MATH 136 — Spring 2006
Exam I Solutions

1. \(\frac{\partial z}{\partial x} = f'(x^2 - y^2)(2x) \) and \(\frac{\partial z}{\partial y} = 1 + f'(x^2 - y^2)(-2y) \).

Thus, \(y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 2xy f'(x^2 - y^2) + x - 2xy f'(x^2 - y^2) = x \).

2. arclength = \(\int_{-b}^{b} ||r'(t)|| \, dt = \int_{-b}^{b} 3 \, dt = 6b \Rightarrow b = \frac{70}{6} \)

3. If \(f(x, y) \) is continuous at \((0, 0) \), then \(\lim_{(x,y) \to (0,0)} f(x, y) = f(0, 0) = 1 \). But along the path \(x = y \),

\[
\lim_{(x,y) \to (0,0)} f(x, y) = \lim_{x \to 0} \frac{x^2 y^3}{2x^2 + y^2} = \lim_{x \to 0} \frac{x^3}{3} = 0.
\]

This means that, if \(\lim_{(x,y) \to (0,0)} f(x, y) \) exists, then the limit must be 0, which is not equal to \(f(0,0) \). So, \(f(x, y) \) is not continuous at \((0, 0) \).

4. Since \(N \) and \(B \) are both perpendicular to \(T \), \(T \) is a normal vector to the normal plane. Moreover, \(T \) has the same direction as \(r'(t) = \langle 3t^2, 3, 4t^3 \rangle \). So, we need \(\langle 3t^2, 3, 4t^3 \rangle \) to be parallel to \((6, 6, -8) \), the normal vector to the plane \(6x + 6y - 8z = 1 \). This occurs only when \(t = -1 \). (Why?) So, the only point on \(r(t) \) at which the normal plane is parallel to \(6x + 6y - 8z = 1 \) is the point \((-1, -3, 1)\).

5. We need to maximize \(f(x, y, z) = xyz^2 \), subject to the constraint \(g(x, y, z) = x + y + z - 50 = 0 \).

We use the Lagrange multiplier method.

\[
\nabla f(x, y, z) = \langle yz^2, xz^2, 2xyz \rangle \quad \text{and} \quad \nabla g(x, y, z) = \langle 1, 1, 1 \rangle.
\]

The only points that could give optimum values of \(f \) are those with the property \(\nabla f = \lambda \nabla g \) for some real number \(\lambda \). This gives \(yz^2 = \lambda \) and \(xz^2 = \lambda \), which means that \(x = y \).

We also have \(2xyz = 2x^2z = \lambda \), which, since \(xz^2 = \lambda \), means that \(z = 2x \). That gives:

\[
x + y + z = x + x + 2x = 4x = 50. \quad \text{So,} \quad x = 12.5, \quad y = 12.5, \quad \text{and} \quad z = 25 \text{ are the only values that could yield an optimum value of } f.
\]

6. Let \(g(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z} - \sqrt{c} \). The normal vector to the plane tangent to this surface at an arbitrary point \((x_0, y_0, z_0)\) is \(\nabla g(x_0, y_0, z_0) = \langle \frac{1}{2\sqrt{x_0}}, \frac{1}{2\sqrt{y_0}}, \frac{1}{2\sqrt{z_0}} \rangle \). So, the equation of the tangent plane is:

\[
\frac{1}{2\sqrt{x_0}}(x - x_0) + \frac{1}{2\sqrt{y_0}}(y - y_0) + \frac{1}{2\sqrt{z_0}}(z - z_0) = 0.
\]

To get the \(x \)-intercept, we set \(y \) and \(z \) equal to 0 and solve for \(x \): \(x = x_0 + \sqrt{x_0y_0} + \sqrt{x_0z_0} \).

Similarly, the \(y \)-intercept is \(y = y_0 + \sqrt{x_0y_0} + \sqrt{y_0z_0} \) and the \(z \)-intercept is \(z = z_0 + \sqrt{x_0z_0} + \sqrt{y_0z_0} \). Adding the intercepts gives:

\[
x + y + z = x_0 + y_0 + z_0 + 2\sqrt{x_0y_0} + 2\sqrt{x_0z_0} + 2\sqrt{y_0z_0} = (\sqrt{x_0} + \sqrt{y_0} + \sqrt{z_0})^2 = (\sqrt{c})^2 = c.
\]