1. (4 points each)

(a) ANSWER: \(f'(x) = 3x^{11} - 5x^{14} - 4x^{-3/2} \)

(b) HINT: \(w = 9z^{-2} - 6z^{-3} \)
ANSWER: \(\frac{dw}{dz} = -18z^{-3} + 18z^{-4} \)

(c) HINT: \(h(t) = t^3 + 4 + t^2 + 4t^{-1} \). Compute \(h'(1) \).
ANSWER: \(h'(1) = 1 \)

(d) HINT: Compute \(TR'(q) \), set it equal to 0, and solve for \(q \).
ANSWER: \(q = 1146 \)

2. (a) (3 points) HINT: Take \(q_1 = 6 \) and \(q_2 = 11 \). Then \(TC(11) - TC(6) = 165 \) by the formula. Divide by 5.
ANSWER: 33

(b) (4 points) HINT: Take \(q_1 = 0 \) and \(q_2 = 10 \). Then \(TC(10) - TC(0) = 260 \) by the formula. You know \(TC(10) = 457 \) and \(TC(0) = FC \). Solve for \(FC \).
ANSWER: 197

(c) (3 points) HINT: Take \(q_1 = 5 \) and \(q_2 = 5.001 \). Then \(MC(5) = TC(5.001) - TC(5) = 0.026001 \) thousand dollars, by the formula.
ANSWER: 0.026001 thousand dollars OR $26.001

(d) (5 points) HINT: Take \(q_1 = q \) and \(q_2 = q + h \). Then, \(TC(q+h) - TC(q) = (q+h)^2 - q^2 + 16(q+h - q) \). Expand and simplify, divide by \(h \), and let \(h \) go to 0 to get the derivative.
ANSWER: \(TC'(q) = 2q + 16 \)

(e) (2 points) HINT: Evaluate your answer to part (d) at \(q = 2 \) thousand Items.
ANSWER: 20 dollars

3. (a) (2 points) HINT: Balloon A is always decreasing. Its lowest altitude on the interval from \(t = 4 \) to \(t = 13 \) is \(A(13) \).
ANSWER: 240 feet

(b) (5 points) HINT: The ballons are farthest apart when their speeds are the same. Compute \(A'(t) \) and \(B'(t) \), set the derivatives equal to each other and solve for \(t \).
ANSWER: 3.51

(c) (4 points) HINT: Balloon B is rising as long as its derivative is positive. The graph of \(B'(t) \) is a parabola that opens down. It’s positive in between its two roots. So, set \(B'(t) = 0 \) and solve for \(t \).
ANSWER: from \(t = 5 \) to \(t = 8 \)

(d) (3 points) HINT: Balloon B is moving up when \(B'(t) \) is positive. Its fastest upward speed is the highest point on the graph of \(B'(t) \) between \(t = 5 \) and \(t = 8 \). Find the \(t \)-coordinate of the vertex of \(B'(t) \).
ANSWER: \(t = 6.5 \) minutes

(e) (3 points) HINT: \(B'(t) \) is negative and increasing from \(t = 1 \) to \(t = 4 \). So, its fastest downward speed is at \(t = 1 \). Compute \(B'(1) \).
ANSWER: 84 feet per minute