• Determinants
 – Be able to compute determinants (minor matrices, cofactor expansions, etc.).
 – Know the properties of determinants:
 * \(\det(AB) = \det(A)\det(B) \)
 * \(\det(A) = 0 \) if and only if \(A \) is singular
 * \(\det(A^{-1}) = \frac{1}{\det(A)} \) if \(A \) is non-singular
 * \(\det(A^T) = \det(A) \)
 * \(\det(T) = t_{11}t_{22}...t_{nn} \) if \(T \) is an \(n \times n \) triangular matrix
 – Know the effects of the elementary row operations on determinants.

• The Eigenvalue Problem
 – Be able to find (real and complex) eigenvalues and eigenvectors of a given matrix.
 – Know all about the characteristic polynomial of a matrix.
 – Understand algebraic and geometric multiplicities and defective matrices.
 – Know how to diagonalize a matrix.
 – Know how to use eigenvalues and eigenvectors to solve initial value problems involving a system of differential equations.

• General Vector Spaces
 – Know the big examples: \(\mathbb{R}^n \), \(M_{m \times n} \), \(\mathcal{P}_n \), \(\mathcal{C}[a,b] \)
 – Know the properties of vector spaces listed on page 365.
 – Understand subspaces, spanning sets, linear independence, bases, and dimension.
 – Know how to find the coordinate vectors with respect to a given basis.

• The Big Results
 – Let \(u_1, ..., u_k \) be eigenvectors of an \(n \times n \) matrix \(A \) corresponding to distinct eigenvalues \(\lambda_1, ..., \lambda_k \). Then \(\{u_1, ..., u_k\} \) is linearly independent.
 – Let \(A \) be a real \(n \times n \) matrix with eigenvalue \(\lambda \) and corresponding eigenvector \(x \). Then \(\lambda \) is also an eigenvalue of \(A \) with corresponding eigenvector \(x \).
 – Similar matrices have the same eigenvalues with the same algebraic multiplicity.
 – An \(n \times n \) matrix \(A \) is diagonalizable if and only if \(A \) possesses a linearly independent set of \(n \) eigenvectors.
 – Let \(V \) be a vector space with a basis \(B = \{v_1, ..., v_p\} \). Let \(S = \{u_1, ..., u_m\} \) be a subset of \(V \) and let \(T = \{[u_1]_B, ..., [u_m]_B\} \). Then \(S \) is a basis for \(V \) if and only if \(T \) is a basis for \(\mathbb{R}^p \).

 Let \(V \) be a vector space with dimension \(p \).
 * Any set of \(p + 1 \) or more vectors in \(V \) is linearly dependent.
 * Any set of fewer than \(p \) vectors in \(V \) does not span \(W \).
 * Any set of \(p \) linearly independent vectors in \(V \) is a basis for \(V \).
 * Any set of \(p \) vectors that spans \(V \) is a basis for \(V \).