Maxes and Mins (§10.3)

Recall: A function \(f(x) \) has a critical value at \(x=a \) if \(f'(a) = 0 \); i.e., \(f(x) \) has a critical value at \(x=a \) if the graph of \(f \) has a horizontal tangent.

- The graph of \(f(x) \) is concave up at \(x=a \) if \(f''(a) > 0 \); \(f(x) \) is concave down at \(x=a \) if \(f''(a) < 0 \).

![Graph showing concavity and inflection points]

If the graph of \(f \) changes concavity at \(x=a \), then \(f \) has a point of inflection at \(x=a \).

If the graph of \(f \) changes concavity at \(x=a \) AND \(f \) has a horizontal tangent at \(x=a \), then \(f \) has a horizontal point of inflection at \(x=a \).
Second Derivative Test:

- If $f'(a) = 0$ and $f''(a) > 0$, then f has a local min at $x = a$.
- If $f'(a) = 0$ and $f''(a) < 0$, then f has a local max at $x = a$.
- If $f'(a) = 0$ and $f''(a) = 0$, then THE TEST FAILS. Anything could happen: you could have a local max, a local min, or a h.p.o.i. at $x = a$.

$h.p.o.i.$
Example: \(f(x) = x^3 - \frac{9}{2} x^2 - 12x + 10. \)

(a) Find all critical values and use SOT to determine whether each gives a local max or a local min.

\[
 f'(x) = 3x^2 - 9x - 12 = 0
\]

\[
 x = -1 \text{ and } x = 4 \leftarrow \text{two critical values}
\]

\[
 f''(x) = 6x - 9
\]

\[
 f''(-1) < 0 \leftarrow \text{local max at } x = -1
\]

\[
 f''(4) > 0 \leftarrow \text{local min at } x = 4
\]

(b) Compute the largest and smallest values of \(f(x) \) on the interval from \(x = -2 \) to \(x = 10. \) SKETCH THE GRAPH!

\[
 f(-2) = 8 \quad \text{global max at } (10, 440)
\]

\[
 f(-1) = 16.5 \quad \text{local max at } (-2,5)
\]

\[
 f(0) = 10 \quad \text{point of inflection at } \left(\frac{3}{2}, f\left(\frac{3}{2}\right)\right)
\]

\[
 f(4) = -46 \quad \text{local min at } (4, -46) \text{ global min}
\]
(c) Find the point of inflection.

where f changes concavity
where f'' changes sign

$$f''(x) = 6x - 9$$

Set $f'' = 0$

$$6x - 9 = 0$$
$$6x = 9$$
$$x = \frac{9}{6} = \frac{3}{2}$$
2. Daily sales volume of a product after 't' days on the market:

\[S(t) = \frac{3}{t+3} - \frac{18}{(t+3)^2} + 1 \]

(a) Find time at which daily sales volume is maximized.

\[S(t) = 3(t+3)^{-1} - 18(t+3)^{-2} + 1 \]

\[S'(t) = -3(t+3)^{-2} \cdot (1) + 36(t+3)^{-3} \cdot (1) \]

\[= -\frac{3}{(t+3)^2} + \frac{36}{(t+3)^3} = 0 \]

Solve for 't':

\[\frac{36}{(t+3)^3} \cdot \left[\frac{36}{(t+3)^3} \right] = \left[\frac{3}{(t+3)^2} \right] \]

\[36 = 3(t+3) \]

\[3t = 27 \]

\[t = 9 \]

Critical value of \(S(t) \):

Use SDT to show that this gives a maximum.

\[S''(t) = 6(t+3)^{-3} - 108(t+3)^{-4} \]

\[= \frac{6}{(t+3)^3} - \frac{108}{(t+3)^4} \]

\[S''(9) = \frac{6}{12^3} - \frac{108}{12^4} \approx -0.002 < 0 \]

\(S \) is concave down at \(t = 9 \)
\[S'(t) = -3(t+3)^{-2} + 36(t+3)^{-3} \]
\[S''(t) = 6(t+3)^{-3} - 108(t+3)^{-4} \]
\[\frac{6}{(t+3)^3} - \frac{108}{(t+3)^4} \]
\[S''(9) = \frac{6}{12^3} - \frac{108}{12^4} \approx -0.002 < 0 \]

Since this is the only critical value of \(S(t) \), this must be the place where \(S(t) \) is absolute biggest.

\(t=9 \) is where sales are maximized.
(b) Find time at which the rate of change of sales is minimized.

\[
\text{rate of change of sales} = S'(t) = R(t) \quad \text{minimize} \quad R(t)
\]

We need to know where \(R'(t) = 0 \)

\[
R'(t) = 6(t+3)^{-3} - 108(t+3)^{-4}
\]

\[
= \frac{6}{(t+3)^3} - \frac{108}{(t+3)^4} = 0
\]

Solve for \(t \):

\[
t = 1.5 \quad \text{show this gives the min}
\]