• Stuff I’m assuming from last quarter:
 – an understanding of vectors (especially in \mathbb{R}^2 and \mathbb{R}^3)
 – dot products and cross products
 – equations of lines in \mathbb{R}^3
 – equations of planes
 – limits and derivatives of vector functions

• You should have an understanding of vector functions, including:
 – tangent vectors and tangent lines
 – principal normal and binormal vectors
 – the osculating plane
 – computing the length of a curve
 – curvature (definition and computational formula)

• You should have an understanding of multi-variable functions, including:
 – level curves and level surfaces
 – partial derivatives (first- and second-order)
 – limits
 – continuity
 – differentiability
 – gradient (computation and significance)
 – directional derivatives
 – MVT and its corollaries
 – chain rule for $f \circ r$
 – tangent and normal lines to a curve $f(x, y) = c$
 – tangent planes and normal lines to a surface $f(x, y, z) = c$
 – local optima of $f(x, y)$ (including the second derivative test)
 – global optima of $f(x, y)$ on a closed, bounded set
 – Lagrange multiplier method

• One miscellaneous thing:
 – open and closed sets