1. Suppose \(f : D \to \mathbb{R} \) and \(x_0 \) is a limit point of \(D \). Prove that \(\lim_{x \to x_0} f(x) = \ell \) if and only if, for every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that, if \(x \in D \) and \(0 < |x - x_0| < \delta \), then \(|f(x) - \ell| < \epsilon \).

2. Let \(n \) be a natural number. Determine \(\lim_{x \to 1} \frac{x^n - 1}{x - 1} \) and prove you are correct.

 (You may find the Difference of Powers Formula useful: If \(n \in \mathbb{N} \) and \(a,b \in \mathbb{R} \), then \(a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^{n-1-k}b^k \).)

3. Prove the Squeeze Theorem for functions: Suppose \(f : D \to \mathbb{R} \), \(g : D \to \mathbb{R} \), \(h : D \to \mathbb{R} \), \(x_0 \) is a limit point of \(D \), and \(f(x) \leq g(x) \leq h(x) \) for all \(x \in D \setminus \{x_0\} \). Prove that, if \(\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell \), then \(\lim_{x \to x_0} g(x) = \ell \). (You may use the Squeeze Theorem for sequences.)

4. Let \(f : \mathbb{R} \to \mathbb{R} \).

 (a) Give an \(\epsilon-\delta \) proof that, if \(\lim_{x \to x_0} f(x) = \ell \), then \(\lim_{x \to x_0} |f(x)| = |\ell| \).

 (b) Give an example of a function \(f(x) \) and an \(\ell \in \mathbb{R} \) such that \(\lim_{x \to x_0} |f(x)| = |\ell| \) but \(\lim_{x \to x_0} f(x) \neq \ell \).

 (c) Give an \(\epsilon-\delta \) proof that \(\lim_{x \to x_0} f(x) = 0 \) if and only if \(\lim_{x \to x_0} |f(x)| = 0 \).

5. Suppose \(f : \mathbb{R} \to \mathbb{R} \) and there exists a real constant \(M > 0 \) such that \(|f(x)| \leq Mx^2 \) for all \(x \). Prove that \(\lim_{x \to 0} \frac{f(x)}{x} = 0 \).

6. Suppose \(m_1 \) and \(m_2 \) are real constants such that \(m_1 \neq m_2 \). Define \(f : \mathbb{R} \to \mathbb{R} \) by

 \[
 f(x) = \begin{cases}
 m_1x + 3 & \text{if } x < 0 \\
 m_2x + 3 & \text{if } x \geq 0.
 \end{cases}
 \]

 Prove that \(f(x) \) is continuous but not differentiable at 0.

7. Define \(f : \mathbb{R} \to \mathbb{R} \) by

 \[
 f(x) = \begin{cases}
 x^2 & \text{if } x < 0 \\
 x & \text{if } x \geq 0.
 \end{cases}
 \]

 Is \(f(x) \) differentiable at 0? Prove you are correct.

8. Suppose \(f : \mathbb{R} \to \mathbb{R} \) and \(-x^2 \leq f(x) \leq x^2 \) for all \(x \). Prove that \(f \) is differentiable at 0 and that \(f'(0) = 0 \).