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Abstract. Starting with far field data of time-harmonic acoustic or electromagnetic waves radi-4
ated by a collection of compactly supported sources in two-dimensional free space, we develop criteria5
and algorithms for the recovery of the far field components radiated by each of the individual sources,6
and the simultaneous restoration of missing data segments. Although both parts of this inverse prob-7
lem are severely ill-conditioned in general, we give precise conditions relating the wavelength, the8
diameters of the supports of the individual source components and the distances between them, and9
the size of the missing data segments, which guarantee that stable recovery in presence of noise is10
possible. The only additional requirement is that a priori information on the approximate location of11
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of our results and to illustrate the performance of corresponding reconstruction algorithms, and we13
discuss consequences for stability and resolution in inverse source and inverse scattering problems.14
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1. Introduction. In signal processing, a classical uncertainty principle limits the18

time-bandwidth product |T ||W | of a signal, where |T | is the measure of the support19

of the signal φ(t), and |W | is the measure of the support of its Fourier transform φ̂(ω)20

(cf., e.g., [7]). A very elementary formulation of that principle is21

(1.1) |〈φ, ψ〉| ≤
√
|T ||W |‖φ‖2‖ψ‖222

whenever suppφ ⊆ T and supp ψ̂ ⊆W .23

In the inverse source problem, the far field radiated by a source f is its restricted24

(to the unit sphere) Fourier transform, and the operator that maps the restricted25

Fourier transform of f(x) to the restricted Fourier transform of its translate f(x+ c)26

is called the far field translation operator. We will prove an uncertainty principle27

analogous to (1.1), where the role of the Fourier transform is replaced by the far field28

translation operator. Combining this principle with a regularized Picard criterion,29

which characterizes the non-evanescent (i.e., detectable) far fields radiated by a (lim-30

ited power) source supported in a ball provides simple proofs and extensions of several31

results about locating the support of a source and about splitting a far field radiated32

by well-separated sources into the far fields radiated by each source component.33

We also combine the regularized Picard criterion with a more conventional un-34

certainty principle for the map from a far field in L2(S1) to its Fourier coefficients.35

This leads to a data completion algorithm which tells us that we can deduce missing36

data (i.e. on part of S1) if we know a priori that the source has small support. All37

of these results can be combined so that we can simultaneously complete the data38

and split the far fields into the components radiated by well-separated sources. We39

discuss both l2 (least squares) and l1 (basis pursuit) algorithms to accomplish this.40
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2 R. GRIESMAIER AND J. SYLVESTER

Perhaps the most significant point is that all of these algorithms come with bounds41

on their condition numbers (both the splitting and data completion problems are lin-42

ear) which we show are sharp in their dependence on geometry and wavenumber.43

These results highlight an important difference between the inverse source problem44

and the inverse scattering problem. The conditioning of the linearized inverse scatter-45

ing problem does not depend on wavenumber, which means that the conditioning does46

not deteriorate as we increase the wavenumber in order to increase resolution. The47

conditioning for splitting and data completion for the inverse source problem does,48

however, deteriorate with increased wavenumber, which means the dynamic range of49

the sensors must increase with wavenumber to obtain higher resolution.50

We note that applications of classical uncertainty principles for the one-dimen-51

sional Fourier transform to data completion for band-limited signals have been devel-52

oped in [7]. In this classical setting a problem that is somewhat similar to far field53

splitting is the representation of highly sparse signals in overcomplete dictionaries.54

Corresponding stability results for basis pursuit reconstruction algorithms have been55

established in [6].56

The numerical algorithms for far field splitting that we are going to discuss have57

been developed and analyzed in [9, 10]. The novel mathematical contribution of the58

present work is the stability analysis for these algorithms based on new uncertainty59

principles, and their application to data completion. For alternate approaches to60

far field splitting that however, so far, lack a rigorous stability analysis we refer to61

[12, 19] (see also [11] for a method to separate time-dependent wave fields due to62

multiple sources).63

This paper is organized as follows. In the next section we provide the theoret-64

ical background for the direct and inverse source problem for the two-dimensional65

Helmholtz equation with compactly supported sources. In section 3 we discuss the66

singular value decomposition of the restricted far field operator mapping sources sup-67

ported in a ball to their radiated far fields, and we formulate the regularized Picard68

criterion to characterize non-evanescent far fields. In section 4 we discuss uncertainty69

principles for the far field translation operator and for the Fourier expansion of far70

fields, and in section 5 we utilize those to analyze the stability of least squares algo-71

rithms for far field splitting and data completion. Section 6 focuses on corresponding72

results for l1 algorithms. Consequences of these stability estimates related to con-73

ditioning and resolution of reconstruction algorithms for inverse source and inverse74

scattering problems are considered in section 7, and in section 8–9 we provide some75

analytic and numerical examples.76

2. Far fields radiated by compactly supported sources. Suppose that f ∈77

L2
0(R2) represents a compactly supported acoustic or electromagnetic source in the78

plane. Then the time-harmonic wave v ∈ H1
loc(R2) radiated by f at wave number79

k > 0 solves the source problem for the Helmholtz equation80

−∆v − k2v = k2g in R2 ,81

and satisfies the Sommerfeld radiation condition82

lim
r→∞

√
r
(∂v
∂r
− ikv

)
= 0 , r = |x| .83
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UNCERTAINTY PRINCIPLES 3

We include the extra factor of k2 on the right hand side so that both v and g scale84

(under dilations) as functions; i.e., if u(x) = v(kx) and f(x) = g(kx), then85

(2.1) −∆u− u = f in R2 and lim
r→∞

√
r
(∂u
∂r
− iu

)
= 0 .86

With this scaling, distances are measured in wavelengths1, and this allows us to set87

k = 1 in our calculations, and then easily restore the dependence on wavelength when88

we are done.89

The fundamental solution of the Helmholtz equation (with k = 1) in two dimen-90

sions is91

Φ(x) :=
i

4
H

(1)
0 (|x|) , x ∈ R2 \ {0} ,92

so the solution to (2.1) can be written as a volume potential93

u(x) =

∫
R2

Φ(x− y)f(y) dy , x ∈ R2 .94

The asymptotics of the Hankel function tell us that95

u(x) =
e

iπ
4

√
8π

eir

√
r
α(θx) +O

(
r−

3
2

)
as r →∞ ,96

where x = rθx with θx ∈ S1, and97

(2.2) α(θx) =

∫
R2

e−iθx·yf(y) dy .98

The function α is called the far field radiated by the source f , and equation (2.2) shows99

that the far field operator F , which maps f to α is a restricted Fourier transform, i.e.100

101

(2.3) F : L2
0(R2)→ L2(S1) , Ff := f̂

∣∣
S1 .102

The goal of the inverse source problem is to deduce properties of an unknown103

source f ∈ L2
0(R2) from observations of the far field. Clearly, any compactly supported104

source with Fourier transform that vanishes on the unit circle is in the nullspace N (F)105

of the far field operator. We call f ∈ N (F) a non-radiating source because a corollary106

of Rellich’s lemma and unique continuation is that, if the far field vanishes, then the107

wave u vanishes on the unbounded connected component of the complement of the108

support of f . The nullspace of F is exactly109

N (F) = {g = −∆v − v | v ∈ H2
0 (R2)} .110

Neither the source f nor its support is uniquely determined by the far field, and,111

as non-radiating sources can have arbitrarily large supports, no upper bound on the112

support is possible. There are, however, well defined notions of lower bounds. We113

say that a compact set Ω ⊆ R2 carries α, if every open neighborhood of Ω supports114

a source f ∈ L2
0(R2) that radiates α. The convex scattering support C (α) of α, as115

1One unit represents 2π wavelengths.
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4 R. GRIESMAIER AND J. SYLVESTER

defined in [16] (see also [17, 21]), is the intersection of all compact convex sets that116

carry α. The set C (α) itself carries α, so that C (α) is the smallest convex set which117

carries the far field α, and the convex hull of the support of the “true” source f must118

contain C (α). Because two disjoint compact sets with connected complements cannot119

carry the same far field pattern (cf. [21, lemma 6]), it follows that C (α) intersects any120

connected component of supp(f), as long as the corresponding source component is121

not non-radiating.122

In [21], an analogous notion, the UWSCS support, was defined, showing that123

any far field with a compactly supported source is carried by a smallest union of124

well-separated convex sets (well-separated means that the distance between any two125

connected convex components is strictly greater than the diameter of any component).126

A corollary is that it makes theoretical sense to look for the support of a source with127

components that are small compared to the distance between them.128

Here, as in previous investigations [9, 10], we study the well-posedness issues129

surrounding numerical algorithms to compute that support.130

3. A regularized Picard criterion. If we consider the restriction of the source131

to far field map F from (2.3) to sources supported in the ball BR(0) of radius R132

centered at the origin, i.e.,133

(3.1) FBR(0) : L2(BR(0))→ L2(S1) , FBR(0)f := f̂
∣∣
S1 ,134

we can write out a full singular value decomposition. We decompose f ∈ L2(BR(0))135

as136

f(x) =

( ∞∑
n=−∞

fn inJn(|x|)einϕx

)
⊕ fNR(x) , x = |x|(cosϕx, sinϕx) ∈ BR(0) ,137

where inJn(|x|)einϕx , n ∈ Z, span the closed subspace of free sources, which satisfy138

−∆u− u = 0 in BR(0) ,139

and fNR belongs to the orthogonal complement of that subspace; i.e., fNR is a non-140

radiating source.2 The restricted far field operator FBR(0) maps141

(3.2) FBR(0)
: inJn(|x|)einϕx 7→ s2

n(R)einθ ,142

where143

(3.3) s2
n(R) = 2π

∫ R

0

J2
n(r)r dr .144

Denoting the Fourier coefficients of a far field α ∈ L2(S1) by145

(3.4) αn :=
1√
2π

∫
S1

α(θ)einθ dθ , n ∈ Z ,146

so that147

α(θ) =

∞∑
n=−∞

αn
einθ

√
2π

, θ ∈ S1 ,148

2Throughout, we identify f ∈ L2(BR(0)) with its continuation to R2 by zero whenever appro-
priate.
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UNCERTAINTY PRINCIPLES 5

and149

(3.5) ‖α‖2L2(S1) =

∞∑
n=−∞

|αn|2150

by Parseval’s identity, an immediate consequence of (3.2) is that151

(3.6) f∗α(x) =
1√
2π

∞∑
n=−∞

αn
sn(R)2

inJn(|x|)einϕx , x ∈ BR(0) ,152

which has L2-norm153

‖f∗α‖2L2(BR(0)) =
1

2π

∞∑
n=−∞

|αn|2

s2
n(R)

,154

is the source with smallest L2-norm that is supported in BR(0) and radiates the far155

field α. We refer to f∗α as the minimal power source because, in electromagnetic156

applications, f∗α is proportional to current density, so that, in a system with a con-157

stant internal resistance, ‖f∗α‖2L2(BR(0)) is proportional to the input power required to158

radiate a far field. Similarly, ‖α‖2L2(S1) measures the radiated power of the far field.159

The squared singular values {s2
n(R)} of the restricted Fourier transform FBR(0)160

have a number of interesting properties with immediate consequences for the inverse161

source problem; full proofs of the results discussed in the following can be found in162

the supplement in section SM1. The squared singular values satisfy163

(3.7)

∞∑
n=−∞

s2
n(R) = πR2 ,164

and s2
n(R) decays rapidly as a function of n as soon as |n| ≥ R,165

(3.8) s2
n(R) ≤ π2

2
3n

2
3

3
4
3

(
Γ( 2

3 )
)2(n+ 1

2

n

)n+1(R2

n2
e1−R2

n2

)nR2

n2
if |n| ≥ R .166

Moreover, the odd and even squared singular values, s2
n(R), are decreasing (increasing)167

as functions of n ≥ 0 (n ≤ 0), and asymptotically168

(3.9) lim
R→∞

s2
dνRe(R)

2R
=

{√
1− ν2 ν ≤ 1 ,

0 ν ≥ 1 ,
169

where dνRe denotes the smallest integer that is greater than or equal to νR. This170

can also be seen in figure 3.1, where we include plots of s2
n(R) (solid line) together171

with plots of the asymptote 2
√
R2 − n2 (dashed line) for R = 10 (left) and R = 100172

(right). The asymptotic regime in (3.9) is already reached for moderate values of R.173

The forgoing yields a very explicit understanding of the restricted Fourier trans-174

form FBR(0). For |n| . R the singular values sn(R) are uniformly large, while for175

|n| & R the sn(R) are close to zero, and it is seen from (3.7)–(3.9) as well as from176

figure 3.1 that as R gets large the width of the n-interval in which sn(R) falls from177

uniformly large to zero decreases. Similar properties are known for the singular values178

of more classical restricted Fourier transforms (see [20]).179
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Fig. 3.1. Squared singular values s2
n(R) (solid line) and asymptote 2

√
R2 − n2 (dashed

line) for R = 10 (left) and R = 100 (right).

A physical source has limited power, which we denote by P > 0, and a receiver180

has a power threshold, which we denote by p > 0. If the radiated far field has power181

less than p, the receiver cannot detect it. Because s2
−n(R) = s2

n(R) and the odd and182

even squared singular values, s2
n(R), are decreasing as functions of n ≥ 0, we may183

define:184

(3.10) N(R,P, p) := sup
s2n(R)≥2π pP

n .185

So, if α ∈ L2(S1) is a far field radiated by a limited power source supported in BR(0)186

with ‖f∗α‖2L2(BR(0)) ≤ P , then, for N = N(R,P, p)187

P ≥ 1

2π

∑
|n|>N

|αn|2

s2
n(R)

≥ 1

2π

1

s2
N+1(R)

∑
|n|>N

|αn|2 >
P

p

∑
|n|>N

|αn|2 .188

Accordingly,
∑
|n|≥N |αn|2 < p is below the power threshold. So the subspace of189

detectable far fields, that can be radiated by a power limited source supported in190

BR(0) is:191

VNE :=
{
α ∈ L2(S1)

∣∣∣ α(θ) =

N∑
n=−N

αne
inθ
}
.192

We refer to VNE as the subspace of non-evanescent far fields, and to the orthogonal193

projection of a far field onto this subspace as the non-evanescent part of the far field.194

We use the term non-evanescent because it is the phenomenon of evanescence that195

explains why the the singular values s2
n(R) decrease rapidly for |n| & R, resulting in196

the fact that, for a wide range of p and P , R < N(R, p, P ) < 1.5R, if R is sufficiently197

large. This is also illustrated in figure 3.2, where we include plots of N(R,P, p) from198

(3.10) for p/P = 10−1, p/P = 10−4, and p/P = 10−8 and for varying R. The dotted199

lines in these plots correspond to g1(R) = R and g1.5(R) = 1.5R, respectively.200

4. Uncertainty principles for far field translation. In the inverse source201

problem, we seek to recover information about the size and location of the support of202

a source from observations of its far field. Because the far field is a restricted Fourier203

transform, the formula for the Fourier transform of the translation of a function:204

̂f(·+ c)(θ) = eic·θf̂(θ) , θ ∈ S1 , c ∈ R2 ,205

This manuscript is for review purposes only.



UNCERTAINTY PRINCIPLES 7

R

N
(R

,P
,p
)

0

5

10

15

0 2 4 6 8 10

p/P=1e−01

p/P=1e−04

p/P=1e−08

R

N
(R

,P
,p
)

0

50

100

150

0 20 40 60 80 100

p/P=1e−01

p/P=1e−04

p/P=1e−08

Fig. 3.2. Threshold N(R,P, p) as function of R for different values of p/P . Dotted lines
correspond to g1(R) = R and g1.5(R) = 1.5R.

plays an important role. We use Tc to denote the map from L2(S1) to itself given by206

(4.1) Tc : α 7→ eic·θα .207

The mapping Tc acts on the Fourier coefficients {αn} of α as a convolution operator,208

i.e., the Fourier coefficients {αcm} of Tcα satisfy209

(4.2) αcm =

∞∑
n=−∞

αm−n
(
inJn(|c|)einϕc

)
, m ∈ Z ,210

where |c| and ϕc are the polar coordinates of c. Employing a slight abuse of notation,211

we also use Tc to denote the corresponding operator from l2 to itself that maps212

(4.3) Tc : {αn} 7→ {αcm} .213

Note that Tc is a unitary operator, i.e. T ∗c = T−c.214

The following theorem, which we call an uncertainty principle for the translation215

operator, will be the main ingredient in our analysis of far field splitting.216

Theorem 4.1 (Uncertainty principle for far field translation). Let α, β ∈ L2(S1)217

such that the corresponding Fourier coefficients {αn} and {βn} satisfy supp{αn} ⊆W1218

and supp{βn} ⊆W2 with W1,W2 ⊆ Z, and let c ∈ R2. Then,219

|〈α, Tcβ〉L2(S1)| ≤
√
|W1||W2|
|c|1/3

‖α‖L2(S1)‖β‖L2(S1) .220

We will frequently be discussing properties of a far field α and those of its Fourier221

coefficients. The following notation will be a useful shorthand:222

‖α‖Lp =
(∫

S1

|α(θ)|p dθ
)1/p

, 1 ≤ p ≤ ∞ ,(4.4)223

‖α‖lp =
( ∞∑
n=−∞

|αn|p
)1/p

, 1 ≤ p ≤ ∞ .(4.5)224

225

The notation emphasizes that we treat the representation of the function α by its226

values, or by the sequence of its Fourier coefficients as simply a way of inducing227

different norms. That is, both (4.4) and (4.5) describe different norms of the same228

function on S1. Note that, because of the Plancherel equality (3.5), ‖α‖L2 = ‖α‖l2 ,229

so we may just write ‖α‖2, and we write 〈·, ·〉 for the corresponding inner product.230
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8 R. GRIESMAIER AND J. SYLVESTER

Remark 4.2. We will extend the notation a little more and refer to the support231

of α in S1 as its L0-support and denote by ‖α‖L0 the measure of supp(α) ⊆ S1. We232

will call the indices of the nonzero Fourier coefficients in its Fourier series expansion233

the l0-support of α, and use ‖α‖l0 to denote the number of non-zero coefficients.234

With this notation, theorem 4.1 becomes235

Theorem 4.3 (Uncertainty principle for far field translation). Let α, β ∈ L2(S1)236

and let c ∈ R2. Then,237

(4.6) |〈α, Tcβ〉| ≤
√
‖α‖l0‖β‖l0
|c|1/3

‖α‖2‖β‖2 .238

We refer to theorem 4.3 as an uncertainty principle, because, if we could take239

β = T ∗c α in (4.6), it would yield240

(4.7) 1 ≤ ‖α‖l
0‖T ∗c α‖l0
|c|2/3

.241

As stated, (4.7) is is true but not useful, because ‖α‖l0 and ‖T ∗c α‖l0 cannot simulta-242

neously be finite.3 We present the corollary only to illustrate the close analogy to the243

theorem 1 in [7], which treats the discrete Fourier transform (DFT) on sequences of244

length N :245

Theorem 4.4 (Uncertainty principle for the Fourier transform [7]). If x repre-246

sents the sequence {xn} for n = 0, . . . , N − 1 and x̂ its DFT, then247

1 ≤ ‖x‖l
0‖x̂‖l0
N

.248

This is a lower bound on the time-bandwidth product. In [7] Donoho and Stark249

present two important corollaries of uncertainty principles for the Fourier transform.250

One is the uniqueness of sparse representations of a signal x as a superposition of251

vectors taken from both the standard basis and the basis of Fourier modes, and the252

second is the recovery of this representation by l1 minimization.253

The main observation we make here is that, if we phrase our uncertainty principle254

as in theorem 4.3, then the far field translation operator, as well as the map from α255

to its Fourier coefficients, satisfy an uncertainty principle. Combining the uncertainty256

principle with the regularized Picard criterion from section 3 yields analogs of both257

results in the context of the inverse source problem. These include previous results258

about the splitting of far fields from [9] and [10], which can be simplified and extended259

by viewing them as consequences of the uncertainty principle and the regularized260

Picard criterion.261

The proof of theorem 4.3 is a simple corollary of the lemma below:262

Lemma 4.5. Let c ∈ R2 and let Tc be the operator introduced in (4.1) and (4.3).263

Then, the operator norm of Tc : Lp(S1) −→ Lp(S1), 1 ≤ p ≤ ∞, satisfies264

(4.8) ‖Tc‖Lp,Lp = 1 ,265

whereas Tc : l1 −→ l∞ fulfills266

(4.9) ‖Tc‖l1,l∞ ≤
1

|c| 13
.267

3This would imply, using (3.6), that α could have been radiated by a source supported in an arbi-
trarily small ball centered at the origin, or centered at c, but Rellich’s lemma and unique continuation
show that no nonzero far field can have two sources with disjoint supports.
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Proof. Recalling (4.1), we see that Tc is multiplication by a function of modulus268

one, so (4.8) is immediate. On the other hand, combining (4.2) with the last inequality269

from page 199 of [18]; more precisely,270

|Jn(x)| < b

|x| 13
with b ≈ 0.6749 ,271

shows that272

‖Tc‖l1,l∞ ≤ sup
n∈Z
|Jn(|c|)| ≤ 1

|c| 13
.273

274

Proof of theorem 4.3. Using Hölder’s inequality and (4.9) we obtain that275

|〈α, Tcβ〉| ≤ ‖α‖l1‖Tcβ‖l∞ ≤
1

|c| 13
‖α‖l1 ‖β‖l1 ≤

√
‖α‖l0‖β‖l0
|c| 13

‖α‖l2‖β‖l2 .276

277

We can improve the dependence on |c| in (4.6) under hypotheses on α and β that278

are more restrictive, but well suited to the inverse source problem.279

Theorem 4.6. Suppose that α ∈ l2(−M,M), β ∈ l2(−N,N) with M,N ≥ 1, and280

let c ∈ R2 such that |c| > 2(M +N + 1). Then281

(4.10) |〈α, Tcβ〉| ≤
√

(2N + 1)(2M + 1)

|c| 12
‖α‖2‖β‖2 .282

Proof. Because the l0-support of β is contained in [−N,N ]283

βcm =

N∑
n=−N

βn

(
im−nJm−n(|c|)ei(m−n)ϕc

)
284

so285

sup
−M<m<M

|βcm| ≤ ‖β‖l1 sup
−(M+N)<n<(M+N)

|Jn(|c|)|286

and it follows from theorem 2 of [15], using the fact that M,N ≥ 1, together with our287

hypothesis, which implies that |c| > 6, that288

(4.11) sup
−(M+N)<n<(M+N)

J2
n(|c|) ≤ b

|c|
with b ≈ 0.7595289

(see section SM2 in the supplement for details). We now simply repeat the proof of290

theorem 4.3, replacing the estimate for ‖Tcβ‖l∞ from (4.9) with the estimate we have291

just established in (4.11), i.e.292

(4.12) ‖Tc‖l1[−N,N ],l∞[−M,M ] ≤
1

|c| 12
.293

294
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We will also make use of another uncertainty principle. A glance at (3.4)–(3.5)295

reveals that the operator which maps α to its Fourier coefficients maps L2 to l2 with296

norm 1, L1 to l∞ with norm 1/
√

2π, and its inverse maps l1 to L∞, also with norm297

1/
√

2π. An immediate corollary of this observation is298

Theorem 4.7. Let α, β ∈ L2(S1) and let c ∈ R2. Then,299

(4.13) |〈Tcα, β〉| ≤
√
‖α‖l0‖β‖L0

2π
‖α‖2‖β‖2 .300

Proof. Combining Hölder’s inequality with (4.8) and using the mapping properties301

of the operator which maps α to its Fourier coefficients we find that302

|〈Tcα, β〉| ≤ ‖Tcα‖L∞‖β‖L1 ≤ ‖α‖L∞‖β‖L1 ≤ 1√
2π
‖α‖l1‖β‖L1

≤ 1√
2π

√
‖α‖l0‖α‖2

√
‖β‖L0‖β‖2 .

303

304

5. l2 corollaries of the uncertainty principles. The regularized Picard cri-305

terion tells us that, up to an L2-small error, a far field radiated by a limited power306

source in BR(0) is L2-close to an α that belongs to the subspace of non-evanescent307

far fields, the span of {einθ} with |n| ≤ N , where N = N(R,P, p) is a little bigger308

than the radius R. This non-evanescent α satisfies ‖α‖l0 ≤ 2N + 1. The uncertainty309

principle will show that the angle between translates of these subspaces is bounded310

below when the translation parameter is large enough, so that we can split the sum311

of the two non-evanescent far fields into the original two summands.312

Lemma 5.1. Suppose that γ, α1, α2 ∈ L2(S1) and c1, c2 ∈ R2 with313

(5.1) γ = T ∗c1α1 + T ∗c2α2314

and that
‖α1‖l0‖α2‖l0
|c1−c2|

2
3

< 1. Then, for i = 1, 2315

(5.2) ‖αi‖22 ≤
(

1− ‖α1‖l0‖α2‖l0
|c1 − c2|

2
3

)−1

‖γ‖22 .316

Proof. We first note that (5.1) and (4.1) imply317

‖γ‖22 ≥ ‖α1‖22 + ‖α2‖22 − 2|〈T ∗c1α1, T
∗
c2α2〉|

= ‖α1‖22 + ‖α2‖22 − 2|〈α1, T
∗
c2−c1α2〉| .

(5.3)318

We now use (4.6),319

‖γ‖22 ≥ ‖α1‖22 + ‖α2‖22 − 2

√
‖α1‖l0‖α2‖l0
|c2 − c1|

1
3

‖α1‖2‖α2‖2

=

(
1− ‖α1‖l0‖α2‖l0

|c2 − c1|
2
3

‖
)
‖α1‖22 +

(
‖α2‖2 −

√
‖α1‖l0‖α2‖l0
|c2 − c1|

1
3

‖α1‖2
)2

.

(5.4)320

Dropping the second term now gives (5.2) for α1, and we may interchange the roles321

α1 and α2 in the proof to obtain the estimate for α2.322

The analogous consequence of theorem 4.6 is323
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UNCERTAINTY PRINCIPLES 11

Lemma 5.2. Suppose that γ ∈ L2(S1), αi ∈ l2(−Ni, Ni) for some Ni ∈ N, i =324

1, 2, and c1, c2 ∈ R2 with |c1 − c2| > 2(N1 +N2 + 1) and325

γ = T ∗c1α1 + T ∗c2α2 ,326

and that (2N1+1)(2N2+1)
|c1−c2| < 1. Then, for i = 1, 2327

(5.5) ‖αi‖22 ≤
(

1− (2N1 + 1)(2N2 + 1)

|c1 − c2|

)−1

‖γ‖22 .328

In our application to the inverse source problem, we will know that each far field329

is the translation of a far field αi, radiated by a limited power source supported in330

a ball centered at the origin, and therefore that all but a very small amount of the331

radiated power is contained in the non-evanescent part, the translation of the Fourier332

modes einθ for |n| < N(R, p, P ). The estimate in the theorem below says that, if333

the distances between the balls is large enough, we may uniquely solve for the non-334

evanescent parts of the individual far fields, and that this split is stable with respect335

to perturbations in the data.336

Theorem 5.3. Suppose that γ0, γ1 ∈ L2(S1), c1, c2 ∈ R2 and N1, N2 ∈ N such337

that |c1 − c2| > 2(N1 +N2 + 1) and338

(5.6)
(2N1 + 1)(2N2 + 1)

|c1 − c2|
< 1 ,339

and let340

γ0 LS
= T ∗c1α

0
1 + T ∗c2α

0
2 , α0

i ∈ l2(−Ni, Ni) ,(5.7a)341

γ1 LS
= T ∗c1α

1
1 + T ∗c2α

1
2 , α1

i ∈ l2(−Ni, Ni) .(5.7b)342343

Then, for i = 1, 2344

(5.8) ‖α1
i − α0

i ‖22 ≤
(

1− (2N1 + 1)(2N2 + 1)

|c1 − c2|

)−1

‖γ1 − γ0‖22 .345

The notation in (5.7) above means that the αji are the (necessarily unique)346

least squares solutions to the equations γj = T ∗c1α
j
1 + T ∗c2α

j
2. Recall that the far347

fields radiated by a limited power source from a ball have almost all, but not all,348

of their power (L2-norm) concentrated in the Fourier modes with n ≤ N(R,P, p).349

Therefore the γi will typically not belong to the subspace that is the direct sum of350

T ∗c1 l
2(−N1, N1)⊕T ∗c2 l

2(−N2, N2), and therefore αj1 and αj2 will usually not solve equa-351

tions (5.7) exactly. The estimate in (5.8) is nevertheless always true, and guarantees352

that the pair (αj1, α
j
2) is unique and that the absolute condition number of the splitting353

operator which maps γ to (αj1, α
j
2) is no larger than

(
1− (2N1+1)(2N2+1)

|c1−c2|

)− 1
2

.354

Proof of theorem 5.3. Each γj can be uniquely decomposed as355

(5.9) γj = wj + wj⊥ ,356

where each wj belongs to the 2N1 + 2N2 + 2-dimensional subspace357

W = T ∗c1 l
2(−N1, N1)⊕ T ∗c2 l

2(−N2, N2)358

This manuscript is for review purposes only.



12 R. GRIESMAIER AND J. SYLVESTER

and each wj⊥ is orthogonal to W . The definition of least squares solutions means that359

wj = T ∗c1α
j
1 + T ∗c2α

j
2 .360

Subtracting gives361

(5.10) w1 − w0 = T ∗c1(α1
1 − α0

1) + T ∗c2(α1
2 − α0

2)362

and applying the estimate (5.5) yields363

(5.11) ‖α1
i − α0

i ‖22 ≤
(

1− (2N1 + 1)(2N2 + 1)

|c1 − c2|

)−1

‖w1 − w0‖22 .364

Finally, we note that365

(5.12) ‖γ1 − γ0‖22 = ‖w1 − w0‖22 + ‖w1
⊥ − w0

⊥‖22 ≥ ‖w1 − w0‖22 ,366

which finishes the proof.367

We also have corresponding corollaries of theorem 4.7, which tell us that, if a368

far field is radiated from a small ball, and measured on most of the circle, then it is369

possible to recover its non-evanescent part on the entire circle. Theorem 5.5 below,370

describes the case where we cannot measure the far field α = T ∗c α
0 on a subset Ω ⊆ S1.371

We measure γ = α + β, where β = −α
∣∣
Ω

. The estimates (5.14) imply that we can372

stably recover the non-evanescent part of the far field on Ω.373

Before we state the theorem, we give the corresponding analogue of lemma 5.1374

and lemma 5.2.375

Lemma 5.4. Suppose that γ, α, β ∈ L2(S1) and c ∈ R2 with376

γ = β + T ∗c α377

and that
‖α‖l0‖β‖L0

2π < 1. Then378

‖α‖22 ≤
(

1− ‖α‖l
0‖β‖L0

2π

)−1

‖γ‖22(5.13a)379

and

‖β‖22 ≤
(

1− ‖α‖l
0‖β‖L0

2π

)−1

‖γ‖22 .(5.13b)380
381

Proof. Proceeding as in (5.3)–(5.4), but replacing (4.6) by (4.13) yields the re-382

sult.383

Theorem 5.5. Suppose that γ0, γ1 ∈ L2(S1), c ∈ R2, N ∈ N and Ω ⊆ S1 such384

that (2N+1)|Ω|
2π < 1, and let385

γ0 LS
= β0 + Tcα

0 , α0 ∈ l2(−N,N) and β0 ∈ L2(Ω) ,386

γ1 LS
= β1 + Tcα

1 , α1 ∈ l2(−N,N) and β1 ∈ L2(Ω) .387388

Then389

‖α1 − α0‖22 ≤
(

1− (2N + 1)|Ω|
2π

)−1

‖γ1 − γ0‖22(5.14a)390

and

‖β1 − β0‖22 ≤
(

1− (2N + 1)|Ω|
2π

)−1

‖γ1 − γ0‖22 .(5.14b)391
392
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Proof. Just as in (5.9), we decompose each γj393

γj = wj + wj⊥ ,394

where each wj belongs to the subspace395

W = L2(Ω)⊕ Tcl2(−N,N)396

and each wj⊥ is orthogonal to W . Proceeding as in (5.10)–(5.11), but using the397

estimates from (5.13), we find398

‖α1 − α0‖22 ≤
(

1− (2N + 1)|Ω|
2π

)−1

‖w1 − w0‖22399

and

‖β1 − β0‖22 ≤
(

1− (2N + 1)|Ω|
2π

)−1

‖w1 − w0‖22400
401

and then note that (5.12) is true here as well to finish the proof.402

A version of theorem 5.3 with multiple well-separated components is also true403

(proofs of the following two theorems are available in the supplement in section SM3).404

Theorem 5.6. Suppose that γ0, γ1 ∈ L2(S1), ci ∈ R2 and Ni ∈ N, i = 1, . . . , I,405

such that |ci − cj | > 2(Ni +Nj + 1) for every i 6= j and406 (√
2Ni + 1

∑
j 6=i

√
2Nj + 1

|ci − cj |

)
< 1 for each i ,407

and let408

γ0 LS
=

I∑
i=1

T ∗ciα
0
i , α0

i ∈ l2(−Ni, Ni) ,409

γ1 LS
=

I∑
i=1

T ∗ciα
1
i , α1

i ∈ l2(−Ni, Ni) .410

411

Then, for i = 1, . . . , I412

‖α1
i − α0

i ‖22 ≤
(

1−
√

2Ni + 1
∑
j 6=i

√
2Nj + 1

|cj − ci|

)−1

‖γ1 − γ0‖22 .413

We may include a missing data component as well.414

Theorem 5.7. Suppose that γ0, γ1 ∈ L2(S1), ci ∈ R2, Ni ∈ N, i = 1, . . . , I, and415

Ω ⊆ L2(S1) such that |ci − cj | > 2(Ni +Nj + 1) for every i 6= j and416 √
|Ω|
2π

I∑
i=1

√
2Ni + 1 < 1 ,417

√
2Ni + 1

(√
|Ω|
2π

+
∑
j 6=i

√
2Ni + 1

|ci − cj |

)
< 1 for each i ,418

419
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14 R. GRIESMAIER AND J. SYLVESTER

and let420

γ0 LS
= β0 +

I∑
i=1

T ∗ciα
0
i , α0

i ∈ l2(−Ni, Ni) and β0 ∈ L2(Ω) ,(5.15a)421

γ1 LS
= β1 +

I∑
i=1

T ∗ciα
1
i , α1

i ∈ l2(−Ni, Ni) and β0 ∈ L2(Ω) .(5.15b)422

423

Then424

‖β1 − β0‖22 ≤
(

1−
√
|Ω|
2π

∑
i

√
2Ni + 1

)−1

‖γ1 − γ0‖22425

and, for i = 1, . . . , I

‖α1
i − α0

i ‖22 ≤
(

1−
√

2Ni + 1

(√
|Ω|
2π

+
∑
j 6=i

√
2Ni + 1

|ci − cj |

))−1

‖γ1 − γ0‖22 .426

427

6. l1 corollaries of the uncertainty principle. The results below are analo-428

gous to those in the previous section. The main difference is that they do not require429

the a priori knowledge of the size of the non-evanescent subspaces (the Ni in theo-430

rems 5.3 through 5.7).431

In theorem 6.1 below, γ0 represents the (measured) approximate far field; the432

α0
i are the non-evanescent parts of the true (unknown) far fields radiated by each of433

the two components, which we assume are well-separated (6.1). The constant δ0 in434

(6.2) accounts for both the noise and the evanescent components of the true far fields.435

Condition (6.3) requires that the optimization problem (6.4) be formulated with a436

constraint that is weak enough so that the α0
i are feasible.437

Theorem 6.1. Suppose that γ0, α0
1, α

0
2 ∈ L2(S1) and c1, c2 ∈ R2 such that438

(6.1)
4‖α0

i ‖l0
|c1 − c2|

1
3

< 1 for each i439

and440

(6.2) ‖γ0 − T ∗c1α
0
1 − T ∗c2α

0
2‖2 ≤ δ0 for some δ0 ≥ 0 .441

If δ ≥ 0 and γ ∈ L2(S1) with442

(6.3) δ ≥ δ0 + ‖γ − γ0‖2443

and444

445

(6.4) (α1, α2) = argmin ‖α1‖l1 + ‖α2‖l1446

s.t. ‖γ − T ∗c1α1 − T ∗c2α2‖2 ≤ δ , α1, α2 ∈ L2(S1) ,447448

then, for i = 1, 2449

(6.5) ‖α0
i − αi‖22 ≤

(
1− 4‖α0

i ‖l0
|c1 − c2|

1
3

)−1

4δ2 .450
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Proof. A consequence of (6.3) is that the pair (α0
1, α

0
2) satisfies the constraint in451

(6.4), which implies that452

(6.6) ‖α1‖l1 + ‖α2‖l1 ≤ ‖α0
1‖l1 + ‖α0

2‖l1453

because (α1, α2) is a minimizer. Additionally, with Wi representing the l0-support of454

α0
i and W c

i its complement,455

‖αi‖l1 = ‖α0
i + (αi − α0

i )‖l1
= ‖α0

i + (αi − α0
i )‖l1(Wi) + ‖αi − α0

i ‖l1(W c
i )

= ‖α0
i + (αi − α0

i )‖l1(Wi) + ‖αi − α0
i ‖l1 − ‖αi − α0

i ‖l1(Wi)

≥ ‖α0
i ‖l1 + ‖αi − α0

i ‖l1 − 2‖αi − α0
i ‖l1(Wi) .

(6.7)456

Inserting (6.7) into (6.6) yields457

(6.8) ‖α1 − α0
1‖l1 + ‖α2 − α0

2‖l1 ≤ 2(‖α1 − α0
1‖l1(W1) + ‖α2 − α0

2‖l1(W2)) .458

We now use (6.3) together with (6.2), the constraint in (6.4) and the fact that T ∗c1−c2459

is an L2-isometry to obtain460

4δ2 ≥
(
‖γ − γ0‖2 + δ0 + δ

)2
≥
(
‖γ − γ0‖2 + ‖γ0 − T ∗c1α

0
1 − T ∗c2α

0
2‖2 + ‖γ − T ∗c1α1 − T ∗c2α2‖2

)2
≥ ‖T ∗c1(α1 − α0

1) + T ∗c2(α2 − α0
2)‖22

= ‖α1 − α0
1 + T ∗c2−c1(α2 − α0

2)‖22
≥ ‖α1 − α0

1‖22 + ‖α2 − α0
2‖22 − 2|〈α1 − α0

1, T
∗
c2−c1(α2 − α0

2)〉| .

(6.9)461

Hölder’s inequality, (4.9), and (6.8) show462

4δ2 ≥ ‖α1 − α0
1‖22 + ‖α2 − α0

2‖22 −
2

|c1 − c2|
1
3

‖α1 − α0
1‖l1‖α2 − α0

2‖l1

≥ ‖α1 − α0
1‖22 + ‖α2 − α0

2‖22 −
1

2|c1 − c2|
1
3

(
‖α1 − α0

1‖l1 + ‖α2 − α0
2‖l1

)2
≥ ‖α1 − α0

1‖22 + ‖α2 − α0
2‖22 −

2

|c1 − c2|
1
3

(
‖α1 − α0

1‖l1(W1) + ‖α2 − α0
2‖l1(W2)

)2
.

(6.10)

463

Using Hölder’s inequality once more yields464

4δ2 ≥ ‖α1 − α0
1‖22 + ‖α2 − α0

2‖22

− 2

|c1 − c2|
1
3

(
|W1|

1
2 ‖α1 − α0

1‖2 + |W2|
1
2 ‖α2 − α0

2‖2
)2

≥ ‖α1 − α0
1‖22 + ‖α2 − α0

2‖22

− 4

|c1 − c2|
1
3

(
|W1|‖α1 − α0

1‖22 + |W2|‖α2 − α0
2‖22
)
,

(6.11)465

which implies (6.5) because |Wi| = ‖α0
i ‖l0 .466

Assuming that some a priori information on the size of the non-evanescent sub-467

spaces is available and that the distances between the source components is large468

relative to their dimensions, we can improve the dependence of the stability estimates469

on the distances.470
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Corollary 6.2. If we add to the hypothesis of theorem 6.1:471

α0
i , αi ∈ l2(−Ni, Ni) and |c1 − c2| > 2(N1 +N2 + 1)472

for some N1, N2 ∈ N and replace (6.1) with473

(6.12)
4‖α0

i ‖l0
|c1 − c2|

1
2

< 1 for each i474

then, for i = 1, 2475

(6.13) ‖α0
i − αi‖22 ≤

(
1− 4‖α0

i ‖l0
|c1 − c2|

1
2

)−1

4δ2 .476

Proof. Replace (4.9) by (4.12) in (6.9)–(6.10).477

The analogue of theorem 5.5 for data completion but without a priori knowledge478

on the size of the non-evanescent subspaces is479

Theorem 6.3. Suppose that γ0, α0 ∈ L2(S1), Ω ⊆ S1, β0 ∈ L2(Ω) and c ∈ R2480

such that481

2‖α0‖l0 |Ω|
π

< 1482

and483

‖γ0 − T ∗c α0 − β0‖2 ≤ δ0 for some δ0 ≥ 0 .484

If δ ≥ 0 and γ ∈ L2(S1) with485

δ ≥ δ0 + ‖γ − γ0‖2486

and487

α = argmin ‖α‖l1 s.t. ‖γ − β − T ∗c α‖2 ≤ δ , α ∈ L2(S1) , β ∈ L2(Ω) ,488

then489

‖α0 − α‖22 ≤
(

1− 2‖α0‖l0 |Ω|
π

)−1

4δ2(6.14a)490

and

‖β0 − β‖22 ≤
(

1− 2‖α0‖l0 |Ω|
π

)−1

4δ2 .(6.14b)491
492

Proof. Proceeding as in (6.6)–(6.8) we find that493

(6.15) ‖α− α0‖l1 ≤ 2‖α− α0‖l1(W )494

with W representing the l0-support of α0. Applying similar arguments as in (6.9)495

yields496

4δ2 ≥ ‖α− α0‖22 + ‖β − β0‖22 − 2|〈T ∗c (α− α0), β − β0〉| .497
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We now use Hölder’s inequality, (4.1), the mapping properties of the operator which498

maps α to its Fourier coefficients and (6.15) to obtain499

4δ2 ≥ ‖α− α0‖22 + ‖β − β0‖22 − 2‖T ∗c (α− α0)‖L∞‖β − β0‖L1

= ‖α− α0‖22 + ‖β − β0‖22 − 2‖α− α0‖L∞‖β − β0‖L1

≥ ‖α− α0‖22 + ‖β − β0‖22 −
2√
2π
‖α− α0‖l1‖β − β0‖L1

≥ ‖α− α0‖22 + ‖β − β0‖22 −
4√
2π
‖α− α0‖l1(W )‖β − β0‖L1

≥ ‖α− α0‖22 + ‖β − β0‖22 −
4√
2π

√
|W |‖α− α0‖2

√
|Ω|‖β − β0‖2

≥
(

1− 2

π
|W ||Ω|

)
‖α− α0‖22 +

(
‖β − β0‖2 −

2√
2π

√
|W ||Ω|‖α− α0‖2

)2

.

(6.16)500

Dropping the second term gives (6.14) for α because |W | = ‖α0‖l0 , and we may501

interchange the roles of α and β when completing the square in the last line of (6.16)502

to obtain the estimate for β.503

Next we consider sources supported on sets with multiple disjoint components.504

Theorem 6.4. Suppose that γ0, α0
i ∈ L2(S1) and ci ∈ R2, i = 1, . . . , I such that505

(6.17) max
j 6=k

1

|ck − cj |
1
3

4(I − 1)‖α0
i ‖l0 < 1 for each i506

and507

‖γ0 −
I∑
i=1

T ∗ciα
0
i ‖2 ≤ δ0 for some δ0 ≥ 0 .508

If δ ≥ 0 and γ ∈ L2(S1) with509

δ ≥ δ0 + ‖γ − γ0‖2510

and511

(6.18) (α1, . . . , αI) = argmin

I∑
i=1

‖αi‖l1 s.t. ‖γ −
I∑
i=1

T ∗ciαi‖2 ≤ δ , αi ∈ L
2(S1) ,512

then, for i = 1, . . . , I513

‖α0
i − αi‖22 ≤

(
1−max

j 6=k

1

|ck − cj |
1
3

4(I − 1)‖α0
i ‖l0

)−1

4δ2 .514

Proof. Proceeding as in (6.6)–(6.8) we find that515

(6.19)

I∑
i=1

‖αi − α0
i ‖l1 ≤ 2

I∑
i=1

‖αi − α0
i ‖l1(Wi)516

with Wi representing the l0-support of α0
i . Applying similar arguments as in (6.9)–517

(6.10) and using the inequality (SM5.3) from section SM5 in the supplement and518
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(6.19) we obtain519

4δ2 ≥
I∑
i=1

‖αi − α0
i ‖22 −

I∑
i=1

∑
j 6=i

|〈αi − α0
i , T

∗
cj−ci(αj − α

0
j )〉|

≥
I∑
i=1

‖αi − α0
i ‖22 −

I∑
i=1

∑
j 6=i

1

|ci − cj |
1
3

‖αi − α0
i ‖l1‖αj − α0

j‖l1

≥
I∑
i=1

‖αi − α0
i ‖22 −max

j 6=k

1

|cj − ck|
1
3

I∑
i=1

∑
j 6=i

‖αi − α0
i ‖l1‖αj − α0

j‖l1

≥
I∑
i=1

‖αi − α0
i ‖22 −max

j 6=k

1

|cj − ck|
1
3

I − 1

I

( I∑
i=1

‖αi − α0
i ‖l1

)2

≥
I∑
i=1

‖αi − α0
i ‖22 −max

j 6=k

1

|cj − ck|
1
3

I − 1

I
4
( I∑
i=1

‖αi − α0
i ‖l1(Wi)

)2

.

(6.20)520

Applying Hölder’s inequality and (SM5.2) from section SM5 in the supplement yields521

522

4δ2 ≥
I∑
i=1

‖αi − α0
i ‖22 −max

j 6=k

1

|cj − ck|
1
3

I − 1

I
4
( I∑
i=1

|Wi|
1
2 ‖αi − α0

i ‖2
)2

≥
I∑
i=1

‖αi − α0
i ‖22 −max

j 6=k

1

|cj − ck|
1
3

4(I − 1)

I∑
i=1

|Wi|‖αi − α0
i ‖22 ,

(6.21)523

where |Wi| = ‖α0
i ‖l0 .524

As in corollary 6.2 we can improve these estimates, under the assumption that525

some a priori knowledge of the size of the non-evanescent subspaces is available and526

that the individual source components are sufficiently far apart from each other.527

Corollary 6.5. If we add to the hypothesis of theorem 6.4:528

α0
i , αi ∈ l2(−Ni, Ni) for each i and |ci − cj | > 2(Ni +Nj + 1) for every i 6= j529

for some N1, . . . , NI ∈ N, and replace (6.17) with530

max
j 6=k

1

|ck − cj |
1
2

4(I − 1)‖α0
i ‖l0 < 1 for each i ,531

the conclusion becomes, for i = 1, . . . , I532

‖α0
i − αi‖22 ≤

(
1−max

j 6=k

1

|ck − cj |
1
2

4(I − 1)‖α0
i ‖l0

)−1

4δ2 .533

Proof. Replace (4.9) by (4.12) in (6.20).534

Next we consider multiple source components together with a missing data com-535

ponent (see section SM3 in the supplement for a proof of the following theorem).536

Theorem 6.6. Suppose that γ0, α0
i ∈ L2(S1), ci ∈ R2, i = 1, . . . , I, Ω ⊆ S1 and537
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β0 ∈ L2(Ω) such that538

2√
2π

I∑
i=1

√
|Ω|‖α0

i ‖l0 < 1 ,(6.22a)539

max
j 6=k

1

|ck − cj |
1
3

4(I − 1)‖α0
i ‖l0 +

2√
2π

√
|Ω|‖α0

i ‖l0 < 1 for each i ,(6.22b)540

541

and542

‖γ0 − β0 −
I∑
i=1

T ∗ciα
0
i ‖2 ≤ δ0 for some δ0 ≥ 0 .543

If δ ≥ 0 and γ ∈ L2(S1) with544

δ ≥ δ0 + ‖γ − γ0‖2545

and546
547

(6.23) (α1, . . . , αI) = argmin

I∑
i=1

‖αi‖l1548

s.t. ‖γ − β −
I∑
i=1

T ∗ciαi‖2 ≤ δ , αi ∈ L
2(S1) , β ∈ L2(Ω) ,549

550

then551

‖β0 − β‖22 ≤
(

1− 2√
2π

I∑
i=1

√
|Ω|‖α0

i ‖l0
)−1

4δ2(6.24a)552

and, for i = 1, . . . , I

‖α0
i − αi‖22 ≤

(
1−max

j 6=k

1

|ck − cj |
1
3

4(I − 1)‖α0
i ‖l0553

− 2√
2π

√
|Ω|‖α0

i ‖l0
)−1

4δ2 .(6.24b)554

555

Again, including a priori information of the size of the non-evanescent subspaces556

and assuming that the individual source components are well separated, the result557

can be improved:558

Corollary 6.7. If we add to the hypothesis of theorem 6.6:559

α0
i , αi ∈ l2(−Ni, Ni) for each i and |ci − cj | > 2(Ni +Nj + 1) for every i 6= j560

for some N1, . . . , NI ∈ N, and replace (6.22b) with561

max
j 6=k

1

|ck − cj |
1
2

4(I − 1)‖α0
i ‖l0 +

2√
2π

√
|Ω|‖α0

i ‖l0 < 1 for each i ,562

the conclusion (6.24b) becomes, for i = 1, . . . , I563

‖α0
i − αi‖22 ≤

(
1−max

j 6=k

1

|ck − cj |
1
2

4(I − 1)‖α0
i ‖l0 +

2√
2π

√
|Ω|‖α0

i ‖l0
)−1

4δ2 .564
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7. Conditioning, resolution, and wavelength. So far, we have suppressed565

the dependence on the wavenumber k. We restore it here, and consider the conse-566

quences related to conditioning and resolution. We confine our discussion to the-567

orem 5.3, assuming that the γj , j = 1, 2, represent far fields that are radiated by568

superpositions of limited power sources supported in balls BRi(ci), i = 1, 2, and that569

accordingly, for k = 1 (following our discussion at the end of section 3), the numbers570

Ni & Ri are just a little bigger than the radii of these balls. This becomes Ni & kRi571

when we return to conventional units, and the estimate (5.8) then depends on the572

quantity573

(7.1)
(2N1 + 1)(2N2 + 1)

k|c1 − c2|
.574

Writing Vi := T ∗ci l
2(−Ni, Ni) and denoting by Pi : l2 → l2 the orthogonal projec-575

tion onto Vi, i = 1, 2, we have V1 ∩ V2 = {0} if c1 6= c2, and the angle θ12 between576

these subspaces is given by577

cos θ12 = sup
α1∈V1
α2∈V2

|〈α1, α2〉|
‖α1‖2‖α2‖2

= sup
α1,α2∈l2

|〈P1α1, P2α2〉|
‖α1‖2‖α2‖2

= ‖P1P2‖l2,l2 .578

A glance at the proof of lemma 5.1 reveals that the square root of (7.1) is just a579

lower bound for this cosine. Furthermore, the least squares solutions to (5.7) can be580

constructed from simple formulas581

αj1 = (I − P1P2)−1P1(I − P2)γj =: P1|2γ
j ,582

αj2 = (I − P2P1)−1P2(I − P1)γj =: P2|1γ
j ,583584

where P1|2 and P2|1 denote the projection onto V1 along V2 and vice versa. These585

satisfy586

‖P1|2‖l2,l2 = ‖P2|1‖l2,l2 = csc θ12 =
( 1

1− cos2 θ12

)1/2

.587

Consequently csc θ12 is the absolute condition number for the splitting problem (5.7),588

and Theorem 5.3 (with our choice of N1 and N2) essentially says that589

(7.2) csc(θ12) ≤ 1√
1− (2N1+1)(2N2+1)

k|c1−c2|

.
1√

1− (2kR1+1)(2kR2+1)
k|c1−c2|

.590

We will include an example below to show that, at least for large distances, the591

dependence on k in estimate in (7.2) is sharp. This means that, for a fixed geome-592

try ((c1, R1), (c2, R2)), the condition number increases with k. Because resolution is593

proportional to wavelength, this means that we cannot increase resolution by simply594

increasing the wavenumber without increasing the dynamic range of the sensors (i.e.595

the number of significant figures in the measured data). Note that as k increases,596

the dimensions of the subspaces Vi = T ∗ci l
2(−Ni, Ni) ≈ T ∗ci l

2(−kRi, kRi) increase.597

The increase in the number of significant Fourier coefficients (non-evanescent Fourier598

modes) is the way we see higher resolution in this problem.599

The situation changes considerably if we replace the limited power source radiated600

from BR1
(c1) by a point source with singularity in c1. Then we can choose for V1 a601

one-dimensional subspace of l2 (spanned by the zeroth order Fourier mode translated602
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by T ∗c1), and accordingly set N1 = R1 = 0. Consequently, the estimate (7.2) reduces603

to604

(7.3) csc(θ12) ≤ 1√
1− 2N2+1

k|c1−c2|

.
1√

1− 2kR2+1
k|c1−c2|

.605

Since numerator and denominator have the same units, the conditioning of the split-606

ting operator does not depend on k in this case.607

This has immediate consequences for the inverse scattering problem: Qualita-608

tive reconstruction methods like the linear sampling method [2] or the factorization609

method [13] determine the support of an unknown scatterer by testing pointwise610

whether the far field of a point source belongs to the range of a certain restricted far611

field operator, mapping sources supported inside the scatterer to their radiated far612

field. The inequality (7.3) indeed shows that (using these qualitative reconstruction613

algorithms for the inverse scattering problem) one can increase resolution by simply614

increasing the wave number.615

Finally, if we replace both sources by point sources with singularities in c1 and616

c2, respectively, then we can choose both subspaces V1 and V2 to be one-dimensional,617

and accordingly set N1 = N2 = R1 = R2 = 0. The estimate (7.2) reduces to618

(7.4) csc(θ12) ≤ 1√
1− 1

k|c1−c2|

,619

i.e., in this case the conditioning of the splitting operator improves with increas-620

ing wave number k. MUSIC-type reconstruction methods [5] for inverse scattering621

problems with infinitesimally small scatterers recover the locations of a collection of622

unknown small scatterers by testing pointwise whether the far field of a point source623

belongs to the range of a certain restricted far field operator, mapping point sources624

with singularities at the positions of the small scatterers to their radiated far field.625

From (7.4) we conclude that (using MUSIC-type reconstruction algorithms for the626

inverse scattering problem with infinitesimally small scatterers) on can increase res-627

olution by simply increasing the wave number and the reconstruction becomes more628

stable for higher frequencies.629

8. An analytic example. The example below illustrates that the estimate of630

the cosine of the angle between two far fields radiated by two sources supported in631

balls BR1
(c1) and BR2

(c2), respectively, cannot be better than proportional to the632

quantity633 √
kR1R2

|c1 − c2|
.634

As pointed out in the previous section, we need only construct the example for635

k = 1. We will let f be a single layer source supported on a horizontal line segment636

of width W , and g be the same source, translated vertically by a distance d (i.e.,637

c1 = (0, 0) and c2 = (0, d)). Specifically, with H denoting the Heavyside or indicator638

function, and δ the dirac mass:639

f =
1√
W
H|x|<W δy=0640

g =
1√
W
H|x|<W δy=d641

642
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The far fields radiated by f and g are:643

αf (θ) = Ff = 2
sin(W cos t)√

W cos t
644

αg(θ) = Fg = e−id sin t 2
sin(W cos t)√

W cos t
645
646

for θ = (cos t, sin t) ∈ S1. Accordingly647

‖αf‖22 = ‖αg‖22 = 4

∫ 2π

0

sin2(W cos t)

(W cos t)2
W dt = 8

∫ W

−W

sin2(ξ)

ξ2

1√
1− ξ2

dξ

≥ 8

∫ W

−W

sin2(ξ)

ξ2
dξ = 8

∫ ∞
−∞

sin2(ξ)

ξ2
dξ − 16

∫ ∞
W

sin2(ξ)

ξ2
dξ ,

648

and we can evaluate the first integral on the right hand side using the Plancherel649

equality as sin ξ
2ξ is the Fourier transform of the characteristic function of the interval650

[−1, 1], and estimate the second, yielding651

‖αf‖22 ≥ 8
(
π − 2

W

)
.652

On the other hand, for d � W , according to the principle of stationary phase653

(there are stationary points at ±π2 )654

〈αf , αg〉 = 4W

∫ 2π

0

sin2(W cos t)

(W cos t)2
e−id sin t dt = 8

√
2π

W√
d

cos
(
d− π

4

)
+O(d−

3
2 ) ,655

which shows that for d�W � 1656

〈αf , αg〉
‖αf‖2‖αg‖2

≈
√

2

π

W√
d

cos
(
d− π

4

)
,657

which decays no faster than that predicted by theorem 5.3.658

9. Numerical examples. Next we consider the numerical implementation of659

the l2 approach from section 5 and the l1 approach from section 6 for far field splitting660

and data completion simultaneously (cf. theorem 5.7 and theorem 6.6). Since both661

schemes are extensions of corresponding algorithms for far field splitting as described662

in [9] (least squares) and [10] (basis pursuit), we just briefly comment on modifications663

that have to be made to include data completion and refer to [9, 10] for further details.664

Given a far field α =
∑I
i=1 T

∗
ciαi that is a superposition of far fields T ∗ciαi radiated665

from balls BRi(ci), for some ci ∈ R2 and Ri > 0, we assume in the following that we666

are unable to observe all of α and that a subset Ω ⊆ S1 is unobserved. The aim is to667

recover α|Ω from α|S1\Ω and a priori information on the location of the supports of668

the individual source components BRi(ci), i = 1, . . . , I.669

We first consider the l2 approach from section 5 and write γ := α|S1\Ω for the670

observed far field data and β := −α|Ω. Accordingly,671

γ = β +

I∑
i=1

T ∗ciαi ,672

i.e., we are in the setting of theorem 5.7. Using the shorthand VΩ := L2(Ω) and673

Vi := T ∗ci l
2(−Ni, Ni), i = 1, . . . , I, the least squares problem (5.15) is equivalent to674
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seeking approximations β̃ ∈ VΩ and α̃i ∈ l2(−Ni, Ni), i = 1, . . . , I, satisfying the675

Galerkin condition676

(9.1) 〈β̃ + T ∗c1 α̃1 + · · ·+ T ∗cI α̃I , φ〉 = 〈γ, φ〉 for all φ ∈ VΩ ⊕ V1 ⊕ · · · ⊕ VI .677

The size of the individual subspaces depends on the a priori information on R1, . . . , RI .678

Following our discussion at the end of section 3 we choose Nj = e
2kRj in our numerical679

example below. Denoting by PΩ and P1, . . . , PI the orthogonal projections onto VΩ680

and V1, . . . , VI , respectively, (9.1) is equivalent to the linear system681

β̃ + PΩP1T
∗
c1 α̃1 + · · ·+ PΩPIT

∗
cI α̃I = 0 ,

P1PΩβ̃ + T ∗c1 α̃1 + · · ·+ P1PIT
∗
cI α̃I = P1γ ,

...

PIPΩβ̃ + PIP1T
∗
c1 α̃1 + · · ·+ T ∗cI α̃I = PIγ .

(9.2)682

Explicit matrix representations of the individual matrix blocks in (9.2) follow directly683

from (4.2)–(4.3) (see [9, lemma 3.3] for details) for P1, . . . , PI and by applying a684

discrete Fourier transform to the characteristic function on S1\Ω for PΩ. Accordingly,685

the block matrix corresponding to the entire linear system can be assembled, and the686

linear system can be solved directly. The estimates from theorem 5.7 give bounds on687

the absolute condition number of the system matrix.688

The main advantage of the l1 approach from section 6 is that no a priori infor-689

mation on the radii Ri of the balls BRi(ci), i = 1, . . . , I, containing the individual690

source components is required. However, we still assume that a priori knowledge of691

the centers c1, . . . , cI of such balls is available. Using the orthogonal projection PΩ692

onto L2(Ω), the basis pursuit formulation from theorem 6.6 can be rewritten as693

(9.3)

(α̃1, . . . , α̃I) = argmin

I∑
i=1

‖αi‖l1 s.t. ‖γ − PΩ(

I∑
i=1

T ∗ciαi)‖2 ≤ δ , αi ∈ L
2(S1) .694

Accordingly, β̃ :=
∑I
i=1(T ∗ci α̃i)|Ω is an approximation of the missing data segment. It695

is well known that the minimization problem from (9.3) is equivalent to minimizing696

the Tikhonov functional697

(9.4) Ψµ(α1, . . . , αI) = ‖γ − PΩ(

I∑
i=1

T ∗ciαi)‖
2
`2 + µ

I∑
i=1

‖αi‖`1 ,698

[α1, . . . , αm] ∈ `2×· · ·× `2, for a suitably chosen regularization parameter µ > 0 (see,699

e.g., [8, proposition 2.2]). The unique minimizer of this functional can be approxi-700

mated using (fast) iterative soft thresholding (cf. [1, 4]). Apart from the projection701

PΩ, which can be implemented straightforwardly, our numerical implementation anal-702

ogously to the implementation for the splitting problem described in [10], and also703

the convergence analysis from [10] carries over.4704

Example 9.1. We consider a scattering problem with three obstacles as shown705

in figure 9.1 (left), which are illuminated by a plane wave ui(x) = eikx·d, x ∈ R,706

with incident direction d = (1, 0) and wave number k = 1 (i.e., the wave length is707

λ = 2π ≈ 6.28). Assuming that the ellipse is sound soft whereas the kite and the nut708

4In [10] we used additional weights in the l1 minimization problem to ensure that its solution
indeed gives the exact far field split. Here we don’t use these weights, but our estimates from section 6
imply that the solution of (9.3) and (9.4) is very close to the true split.
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Geometry and a priori information
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Fig. 9.1. Left: Geometry of the scatterers (solid) and a priori information on the source
locations (dashed). Right: Real part (solid) and imaginary part (dashed) of the far field α.

Observed farfield

−6

−4

−2

0

2

4

6

0 π/2 π 3π/2 2π

Reconstructed missing data

−6

−4

−2

0

2

4

6

0 π/2 π 3π/2 2π

Absolute error

−6

−4

−2

0

2

4

6

0 π/2 π 3π/2 2π

Fig. 9.2. Reconstruction of the least squares scheme: Observed far field γ (left), re-
construction of the missing part α|Ω (middle), and difference between exact far field and
reconstructed far field (right).

are sound hard, the scattered field us satisfies the homogeneous Helmholtz equation709

outside the obstacles, the Sommerfeld radiation condition at infinity, and Dirichlet710

(ellipse) or Neumann boundary conditions (kite and nut) on the boundaries of the711

obstacles. We simulate the corresponding far field α of us on an equidistant grid with712

512 points on the unit sphere S1 using a Nyström method (cf. [3, 14]). Figure 9.1713

(middle) shows the real part (solid line) and the imaginary part (dashed line) of α.714

Since the far field α can be written as a superposition of three far fields radiated by715

three individual smooth sources supported in arbitrarily small neighborhoods of the716

scattering obstacles (cf., e.g., [17, lemma 3.6]), this example fits into the framework717

of the previous sections.718

We assume that the far field cannot be measured on the segment719

Ω = {θ = (cos t, sin t) ∈ S1 | π/2 < t < π/2 + π/3} ,720

i.e., |Ω| = π/3. We first apply the least squares procedure and use the dashed circles721

shown in figure 9.1 (left) as a priori information on the approximate source locations722

BRi(ci), i = 1, 2, 3. More precisely, c1 = (24,−4), c2 = (−22, 23), c3 = (−15,−20)723

and R1 = 5, R2 = 6 and R3 = 4. Accordingly we choose N1 = 7, N2 = 9 and N3 = 6,724

and solve the linear system (9.2).725

Figure 9.2 shows a plot of the observed data γ (left), of the reconstruction of the726

missing data segment obtained by the least squares algorithm and of the difference727
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Observed farfield
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Fig. 9.3. Reconstruction of the basis pursuit scheme: Observed far field γ (left), re-
construction of the missing part α|Ω (middle), and difference between exact far field and
reconstructed far field (right).

between the exact far field and the reconstructed far field. Again the solid line cor-728

responds to the real part while the dashed line corresponds to the imaginary part.729

The condition number of the matrix is 5.4 × 104. We note that the missing data730

component in this example is actually too large for the assumptions of theorem 5.7731

to be satisfied. Nevertheless the least squares approach still gives good results.732

Applying the (fast) iterative soft shrinkage algorithm to this example (with reg-733

ularization parameter µ = 10−3 in (9.4)) does not give a useful reconstruction. As734

indicated by the estimates in theorem 6.6 the l1 approach seems to be a bit less stable.735

Hence we halve the missing data segment, consider in the following736

Ω = {θ = (cos t, sin t) ∈ S1 | π/2 < t < π/2 + π/6} ,737

i.e., |Ω| = π/6, and apply the l1 reconstruction scheme to this data. Figure 9.3 shows738

a plot of the observed data γ (left), of the reconstruction of the missing data segment739

obtained by the fast iterative soft shrinkage algorithm (with µ = 10−3) after 103740

iterations (the initial guess is zero) and of the difference between the exact far field741

and the reconstructed far field.742

The behavior of both algorithms in the presence of noise in the data depends743

crucially on the geometrical setup of the problem (i.e. on its conditioning). The744

smaller the missing data segment is and the smaller the dimensions of the individual745

source components are relative to their distances, the more noise these algorithms can746

handle.747

Conclusions. We have considered the source problem for the two-dimensional748

Helmholtz equation when the source is a superposition of finitely many well-separated749

compactly supported source components. We have presented stability estimates for750

numerical algorithms to split the far field radiated by this source into the far fields751

corresponding to the individual source components and to restore missing data seg-752

ments. Analytic and numerical examples confirm the sharpness of these estimates753

and illustrate the potential and limitations of the numerical schemes.754

The most significant observations are: (i) The conditioning of far field splitting755

and data completion depends on the dimensions of the source components, their rel-756

ative distances with respect to wavelength and the size of the missing data segment.757

The results clearly suggest combining data completion with splitting whenever pos-758

sible in order to improve the conditioning of the data completion problem. (ii) The759

This manuscript is for review purposes only.



26 R. GRIESMAIER AND J. SYLVESTER

conditioning of far field splitting and data completion depends on wave length and760

deteriorates with increasing wave number. Therefore, in order to increase resolution761

one not only has to increase the wave number but also the dynamic range of the762

sensors used to measure the far field data.763
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