polynomials.

We recommend that the user have a look at the Mathematica notebook
NCBasicCommandsDemo available from the NCAlgebra website

http://math.ucsd.edu/~ncalg/

for the basic commands and their usage in NCAlgebra. Here is a sample.

The basic ingredients are (symbolic) variables, which can be either noncom-
mutative or commutative. At present, single-letter lowercase variables are noncom-
mutative by default and all others are commutative by default. To change this one
can employ
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NCAlgebra Command: SetNonCommutative[listOfVariables] to make all the
variables appearing in listOfVariables noncommutative. The converse is given by

NCAlgebra Command: SetCommutative.
Example 8.43. Here is a sample session in Mathematica running NCAlgebra.

In[1]:= a *x b - b ** a
Out[1]= a *x b - b *x a

In[2]:= A *x B - B *x A
Out[2]= 0

In[3]:= A *x b - b **x a
Out[3]= A b - b *x a

In[4] := CommuteEverything[a ** b - b ** al
Out[4]= 0

In[5] := SetNonCommutative[A, BI]
Out[56]= {False, False}

In[6]:= A *xx B - B *x A
Qut[6]= A *x B - B *x A

In[7]:= SetNonCommutative[A];SetCommutative [B]
Out[7]= {True}

In[8]:= A *x B - B *x A
Out[8]= O [ |

Slightly more advanced is the NCAlgebra command to generate the direc-
tional derivative of a polynomial p(x,y) with respect to x, which is denoted by

sz(a:,y)[h]:

NCAlgebra Command: DirectionalD[Function p, xz, h], and is abbreviated
NCAlgebra Command: DirD.

Example 8.44. Consider

a = X kK X kX y - y k¥ X xkk y

Then

DirD[a, x, h] = (h *% x + x **x h) *k y — y *x h *x y

or in expanded form,

NCExpand[DirD[a, x, h]] = h ** x **% y + x **x h *x y — y *x h **x y
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368 Chapter 8. Free Convexity

Note that we have used

NCAlgebra Command: NCExpand[Function p] to expand a noncommutative ex-
pression. The command comes with a convenient abbreviation

NCAlgebra Command: NCE. N

NCAlgebra is capable of much more. For instance, is a given noncommuta-
tive function “convex”? You type in a function of noncommutative variables; the
command

NCAlgebra Command: NCConvexityRegion[Func, ListOfVariables] tells you
where the (symbolic) Function is convex in the Variables. The algorithm comes
from the paper of Camino et al. [9].

NCAlgebra Command: {L,D,U, P}:=NCLDUDecomposition[Matrix]. Computes
the LDU decomposition of matrix and returns the result as a 4-tuple. The last
entry is a permutation matrix which reveals which pivots were used. If matrix is
symmetric, then U = LT.

The NCAlgebra website comes with extensive documentation. A more ad-
vanced notebook with a hands-on demonstration of applied capabilities of the pack-
age is DemoBRL.nb; it derives the bounded real lemma for a linear system.

Exercise 8.45. For the polynomials and rational functions defined at the beginning
of Section 8.2.7, use NCAlgebra to calculate

(a) pxxq and NCExpand [px*q],
(b) NCCollect [p**q, x1],

(c) DIp,x1,h1] and D[u,x1,h1].

Warning

The Mathematica substitute commands /., /> and /:> are not reliable in
NCAlgebra, so a user should use NCAlgebra’s Substitute command.

Example 8.46. Here is an example of unsatisfactory behavior of the built-in Math-
ematica function.

In[1]:= (x **x a *x b) /. {a **x b -> c}
Out[1]= x ** a **x b

On the other hand, NCAlgebra performs as desired:

In[2]:= Substitute[x ** a **x b, a *x b -> c]
Out[2]= x *x c [ |
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8.3.2 NCSOStools

A reader mainly interested in positivity of noncommutative polynomials might be
better served by NCSOStools [8]. NCSOStools is an open source MATLAB tool-
box for

(a) basic symbolic computation with polynomials in noncommuting variables;

(b) constructing and solving sum of hermitian squares (with commutators) pro-
grams for polynomials in noncommuting variables.

It is normally used in combination with standard SDP software to solve these con-
structed linear matrix inequalities.

The NCSOStools website http://ncsostools.fis.unm.si contains documentation
and a demo notebook NCSOStoolsdemo to give the user a gentle introduction to its
features.

Example 8.47. Although it has some ability to manipulate symbolic express-
ions, MATLAB cannot handle noncommuting variables. They are implemented in
NCSOStools.

NCSO0Stools Command: NCvars x introduces a noncommuting variable  into the
workspace. W

NCSOStools is well equipped to work with commutators and sums of (hermi-
tian) squares. Recall: a commutator is an expression of the form fg — gf.

Exercise 8.48. Use NCSOStools to check whether the polynomial x?yx + yz3 —
2zyx? is a sum of commutators. (Hint: Try the NCisCycEq command.) If so, can
you find such an expression?

Let us demonstrate an example with sums of squares.

Example 8.49. Consider

f =5+ x72 - 2%x73 + x74 + 2kx*xy + XkyRxKy - X*kyT2 + xkyT2%x
—2%y + 2%y*x + yERxXT2%y - 2kykxky + yrRxky*kx - 3ky"2 - yT2kx + y*4

Is f matrix positive? By Theorem 8.10 it suffices to check whether f is a sum of
squares. This is easily done using

NCSO0Stools Command: NCsos(f), which checks if the polynomial f is a sum of
squares. Running NCsos(f) tells us that f is indeed a sum of squares. What
NCSOStools does is transform this question into a semidefinite program and then
calls a solver. NCsos comes with several options. Its full command line is

[IsSohs,X,base,sohs,g,SDP_data,L] = NCsos(f,params)
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370 Chapter 8. Free Convexity

The meaning of the output is as follows:
e IsSohs equals 1 if the polynomial f is a sum of hermitian squares and 0 otherwise;

e X is the Gram matrix solution of the corresponding semidefinite program returned
by the solver;

e base is a list of words which appear in the sums of Hermitian squares decompo-
sition;

e sohs is the sums of hermitian squares decomposition of f;

e g is the NCpoly representing » . m]m;;

e SDP_data is a structure holding all the data used in the SDP solver;

e L is the operator representing the dual optimization problem (i.e., the dual feasible
SDP matrix). H

Exercise 8.50. Use NCSOStools to compute the smallest eigenvalue f(X,Y’) can
attain for a pair of symmetric matrices (X,Y"). Can you also find a minimizer pair
(X,Y)?

Exercise 8.51. Let f = % + (vy — 1)T(zy — 1). Show the following.

(a) f(X,Y) is always positive semidefinite.

(b) For each € > 0 there is a pair of symmetric matrices (X,Y") so that the smallest
eigenvalue of f(X,Y) is e.

(¢) Can f(X,Y) be singular?

The moral of Example 8.51 is that even if a noncommutative polynomial is
bounded from below, it need not attain its minimum.

Exercise 8.52. Redo the Exercise 8.51 for f(x) = 2Tz + (zaT — 1)T(z2T — 1).

8.4 A Gram-like Representation

The next two sections are devoted to a powerful representation of quadratic func-
tions ¢ in noncommutative variables which takes a strong form when ¢ is matrix
positive; we call it a QuadratischePositivstellensatz. Ultimately we shall apply this
to q(z)[h] = p”(z)[h] and show that if p is matrix convex (i.e., ¢ is matrix positive),
then p has degree 2. We begin by illustrating our grand scheme with examples.

8.4.1 Illustrating the Ideas

Example 8.53. The (symmetric) polynomial p(z) = z12221 + 22122 (in symmet-
ric variables) has Hessian ¢(z)[h] = p”(x)[h], which is homogeneous quadratic in h

and is

q(a:)[h] = 2h1h23}1 + 2h1$2h1 + 2h2h13}2 + 2h2$1h2 + 2$1h2h1 + 2$2h1h2.
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We can write ¢ in the form

2{E2 0 0 2 hl

0 2 2 0 h
q(x)[h]:[hl hg $2h1 ﬂilhz} 0 gl 0 0 h1§32 .

2 0 0 0 hg(El

The representation of ¢ displayed above is of the form
q(z)[h] = V(2)[A]TZ(x)V (x)[R],

where Z is called the middle matriz and V' the border vector. The middle matrix does
not contain h. The border vector is linear in h with & always on the left. In Section
8.4.2 we define this border vector—middle matrix (BV-MM) representation generally
for noncommutative polynomia