1. (a) \(\frac{dy}{dx} = \frac{1}{x^3e^{-x}}[x^3(-e^{-x}) + e^{-x}(3x^2)] \)

(b) \(\frac{dy}{dx} = x^2 \cdot \frac{1}{1 + 5e^x} \cdot 5e^x + 2x \ln(1 + 5e^x) \)

(c) \(\frac{dy}{dx} = \frac{(1 + x)e^x - e^x}{(1 + x)^2} \)

(d) \(\frac{dy}{dx} = \frac{(x^2 + 5x) \cdot \frac{1}{2x + 7} \cdot 2 - [\ln(2x + 7)] \cdot (2x + 5)}{(x^2 + 5x)^2} \)

(e) \(\frac{dy}{dx} = \frac{1}{2}(2x + 6)^{-1/2} \cdot 2 = \frac{1}{\sqrt{2x + 6}} \)

(f) \(\frac{dy}{dt} = (3t^2 + 7)^4 \cdot 7(t^3 - t)^6(3t^2 - 1) + (t^3 - t)^7 \cdot 4(3t^2 + 7)^3(6t) \)

(g) \(\frac{dy}{dx} = 7 \left[x - (x + 3)^4 \right]^6 [1 - 4(x + 3)^3] \)

(h) \(\frac{dy}{dx} = e^{5x} \cdot 2(x^3 + 4)(3x^2) + (x^3 + 4)^2 \cdot e^{5x} \cdot 5 \)

2. (a) The maximum value is \(-1\).

(b) The maximum value is \(\frac{1}{3}\).

(c) \(g(x) \) has no critical points since \(g'(x) = f''(x) \) is never 0.

3. The PRINTED MATTER will have maximal area when \(x = \sqrt{500} \) and \(y = 2\sqrt{500} \).

4. (a) \(f'(x) = -2xe^{-x^2} \) and \(f''(x) = 2e^{-x^2}(2x^2 - 1) \) (simplified)

(b) \(f'(x) = 0 \) only at \(x = 0 \).

(c) \(f(x) \) is increasing on \((-\infty, 0)\) and decreasing on \((0, \infty)\). \(f(x) \) is concave up on \((-\infty, -\sqrt{\frac{1}{2}}) \) and on \(\left(\sqrt{\frac{1}{2}}, \infty \right) \), concave down on \(\left(-\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}} \right) \).

(d) The \(y \)-intercept is \(f(0) = 1 \). Since \(f(x) \) is never 0, there is no \(x \)-intercept.

(e) The limits are both equal to 0. This means that the graph of \(f(x) \) will approach the line \(y = 0 \) (the \(x \)-axis) as \(x \) approaches \(\pm \infty \). That is, the \(x \)-axis is a horizontal asymptote for the graph of \(f(x) \).

5. (a) \(-1\)

(b) \(-\frac{1}{6}\)

(c) \(-5\)

(d) 5

(e) 1