UNCERTAINTY PRINCIPLES FOR INVERSE SOURCE PROBLEMS,
FAR FIELD SPLITTING AND DATA COMPLETION∗
ROLAND GRIESMAIER† AND JOHN SYLVESTER‡

Abstract. Starting with far field data of time-harmonic acoustic or electromagnetic waves radi-
ated by a collection of compactly supported sources in two-dimensional free space, we develop criteria
and algorithms for the recovery of the far field components radiated by each of the individual sources,
and the simultaneous restoration of missing data segments. Although both parts of this inverse prob-
lem are severely ill-conditioned in general, we give precise conditions relating the wavelength, the
diameters of the supports of the individual source components and the distances between them, and
the size of the missing data segments, which guarantee that stable recovery in presence of noise is
possible. The only additional requirement is that a priori information on the approximate location of
the individual sources is available. We give analytic and numerical examples to confirm the sharpness
of our results and to illustrate the performance of corresponding reconstruction algorithms, and we
discuss consequences for stability and resolution in inverse source and inverse scattering problems.

Key words. Inverse source problem, Helmholtz equation, uncertainty principles, far field split-
ing, data completion, stable recovery

AMS subject classifications. 35R30, 65N21

1. Introduction. In signal processing, a classical uncertainty principle limits the
time-bandwidth product $|T||W|$ of a signal, where $|T|$ is the measure of the support
of the signal $\phi(t)$, and $|W|$ is the measure of the support of its Fourier transform $\hat{\phi}(\omega)$
(cf., e.g., [7]). A very elementary formulation of that principle is

\begin{equation}
|\langle \phi, \psi \rangle| \leq \sqrt{|T||W|} \|\phi\|_2 \|\psi\|_2
\end{equation}

whenever $\text{supp} \phi \subseteq T$ and $\text{supp} \hat{\psi} \subseteq W$.

In the inverse source problem, the far field radiated by a source f is its restricted
(to the unit sphere) Fourier transform, and the operator that maps the restricted
Fourier transform of $f(x)$ to the restricted Fourier transform of its translate $f(x + c)$
is called the far field translation operator. We will prove an uncertainty principle
analogous to (1.1), where the role of the Fourier transform is replaced by the far field
translation operator. Combining this principle with a regularized Picard criterion,
which characterizes the non-evanescent (i.e., detectable) far fields radiated by a (lim-
ited power) source supported in a ball provides simple proofs and extensions of several
results about locating the support of a source and about splitting a far field radiated
by well-separated sources into the far fields radiated by each source component.

We also combine the regularized Picard criterion with a more conventional un-
certainty principle for the map from a far field in $L^2(S^1)$ to its Fourier coefficients.
This leads to a data completion algorithm which tells us that we can deduce missing
data (i.e. on part of S^1) if we know a priori that the source has small support. All
of these results can be combined so that we can simultaneously complete the data
and split the far fields into the components radiated by well-separated sources. We
discuss both l^2 (least squares) and l^1 (basis pursuit) algorithms to accomplish this.

∗Submitted to the editors DATE.
†Institut für Mathematik, Universität Würzburg, 97074 Würzburg, Germany
(roland.griesmaier@uni-wuerzburg.de).
‡Department of Mathematics, University of Washington, Seattle, Washington 98195, U.S.A.
(sylvest@u.washington.edu).

This manuscript is for review purposes only.
Perhaps the most significant point is that all of these algorithms come with bounds on their condition numbers (both the splitting and data completion problems are linear) which we show are sharp in their dependence on geometry and wavenumber. These results highlight an important difference between the inverse source problem and the inverse scattering problem. The conditioning of the linearized inverse scattering problem does not depend on wavenumber, which means that the conditioning does not deteriorate as we increase the wavenumber in order to increase resolution. The conditioning for splitting and data completion for the inverse source problem does, however, deteriorate with increased wavenumber, which means the dynamic range of the sensors must increase with wavenumber to obtain higher resolution.

We note that applications of classical uncertainty principles for the one-dimensional Fourier transform to data completion for band-limited signals have been developed in [7]. In this classical setting a problem that is somewhat similar to far field splitting is the representation of highly sparse signals in overcomplete dictionaries. Corresponding stability results for basis pursuit reconstruction algorithms have been established in [6].

The numerical algorithms for far field splitting that we are going to discuss have been developed and analyzed in [9, 10]. The novel mathematical contribution of the present work is the stability analysis for these algorithms based on new uncertainty principles, and their application to data completion. For alternate approaches to far field splitting that however, so far, lack a rigorous stability analysis we refer to [12, 19] (see also [11] for a method to separate time-dependent wave fields due to multiple sources).

This paper is organized as follows. In the next section we provide the theoretical background for the direct and inverse source problem for the two-dimensional Helmholtz equation with compactly supported sources. In section 3 we discuss the singular value decomposition of the restricted far field operator mapping sources supported in a ball to their radiated far fields, and we formulate the regularized Picard criterion to characterize non-evanescent far fields. In section 4 we discuss uncertainty principles for the far field translation operator and for the Fourier expansion of far fields, and in section 5 we utilize those to analyze the stability of least squares algorithms for far field splitting and data completion. Section 6 focuses on corresponding results for l^1 algorithms. Consequences of these stability estimates related to conditioning and resolution of reconstruction algorithms for inverse source and inverse scattering problems are considered in section 7, and in section 8–9 we provide some analytic and numerical examples.

2. Far fields radiated by compactly supported sources. Suppose that $f \in L^2_0(\mathbb{R}^2)$ represents a compactly supported acoustic or electromagnetic source in the plane. Then the time-harmonic wave $v \in H^1_{\text{loc}}(\mathbb{R}^2)$ radiated by f at wave number $k > 0$ solves the source problem for the Helmholtz equation

$$-\Delta v - k^2 v = k^2 g \quad \text{in } \mathbb{R}^2,$$

and satisfies the Sommerfeld radiation condition

$$\lim_{r \to \infty} r^{1/2} \left(\frac{\partial v}{\partial r} - i kv \right) = 0, \quad r = |x|.$$
We include the extra factor of k^2 on the right hand side so that both v and g scale (under dilations) as functions; i.e., if $u(x) = v(kx)$ and $f(x) = g(kx)$, then

$$-\Delta u - u = f \quad \text{in } \mathbb{R}^2 \quad \text{and} \quad \lim_{r \to \infty} \sqrt{r} \left(\frac{\partial u}{\partial r} - iu \right) = 0.$$

With this scaling, distances are measured in wavelengths\(^1\), and this allows us to set $k = 1$ in our calculations, and then easily restore the dependence on wavelength when we are done.

The fundamental solution of the Helmholtz equation (with $k = 1$) in two dimensions is

$$\Phi(x) := \frac{i}{4} H_0^{(1)}(|x|), \quad x \in \mathbb{R}^2 \setminus \{0\},$$

so the solution to (2.1) can be written as a volume potential

$$u(x) = \int_{\mathbb{R}^2} \Phi(x - y) f(y) \, dy, \quad x \in \mathbb{R}^2.$$

The asymptotics of the Hankel function tell us that

$$u(x) = \frac{e^{i\pi}}{\sqrt{8\pi}} e^{ir} \alpha(\theta_x) + O \left(r^{-\frac{3}{2}} \right) \quad \text{as } r \to \infty,$$

where $x = r\theta_x$ with $\theta_x \in S^1$, and

$$\alpha(\theta_x) = \int_{\mathbb{R}^2} e^{-i\theta_x \cdot y} f(y) \, dy.$$

The function α is called the far field radiated by the source f, and equation (2.2) shows that the far field operator \mathcal{F}, which maps f to α is a restricted Fourier transform, i.e.

$$\mathcal{F} : L^2_0(\mathbb{R}^2) \to L^2(S^1), \quad \mathcal{F} f := \hat{f} \big|_{S^1}.$$

The goal of the inverse source problem is to deduce properties of an unknown source $f \in L^2_0(\mathbb{R}^2)$ from observations of the far field. Clearly, any compactly supported source with Fourier transform that vanishes on the unit circle is in the nullspace $\mathcal{N}(\mathcal{F})$ of the far field operator. We call $f \in \mathcal{N}(\mathcal{F})$ a non-radiating source because a corollary of Rellich’s lemma and unique continuation is that, if the far field vanishes, then the wave u vanishes on the unbounded connected component of the complement of the support of f. The nullspace of \mathcal{F} is exactly

$$\mathcal{N}(\mathcal{F}) = \{ g = -\Delta v - v \mid v \in H^2_0(\mathbb{R}^2) \}.$$

Neither the source f nor its support is uniquely determined by the far field, and, as non-radiating sources can have arbitrarily large supports, no upper bound on the support is possible. There are, however, well defined notions of lower bounds. We say that a compact set $\Omega \subseteq \mathbb{R}^2$ carries α, if every open neighborhood of Ω supports a source $f \in L^2_0(\mathbb{R}^2)$ that radiates α. The convex scattering support $\mathcal{C}(\alpha)$ of α, as

\(^1\)One unit represents 2π wavelengths.
defined in [16] (see also [17, 21]), is the intersection of all compact convex sets that carry \(\alpha\). The set \(\mathcal{C}(\alpha)\) itself carries \(\alpha\), so that \(\mathcal{C}(\alpha)\) is the smallest convex set which carries the far field \(\alpha\), and the convex hull of the support of the “true” source \(f\) must contain \(\mathcal{C}(\alpha)\). Because two disjoint compact sets with connected complements cannot carry the same far field pattern (cf. [21, lemma 6]), it follows that \(\mathcal{C}(\alpha)\) intersects any connected component of \(\text{supp}(f)\), as long as the corresponding source component is not non-radiating.

In [21], an analogous notion, the \textit{UWSCS support}, was defined, showing that any far field with a compactly supported source is carried by a smallest union of well-separated convex sets (well-separated means that the distance between any two connected convex components is strictly greater than the diameter of any component).

A corollary is that it makes theoretical sense to look for the support of a source with components that are small compared to the distance between them.

Here, as in previous investigations [9, 10], we study the well-posedness issues surrounding numerical algorithms to compute that support.

3. A regularized Picard criterion. If we consider the restriction of the source to far field map \(F\) from (2.3) to sources supported in the ball \(B_R(0)\) of radius \(R\) centered at the origin, i.e.,

\[
F_{B_R(0)} : L^2(B_R(0)) \to L^2(S^1), \quad F_{B_R(0)} f := \hat{f}|_{S^1},
\]

we can write out a full singular value decomposition. We decompose \(f \in L^2(B_R(0))\) as

\[
f(x) = \left(\sum_{n=-\infty}^{\infty} f_n i^n J_n(|x|) e^{in\varphi_x} \right) \oplus f_{NR}(x), \quad x = |x|(\cos \varphi_x, \sin \varphi_x) \in B_R(0),
\]

where \(i^n J_n(|x|) e^{in\varphi_x}, n \in \mathbb{Z}\), span the closed subspace of \textit{free sources}, which satisfy

\[-\Delta u - u = 0 \quad \text{in } B_R(0),
\]

and \(f_{NR}\) belongs to the orthogonal complement of that subspace; i.e., \(f_{NR}\) is a non-radiating source.\(^2\) The restricted far field operator \(F_{B_R(0)}\) maps

\[
F_{B_R(0)} : i^n J_n(|x|) e^{in\varphi_x} \mapsto s^2_n(R) e^{in\theta},
\]

where

\[
s^2_n(R) = 2\pi \int_0^R J^2_n(r) r \, dr.
\]

Denoting the Fourier coefficients of a far field \(\alpha \in L^2(S^1)\) by

\[
\alpha_n := \frac{1}{\sqrt{2\pi}} \int_{S^1} \alpha(\theta) e^{in\theta} \, d\theta, \quad n \in \mathbb{Z},
\]

so that

\[
\alpha(\theta) = \sum_{n=-\infty}^{\infty} \alpha_n \frac{e^{in\theta}}{\sqrt{2\pi}}, \quad \theta \in S^1,
\]

\(^2\)Throughout, we identify \(f \in L^2(B_R(0))\) with its continuation to \(\mathbb{R}^2\) by zero whenever appropriate.
by Parseval’s identity, an immediate consequence of (3.2) is that

\[\| \alpha \|^2_{L^2(S^1)} = \sum_{n=-\infty}^{\infty} |\alpha_n|^2 \]

(3.5)

which has \(L^2 \)-norm

\[\|f_\alpha^*\|^2_{L^2(B_R(0))} = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} |\alpha_n|^2 s_n(R)^2, \]

(3.6)

is the source with smallest \(L^2 \)-norm that is supported in \(B_R(0) \) and radiates the far field \(\alpha \). We refer to \(f_\alpha^* \) as the minimal power source because, in electromagnetic applications, \(f_\alpha^* \) is proportional to current density, so that, in a system with a constant internal resistance, \(\|f_\alpha^*\|^2_{L^2(B_R(0))} \) is proportional to the input power required to radiate a far field. Similarly, \(\|\alpha\|^2_{L^2(S^1)} \) measures the radiated power of the far field.

The squared singular values \(\{s^2_n(R)\} \) of the restricted Fourier transform \(\mathcal{F}_{B_R(0)} \) have a number of interesting properties with immediate consequences for the inverse source problem; full proofs of the results discussed in the following can be found in the supplement in section SM1. The squared singular values satisfy

\[\sum_{n=-\infty}^{\infty} s^2_n(R) = \pi R^2, \]

(3.7)

and \(s^2_n(R) \) decays rapidly as a function of \(n \) as soon as \(|n| \geq R \),

\[s^2_n(R) \leq \frac{\pi^{\frac{5}{2}} n^{\frac{5}{2}}}{3^\frac{3}{4} (\Gamma(\frac{5}{4}))^2} \left(\frac{n + \frac{1}{2}}{n} \right)^{n+1} R^2 \frac{e^{-\frac{n^2}{2}}}{n^2} \]

(3.8)

\[\frac{s^2_{\nu R}(R)}{2R} \rightarrow \begin{cases} \sqrt{1 - \nu^2} & \nu \leq 1, \\ 0 & \nu \geq 1, \end{cases} \]

(3.9)

where \(\lfloor \nu R \rfloor \) denotes the smallest integer that is greater than or equal to \(\nu R \). This can also be seen in figure 3.1, where we include plots of \(s^2_n(R) \) (solid line) together with plots of the asymptote \(2\sqrt{R^2 - n^2} \) (dashed line) for \(R = 10 \) (left) and \(R = 100 \) (right). The asymptotic regime in (3.9) is already reached for moderate values of \(R \).

The forgoing yields a very explicit understanding of the restricted Fourier transform \(\mathcal{F}_{B_R(0)} \). For \(|n| \gtrsim R \) the singular values \(s_n(R) \) are uniformly large, while for \(|n| \lesssim R \) the \(s_n(R) \) are close to zero, and it is seen from (3.7)–(3.9) as well as from figure 3.1 that as \(R \) gets large the width of the \(n \)-interval in which \(s_n(R) \) falls from uniformly large to zero decreases. Similar properties are known for the singular values of more classical restricted Fourier transforms (see [20]).
A physical source has limited power, which we denote by $P > 0$, and a receiver has a power threshold, which we denote by $p > 0$. If the radiated far field has power less than p, the receiver cannot detect it. Because $s_n^2(R) = s_n^2(R)$ and the odd and even squared singular values, $s_n^2(R)$, are decreasing as functions of $n \geq 0$, we may define:

$$N(R, P, p) := \sup_{n \geq 2} \frac{2 \pi}{p} n .$$

So, if $\alpha \in L^2(S^1)$ is a far field radiated by a limited power source supported in $B_R(0)$ with $\|f^*_\alpha\|^2_{L^2(B_R(0))} \leq P$, then, for $N = N(R, P, p)$

$$P \geq \frac{1}{2\pi} \sum_{|n| \geq N} \frac{|\alpha_n|^2}{s_n^2(R)} \geq \frac{1}{2\pi} \frac{1}{s_{N+1}^2(R)} \sum_{|n| \geq N} |\alpha_n|^2 > \frac{P}{p} \sum_{|n| \geq N} |\alpha_n|^2 .$$

Accordingly, $\sum_{|n| \geq N} |\alpha_n|^2 < p$ is below the power threshold. So the subspace of detectable far fields, that can be radiated by a limited power source supported in $B_R(0)$ is:

$$V_{\text{NE}} := \left\{ \alpha \in L^2(S^1) \mid \alpha(\theta) = \sum_{n=-N}^{N} \alpha_n e^{in\theta} \right\} .$$

We refer to V_{NE} as the subspace of non-evanescent far fields, and to the orthogonal projection of a far field onto this subspace as the non-evanescent part of the far field. We use the term non-evanescent because it is the phenomenon of evanescence that explains why the the singular values $s_n^2(R)$ decrease rapidly for $|n| \geq R$, resulting in the fact that, for a wide range of p and $R < N(R, p, P) < 1.5R$, if R is sufficiently large. This is also illustrated in figure 3.2, where we include plots of $N(R, P, p)$ from (3.10) for $p/P = 10^{-3}$, $p/P = 10^{-4}$, and $p/P = 10^{-8}$ and for varying R. The dotted lines in these plots correspond to $g_1(R) = R$ and $g_{1.5}(R) = 1.5R$, respectively.

4. Uncertainty principles for far field translation. In the inverse source problem, we seek to recover information about the size and location of the support of a source from observations of its far field. Because the far field is a restricted Fourier transform, the formula for the Fourier transform of the translation of a function:

$$f(\cdot + c)(\theta) = e^{ic\theta} \hat{f}(\theta), \quad \theta \in S^1, \ c \in \mathbb{R}^2 ,$$
plays an important role. We use T_c to denote the map from $L^2(S^1)$ to itself given by
\begin{equation}
T_c : \alpha \mapsto e^{ic\theta} \alpha.
\end{equation}
The mapping T_c acts on the Fourier coefficients $\{\alpha_n\}$ of α as a convolution operator, i.e., the Fourier coefficients $\{\alpha^c_m\}$ of $T_c \alpha$ satisfy
\begin{equation}
\alpha^c_m = \sum_{n=-\infty}^{\infty} \alpha_{m-n} (i^n J_n(|c|)e^{in\varphi_c}) , \quad m \in \mathbb{Z},
\end{equation}
where $|c|$ and φ_c are the polar coordinates of c. Employing a slight abuse of notation, we also use T_c to denote the corresponding operator from l^2 to itself that maps
\begin{equation}
T_c : \{\alpha_n\} \mapsto \{\alpha^c_m\}.
\end{equation}
Note that T_c is a unitary operator, i.e. $T_c^* = T_{-c}$.

The following theorem, which we call an uncertainty principle for the translation operator, will be the main ingredient in our analysis of far field splitting.

Theorem 4.1 (Uncertainty principle for far field translation). Let $\alpha, \beta \in L^2(S^1)$ such that the corresponding Fourier coefficients $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy $\text{supp}\{\alpha_n\} \subseteq W_1$ and $\text{supp}\{\beta_n\} \subseteq W_2$ with $W_1, W_2 \subseteq \mathbb{Z}$, and let $c \in \mathbb{R}^2$. Then,
\begin{equation}
|\langle \alpha, T_c \beta \rangle_{L^2(S^1)}| \leq \frac{\sqrt{|W_1||W_2|}}{|c|^{1/3}} \|\alpha\|_{L^2(S^1)} \|\beta\|_{L^2(S^1)}.
\end{equation}

We will frequently be discussing properties of a far field α and those of its Fourier coefficients. The following notation will be a useful shorthand:
\begin{align}
\|\alpha\|_{L^p} &= \left(\int_{S^1} |\alpha(\theta)|^p\;d\theta \right)^{1/p}, \quad 1 \leq p \leq \infty, \\
\|\alpha\|_{l^p} &= \left(\sum_{n=-\infty}^{\infty} |\alpha_n|^p \right)^{1/p}, \quad 1 \leq p \leq \infty.
\end{align}
The notation emphasizes that we treat the representation of the function α by its values, or by the sequence of its Fourier coefficients as simply a way of inducing different norms. That is, both (4.4) and (4.5) describe different norms of the same function on S^1. Note that, because of the Plancherel equality (3.5), $\|\alpha\|_{L^2} = \|\alpha\|_{l^2}$, so we may just write $\|\alpha\|_2$, and we write $\langle \cdot, \cdot \rangle$ for the corresponding inner product.
Remark 4.2. We will extend the notation a little more and refer to the support of \(\alpha \) in \(S^1 \) as its \(L^0 \)-support and denote by \(\| \alpha \|_{L^0} \) the measure of \(\text{supp}(\alpha) \subseteq S^1 \). We will call the indices of the nonzero Fourier coefficients in its Fourier series expansion the \(l^0 \)-support of \(\alpha \), and use \(\| \alpha \|_{l^0} \) to denote the number of non-zero coefficients.

With this notation, theorem 4.1 becomes

Theorem 4.3 (Uncertainty principle for far field translation). Let \(\alpha, \beta \in L^2(S^1) \) and let \(c \in \mathbb{R}^2 \). Then,

\[
\langle \alpha, T_c \beta \rangle \leq \frac{\sqrt{\| \alpha \|_{l^0} \| \beta \|_{l^0}}}{|c|^{1/3}} \| \alpha \|_2 \| \beta \|_2.
\]

(4.6)

We refer to theorem 4.3 as an uncertainty principle, because, if we could take \(\beta = T_c^* \alpha \) in (4.6), it would yield

\[
1 \leq \frac{\| \alpha \|_{l^0} \| T_c^* \alpha \|_{l^0}}{|c|^{2/3}}.
\]

(4.7)

As stated, (4.7) is true but not useful, because \(\| \alpha \|_{l^0} \) and \(\| T_c^* \alpha \|_{l^0} \) cannot simultaneously be finite.\(^3\) We present the corollary only to illustrate the close analogy to the theorem 1 in [7], which treats the discrete Fourier transform (DFT) on sequences of length \(N \):

Theorem 4.4 (Uncertainty principle for the Fourier transform [7]). If \(x \) represents the sequence \(\{x_n\} \) for \(n = 0, \ldots, N - 1 \) and \(\hat{x} \) its DFT, then

\[
1 \leq \frac{\|x\|_{l^0} \|\hat{x}\|_{l^0}}{N}.
\]

(4.8)

This is a lower bound on the *time-bandwidth product.* In [7] Donoho and Stark present two important corollaries of uncertainty principles for the Fourier transform. One is the uniqueness of sparse representations of a signal \(x \) as a superposition of vectors taken from both the standard basis and the basis of Fourier modes, and the second is the recovery of this representation by \(l^1 \) minimization.

The main observation we make here is that, if we phrase our uncertainty principle as in theorem 4.3, then the far field translation operator, as well as the map from \(\alpha \) to its Fourier coefficients, satisfy an uncertainty principle. Combining the uncertainty principle with the regularized Picard criterion from section 3 yields analogs of both results in the context of the inverse source problem. These include previous results about the splitting of far fields from [9] and [10], which can be simplified and extended by viewing them as consequences of the uncertainty principle and the regularized Picard criterion.

The proof of theorem 4.3 is a simple corollary of the lemma below:

Lemma 4.5. Let \(c \in \mathbb{R}^2 \) and let \(T_c \) be the operator introduced in (4.1) and (4.3). Then, the operator norm of \(T_c : L^p(S^1) \rightarrow L^p(S^1) \), \(1 \leq p \leq \infty \), satisfies

\[
\| T_c \|_{L^p,L^p} = 1,
\]

(4.8)

whereas \(T_c : l^1 \rightarrow l^{\infty} \) fulfills

\[
\| T_c \|_{l^1,l^{\infty}} \leq \frac{1}{|c|^{1/2}}.
\]

(4.9)

\(^3\)This would imply, using (3.6), that \(\alpha \) could have been radiated by a source supported in an arbitrarily small ball centered at the origin, or centered at \(c \), but Rellich’s lemma and unique continuation show that no nonzero far field can have two sources with disjoint supports.
Proof. Recalling (4.1), we see that T_c is multiplication by a function of modulus one, so (4.8) is immediate. On the other hand, combining (4.2) with the last inequality from page 199 of [18]; more precisely,

\[|J_n(x)| < \frac{b}{|x|^{\frac{3}{2}}} \quad \text{with } b \approx 0.6749, \]

shows that

\[\|T_c\|_{l^1,l^\infty} \leq \sup_{n \in \mathbb{Z}} |J_n(|c|)| \leq \frac{1}{|c|^{\frac{3}{2}}}. \]

Proof of theorem 4.3. Using Hölder’s inequality and (4.9) we obtain that

\[|\langle \alpha, T_c \beta \rangle| \leq \|\alpha\|_{l^1} \|T_c \beta\|_{l^\infty} \leq \frac{1}{|c|^{\frac{3}{2}}} \|\alpha\|_{l^1} \|\beta\|_{l^1} \leq \frac{\sqrt{\|\alpha\|_{l^0} \|\beta\|_{l^0}}}{|c|^{\frac{1}{2}}} \|\alpha\|_{l^2} \|\beta\|_{l^2}. \]

We can improve the dependence on $|c|$ in (4.6) under hypotheses on α and β that are more restrictive, but well suited to the inverse source problem.

Theorem 4.6. Suppose that $\alpha \in l^2(-M,M)$, $\beta \in l^2(-N,N)$ with $M,N \geq 1$, and let $c \in \mathbb{R}^2$ such that $|c| > 2(M + N + 1)$. Then

\[|\langle \alpha, T_c \beta \rangle| \leq \frac{\sqrt{(2N + 1)(2M + 1)}}{|c|^{\frac{1}{2}}} \|\alpha\|_{l^2} \|\beta\|_{l^2}. \]

Proof. Because the l^0-support of β is contained in $[-N,N]$

\[\beta_m^c = \sum_{n=-N}^{N} \beta_n \left(i^{m-n} J_{m-n}(|c|) e^{i(m-n) \varphi_c} \right) \]

so

\[\sup_{-M < m < M} \left| \beta_m^c \right| \leq \|\beta\|_{l^1} \sup_{-(M+N) < n < (M+N)} \left| J_n(|c|) \right| \]

and it follows from theorem 2 of [15], using the fact that $M, N \geq 1$, together with our hypothesis, which implies that $|c| > 6$, that

\[\sup_{-(M+N) < n < (M+N)} J_n^2(|c|) \leq \frac{b}{|c|} \quad \text{with } b \approx 0.7595 \]

(see section SM2 in the supplement for details). We now simply repeat the proof of theorem 4.3, replacing the estimate for $\|T_c \beta\|_{l^\infty}$ from (4.9) with the estimate we have just established in (4.11), i.e.

\[\|T_c\|_{l^1[-N,N],l^\infty[-M,M]} \leq \frac{1}{|c|^{\frac{3}{2}}}. \]

This manuscript is for review purposes only.
We will also make use of another uncertainty principle. A glance at (3.4)–(3.5) reveals that the operator which maps α to its Fourier coefficients maps L^2 to l^2 with norm 1, L^1 to l^∞ with norm $1/\sqrt{2\pi}$, and its inverse maps l^1 to L^∞, also with norm $1/\sqrt{2\pi}$. An immediate corollary of this observation is

Theorem 4.7. Let $\alpha, \beta \in L^2(S^1)$ and let $c \in \mathbb{R}^2$. Then,

$$|\langle T_c \alpha, \beta \rangle| \leq \sqrt{\frac{\|\alpha\|_{r_0} \|\beta\|_{L^0}}{2\pi} \|\alpha\|_2 \|\beta\|_2}.$$

Proof. Combining Hölder’s inequality with (4.8) and using the mapping properties of the operator which maps α to its Fourier coefficients we find that

$$|\langle T_c \alpha, \beta \rangle| \leq \|T_c \alpha\|_{L^\infty} \|\beta\|_{L^1} \leq \|\alpha\|_{L^\infty} \|\beta\|_{L^1} \leq \frac{1}{\sqrt{2\pi}} \|\alpha\|_{l^1} \|\beta\|_{l^1} \leq \frac{1}{\sqrt{2\pi}} \sqrt{\|\alpha\|_{r_0} \|\alpha\|_2 \|\beta\|_{L^0} \|\beta\|_2}.$$

5. l^2 corollaries of the uncertainty principles. The regularized Picard criterion tells us that, up to an L^2-small error, a far field radiated by a limited power source in $B_R(0)$ is L^2-close to an α that belongs to the subspace of non-evanescent far fields, the span of $\{e^{in0}\}$ with $|n| \leq N$, where $N = N(R, P, p)$ is a little bigger than the radius R. This non-evanescent α satisfies $\|\alpha\|_{l^0} \leq 2N + 1$. The uncertainty principle will show that the angle between translates of these subspaces is bounded below when the translation parameter is large enough, so that we can split the sum of the two non-evanescent far fields into the original two summands.

Lemma 5.1. Suppose that $\gamma, \alpha_1, \alpha_2 \in L^2(S^1)$ and $c_1, c_2 \in \mathbb{R}^2$ with

$$\gamma = T_{c_1} \alpha_1 + T_{c_2} \alpha_2$$

and that $\frac{\|\alpha_1\|_{l^0} \|\alpha_2\|_{l^0}}{|c_1 - c_2|^{\frac{4}{3}}} < 1$. Then, for $i = 1, 2$

$$\|\alpha_i\|_2^2 \leq \left(1 - \frac{\|\alpha_1\|_{l^0} \|\alpha_2\|_{l^0}}{|c_1 - c_2|^{\frac{4}{3}}}
ight)^{-1} \|\gamma\|_2^2.$$

Proof. We first note that (5.1) and (4.1) imply

$$\|\gamma\|_2^2 \geq \|\alpha_1\|_2^2 + \|\alpha_2\|_2^2 - 2|\langle T_{c_1} \alpha_1, T_{c_2} \alpha_2 \rangle| = \|\alpha_1\|_2^2 + \|\alpha_2\|_2^2 - 2|\langle \alpha_1, T_{c_2 - c_1} \alpha_2 \rangle|.$$

We now use (4.6),

$$\|\gamma\|_2^2 \geq \|\alpha_1\|_2^2 + \|\alpha_2\|_2^2 - 2\sqrt{\frac{\|\alpha_1\|_{l^0} \|\alpha_2\|_{l^0}}{|c_2 - c_1|^{\frac{4}{3}}} \|\alpha_1\|_2 \|\alpha_2\|_2} = \left(1 - \frac{\|\alpha_1\|_{l^0} \|\alpha_2\|_{l^0}}{|c_2 - c_1|^{\frac{4}{3}}} \right) \|\alpha_1\|_2^2 + \left(\|\alpha_2\|_2^2 - \sqrt{\frac{\|\alpha_1\|_{l^0} \|\alpha_2\|_{l^0}}{|c_2 - c_1|^{\frac{4}{3}}} \|\alpha_1\|_2^2} \right)^2.$$

Dropping the second term now gives (5.2) for α_1, and we may interchange the roles α_1 and α_2 in the proof to obtain the estimate for α_2.

The analogous consequence of theorem 4.6 is

This manuscript is for review purposes only.
Lemma 5.2. Suppose that $\gamma \in L^2(S^1)$, $\alpha_i \in l^2(-N_i, N_i)$ for some $N_i \in \mathbb{N}$, $i = 1, 2$, and $c_1, c_2 \in \mathbb{R}^2$ with $|c_1 - c_2| > 2(N_1 + N_2 + 1)$ and

$$\gamma = T_{c_1}^* \alpha_1 + T_{c_2}^* \alpha_2,$$

and that $\frac{(2N_1 + 1)(2N_2 + 1)}{|c_1 - c_2|} < 1$. Then, for $i = 1, 2$

$$\|\alpha_i\|_2^2 \leq \left(1 - \frac{(2N_1 + 1)(2N_2 + 1)}{|c_1 - c_2|}\right)^{-1}\|\gamma\|_2^2. \tag{5.5}$$

In our application to the inverse source problem, we will know that each far field is the translation of a far field α_i, radiated by a limited power source supported in a ball centered at the origin, and therefore that all but a very small amount of the radiated power is contained in the non-evanescent part, the translation of the Fourier modes $e^{\imath \alpha \cdot x}$ for $|\alpha| < N(R, p, P)$. The estimate in the theorem below says that, if the distances between the balls is large enough, we may uniquely solve for the non-evanescent parts of the individual far fields, and that this split is stable with respect to perturbations in the data.

Theorem 5.3. Suppose that $\gamma^0, \gamma^1 \in L^2(S^1)$, $c_1, c_2 \in \mathbb{R}^2$ and $N_1, N_2 \in \mathbb{N}$ such that $|c_1 - c_2| > 2(N_1 + N_2 + 1)$ and

$$\frac{(2N_1 + 1)(2N_2 + 1)}{|c_1 - c_2|} < 1, \tag{5.6}$$

and let

$$\gamma^0 \overset{LS}{=} T_{c_1}^* \alpha^0_1 + T_{c_2}^* \alpha^0_2, \quad \alpha^0_i \in l^2(-N_i, N_i), \tag{5.7a}$$

$$\gamma^1 \overset{LS}{=} T_{c_1}^* \alpha^1_1 + T_{c_2}^* \alpha^1_2, \quad \alpha^1_i \in l^2(-N_i, N_i). \tag{5.7b}$$

Then, for $i = 1, 2$

$$\|\alpha^1_i - \alpha^0_i\|_2^2 \leq \left(1 - \frac{(2N_1 + 1)(2N_2 + 1)}{|c_1 - c_2|}\right)^{-1}\|\gamma^1 - \gamma^0\|_2^2. \tag{5.8}$$

The notation in (5.7) above means that the α^j_i are the (necessarily unique) least squares solutions to the equations $\gamma^j = T_{c_i}^* \alpha^j_i + T_{c_2}^* \alpha^j_2$. Recall that the far fields radiated by a limited power source from a ball have almost all, but not all, of their power (L^2-norm) concentrated in the Fourier modes with $n \leq N(R, p, p)$. Therefore the γ^j will typically not belong to the subspace that is the direct sum of $T_{c_1}^* l^2(-N_1, N_1) \oplus T_{c_2}^* l^2(-N_2, N_2)$, and therefore α^j_1 and α^j_2 will usually not solve equations (5.7) exactly. The estimate in (5.8) is nevertheless always true, and guarantees that the pair (α^1_1, α^1_2) is unique and that the absolute condition number of the splitting operator which maps γ to (α^1_1, α^1_2) is no larger than $\left(1 - \frac{(2N_1 + 1)(2N_2 + 1)}{|c_1 - c_2|}\right)^{-\frac{1}{2}}$.

Proof of theorem 5.3. Each γ^j can be uniquely decomposed as

$$\gamma^j = w^j + w^j_\perp, \tag{5.9}$$

where each w^j belongs to the $2N_1 + 2N_2 + 2$-dimensional subspace

$$W = T_{c_1}^* l^2(-N_1, N_1) \oplus T_{c_2}^* l^2(-N_2, N_2)$$
and each \(w_1 \) is orthogonal to \(W \). The definition of least squares solutions means that
\[
w_1 = T_{c_1}^* \alpha_1 + T_{c_2}^* \alpha_2.
\]
Subtracting gives
\[
(5.10) \quad w^1 - w^0 = T_{c_1}^* (\alpha_1 - \alpha_0^0) + T_{c_2}^* (\alpha_2 - \alpha_0^0)
\]
and applying the estimate (5.5) yields
\[
(5.11) \quad \| \alpha_1 - \alpha_0^0 \|_2^2 \leq \left(1 - \frac{(2N_1 + 1)(2N_2 + 1)}{|c_1 - c_2|} \right)^{-1} \| w^1 - w^0 \|_2^2.
\]
Finally, we note that
\[
(5.12) \quad \| \gamma^1 - \gamma^0 \|_2^2 = \| w^1 - w^0 \|_2^2 + \| w_1^1 - w_0^0 \|_2^2 \geq \| w^1 - w^0 \|_2^2,
\]
which finishes the proof.

We also have corresponding corollaries of theorem 4.7, which tell us that, if a
far field is radiated from a small ball, and measured on most of the circle, then it is
possible to recover its non-evanescent part on the entire circle. Theorem 5.5 below,
states the case where we cannot measure the far field \(\alpha = T_{c_1}^* \alpha_0 \) on a subset \(\Omega \subseteq S^1 \).

Before we state the theorem, we give the corresponding analogue of lemma 5.1
and lemma 5.2.

Lemma 5.4. Suppose that \(\gamma, \alpha, \beta \in L^2(S^1) \) and \(c \in \mathbb{R}^2 \) with
\[
\gamma = \beta + T_{c_1}^* \alpha
\]
and that \(\frac{\| \alpha \| \| \beta \|_{L^0}}{2\pi} < 1 \). Then
\[
(5.13a) \quad \| \alpha \|_2^2 \leq \left(1 - \frac{\| \alpha \| \| \beta \|_{L^0}}{2\pi} \right)^{-1} \| \gamma \|_2^2
\]
and
\[
(5.13b) \quad \| \beta \|_2^2 \leq \left(1 - \frac{\| \alpha \| \| \beta \|_{L^0}}{2\pi} \right)^{-1} \| \gamma \|_2^2.
\]

Proof. Proceeding as in (5.3)–(5.4), but replacing (4.6) by (4.13) yields the re-
sult.

Theorem 5.5. Suppose that \(\gamma^0, \gamma^1 \in L^2(S^1) \), \(c \in \mathbb{R}^2 \), \(N \in \mathbb{N} \) and \(\Omega \subseteq S^1 \) such
that \(\frac{(2N+1)|\Omega|}{2\pi} < 1 \), and let
\[
\gamma^0 \triangleq \beta^0 + T_{c_1} \alpha^0, \quad \alpha^0 \in L^2(-N,N) \text{ and } \beta^0 \in L^2(\Omega),
\]
\[
\gamma^1 \triangleq \beta^1 + T_{c_1} \alpha^1, \quad \alpha^1 \in L^2(-N,N) \text{ and } \beta^1 \in L^2(\Omega).
\]
Then
\[
(5.14a) \quad \| \alpha_1 - \alpha_0^0 \|_2^2 \leq \left(1 - \frac{(2N + 1)|\Omega|}{2\pi} \right)^{-1} \| \gamma^1 - \gamma^0 \|_2^2
\]
and
\[
(5.14b) \quad \| \beta_1 - \beta_0^0 \|_2^2 \leq \left(1 - \frac{(2N + 1)|\Omega|}{2\pi} \right)^{-1} \| \gamma^1 - \gamma^0 \|_2^2.
\]
Proof. Just as in (5.9), we decompose each γ^j

$$\gamma^j = w^j + w^j_\perp,$$

where each w^j belongs to the subspace

$$W = L^2(\Omega) \oplus T_c l^2(-N, N)$$

and each w^j_\perp is orthogonal to W. Proceeding as in (5.10)–(5.11), but using the estimates from (5.13), we find

$$\|\alpha^1 - \alpha^0\|_2^2 \leq \left(1 - \frac{(2N + 1)|\Omega|}{2\pi} \right)^{-1} \|w^1 - w^0\|_2^2$$

and

$$\|\beta^1 - \beta^0\|_2^2 \leq \left(1 - \frac{(2N + 1)|\Omega|}{2\pi} \right)^{-1} \|w^1 - w^0\|_2^2$$

and then note that (5.12) is true here as well to finish the proof. \qed

A version of theorem 5.3 with multiple well-separated components is also true (proofs of the following two theorems are available in the supplement in section SM3).

Theorem 5.6. Suppose that $\gamma^0, \gamma^1 \in L^2(S^1)$, $c_i \in \mathbb{R}^2$ and $N_i \in \mathbb{N}$, $i = 1, \ldots, I$, such that $|c_i - c_j| > 2(N_i + N_j + 1)$ for every $i \neq j$ and

$$\sqrt{2N_i + 1} \sum_{j \neq i} \frac{2N_j + 1}{|c_j - c_i|} < 1$$

for each i.

and let

$$\gamma^0 LS = \sum_{i=1}^I T_{c_i} \alpha^0_i,$$ $$\alpha^0_i \in l^2(-N_i, N_i),$$

$$\gamma^1 LS = \sum_{i=1}^I T_{c_i} \alpha^1_i,$$ $$\alpha^1_i \in l^2(-N_i, N_i).$$

Then, for $i = 1, \ldots, I$

$$\|\alpha^1_i - \alpha^0_i\|_2^2 \leq \left(1 - \sqrt{2N_i + 1} \sum_{j \neq i} \frac{2N_j + 1}{|c_j - c_i|} \right)^{-1} \|\gamma^1 - \gamma^0\|_2^2.$$

We may include a missing data component as well.

Theorem 5.7. Suppose that $\gamma^0, \gamma^1 \in L^2(S^1)$, $c_i \in \mathbb{R}^2$, $N_i \in \mathbb{N}$, $i = 1, \ldots, I$, and $\Omega \subseteq L^2(S^1)$ such that $|c_i - c_j| > 2(N_i + N_j + 1)$ for every $i \neq j$ and

$$\sqrt{\frac{|\Omega|}{2\pi}} \sum_{i=1}^I \sqrt{2N_i + 1} < 1,$$

$$\sqrt{2N_i + 1} \left(\sqrt{\frac{|\Omega|}{2\pi}} + \sum_{j \neq i} \frac{2N_j + 1}{|c_j - c_i|} \right) < 1$$

for each i.
and let
\begin{equation}
\gamma^0 \triangleq \beta^0 + \sum_{i=1}^{I} T_{c_i}^* \alpha_i^0, \quad \alpha_i^0 \in l^2(-N_i, N_i) \text{ and } \beta^0 \in L^2(\Omega),
\end{equation}

\begin{equation}
\gamma^1 \triangleq \beta^1 + \sum_{i=1}^{I} T_{c_i}^* \alpha_i^1, \quad \alpha_i^1 \in l^2(-N_i, N_i) \text{ and } \beta^0 \in L^2(\Omega).
\end{equation}

Then
\begin{equation}
\|\beta^1 - \beta^0\|_2^2 \leq \left(1 - \sqrt{\frac{2|\Omega|}{\pi}} \sum_{i} \sqrt{2N_i + 1}\right)^{-1} \|\gamma^1 - \gamma^0\|_2^2
\end{equation}

and, for \(i = 1, \ldots, I\)
\begin{equation}
\|\alpha_i^1 - \alpha_i^0\|_2^2 \leq \left(1 - \sqrt{2N_i + 1} \left(\sqrt{\frac{|\Omega|}{2\pi}} + \sum_{j \neq i} \sqrt{2N_j + 1}\right)\right)^{-1} \|\gamma^1 - \gamma^0\|_2^2.
\end{equation}

6. \(l^1\) corollaries of the uncertainty principle. The results below are analogous to those in the previous section. The main difference is that they do not require the \textit{a priori} knowledge of the size of the non-evanescent subspaces (the \(N_i\) in theorems 5.3 through 5.7).

In theorem 6.1 below, \(\gamma^0\) represents the (measured) approximate far field; the \(\alpha_i^0\) are the non-evanescent parts of the true (unknown) far fields radiated by each of the two components, which we assume are well-separated (6.1). The constant \(\delta_0\) in (6.2) accounts for both the noise and the evanescent components of the true far fields. Condition (6.3) requires that the optimization problem (6.4) be formulated with a constraint that is weak enough so that the \(\alpha_i^0\) are feasible.

Theorem 6.1. Suppose that \(\gamma^0, \alpha_i^0, \alpha_2^0 \in L^2(S^1)\) and \(c_1, c_2 \in \mathbb{R}^2\) such that
\begin{equation}
\frac{4\|\alpha_i^0\|_{l^0}}{|c_1 - c_2|^3} < 1 \quad \text{for each } i
\end{equation}

and
\begin{equation}
\|\gamma^0 - T_{c_1}^* \alpha_1^0 - T_{c_2}^* \alpha_2^0\|_2 \leq \delta_0 \quad \text{for some } \delta_0 \geq 0.
\end{equation}

If \(\delta \geq 0\) and \(\gamma \in L^2(S^1)\) with
\begin{equation}
\delta \geq \delta_0 + \|\gamma - \gamma^0\|_2
\end{equation}

and
\begin{equation}
(\alpha_1, \alpha_2) = \text{argmin} \|\alpha_1\|_{l^1} + \|\alpha_2\|_{l^1}
\end{equation}

s.t.
\begin{equation}
\|\gamma - T_{c_1}^* \alpha_1 - T_{c_2}^* \alpha_2\|_2 \leq \delta, \quad \alpha_1, \alpha_2 \in L^2(S^1),
\end{equation}

then, for \(i = 1, 2\)
\begin{equation}
\|\alpha_i^0 - \alpha_i\|_2^2 \leq \left(1 - \frac{4\|\alpha_i^0\|_{l^0}}{|c_1 - c_2|^{3}}\right)^{-1} 4\delta^2.
\end{equation}
Proof. A consequence of (6.3) is that the pair \((α^0_1, α^0_2)\) satisfies the constraint in (6.4), which implies that

\[
∥α_1∥_1 + ∥α_2∥_1 ≤ ∥α^0_1∥_1 + ∥α^0_2∥_1
\]

because \((α_1, α_2)\) is a minimizer. Additionally, with \(W_i\) representing the \(l^0\)-support of \(α^0_i\) and \(W^c_i\) its complement,

\[
∥α_i∥_1 = ∥α^0_i + (α_i - α^0_i)∥_1
\]

\[
= ∥α^0_i + (α_i - α^0_i)∥_{l^1(W_i)} + ∥α_i - α^0_i∥_{l^1(W^c_i)}
\]

\[
= ∥α^0_i + (α_i - α^0_i)∥_{l^1(W_i)} + ∥α_i - α^0_i∥_1 - ∥α_i - α^0_i∥_{l^1(W_i)}
\]

\[
≥ ∥α^0_i∥_1 + ∥α_i - α^0_i∥_1 - 2∥α_i - α^0_i∥_{l^1(W_i)}.
\]

Inserting (6.7) into (6.6) yields

\[
∥α_1 - α^0_1∥_1 + ∥α_2 - α^0_2∥_1 ≤ 2(∥α_1 - α^0_1∥_{l^1(W_i)} + ∥α_2 - α^0_2∥_{l^1(W_2)}).
\]

We now use (6.3) together with (6.2), the constraint in (6.4) and the fact that \(T^*_{e_1 - e_2}\) is an \(L^2\)-isometry to obtain

\[
4δ^2 ≥ (∥γ - γ^0∥_2 + δ_0 + δ)^2
\]

\[
≥ (∥γ - γ^0∥_2 + ∥γ - T^*_{e_1}α^0_1 - T^*_{e_2}α^0_2∥_2 + ∥γ - T^*_{e_1}α_1 - T^*_{e_2}α_2∥_2)^2
\]

\[
≥ ∥T^*_{e_1}(α_1 - α^0_1) + T^*_{e_2}(α_2 - α^0_2)∥_2^2
\]

\[
= ∥α_1 - α^0_1 + T^*_{e_2 - e_1}(α_2 - α^0_2)∥_2^2
\]

\[
≥ ∥α_1 - α^0_1∥_2^2 + ∥α_2 - α^0_2∥_2^2 - 2∥α_1 - α^0_1, T^*_{e_2 - e_1}(α_2 - α^0_2)∥.
\]

Hölder’s inequality, (4.9), and (6.8) show

\[
4δ^2 ≥ ∥α_1 - α^0_1∥_2^2 + ∥α_2 - α^0_2∥_2^2 - \frac{2}{∥c_1 - c_2∥^3} ∥α_1 - α^0_1∥_1 ∥α_2 - α^0_2∥_1
\]

\[
≥ ∥α_1 - α^0_1∥_2^2 + ∥α_2 - α^0_2∥_2^2 - \frac{1}{2∥c_1 - c_2∥^3} (∥α_1 - α^0_1∥_1^2 + ∥α_2 - α^0_2∥_1^2)^2
\]

\[
≥ ∥α_1 - α^0_1∥_2^2 + ∥α_2 - α^0_2∥_2^2 - \frac{2}{∥c_1 - c_2∥^3} (∥α_1 - α^0_1∥_{l^1(W_1)} + ∥α_2 - α^0_2∥_{l^1(W_2)})^2.
\]

Using Hölder’s inequality once more yields

\[
4δ^2 ≥ ∥α_1 - α^0_1∥_2^2 + ∥α_2 - α^0_2∥_2^2
\]

\[
- \frac{2}{∥c_1 - c_2∥^3} (∥W_1∥^2 ∥α_1 - α^0_1∥_2^2 + |W_2|^2 ∥α_2 - α^0_2∥_2^2)^2
\]

\[
≥ ∥α_1 - α^0_1∥_2^2 + ∥α_2 - α^0_2∥_2^2
\]

\[
- \frac{4}{∥c_1 - c_2∥^3} (∥W_1∥^2 ∥α_1 - α^0_1∥_2^2 + |W_2|^2 ∥α_2 - α^0_2∥_2^2)^2,
\]

which implies (6.5) because \(|W_i| = ∥α^0_i∥_p\).

Assuming that some a priori information on the size of the non-evanescent subspaces is available and that the distances between the source components is large relative to their dimensions, we can improve the dependence of the stability estimates on the distances.
Corollary 6.2. If we add to the hypothesis of theorem 6.1:

\[\alpha_i^0, \alpha_i \in l^2(-N_i, N_i) \quad \text{and} \quad |c_1 - c_2| > 2(N_1 + N_2 + 1) \]

for some \(N_1, N_2 \in \mathbb{N} \) and replace (6.1) with

\[
\frac{4\|\alpha_i^0\|_{l^2}}{|c_1 - c_2|^2} < 1 \quad \text{for each } i
\]

then, for \(i = 1, 2 \)

\[
\|\alpha_i^0 - \alpha_i\|^2 \leq \left(1 - \frac{4\|\alpha_i^0\|_{l^0}}{|c_1 - c_2|^2}\right)^{-1} 4\delta^2.
\]

Proof. Replace (4.9) by (4.12) in (6.9)–(6.10).

The analogue of theorem 5.5 for data completion but without \textit{a priori} knowledge on the size of the non-evanescent subspaces is

Theorem 6.3. Suppose that \(\gamma^0, \alpha^0 \in L^2(S^1) \), \(\Omega \subseteq S^1 \), \(\beta^0 \in L^2(\Omega) \) and \(c \in \mathbb{R}^2 \) such that

\[
\frac{2\|\alpha^0\|_{l^0} |\Omega|}{\pi} < 1
\]

and

\[
\|\gamma^0 - T_c^\ast \alpha^0 - \beta^0\|_2 \leq \delta_0 \quad \text{for some } \delta_0 \geq 0.
\]

If \(\delta \geq 0 \) and \(\gamma \in L^2(S^1) \) with

\[
\delta \geq \delta_0 + \|\gamma - \gamma^0\|_2
\]

and

\[
\alpha = \arg\min \|\alpha\|_{l^1} \quad \text{s.t.} \quad \|\gamma - \beta - T_c^\ast \alpha\|_2 \leq \delta, \ \alpha \in L^2(S^1), \ \beta \in L^2(\Omega),
\]

then

\[
\|\alpha^0 - \alpha\|^2 \leq \left(1 - \frac{2\|\alpha^0\|_{l^0} |\Omega|}{\pi}\right)^{-1} 4\delta^2
\]

and

\[
\|\beta^0 - \beta\|^2 \leq \left(1 - \frac{2\|\alpha^0\|_{l^0} |\Omega|}{\pi}\right)^{-1} 4\delta^2.
\]

Proof. Proceeding as in (6.6)–(6.8) we find that

\[
\|\alpha - \alpha^0\|_{l^1} \leq 2\|\alpha - \alpha^0\|_{l^1(W)}
\]

with \(W \) representing the \(l^0 \)-support of \(\alpha^0 \). Applying similar arguments as in (6.9) yields

\[
4\delta^2 \geq \|\alpha - \alpha^0\|_2^2 + \|\beta - \beta^0\|_2^2 - 2|\langle T_c^\ast (\alpha - \alpha^0), \beta - \beta^0 \rangle|.
\]
We now use Hölder’s inequality, (4.1), the mapping properties of the operator which
maps \(\alpha \) to its Fourier coefficients and \((6.15)\) to obtain
\[
4\delta^2 \geq \| \alpha - \alpha^0 \|_2^2 + \| \beta - \beta^0 \|_2^2 - 2\| T^*_c (\alpha - \alpha^0) \|_{L^\infty} \| \beta - \beta^0 \|_{L^1} \\
= \| \alpha - \alpha^0 \|_2^2 + \| \beta - \beta^0 \|_2^2 - 2\| \alpha - \alpha^0 \|_{L^\infty} \| \beta - \beta^0 \|_{L^1} \\
\geq \| \alpha - \alpha^0 \|_2^2 + \| \beta - \beta^0 \|_2^2 - \frac{2}{\sqrt{2\pi}} \| \alpha - \alpha^0 \|_{L^1} \| \beta - \beta^0 \|_{L^1} \\
(6.16) \geq \| \alpha - \alpha^0 \|_2^2 + \| \beta - \beta^0 \|_2^2 - \frac{2}{\sqrt{2\pi}} \| W \|_{L^1} \| \alpha - \alpha^0 \|_{L^2} \| \beta - \beta^0 \|_{L^2} \\
\geq \left(1 - \frac{2}{\sqrt{2\pi}} |W||\Omega| \right) \| \alpha - \alpha^0 \|_2^2 + \left(\| \beta - \beta^0 \|_2 - \frac{2}{\sqrt{2\pi}} \| W \|_{L^1} \| \alpha - \alpha^0 \|_{L^2} \right)^2.
\]

Dropping the second term gives \((6.14)\) for \(\alpha \) because \(|W| = \| \alpha^0 \|_{L^1} \), and we may
interchange the roles of \(\alpha \) and \(\beta \) when completing the square in the last line of \((6.16)\)
to obtain the estimate for \(\beta \).

Next we consider sources supported on sets with multiple disjoint components.

Theorem 6.4. Suppose that \(\gamma^0, \alpha_i^0 \in L^2(S^1) \) and \(c_i \in \mathbb{R}^2, i = 1, \ldots, I \) such that
\[
(6.17) \max_{j \neq k} \frac{1}{|c_k - c_j|^2} (I - 1) \| \alpha_i^0 \|_{L^2} < 1 \quad \text{for each } i
\]
and
\[
\| \gamma^0 - \sum_{i=1}^I T^*_c \alpha_i^0 \|_2 \leq \delta_0 \quad \text{for some } \delta_0 \geq 0.
\]

If \(\delta \geq 0 \) and \(\gamma \in L^2(S^1) \) with
\[
\delta \geq \delta_0 + \| \gamma - \gamma^0 \|_2
\]
and
\[
(6.18) \quad (\alpha_1, \ldots, \alpha_I) = \arg\min_{\alpha_i} \sum_{i=1}^I \| \alpha_i \|_{L^1} \quad \text{s.t. } \| \gamma - \sum_{i=1}^I T^*_c \alpha_i \|_2 \leq \delta, \; \alpha_i \in L^2(S^1),
\]
then, for \(i = 1, \ldots, I \)
\[
\| \alpha_i^0 - \alpha_i \|_2^2 \leq \left(1 - \max_{j \neq k} \frac{1}{|c_k - c_j|^2} (I - 1) \| \alpha_i^0 \|_{L^1} \right)^{-1} 4\delta^2.
\]

Proof. Proceeding as in \((6.6)-(6.8)\) we find that
\[
(6.19) \quad \sum_{i=1}^I \| \alpha_i - \alpha_i^0 \|_{L^1} \leq 2 \sum_{i=1}^I \| \alpha_i - \alpha_i^0 \|_{L^2(W_i)}
\]
with \(W_i \) representing the \(i^\text{th} \)-support of \(\alpha_i^0 \). Applying similar arguments as in \((6.9)-(6.10)\)
and using the inequality \((\text{SM5.3})\) from section SM5 in the supplement and

This manuscript is for review purposes only.
(6.19) we obtain

\[4\delta^2 \geq \sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|^2 - \sum_{i=1}^{I} \sum_{j \neq i} |(\alpha_i - \alpha_i^0, T_{c_i}c_j(\alpha_j - \alpha_j^0))| \]

\[\geq \sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|^2 - \sum_{i=1}^{I} \sum_{j \neq i} \frac{1}{|c_i - c_j|^\frac{1}{3}} \|\alpha_i - \alpha_i^0\|_i \|\alpha_j - \alpha_j^0\|_i \]

\[\geq \sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|^2 - \max_{j \neq k} \frac{1}{|c_j - c_k|^\frac{1}{3}} \left(\sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|_i \right)^2 \]

(6.20)

\[\geq \sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|^2 - \max_{j \neq k} \frac{1}{|c_j - c_k|^\frac{1}{3}} \left(\frac{I-1}{I} \right) \left(\sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|_i \right)^2 \]

Applying Hölder’s inequality and (SM5.2) from section SM5 in the supplement yields

\[4\delta^2 \geq \sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|^2 - \max_{j \neq k} \frac{1}{|c_j - c_k|^\frac{1}{3}} \left(\frac{I-1}{I} \right) \left(\sum_{i=1}^{I} W_i \|\alpha_i - \alpha_i^0\|_2 \right)^2 \]

(6.21)

\[\geq \sum_{i=1}^{I} \|\alpha_i - \alpha_i^0\|^2 - \max_{j \neq k} \frac{1}{|c_j - c_k|^\frac{1}{3}} (I-1) \sum_{i=1}^{I} W_i \|\alpha_i - \alpha_i^0\|^2 \]

where \(|W_i| = \|\alpha_i^0\|_\rho\).

As in corollary 6.2 we can improve these estimates, under the assumption that some a priori knowledge of the size of the non-evanescent subspaces is available and that the individual source components are sufficiently far apart from each other.

COROLLARY 6.5. If we add to the hypothesis of theorem 6.4:

\[\alpha_i^0, \alpha_i \in L^2(-N_i, N_i) \text{ for each } i \text{ and } |c_i - c_j| > 2(N_i + N_j + 1) \text{ for every } i \neq j \]

for some \(N_1, \ldots, N_I \in \mathbb{N}\), and replace (6.17) with

\[\max_{j \neq k} \frac{1}{|c_k - c_j|^\frac{1}{3}} 4(I-1)\|\alpha_i^0\|_\rho < 1 \text{ for each } i, \]

the conclusion becomes, for \(i = 1, \ldots, I\)

\[\|\alpha_i^0 - \alpha_i\|^2 \leq \left(1 - \max_{j \neq k} \frac{1}{|c_k - c_j|^\frac{1}{3}} 4(I-1)\|\alpha_i^0\|_\rho \right)^{-1} 4\delta^2. \]

Proof. Replace (4.9) by (4.12) in (6.20).
\[\beta^0 \in L^2(\Omega) \text{ such that} \]

\[
\frac{2}{\sqrt{2\pi}} \sum_{i=1}^{I} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} < 1 ,
\]

\[
\max_{j \neq k} \frac{1}{|c_k - c_j|^2} 4(I - 1) \| \alpha^0_i \|_{\ell^0} + \frac{2}{\sqrt{2\pi}} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} < 1 \quad \text{for each } i ,
\]

and

\[
\gamma^0 - \beta^0 - \sum_{i=1}^{I} T_{c_i} \alpha^0_i \|_2 \leq \delta_0 \quad \text{for some } \delta_0 \geq 0 .
\]

If \(\delta \geq 0 \) and \(\gamma \in L^2(S^1) \) with

\[\delta \geq \delta_0 + \| \gamma - \gamma^0 \|_2 \]

and

\[
(\alpha_1, \ldots, \alpha_I) = \text{argmin} \sum_{i=1}^{I} \| \alpha_i \|_{\ell^1} \]

\[
\text{s.t. } \quad \| \gamma - \beta - \sum_{i=1}^{I} T_{c_i} \alpha_i \|_2 \leq \delta , \quad \alpha_i \in L^2(S^1) , \quad \beta \in L^2(\Omega) ,
\]

then

\[
\| \beta^0 - \beta \|_2^2 \leq \left(1 - \frac{2}{\sqrt{2\pi}} \sum_{i=1}^{I} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} \right)^{-1} 4\delta^2
\]

and, for \(i = 1, \ldots, I \)

\[
\| \alpha^0_i - \alpha_i \|_2^2 \leq \left(1 - \max_{j \neq k} \frac{1}{|c_k - c_j|^2} 4(I - 1) \| \alpha^0_i \|_{\ell^0} \right) - \frac{2}{\sqrt{2\pi}} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} < 1 \quad \text{for each } i ,
\]

the conclusion \(6.24b \) becomes, for \(i = 1, \ldots, I \)

\[
\| \alpha^0_i - \alpha_i \|_2^2 \leq \left(1 - \max_{j \neq k} \frac{1}{|c_k - c_j|^2} 4(I - 1) \| \alpha^0_i \|_{\ell^0} \right) - \frac{2}{\sqrt{2\pi}} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} < 1 \]

Again, including a priori information of the size of the non-evanescent subspaces and assuming that the individual source components are well separated, the result can be improved:

Corollary 6.7. If we add to the hypothesis of theorem 6.6:

\[\alpha^0_i , \alpha_i \in L^2(-N_i, N_i) \text{ for each } i \text{ and } |c_i - c_j| > 2(N_i + N_j + 1) \text{ for every } i \neq j \]

for some \(N_1, \ldots, N_I \in \mathbb{N} \), and replace \(6.22b \) with

\[
\max_{j \neq k} \frac{1}{|c_k - c_j|^2} 4(I - 1) \| \alpha^0_i \|_{\ell^0} + \frac{2}{\sqrt{2\pi}} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} < 1 \quad \text{for each } i ,
\]

the conclusion \(6.24b \) becomes, for \(i = 1, \ldots, I \)

\[
\| \alpha^0_i - \alpha_i \|_2^2 \leq \left(1 - \max_{j \neq k} \frac{1}{|c_k - c_j|^2} 4(I - 1) \| \alpha^0_i \|_{\ell^0} \right) - \frac{2}{\sqrt{2\pi}} \sqrt{\Omega \| \alpha^0_i \|_{\ell^0}} < 1 \]

\[\text{for some } N_1, \ldots, N_I \in \mathbb{N} . \]
7. Conditioning, resolution, and wavelength. So far, we have suppressed
the dependence on the wavenumber k. We restore it here, and consider the con-
sequences related to conditioning and resolution. We confine our discussion to the-
orem 5.3, assuming that the γ^j, $j = 1, 2$, represent far fields that are radiated by
superpositions of limited power sources supported in balls $B_{R_i}(c_i)$, $i = 1, 2$, and that
accordingly, for $k = 1$ (following our discussion at the end of section 3), the numbers
$N_i \gtrsim R_i$ are just a little bigger than the radii of these balls. This becomes $N_i \gtrsim kR_i$
when we return to conventional units, and the estimate (5.8) then depends on the
quantity
\begin{equation}
(2N_1 + 1)(2N_2 + 1) \over k|c_1 - c_2|.
\end{equation}

Writing $V_i := T_{c_i}^* l^2(-N_i, N_i)$ and denoting by $P_i : l^2 \to l^2$ the orthogonal projection
onto V_i, $i = 1, 2$, we have $V_1 \cap V_2 = \{0\}$ if $c_1 \neq c_2$, and the angle θ_{12} between
these subspaces is given by
\begin{equation}
\cos \theta_{12} = \sup_{\alpha_1 \in V_1, \alpha_2 \in V_2} \frac{|(\alpha_1, \alpha_2)|}{\|\alpha_1\|_2 \|\alpha_2\|_2} = \sup_{\alpha_1, \alpha_2 \in \ell^2} \frac{|(P_1 \alpha_1, P_2 \alpha_2)|}{\|\alpha_1\|_2 \|\alpha_2\|_2} = \|P_1 P_2\|_{l^2, l^2}.
\end{equation}

A glance at the proof of lemma 5.1 reveals that the square root of (7.1) is just a
lower bound for this cosine. Furthermore, the least squares solutions to (5.7) can be
constructed from simple formulas
\begin{align*}
\alpha_1^j &= (I - P_1 P_2)^{-1} P_1 (I - P_2) \gamma^j =: P_{1|2} \gamma^j, \\
\alpha_2^j &= (I - P_2 P_1)^{-1} P_2 (I - P_1) \gamma^j =: P_{2|1} \gamma^j,
\end{align*}
where $P_{1|2}$ and $P_{2|1}$ denote the projection onto V_1 along V_2 and vice versa. These
satisfy
\begin{equation}
\|P_{1|2}\|_{l^2, l^2} = \|P_{2|1}\|_{l^2, l^2} = \csc \theta_{12} = \left(\frac{1}{1 - \cos^2 \theta_{12}}\right)^{1/2}.
\end{equation}

Consequently $\csc \theta_{12}$ is the absolute condition number for the splitting problem (5.7),
and Theorem 5.3 (with our choice of N_1 and N_2) essentially says that
\begin{equation}
(7.2) \quad \csc(\theta_{12}) \leq \frac{1}{\sqrt{1 - \frac{(2N_1 + 1)(2N_2 + 1)}{k|c_1 - c_2|}}} \leq \frac{1}{\sqrt{1 - \frac{(2kR_1 + 1)(2kR_2 + 1)}{k|c_1 - c_2|}}}.
\end{equation}

We will include an example below to show that, at least for large distances, the
dependence on k in estimate in (7.2) is sharp. This means that, for a fixed geometry
($(c_1, R_1), (c_2, R_2)$), the condition number increases with k. Because resolution is
proportional to wavelength, this means that we cannot increase resolution by simply
increasing the wavenumber without increasing the dynamic range of the sensors (i.e.
the number of significant figures in the measured data). Note that as k increases,
the dimensions of the subspaces $V_i = T_{c_i}^* l^2(-N_i, N_i) \approx T_{c_i}^* l^2(-kR_i, kR_i)$ increase.
The increase in the number of significant Fourier coefficients (non-evanescent Fourier
modes) is the way we see higher resolution in this problem.

The situation changes considerably if we replace the limited power source radiated
from $B_{R_i}(c_1)$ by a point source with singularity in c_1. Then we can choose for V_1 a
one-dimensional subspace of l^2 (spanned by the zeroth order Fourier mode translated

This manuscript is for review purposes only.
by $T_{c_1}^*$, and accordingly set $N_1 = R_1 = 0$. Consequently, the estimate (7.2) reduces to

$$
csc(\theta_{12}) \leq \frac{1}{\sqrt{1 - \frac{2N_2 + 1}{k|c_1 - c_2|}}} \lesssim \frac{1}{\sqrt{1 - \frac{2kR_2 + 1}{k|c_1 - c_2|}}}.
$$

Since numerator and denominator have the same units, the conditioning of the splitting operator does not depend on k in this case.

This has immediate consequences for the inverse scattering problem: Qualitative reconstruction methods like the linear sampling method [2] or the factorization method [13] determine the support of an unknown scatterer by testing pointwise whether the far field of a point source belongs to the range of a certain restricted far field operator, mapping sources supported inside the scatterer to their radiated far field. The inequality (7.3) indeed shows that (using these qualitative reconstruction algorithms for the inverse scattering problem) one can increase resolution by simply increasing the wave number.

Finally, if we replace both sources by point sources with singularities in c_1 and c_2, respectively, then we can choose both subspaces V_1 and V_2 to be one-dimensional, and accordingly set $N_1 = N_2 = R_1 = R_2 = 0$. The estimate (7.2) reduces to

$$
csc(\theta_{12}) \leq \frac{1}{\sqrt{1 - \frac{1}{k|c_1 - c_2|}}},
$$
i.e., in this case the conditioning of the splitting operator improves with increasing wave number k. MUSIC-type reconstruction methods [5] for inverse scattering problems with infinitesimally small scatterers recover the locations of a collection of unknown small scatterers by testing pointwise whether the far field of a point source belongs to the range of a certain restricted far field operator, mapping point sources with singularities at the positions of the small scatterers to their radiated far field. From (7.4) we conclude that (using MUSIC-type reconstruction algorithms for the inverse scattering problem with infinitesimally small scatterers) one can increase resolution by simply increasing the wave number and the reconstruction becomes more stable for higher frequencies.

8. **An analytic example.** The example below illustrates that the estimate of the cosine of the angle between two far fields radiated by two sources supported in balls $B_{R_1}(c_1)$ and $B_{R_2}(c_2)$, respectively, cannot be better than proportional to the quantity

$$\sqrt{\frac{kR_1R_2}{|c_1 - c_2|}}.
$$

As pointed out in the previous section, we need only construct the example for $k = 1$. We will let f be a single layer source supported on a horizontal line segment of width W, and g be the same source, translated vertically by a distance d (i.e., $c_1 = (0,0)$ and $c_2 = (0,d)$). Specifically, with H denoting the Heavyside or indicator function, and δ the dirac mass:

$$
f = \frac{1}{\sqrt{W}} H_{|x| < W} \delta_{y=0}
$$

$$
g = \frac{1}{\sqrt{W}} H_{|x| < W} \delta_{y=d}
$$

This manuscript is for review purposes only.
The far fields radiated by \(f\) and \(g\) are:

\[
\alpha_f(\theta) = \mathcal{F}f = \frac{2\sin(W \cos t)}{\sqrt{W \cos t}}
\]

\[
\alpha_g(\theta) = \mathcal{F}g = e^{-id\sin t} \frac{2\sin(W \cos t)}{\sqrt{W \cos t}}
\]

for \(\theta = (\cos t, \sin t) \in S^1\). Accordingly

\[
\|\alpha_f\|_2^2 = \|\alpha_g\|_2^2 = 4 \int_0^{2\pi} \frac{\sin^2(W \cos t)}{(W \cos t)^2} \, W \, dt = 8 \int_{-W}^W \frac{\sin^2(\xi)}{\xi^2} \frac{1}{\sqrt{1 - \xi^2}} \, d\xi
\]

\[
\geq 8 \int_{-W}^W \frac{\sin^2(\xi)}{\xi^2} \, d\xi = 8 \int_{-\infty}^{\infty} \frac{\sin^2(\xi)}{\xi^2} \, d\xi - 16 \int_{W}^{\infty} \frac{\sin^2(\xi)}{\xi^2} \, d\xi,
\]

and we can evaluate the first integral on the right hand side using the Plancherel equality as \(\frac{\sin \xi}{2\xi}\) is the Fourier transform of the characteristic function of the interval \([-1, 1]\), and estimate the second, yielding

\[
\|\alpha_f\|_2^2 \geq 8\left(\pi - \frac{2}{W}\right).
\]

On the other hand, for \(d \gg W\), according to the principle of stationary phase (there are stationary points at \(\pm \frac{\pi}{4}\))

\[
\langle \alpha_f, \alpha_g \rangle = 4W \int_0^{2\pi} \frac{\sin^2(W \cos t)}{(W \cos t)^2} e^{-id\sin t} \, dt = 8\sqrt{2\pi} \frac{W}{\sqrt{d}} \cos\left(d - \frac{\pi}{4}\right) + O(d^{-\frac{3}{2}}),
\]

which shows that for \(d \gg W \gg 1\)

\[
\frac{\langle \alpha_f, \alpha_g \rangle}{\|\alpha_f\|_2\|\alpha_g\|_2} \approx \sqrt{\frac{2W}{\pi \sqrt{d}}} \cos\left(d - \frac{\pi}{4}\right),
\]

which decays no faster than that predicted by theorem 5.3.

9. Numerical examples. Next we consider the numerical implementation of the \(l^2\) approach from section 5 and the \(l^1\) approach from section 6 for far field splitting and data completion simultaneously (cf. theorem 5.7 and theorem 6.6). Since both schemes are extensions of corresponding algorithms for far field splitting as described in [9] (least squares) and [10] (basis pursuit), we just briefly comment on modifications that have to be made to include data completion and refer to [9, 10] for further details.

Given a far field \(\alpha = \sum_{i=1}^I T_{c_i}^* \alpha_i\), that is a superposition of far fields \(T_{c_i}^* \alpha_i\) radiated from balls \(B_{R_i}(c_i)\), for some \(c_i \in \mathbb{R}^2\) and \(R_i > 0\), we assume in the following that we are unable to observe all of \(\alpha\) and that a subset \(\Omega \subseteq S^1\) is unobserved. The aim is to recover \(\alpha|_{\Omega}\) from \(\alpha|_{S^1\setminus\Omega}\) and a priori information on the location of the supports of the individual source components \(B_{R_i}(c_i), i = 1, \ldots, I\).

We first consider the \(l^2\) approach from section 5 and write \(\gamma := \alpha|_{S^1\setminus\Omega}\) for the observed far field data and \(\beta := -\alpha|_{\Omega}\). Accordingly,

\[
\gamma = \beta + \sum_{i=1}^I T_{c_i}^* \alpha_i,
\]

i.e., we are in the setting of theorem 5.7. Using the shorthand \(V_{\Omega} := L^2(\Omega)\) and \(V_i := T_{c_i}^* l^2(-N_i, N_i), i = 1, \ldots, I\), the least squares problem (5.15) is equivalent to
seeking approximations $\tilde{\beta} \in V_\Omega$ and $\tilde{\alpha}_i \in l^2(-N_i, N_i)$, $i = 1, \ldots, I$, satisfying the Galerkin condition

$$
(9.1) \quad (\tilde{\beta} + T_{c_i}^* \tilde{\alpha}_1 + \cdots + T_{c_I}^* \tilde{\alpha}_I, \phi) = (\gamma, \phi) \quad \text{for all } \phi \in V_\Omega \oplus V_1 \oplus \cdots \oplus V_I.
$$

The size of the individual subspaces depends on the a priori information on R_1, \ldots, R_I.

Following our discussion at the end of section 3 we choose $N_j = \frac{5}{2} k R_j$ in our numerical example below. Denoting by P_Ω and P_1, \ldots, P_I the orthogonal projections onto V_Ω and V_1, \ldots, V_I, respectively, (9.1) is equivalent to the linear system

$$
(9.2) \quad \tilde{\beta} + P_\Omega P_1 T_{c_1}^* \tilde{\alpha}_1 + \cdots + P_\Omega P_I T_{c_I}^* \tilde{\alpha}_I = 0,
$$

$$
P_1 P_\Omega \tilde{\beta} + P_1 T_{c_1}^* \tilde{\alpha}_1 + \cdots + P_1 P_I T_{c_I}^* \tilde{\alpha}_I = P_1 \gamma,
$$

$$
\vdots
$$

$$
P_1 P_\Omega \tilde{\beta} + P_1 P_I T_{c_I}^* \tilde{\alpha}_1 + \cdots + T_{c_I}^* \tilde{\alpha}_I = P_1 \gamma.
$$

Explicit matrix representations of the individual matrix blocks in (9.2) follow directly from (4.2)–(4.3) (see [9, lemma 3.3] for details) for P_1, \ldots, P_I and by applying a discrete Fourier transform to the characteristic function on $S^1 \setminus \Omega$ for P_Ω. Accordingly, the block matrix corresponding to the entire linear system can be assembled, and the linear system can be solved directly. The estimates from theorem 5.7 give bounds on the absolute condition number of the system matrix.

The main advantage of the l^1 approach from section 6 is that no a priori information on the radii R_i of the balls $B_{R_i}(c_i)$, $i = 1, \ldots, I$, containing the individual source components is required. However, we still assume that a priori knowledge of the centers c_1, \ldots, c_I of such balls is available. Using the orthogonal projection P_Ω onto $L^2(\Omega)$, the basis pursuit formulation from theorem 6.6 can be rewritten as

$$
(9.3) \quad (\tilde{\alpha}_1, \ldots, \tilde{\alpha}_I) = \text{argmin} \sum_{i=1}^I \|\alpha_i\|_{l^1} \quad \text{s.t.} \quad \|\gamma - P_\Omega(\sum_{i=1}^I T_{c_i}^* \alpha_i)\|_2 \leq \delta, \alpha_i \in L^2(S^1).
$$

Accordingly, $\tilde{\beta} := \sum_{i=1}^I (T_{c_i}^* \tilde{\alpha}_i)|_\Omega$ is an approximation of the missing data segment. It is well known that the minimization problem from (9.3) is equivalent to minimizing the Tikhonov functional

$$
(9.4) \quad \Psi_\mu(\alpha_1, \ldots, \alpha_I) = \|\gamma - P_\Omega(\sum_{i=1}^I T_{c_i}^* \alpha_i)\|^2_{l^2} + \mu \sum_{i=1}^I \|\alpha_i\|_{l^1},
$$

$$
[\alpha_1, \ldots, \alpha_m] \in l^2 \times \cdots \times l^2, \text{for a suitably chosen regularization parameter } \mu > 0 \text{ (see, e.g., [8, proposition 2.2]). The unique minimizer of this functional can be approximated using (fast) iterative soft thresholding (cf. [1, 4]).}
$$

Apart from the projection P_Ω, which can be implemented straightforwardly, our numerical implementation analogously to the implementation for the splitting problem described in [10], and also the convergence analysis from [10] carries over.

Example 9.1. We consider a scattering problem with three obstacles as shown in figure 9.1 (left), which are illuminated by a plane wave $u'(x) = e^{ikx \cdot d}$, $x \in \mathbb{R}$, with incident direction $d = (1, 0)$ and wave number $k = 1$ (i.e., the wave length is $\lambda = 2\pi \approx 6.28$). Assuming that the ellipse is sound soft whereas the kite and the nut

In [10] we used additional weights in the l^1 minimization problem to ensure that its solution indeed gives the exact far field split. Here we don’t use these weights, but our estimates from section 6 imply that the solution of (9.3) and (9.4) is very close to the true split.
are sound hard, the scattered field u^s satisfies the homogeneous Helmholtz equation outside the obstacles, the Sommerfeld radiation condition at infinity, and Dirichlet (ellipse) or Neumann boundary conditions (kite and nut) on the boundaries of the obstacles. We simulate the corresponding far field α of u^s on an equidistant grid with 512 points on the unit sphere S^1 using a Nyström method (cf. [3, 14]). Figure 9.1 (middle) shows the real part (solid line) and the imaginary part (dashed line) of α. Since the far field α can be written as a superposition of three far fields radiated by three individual smooth sources supported in arbitrarily small neighborhoods of the scattering obstacles (cf., e.g., [17, lemma 3.6]), this example fits into the framework of the previous sections.

We assume that the far field cannot be measured on the segment

$$\Omega = \{\theta = (\cos t, \sin t) \in S^1 \mid \pi/2 < t < \pi/2 + \pi/3\},$$

i.e., $|\Omega| = \pi/3$. We first apply the least squares procedure and use the dashed circles shown in figure 9.1 (left) as a priori information on the approximate source locations $B_{R_i}(c_i), i = 1, 2, 3$. More precisely, $c_1 = (24, -4), c_2 = (-22, 23), c_3 = (-15, -20)$ and $R_1 = 5, R_2 = 6$ and $R_3 = 4$. Accordingly we choose $N_1 = 7, N_2 = 9$ and $N_3 = 6$, and solve the linear system (9.2).

Figure 9.2 shows a plot of the observed data γ (left), of the reconstruction of the missing data segment obtained by the least squares algorithm and of the difference
Fig. 9.3. Reconstruction of the basis pursuit scheme: Observed far field γ (left), reconstruction of the missing part $\alpha|_\Omega$ (middle), and difference between exact far field and reconstructed far field (right).

between the exact far field and the reconstructed far field. Again the solid line corresponds to the real part while the dashed line corresponds to the imaginary part. The condition number of the matrix is 5.4×10^4. We note that the missing data component in this example is actually too large for the assumptions of theorem 5.7 to be satisfied. Nevertheless the least squares approach still gives good results.

Applying the (fast) iterative soft shrinkage algorithm to this example (with regularization parameter $\mu = 10^{-3}$ in (9.4)) does not give a useful reconstruction. As indicated by the estimates in theorem 6.6 the l^1 approach seems to be a bit less stable. Hence we halve the missing data segment, consider in the following

$$\Omega = \{ \theta = (\cos t, \sin t) \in S^1 | \pi/2 < t < \pi/2 + \pi/6 \},$$

i.e., $|\Omega| = \pi/6$, and apply the l^1 reconstruction scheme to this data. Figure 9.3 shows a plot of the observed data γ (left), of the reconstruction of the missing data segment obtained by the fast iterative soft shrinkage algorithm (with $\mu = 10^{-3}$) after 10^3 iterations (the initial guess is zero) and of the difference between the exact far field and the reconstructed far field.

The behavior of both algorithms in the presence of noise in the data depends crucially on the geometrical setup of the problem (i.e. on its conditioning). The smaller the missing data segment is and the smaller the dimensions of the individual source components are relative to their distances, the more noise these algorithms can handle.

Conclusions. We have considered the source problem for the two-dimensional Helmholtz equation when the source is a superposition of finitely many well-separated compactly supported source components. We have presented stability estimates for numerical algorithms to split the far field radiated by this source into the far fields corresponding to the individual source components and to restore missing data segments. Analytic and numerical examples confirm the sharpness of these estimates and illustrate the potential and limitations of the numerical schemes.

The most significant observations are: (i) The conditioning of far field splitting and data completion depends on the dimensions of the source components, their relative distances with respect to wavelength and the size of the missing data segment. The results clearly suggest combining data completion with splitting whenever possible in order to improve the conditioning of the data completion problem. (ii) The
conditioning of far field splitting and data completion depends on wave length and
deteriorates with increasing wave number. Therefore, in order to increase resolution
one not only has to increase the wave number but also the dynamic range of the
sensors used to measure the far field data.

REFERENCES

1457.
[9] R. Griesmaier, M. Hanke, and J. Sylvester, Far field splitting for the Helmholtz equation,
[10] R. Griesmaier and J. Sylvester, Far field splitting by iteratively reweighted ℓ^1 minimization,
[12] F. Ben Hassen, J. Liu, and R. Potthast, On source analysis by wave splitting with applica-
[14] R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory,
1525–1548.
197–215.