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UNCERTAINTY PRINCIPLES FOR INVERSE SOURCE PROBLEMS,
FAR FIELD SPLITTING AND DATA COMPLETION*

ROLAND GRIESMAIER! AND JOHN SYLVESTER?

Abstract. Starting with far field data of time-harmonic acoustic or electromagnetic waves radi-
ated by a collection of compactly supported sources in two-dimensional free space, we develop criteria
and algorithms for the recovery of the far field components radiated by each of the individual sources,
and the simultaneous restoration of missing data segments. Although both parts of this inverse prob-
lem are severely ill-conditioned in general, we give precise conditions relating the wavelength, the
diameters of the supports of the individual source components and the distances between them, and
the size of the missing data segments, which guarantee that stable recovery in presence of noise is
possible. The only additional requirement is that a priori information on the approximate location of
the individual sources is available. We give analytic and numerical examples to confirm the sharpness
of our results and to illustrate the performance of corresponding reconstruction algorithms, and we
discuss consequences for stability and resolution in inverse source and inverse scattering problems.

Key words. Inverse source problem, Helmholtz equation, uncertainty principles, far field split-
ting, data completion, stable recovery

AMS subject classifications. 35R30, 656N21

1. Introduction. Insignal processing, a classical uncertainty principle limits the
time-bandwidth product |T'||W] of a signal, where |T'| is the measure of the support
of the signal ¢(t), and || is the measure of the support of its Fourier transform d(w)
(cf., e.g., [7]). A very elementary formulation of that principle is

(L.1) (¢, D) < VITIW I ¢ll2ll9]l2

whenever supp ¢ C T and supp@ cw.

In the inverse source problem, the far field radiated by a source f is its restricted
(to the unit sphere) Fourier transform, and the operator that maps the restricted
Fourier transform of f(x) to the restricted Fourier transform of its translate f(z + ¢)
is called the far field translation operator. We will prove an uncertainty principle
analogous to (1.1), where the role of the Fourier transform is replaced by the far field
translation operator. Combining this principle with a reqularized Picard criterion,
which characterizes the non-evanescent (i.e., detectable) far fields radiated by a (lim-
ited power) source supported in a ball provides simple proofs and extensions of several
results about locating the support of a source and about splitting a far field radiated
by well-separated sources into the far fields radiated by each source component.

We also combine the regularized Picard criterion with a more conventional un-
certainty principle for the map from a far field in L?(S') to its Fourier coefficients.
This leads to a data completion algorithm which tells us that we can deduce missing
data (i.e. on part of S!) if we know a priori that the source has small support. All
of these results can be combined so that we can simultaneously complete the data
and split the far fields into the components radiated by well-separated sources. We
discuss both 2 (least squares) and I* (basis pursuit) algorithms to accomplish this.
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2 R. GRIESMAIER AND J. SYLVESTER

Perhaps the most significant point is that all of these algorithms come with bounds
on their condition numbers (both the splitting and data completion problems are lin-
ear) which we show are sharp in their dependence on geometry and wavenumber.
These results highlight an important difference between the inverse source problem
and the inverse scattering problem. The conditioning of the linearized inverse scatter-
ing problem does not depend on wavenumber, which means that the conditioning does
not deteriorate as we increase the wavenumber in order to increase resolution. The
conditioning for splitting and data completion for the inverse source problem does,
however, deteriorate with increased wavenumber, which means the dynamic range of
the sensors must increase with wavenumber to obtain higher resolution.

We note that applications of classical uncertainty principles for the one-dimen-
sional Fourier transform to data completion for band-limited signals have been devel-
oped in [7]. In this classical setting a problem that is somewhat similar to far field
splitting is the representation of highly sparse signals in overcomplete dictionaries.
Corresponding stability results for basis pursuit reconstruction algorithms have been
established in [6].

The numerical algorithms for far field splitting that we are going to discuss have
been developed and analyzed in [9, 10]. The novel mathematical contribution of the
present work is the stability analysis for these algorithms based on new uncertainty
principles, and their application to data completion. For alternate approaches to
far field splitting that however, so far, lack a rigorous stability analysis we refer to
[12, 19] (see also [11] for a method to separate time-dependent wave fields due to
multiple sources).

This paper is organized as follows. In the next section we provide the theoret-
ical background for the direct and inverse source problem for the two-dimensional
Helmholtz equation with compactly supported sources. In section 3 we discuss the
singular value decomposition of the restricted far field operator mapping sources sup-
ported in a ball to their radiated far fields, and we formulate the regularized Picard
criterion to characterize non-evanescent far fields. In section 4 we discuss uncertainty
principles for the far field translation operator and for the Fourier expansion of far
fields, and in section 5 we utilize those to analyze the stability of least squares algo-
rithms for far field splitting and data completion. Section 6 focuses on corresponding
results for /! algorithms. Consequences of these stability estimates related to con-
ditioning and resolution of reconstruction algorithms for inverse source and inverse
scattering problems are considered in section 7, and in section 8-9 we provide some
analytic and numerical examples.

2. Far fields radiated by compactly supported sources. Suppose that f €
L3(R?) represents a compactly supported acoustic or electromagnetic source in the
plane. Then the time-harmonic wave v € Hlloc(]Rz) radiated by f at wave number
k > 0 solves the source problem for the Helmholtz equation

—Av —k*v = k%g in R?,

and satisfies the Sommerfeld radiation condition

. dv .
Tli)rgo\/vj(g—lkv) =0, r=lx|.
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UNCERTAINTY PRINCIPLES 3

We include the extra factor of k2 on the right hand side so that both v and g scale
(under dilations) as functions; i.e., if u(z) = v(kx) and f(x) = g(kx), then

(2.1) —Au—u=f in R? and lim \/;(—u — iu) =0.
r—00 r

With this scaling, distances are measured in wavelengths!, and this allows us to set
k =1 in our calculations, and then easily restore the dependence on wavelength when
we are done.

The fundamental solution of the Helmholtz equation (with k = 1) in two dimen-
sions is

i

®(x) = 7H(2)), xR\ {0},

so the solution to (2.1) can be written as a volume potential

ua) = [ @-nfe)dy,  aer.

The asymptotics of the Hankel function tell us that

im ;
ir
€

e4
(0%
V81T

where x = 10, with 6, € S*, and

(0;6)4—0(1"*%) as r — 0o,

u(zx) =

(22 00 = [ 5w dy.

The function « is called the far field radiated by the source f, and equation (2.2) shows
that the far field operator F, which maps f to a is a restricted Fourier transform, i.e.

(2.3) F:L3(R?) — LX(SY), Ff = fla-

The goal of the inverse source problem is to deduce properties of an unknown
source f € L2(R?) from observations of the far field. Clearly, any compactly supported
source with Fourier transform that vanishes on the unit circle is in the nullspace N (F)
of the far field operator. We call f € N(F) a non-radiating source because a corollary
of Rellich’s lemma and unique continuation is that, if the far field vanishes, then the
wave u vanishes on the unbounded connected component of the complement of the
support of f. The nullspace of F is exactly

N(F) ={g=—-Av—v|vec H;(R?}.

Neither the source f nor its support is uniquely determined by the far field, and,
as non-radiating sources can have arbitrarily large supports, no upper bound on the
support is possible. There are, however, well defined notions of lower bounds. We
say that a compact set  C R? carries a, if every open neighborhood of € supports
a source f € L3(R?) that radiates o. The convex scattering support € (a) of «, as

1One unit represents 2w wavelengths.
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4 R. GRIESMAIER AND J. SYLVESTER

defined in [16] (see also [17, 21]), is the intersection of all compact convex sets that
carry a. The set €'(«) itself carries «, so that € («) is the smallest convex set which
carries the far field «, and the convex hull of the support of the “true” source f must
contain ¢ («). Because two disjoint compact sets with connected complements cannot
carry the same far field pattern (cf. [21, lemma 6]), it follows that € («) intersects any
connected component of supp(f), as long as the corresponding source component is
not non-radiating.

In [21], an analogous notion, the UWSCS support, was defined, showing that
any far field with a compactly supported source is carried by a smallest union of
well-separated convex sets (well-separated means that the distance between any two
connected convex components is strictly greater than the diameter of any component).
A corollary is that it makes theoretical sense to look for the support of a source with
components that are small compared to the distance between them.

Here, as in previous investigations [9, 10], we study the well-posedness issues
surrounding numerical algorithms to compute that support.

3. A regularized Picard criterion. If we consider the restriction of the source
to far field map F from (2.3) to sources supported in the ball Br(0) of radius R
centered at the origin, i.e.,

(3.1) Fpn© : LA(Br(0) = L*(SY),  Frao)f = flg

we can write out a full singular value decomposition. We decompose f € L?(Br(0))
as

fx) = ( > In i"Jn(Iﬂc)ei"“”> & fur(@), @ =[al(cos pa,sings) € Br(0),
n=-—oo
where i".J,,(|z|)ei"?+, n € Z, span the closed subspace of free sources, which satisfy
—Au—u=0 in Br(0),

and fyr belongs to the orthogonal complement of that subspace; i.e., fyr i a non-
radiating source.? The restricted far field operator F. Bgr(0) Maps

(3.2) FBr i"J,(|z])el™e — st(R)eina7
where
R
(3.3) s2(R) = 27 / J2(r)r dr.
0
Denoting the Fourier coefficients of a far field o € L%(S*) by
1 .
34 Qp = — a(f)e™ de, nez,
(34 vi= = [ a®)
so that

oo in6
alt) = Y an%, 0e s,

n=-—oo

2Throughout, we identify f € L2(Bg(0)) with its continuation to R? by zero whenever appro-

priate.
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UNCERTAINTY PRINCIPLES 5

and

oo

(3.5) Ha||i2(51) = Z |04n|2

by Parseval’s identity, an immediate consequence of (3.2) is that

oo

* _ 1 Qp n inp,
(3.6) falw) = 3= 2 o g e, € Brl0),

— 00

which has L?-norm

Tar _ Ly el
allL2(Br(0)) = on 5%(R)7

is the source with smallest L?-norm that is supported in Br(0) and radiates the far
field . We refer to f as the minimal power source because, in electromagnetic
applications, fZ is proportional to current density, so that, in a system with a con-
stant internal resistance, || ff;||2L2( Br(0) is proportional to the input power required to
radiate a far field. Similarly, ||o||%, (s1) measures the radiated power of the far field.

The squared singular values {sZ(R)} of the restricted Fourier transform Fg, )
have a number of interesting properties with immediate consequences for the inverse
source problem; full proofs of the results discussed in the following can be found in
the supplement in section SM1. The squared singular values satisfy

o

(3.7) > si(R) = nR?,

n=—oo

and s2(R) decays rapidly as a function of n as soon as |n| > R,

(3.8) s

—e "7 ) — if |In| > R.

) 725ni  n4S\ntl/R? | m2\nR2
( ) (n2 ) n2

n

2

Moreover, the odd and even squared singular values, sz,

as functions of n > 0 (n < 0), and asymptotically

wo i (T v

R—o0 2R 0 v > 1

(R), are decreasing (increasing)

where [VR] denotes the smallest integer that is greater than or equal to vR. This
can also be seen in figure 3.1, where we include plots of s2(R) (solid line) together
with plots of the asymptote 2/ R? — n? (dashed line) for R = 10 (left) and R = 100
(right). The asymptotic regime in (3.9) is already reached for moderate values of R.

The forgoing yields a very explicit understanding of the restricted Fourier trans-
form Fp, ). For |n| < R the singular values s, (R) are uniformly large, while for
[n| 2 R the s,(R) are close to zero, and it is seen from (3.7)—(3.9) as well as from
figure 3.1 that as R gets large the width of the n-interval in which s, (R) falls from
uniformly large to zero decreases. Similar properties are known for the singular values
of more classical restricted Fourier transforms (see [20]).

This manuscript is for review purposes only.
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6 R. GRIESMAIER AND J. SYLVESTER

25 250

20 200
150

100

-100 0 100
n

Fic. 3.1. Squared singular values s2(R) (solid line) and asymptote 2v/RZ —n? (dashed
line) for R =10 (left) and R = 100 (mght)

A physical source has limited power, which we denote by P > 0, and a receiver
has a power threshold, which we denote by p > 0. If the radiated far field has power
less than p, the receiver cannot detect it. Because s, (R) = s2(R) and the odd and
even squared singular values, s2(R), are decreasing as functions of n > 0, we may
define:

(3.10) N(R,P,p) := sup n.
s2(R)>2n %

So, if a € L?(S1) is a far field radiated by a limited power source supported in Bg(0)
with ||f;||%2(BR(O)) < P, then, for N = N(R, P,p)

1 |an|2 2 2
> > n > — n
> Y i 7 Xl > 2 Y el

27 52
|n|>N N1 (B |n|>N |n|>N

Accordingly, ZIHPN |an|? < p is below the power threshold. So the subspace of
detectable far fields, that can be radiated by a power limited source supported in
BR(O) is

WE = {aEL2( ’ Z «a eme}

We refer to Viyg as the subspace of non-evanescent far fields, and to the orthogonal
projection of a far field onto this subspace as the non-evanescent part of the far field.
We use the term non-evanescent because it is the phenomenon of evanescence that
explains why the the singular values s2(R) decrease rapidly for |n| > R, resulting in
the fact that, for a wide range of p and P, R < N(R,p, P) < 1.5R, if R is sufficiently
large. This is also illustrated in figure 3.2, where we include plots of N(R, P, p) from
(3.10) for p/P =10"%, p/P = 10~%, and p/P = 10~% and for varying R. The dotted
lines in these plots correspond to ¢1(R) = R and g1 5(R) = 1.5R, respectively.

4. Uncertainty principles for far field translation. In the inverse source
problem, we seek to recover information about the size and location of the support of
a source from observations of its far field. Because the far field is a restricted Fourier
transform, the formula for the Fourier transform of the translation of a function:

fl+0)(0) = €7f(8), 6eS', ceR?,

This manuscript is for review purposes only.
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15 : —— 150
—p/P=1e-01 |- e —p/P=1e-01
-—plP=1e-04 .- ey -— plP=1e-04
- -p/P=1e-08 ;- ) - -p/P=1e-08 .

N(R,P,p)
N(R,P,p)

0 20 40 60 80 100

Fic. 3.2. Threshold N(R, P,p) as function of R for different values of p/P. Dotted lines
correspond to gi(R) = R and g1.5(R) = 1.5R.

plays an important role. We use T, to denote the map from L?(S?) to itself given by
(4.1) T.:aw—e“Ya.

The mapping T, acts on the Fourier coefficients {c,} of a as a convolution operator,
i.e., the Fourier coefficients {a¢,} of T.a satisfy

(4.2) aly = Y amn(i"Iu(lc))e?),  mez,

n—=——oo

where |c| and . are the polar coordinates of c. Employing a slight abuse of notation,
we also use T, to denote the corresponding operator from {2 to itself that maps

(4.3) T : {an} — {af,}.

Note that T¢ is a unitary operator, i.e. T} =T_..

The following theorem, which we call an uncertainty principle for the translation
operator, will be the main ingredient in our analysis of far field splitting.

THEOREM 4.1 (Uncertainty principle for far field translation). Let o, 3 € L?(S?)
such that the corresponding Fourier coefficients {c, } and {8, } satisfy supp{a, } C Wy
and supp{B,} C Wy with W1, Wo C Z, and let ¢ € R?. Then,

VIWi|[Wa|

[{a, TeB) p2(sm)| < WH0||L2(51)||5||L2(51)~

We will frequently be discussing properties of a far field « and those of its Fourier
coefficients. The following notation will be a useful shorthand:

1/
(/ |a(9)|pd9> p, 1<p<oo,
S1

(4.4) lrll 2o

> 1
(4.5) ol = (D2 lanl?) 1<p<oo.
n=—oc

The notation emphasizes that we treat the representation of the function a by its
values, or by the sequence of its Fourier coefficients as simply a way of inducing
different norms. That is, both (4.4) and (4.5) describe different norms of the same
function on S*. Note that, because of the Plancherel equality (3.5), ||a||z2 = ||z,
so we may just write ||al|2, and we write (-,-) for the corresponding inner product.

This manuscript is for review purposes only.
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8 R. GRIESMAIER AND J. SYLVESTER

REMARK 4.2. We will extend the notation a little more and refer to the support
of a in St as its L°-support and denote by ||c||Lo the measure of supp(a) C St. We
will call the indices of the nonzero Fourier coefficients in its Fourier series expansion
the 19-support of o, and use ||al|;o to denote the number of non-zero coefficients.

With this notation, theorem 4.1 becomes

THEOREM 4.3 (Uncertainty principle for far field translation). Let o, 8 € L?(S!)
and let ¢ € R?. Then,

(4.6) T8y < Yol lBlus sy,

|C|1/3

We refer to theorem 4.3 as an uncertainty principle, because, if we could take
B =Train (4.6), it would yield

lloelliol| T exlfz0
(4.7 1< TREE

As stated, (4.7) is is true but not useful, because ||a|;o and || T} «||;0 cannot simulta-
neously be finite.> We present the corollary only to illustrate the close analogy to the
theorem 1 in [7], which treats the discrete Fourier transform (DFT) on sequences of
length N:

THEOREM 4.4 (Uncertainty principle for the Fourier transform [7]). If = repre-
sents the sequence {x,} forn=20,...,N —1 and T its DFT, then

1 < lellelzle
- N

This is a lower bound on the time-bandwidth product. In [7] Donoho and Stark
present two important corollaries of uncertainty principles for the Fourier transform.
One is the uniqueness of sparse representations of a signal x as a superposition of
vectors taken from both the standard basis and the basis of Fourier modes, and the
second is the recovery of this representation by I! minimization.

The main observation we make here is that, if we phrase our uncertainty principle
as in theorem 4.3, then the far field translation operator, as well as the map from «
to its Fourier coefficients, satisfy an uncertainty principle. Combining the uncertainty
principle with the regularized Picard criterion from section 3 yields analogs of both
results in the context of the inverse source problem. These include previous results
about the splitting of far fields from [9] and [10], which can be simplified and extended
by viewing them as consequences of the uncertainty principle and the regularized
Picard criterion.

The proof of theorem 4.3 is a simple corollary of the lemma below:

LEMMA 4.5. Let ¢ € R? and let T, be the operator introduced in (4.1) and (4.3).
Then, the operator norm of T, : LP(S') — LP(S'), 1 < p < oo, satisfies

(4.8) I Tel|zr,r =1,

whereas T, : 11 — 1°° fulfills

(4.9) | Te|li g0 <

3This would imply, using (3.6), that a could have been radiated by a source supported in an arbi-
trarily small ball centered at the origin, or centered at ¢, but Rellich’s lemma and unique continuation
show that no nonzero far field can have two sources with disjoint supports.

This manuscript is for review purposes only.
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268 Proof. Recalling (4.1), we see that T, is multiplication by a function of modulus
269 one, so (4.8) is immediate. On the other hand, combining (4.2) with the last inequality
270 from page 199 of [18]; more precisely,

b
271 |Jn(z)] < — with b ~ 0.6749,
|3
272 shows that
~ 1
273 [ Tellin e < sup [Jn(le])] < —
nez lc|3
74 a
275 Proof of theorem /.3. Using Holder’s inequality and (4.9) we obtain that
1 Vel Bl
276 {a, TeB)| < el 1 TeBllie < R\lallzl 1Bl < THQHPWIIV :
277 a
278 We can improve the dependence on |c| in (4.6) under hypotheses on o and 3 that
279 are more restrictive, but well suited to the inverse source problem.
280 THEOREM 4.6. Suppose that o € 1>(—=M, M), B € I>(=N, N) with M, N > 1, and

281 let ¢ € R? such that |c| > 2(M + N +1). Then

VEN +1)2M +1)

282 (4.10) (o, TeB)| < e lall2]|Bll2 -
283 Proof. Because the [°-support of 3 is contained in [~ N, N]
N
251 Boo = 30 Bu(i" (el
n=—N
285 SO
286 sup [BL] < (1Bl sup | Tn(le])]
—M<m<M —(M+N)<n<(M+N)

287 and it follows from theorem 2 of [15], using the fact that M, N > 1, together with our
288 hypothesis, which implies that |c¢| > 6, that

b
280 (4.11) sup J2(le]) < —  with b~ 0.7595
—(M+N)<n<(M+N) |c|

290  (see section SM2 in the supplement for details). We now simply repeat the proof of
291 theorem 4.3, replacing the estimate for ||T.0]|;~ from (4.9) with the estimate we have
292 just established in (4.11), i.e.

293 (412) HTCHll[fN,N],loc[fM,M] <

294 O
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10 R. GRIESMAIER AND J. SYLVESTER

We will also make use of another uncertainty principle. A glance at (3.4)—(3.5)
reveals that the operator which maps « to its Fourier coefficients maps L? to {? with
norm 1, L' to 1°° with norm 1/v/27, and its inverse maps [' to L™, also with norm
1/ V27, An immediate corollary of this observation is

THEOREM 4.7. Let o, 3 € L*(S') and let ¢ € R?. Then,

(113) (T ) < 1000 g,

Proof. Combining Holder’s inequality with (4.8) and using the mapping properties
of the operator which maps « to its Fourier coefficients we find that
1

(Tear, B)] Jon

IA

[Teallz=llBllr < llellze Bl <

llexllo (18]l 1

< \/%\/lla\\mHallz\/HﬁllLo||5||2-

|

5. [? corollaries of the uncertainty principles. The regularized Picard cri-
terion tells us that, up to an L2-small error, a far field radiated by a limited power
source in Br(0) is L2-close to an « that belongs to the subspace of non-evanescent
far fields, the span of {e™} with |n| < N, where N = N(R, P,p) is a little bigger
than the radius R. This non-evanescent « satisfies ||« < 2N + 1. The uncertainty
principle will show that the angle between translates of these subspaces is bounded
below when the translation parameter is large enough, so that we can split the sum
of the two non-evanescent far fields into the original two summands.

LEMMA 5.1. Suppose that v, a1,z € L?(S?) and c1,ca € R? with

(5.1) v =T7 o0 + T,
and that 12lolozlo 9 - ppep for i =1,2
ler—ca|3
ol [leva a0 ) "
(5.2) leill3 < (1 T -l 1113 -
1—C2

Proof. We first note that (5.1) and (4.1) imply

VI3 > Nl + llazl3 — 21(T7 a1, T7, 02)]

l 13 + ez l3 = 2(as, T2, ., a2)] -

(5.3)

We now use (4.6),

Viladliwllazlle

V13 > fleal3 + llazl3 -2 222 a2l eall2
lcz —c1]3
o4 [ VeaTollaz]] ?
Q|0 ||Q2]|10 1|10 ||C2]|10
_ (1 - 2||) ol + (naznz - 1||a1||2) .
|CQ—61|3 |CQ—C1|3

Dropping the second term now gives (5.2) for a1, and we may interchange the roles
a1 and as in the proof to obtain the estimate for as. 0
The analogous consequence of theorem 4.6 is

This manuscript is for review purposes only.
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LEMMA 5.2. Suppose that v € L*(SY), a; € I?(—N;, N;) for some N; € N, i =
1,2, and ¢y, ca € R? with |c; — ca| > 2(Ny + No + 1) and

v=Thoar+ T s,

and that LD ENo+D Then, fori=1,2

le1—c2|

(5.5) o3 < (1 _ BN+ DEN: £ 1)) 2.

ler — caf

In our application to the inverse source problem, we will know that each far field
is the translation of a far field «;, radiated by a limited power source supported in
a ball centered at the origin, and therefore that all but a very small amount of the
radiated power is contained in the non-evanescent part, the translation of the Fourier
modes ¢ for |n| < N(R,p, P). The estimate in the theorem below says that, if
the distances between the balls is large enough, we may uniquely solve for the non-
evanescent parts of the individual far fields, and that this split is stable with respect
to perturbations in the data.

THEOREM 5.3. Suppose that v, v* € L?(SY), ¢1,c2 € R? and Ny, Ny € N such
that |c1 — c2| > 2(N1 + N2+ 1) and

(2N7 +1)(2N2 + 1) <

5.6 1,

(5.6) o — ool

and let

(5.7a) 70 LS Tc*loz(l) + T;‘zag , oz? € I*(=N;, Ny),
(5.7b) v = Tl + 103, ol € 2(~N;, ;).

Then, fori=1,2

-1
65 leb-ati s (1o CREUERED) oy,
C1 — Cz|

The notation in (5.7) above means that the of are the (necessarily unique)
least squares solutions to the equations 77/ = T;la{ + Tc’;aé. Recall that the far
fields radiated by a limited power source from a ball have almost all, but not all,
of their power (L2?-norm) concentrated in the Fourier modes with n < N(R, P,p).
Therefore the «* will typically not belong to the subspace that is the direct sum of
T} 12(—N1, N1)®T} 1?(—Na, N3), and therefore o] and o will usually not solve equa-
tions (5.7) exactly. The estimate in (5.8) is nevertheless always true, and guarantees
that the pair (o], o) is unique and that the absolute condition number of the splitting

(2N1+1)(2N2+1)>_%

operator which maps v to (a{, ag) is no larger than (1 - cr—cal

Proof of theorem 5.3. Each 47 can be uniquely decomposed as
(5.9) Vo= w 4wl
where each w’ belongs to the 2N; + 2N, + 2-dimensional subspace

W = T} 1*(—N1, N1) & T (= N2, Na)

This manuscript is for review purposes only.
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12 R. GRIESMAIER AND J. SYLVESTER

and each w’] is orthogonal to W. The definition of least squares solutions means that
wl = T:la{ + T:zag .

Subtracting gives

(5.10) w' —w’ = TF (af — o) + T (a3 — o)

and applying the estimate (5.5) yields

(2N, + )N + 1)\
1) el -aflp < (1- Z0oUCR fu ~ w3,
Finally, we note that
(5.12) Iy =015 = flw' = w®lf3 + lwl — w3 > [lw' — w3,
which finishes the proof. ]

We also have corresponding corollaries of theorem 4.7, which tell us that, if a
far field is radiated from a small ball, and measured on most of the circle, then it is
possible to recover its non-evanescent part on the entire circle. Theorem 5.5 below,
describes the case where we cannot measure the far field a = T*a® on a subset Q C S*.
We measure v = « + 3, where g = fa|Q. The estimates (5.14) imply that we can
stably recover the non-evanescent part of the far field on €.

Before we state the theorem, we give the corresponding analogue of lemma 5.1
and lemma 5.2.

LEMMA 5.4. Suppose that v, a, 3 € L*(S') and ¢ € R? with

v =B+Ta
and that % < 1. Then
el Bllzo ) ™!
(5.130) ol < (1~ L2l lPlen ) =g
and
el Bllzo ) ™!
(5.130) ol < (1- 1ol I8
m
Proof. Proceeding as in (5.3)—(5.4), but replacing (4.6) by (4.13) yields the re-
sult. O

THEOREM 5.5. Suppose that v°, vt € L?(S'), c € R?, N € N and Q C S* such
that % <1, and let

A0 50 L a0, a® € I2(—=N,N) and 8° € L*(),
M E g7l a' € *(=N,N) and p* € L*(9).
Then
2N + 1|\ !
(5.14a) ol — a2 < (1 — (+)|> vt =~°113
2w
and
2N + 1|\ !
(5.14b) 18 — 83 < (1 - (;)'> Iy =°l3-
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Proof. Just as in (5.9), we decompose each ~7
v o= wl
where each w’ belongs to the subspace

W = L*(Q) ® T.I*(-N, N)

13

and each w’ is orthogonal to W. Proceeding as in (5.10)~(5.11), but using the

estimates from (5.13), we find

2N + 1)\
ot = a0l < (1= BEHRY) Tt - w0y

and

(2N +1)|Q)\
It - 01 < (1= Bt - w0y

and then note that (5.12) is true here as well to finish the proof.

|

A version of theorem 5.3 with multiple well-separated components is also true
(proofs of the following two theorems are available in the supplement in section SM3).

THEOREM 5.6. Suppose that v, v € L?(S'), ¢; € R? and N; € N, i =1,...,

such that |¢; — ¢;| > 2(N; + N;j + 1) for every i # j and

(\/2]\7 +1 Z 2N +1> <1 for each i,

i .7|

and let
OLSZ ci za a?€l2(_Ni7Ni)7
'yl L:S ZTc*Lazl’ Oéil S 12(_NiaNi) .

Then, fori=1,...,1

2N +1\ ¢
ot — ol < (1\/2N Yy ) I =92,

ji — il

We may include a missing data component as well.

THEOREM 5.7. Suppose that v°,v' € L?(SY), ¢; e R2, N; €N, i=1,...,

Q C L*(SY) such that |¢; — ¢j| > 2(N; + Nj + 1) for every i # j and
[0 5
PASNTY VN, +1 < 1,
2 ; <
2N 1
v/ 2N; + (\/ Z + > <1 for each i,

J#i
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14 R. GRIESMAIER AND J. SYLVESTER

and let
I
(5.15a) B0+ T, o € 2(—=Ni, N;) and B° € L2(Q),
=1
I
(5.15b) P E BN Tl al € B(=N;, N;) and 8° € L*(Q).
=1
Then

Q —1
19" -1 < (1- /5L S vERHT) -t

and, fori=1,...,1

9] 2N; +1\) '
o —afl} < (1-vaRHT(y B4 30 L)) o,
gz VT

il

6. I! corollaries of the uncertainty principle. The results below are analo-
gous to those in the previous section. The main difference is that they do not require
the a priori knowledge of the size of the non-evanescent subspaces (the N; in theo-
rems 5.3 through 5.7).

In theorem 6.1 below, 7° represents the (measured) approximate far field; the
a? are the non-evanescent parts of the true (unknown) far fields radiated by each of
the two components, which we assume are well-separated (6.1). The constant dy in
(6.2) accounts for both the noise and the evanescent components of the true far fields.
Condition (6.3) requires that the optimization problem (6.4) be formulated with a
constraint that is weak enough so that the a? are feasible.

THEOREM 6.1. Suppose that %, a8, a3 € L*(S?) and c1,ca € R? such that

4|a?
(6.1) Hailnlol <1 for each i
1 — cof3
and
(6.2) |70 = TF ol — T adl2 < b for some dg > 0.

If § > 0 and v € L?(S') with
(6.3) § > 0o+ [lv ="l

and

(6.4) (a1,a9) = argmin ||ag | + |laz||s
st |y —=Tron —Thaslla <8, ar,az € L*(sY),

then, fori=1,2

4]1a9 -1
(65 fo? - aul < (1- e )7y,
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Proof. A consequence of (6.3) is that the pair (af,a9) satisfies the constraint in

(6.4), which implies that

(6.6) et ller + llezllir < llaf i + [zl

because (aq,az) is a minimizer. Additionally, with W; representing the {°-support of
a? and WF its complement,
lailln = lla? + (ai — o)l

(67) = HO{? + (ai - Oé?)”ll(Wy) + ||Oéz - Oé?”ll(Wic)

= llaf + (e — a))lnwy) + llai — alllp — [l — o [l wyy
> [la?lln + o — aflln = 2lles — ol gw, -
Inserting (6.7) into (6.6) yields

(6.8) llos = o}l + oz — bl < 2(llen — afllirwy + llaz — 2l ws)) -

We now use (6.3) together with (6.2), the constraint in (6.4) and the fact that T} _
is an L2-isometry to obtain

C2

162 > (lly = ll2 + 60 +6)”
> (=2 llz + I7° = T2 a8 = T5adllz + 1y — Trax — T azll)”
(6.9) > |77 (a1 — af) + T2 (a — a9)|3
= [lon = +T7 ., (a2 — )3
> Jlar — af)l + laz — oS — 2/as — af, T2, ., (a2 — D)) .

Holder’s inequality, (4.9), and (6.8) show

(6.10)
2
46% > [lar — |3 + llag — asll5 — llar — a¥lp [l — sl
ler — o3
1 2
> Jlen — Q5 + [l — I3 — +(llea — @l + [loz — aflin)
2|c1 — co|3
2 2
> flaa — afll5 + [z — afl5 — PRpT (leaw = allerqwy) + llaa — aSll (wa))
1—C2

Using Holder’s inequality once more yields

46% > Jlax — |3 + llaz — a3

2 1 1 2
— = (IW1[7[lax — afll2 + [W2[2 a2 — a3]2)
(6.11) o1 = cal?
> flar = afll3 + llaz — a3l3
4
= ——— (Willax = a¥[13 + [Wa[laz — a3]3) ,
|1 — cof
which implies (6.5) because |W;| = [|a?]|0. O

Assuming that some a priori information on the size of the non-evanescent sub-
spaces is available and that the distances between the source components is large
relative to their dimensions, we can improve the dependence of the stability estimates
on the distances.
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16 R. GRIESMAIER AND J. SYLVESTER
COROLLARY 6.2. If we add to the hypothesis of theorem 6.1:
a?,ai S 12(—N7;,Ni) and |01 _C2| > 2(N1+N2+].)

for some Ny, Ny € N and replace (6.1) with

4|0
(6.12) ||0172||l01 <1 for each i
1 — o2
then, fori=1,2
4[ja? -1
(6.13) o g < (1- 2ol ) g,
ler — cof2
Proof. Replace (4.9) by (4.12) in (6.9)—(6.10). O

The analogue of theorem 5.5 for data completion but without a priori knowledge
on the size of the non-evanescent subspaces is

THEOREM 6.3. Suppose that v°,a° € L*(S'), @ C S, B° € L*(Q) and ¢ € R?
such that

2[[a®]| 0|92
lolol _ |
e

and
V0 = T7a® — B2 < & for some 6° > 0.
If § > 0 and v € L?(S') with

§ > S0+ v —°ll2

and
o =argmin||al; st ||y —B—Trals <6, ac L*(SY), B e L3(Q),
then
2[|a®lio |22\ 2
A 0 _ 2 < | et L0 el § 2
(6.14a) la® — a2 < (1 - ) 49
and
2|00 102 -1
(6.14b) 87— p13 < (1 - el 5

Proof. Proceeding as in (6.6)—(6.8) we find that
(6.15) la = a®lln < 2l —a®|lnw)

with W representing the {°-support of a”. Applying similar arguments as in (6.9)
yields

46% > Jla = a®|3 + 118 = 813 — 2{(T7 (a — o), 6 - 8°)].
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We now use Holder’s inequality, (4.1), the mapping properties of the operator which
maps « to its Fourier coefficients and (6.15) to obtain

40% > fla = a®(3 + 118 = B3 — 2T (o = a®)l| = |18 = 8% 2
= lla=a®I3+ 118 =813 = 2lla — a®||=IB — B°ll s

2
> Jla = a®l3 + 118 = 813 = <=l = a®lln |8 = Bl

(6.16) > Jla— a3+ 18— B3 — —=lla — a®llx w18 — Bl 2

4
V2r
> fla =%+ 18 = 871 = = /Wl = ol /I8 — ]

2 2
> (1= 2wl la =l + (118 - 8°1l> - —= VWil - o’|12)

2

Dropping the second term gives (6.14) for a because |W| = [|a®]|;0, and we may
interchange the roles of a and 8 when completing the square in the last line of (6.16)
to obtain the estimate for 3. O

Next we consider sources supported on sets with multiple disjoint components.
THEOREM 6.4. Suppose that v°,a? € L*(S') and ¢; € R?, i = 1,..., I such that

(6.17) 4 =1)][adp < 1 for each i

max .
i#k el — ¢j|3

and
I
Iv° — ZTZQ?HQ <0  for somed® >0.
i=1

If 6 > 0 and v € L*(S') with
§ > 0o+ [lv ="l

and

I I
(6.18) (a1,...,ar) :argminZHain s.t. ”'V_ZT;O‘%‘”2 <6, a; € L*(SY),
i=1

i=1

then, fori=1,...,1

1 -1
oy — aull3 < (1—maX714(I—1)Ha?||lo) 467 .
Jj#k |Ck — Cj|§

Proof. Proceeding as in (6.6)—(6.8) we find that

I 1

(6.19) D e =l <2 llai = of o

=1 =1

with W; representing the (°-support of af. Applying similar arguments as in (6.9)-
(6.10) and using the inequality (SM5.3) from section SM5 in the supplement and
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18 R. GRIESMAIER AND J. SYLVESTER

(6.19) we obtain

46% > ZHQZ—QOHQ ZZ| —ad, T7 (o — o))

i=1 j#i
> leai ;- ZZ PR e — aflln oy — aflln
i=1 i=1 j;él

I
(6.20) > o —af|3 - mjﬁ ZZII% o7l fle; — ol
=1

i=1 j#i

I
> a; —a? max ———— ( a; — o )
> Yt - ol g >l afl

! 1 I—-1 2
> a; —af 2—max774( o —ad )
el ;” 1 sz £k |Cj _Ck|% I ;” 7 z”ll(W,L)

Applying Holder’s inequality and (SM5.2) from section SM5 in the supplement yields

! 1 IT-1 /< , 2
46% > T - a774( Wil || — of )
_Z:Hozz ;3 I§1¢Ig(|6j—ck‘% 7 ;\ 32 oy — o |2
. I
> ZH% a?ll3 - ma |874(I_1)Z|Wimai_a?”§7
i1

(6.21)

where [W;| = ||a?]|0. d
As in corollary 6.2 we can improve these estimates, under the assumption that

some a priori knowledge of the size of the non-evanescent subspaces is available and

that the individual source components are sufficiently far apart from each other.
COROLLARY 6.5. If we add to the hypothesis of theorem 6./:

Y a; € 2(=N;, N;) for eachi and |e; —c;| > 2(N; + N; + 1) for every i # j
for some Ny,...,N; € N, and replace (6.17) with

1
max ——4(1 — 1)||a?]jp < 1 for each i,
i#k e — cJ|2

the conclusion becomes, fori=1,...,1

1 -1
oy — aull3 < (1 max ——4(I — 1)Ha?||lo) 467 .
i#k |cp — ;|3

Proof. Replace (4.9) by (4.12) in (6.20). 0

Next we consider multiple source components together with a missing data com-
ponent (see section SM3 in the supplement for a proof of the following theorem).

THEOREM 6.6. Suppose that 4°,a? € L2(SY), ¢; e R%, i=1,...,1, Q C S! and
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BY € L?(Q) such that

I
2
6.22a — Qa0 < 1,
(6.222) Vam 2 V19l e

1 2

6.22b max ————4(1 — 1)||a?]j0 + ——=1/|Q][| 0|0 < 1 or each 1,
(6220) g = Dol + /il <1 5
and

I

I7° — 8° —ZT;Oz?HQ < b for some §g > 0.

i=1

If § > 0 and v € L?(S') with

§ > S0+ v —°ll2

and
I
(6.23) (a1,...,ar) = argmin » _ [|ai||n

I
st |y=B-> Traill2<6, a; € L*(S"), B e L*(Q),

i=1
then

I —1

2
2m) 18-l < (1- rZ\/mna?nzo) 15?
and, fori=1,...,1
1
laf = aild < (1 - max ————4(1 = )l|a? o
i#k ey, —c]|3
1
(6.24b) |Q|||oz0||lo> 4952 .
F

Again, including a priori information of the size of the non-evanescent subspaces
and assuming that the individual source components are well separated, the result
can be improved:

COROLLARY 6.7. If we add to the hypothesis of theorem 6.6:

a? a; € (=N, N;) for eachi and |c; —cj| > 2(N; + N;j + 1) for every i # j

for some Ny,...,N; € N, and replace (6.22b) with

1 2
max —————4(I — 1)[|a?]j0 + —=—=1/]Q][a{|0 < 1 or each i,
mge (= el + 0l <1
the conclusion (6.24b) becomes, fori=1,...,1
o ~ aqll3 < (1~ max (T~ Dlfallo + —=/I90aflls) 457,
V2

J#k ‘ k—CV
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20 R. GRIESMAIER AND J. SYLVESTER

7. Conditioning, resolution, and wavelength. So far, we have suppressed
the dependence on the wavenumber k. We restore it here, and consider the conse-
quences related to conditioning and resolution. We confine our discussion to the-
orem 5.3, assuming that the 7, j = 1,2, represent far fields that are radiated by
superpositions of limited power sources supported in balls Bg,(¢;), i = 1,2, and that
accordingly, for k = 1 (following our discussion at the end of section 3), the numbers
N; 2 R; are just a little bigger than the radii of these balls. This becomes N; 2 kR;
when we return to conventional units, and the estimate (5.8) then depends on the
quantity

(2N1 + 1)(2N; + 1)
k|01 7CQ| '

(7.1)

Writing V; := T:ilQ(—NZ-, N;) and denoting by P; : 2 — [? the orthogonal projec-
tion onto V;, i = 1,2, we have V1 N V5 = {0} if ¢; # co, and the angle 615 between
these subspaces is given by

cosfiy = sup Mo, a9)| sup [(Pray, Poas)| 1P Py 2 4
amen llaallzllaslle oy ascz llaill2llazll2 ’
asEVy

A glance at the proof of lemma 5.1 reveals that the square root of (7.1) is just a
lower bound for this cosine. Furthermore, the least squares solutions to (5.7) can be
constructed from simple formulas

o] = (I - PiP) 'Pi(I - P)y = Py,
a) = (I - PP) ' Py(I— Pi)y = Py
where Py and Py, denote the projection onto V; along V2 and vice versa. These

satisfy

1 1/2
||P1|2||l2,l2 = HP2|1||12,Z2 = CSC912 = (m) .

Consequently csc 1 is the absolute condition number for the splitting problem (5.7),
and Theorem 5.3 (with our choice of N; and N3) essentially says that

1 1
(7.2) csc(bh2) < S
\/1 _ (2N1+1)(2N>+1) \/1 (2kR1+1)(2kRa+1)
k|cl 02‘ klcl CZI

We will include an example below to show that, at least for large distances, the
dependence on k in estimate in (7.2) is sharp. This means that, for a fixed geome-
try ((c1,R1), (¢2, R2)), the condition number increases with k. Because resolution is
proportional to wavelength, this means that we cannot increase resolution by simply
increasing the wavenumber without increasing the dynamic range of the sensors (i.e.
the number of significant figures in the measured data). Note that as k increases,
the dimensions of the subspaces V; = Tc*ilz(fNi,Ni) = Tc*ilz(fkRi,kRi) increase.
The increase in the number of significant Fourier coefficients (non-evanescent Fourier
modes) is the way we see higher resolution in this problem.

The situation changes considerably if we replace the limited power source radiated
from Bpg, (¢1) by a point source with singularity in ¢;. Then we can choose for V; a
one-dimensional subspace of [? (spanned by the zeroth order Fourier mode translated
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by T ), and accordingly set Ny = R; = 0. Consequently, the estimate (7.2) reduces
to

(7.3) csc(012) < ! < ! .
\/1 _ 2No+41 \/1 _ 2kRo+1
klc1—ca| klc1—ca|
Since numerator and denominator have the same units, the conditioning of the split-
ting operator does not depend on £ in this case.

This has immediate consequences for the inverse scattering problem: Qualita-
tive reconstruction methods like the linear sampling method [2] or the factorization
method [13] determine the support of an unknown scatterer by testing pointwise
whether the far field of a point source belongs to the range of a certain restricted far
field operator, mapping sources supported inside the scatterer to their radiated far
field. The inequality (7.3) indeed shows that (using these qualitative reconstruction
algorithms for the inverse scattering problem) one can increase resolution by simply
increasing the wave number.

Finally, if we replace both sources by point sources with singularities in ¢; and
ca, respectively, then we can choose both subspaces V; and V> to be one-dimensional,
and accordingly set N; = No = Ry = Ry = 0. The estimate (7.2) reduces to
(7.4) csc(fi2) < %,

1

- k|01702|

i.e., in this case the conditioning of the splitting operator improves with increas-
ing wave number k. MUSIC-type reconstruction methods [5] for inverse scattering
problems with infinitesimally small scatterers recover the locations of a collection of
unknown small scatterers by testing pointwise whether the far field of a point source
belongs to the range of a certain restricted far field operator, mapping point sources
with singularities at the positions of the small scatterers to their radiated far field.
From (7.4) we conclude that (using MUSIC-type reconstruction algorithms for the
inverse scattering problem with infinitesimally small scatterers) on can increase res-
olution by simply increasing the wave number and the reconstruction becomes more
stable for higher frequencies.

8. An analytic example. The example below illustrates that the estimate of
the cosine of the angle between two far fields radiated by two sources supported in
balls Bg,(c1) and Bg,(cq), respectively, cannot be better than proportional to the
quantity

kR1 Ry
le1 —ea|

As pointed out in the previous section, we need only construct the example for
k= 1. We will let f be a single layer source supported on a horizontal line segment
of width W, and ¢ be the same source, translated vertically by a distance d (i.e.,
¢1 = (0,0) and ¢o = (0,d)). Specifically, with H denoting the Heavyside or indicator
function, and § the dirac mass:

le

ﬁHlmKW(sy:O
1

g = \/7WH|a:\<W5y:d
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The far fields radiated by f and g are:
sin(W cost)
VW cost

. . 1 W t
Oég(e) = ]—'g — e—ldsmt 2M
VW cost

af(e) = ]:f =2

for § = (cost,sint) € S*. Accordingly

4/ sin (Wcost)W gt — S/W sin22(§) 1 d
o  (Wecost)? w8 /1-¢

W .2 oo :.2 o0 12

2 8/ S 2(6) dé— — 8/ S 2(6-) dé—_ ].6/ S 2(5) df,

-W f — o0 6 w 5
and we can evaluate the first integral on the right hand side using the Plancherel
equality as s’;f is the Fourier transform of the characteristic function of the interval
[-1,1], and estimate the second, yielding

lagl3 > 8(r— ).

On the other hand, for d > W, according to the principle of stationary phase
(there are stationary points at +7)

llacgll3 = llovg I3

2™ sin?(W cost) 3
=4 e S —ldsmt _ -3
(af,aq) = W/ (W cos1)? dt = 8v2rw \f cos( 4) +0(d™2),

which shows that for d > W > 1

<O‘f Q) \/7 )
cos
llovg ll2llegl2 Vd o
which decays no faster than that predicted by theorem 5.3.

9. Numerical examples. Next we consider the numerical implementation of
the {2 approach from section 5 and the {! approach from section 6 for far field splitting
and data completion simultaneously (cf. theorem 5.7 and theorem 6.6). Since both
schemes are extensions of corresponding algorithms for far field splitting as described
in [9] (least squares) and [10] (basis pursuit), we just briefly comment on modifications
that have to be made to include data completion and refer to [9, 10] for further details.

Given a far field a = Zl 1 T «; that is a superposition of far fields 77 «; radiated
from balls B, (¢;), for some ¢; € R? and R; > 0, we assume in the followmg that we
are unable to observe all of o and that a subset 2 C S! is unobserved. The aim is to
recover alg from afgi1\q and a priori information on the location of the supports of
the individual source components Bg,(¢;), i =1,...,1I.

We first consider the [ approach from section 5 and write v := « sn\q for the
observed far field data and 8 := —a|q. Accordingly,

I
Y= 5+ZT¢:CV23

=1

i.e., we are in the setting of theorem 5.7. Using the shorthand Vg := L?(Q) and
Vi = T:ilQ(fNi,Ni), i =1,...,1, the least squares problem (5.15) is equivalent to
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seeking approximations B € Vo and &; € I>(=N;,N;), @ = 1,...,1, satisfying the
Galerkin condition

9.1)  (B+T; roay -+ Trarn ) = (7, 9) forallp e Vo@Vi®---® V.

The size of the individual subspaces depends on the a priori information on Ry, ..., R;.
Following our discussion at the end of section 3 we choose N; = $kR; in our numerical
example below. Denoting by P and Py, ..., P; the orthogonal projections onto Vg
and Vi,...,V}, respectively, (9.1) is equivalent to the linear system

E—FPQPlT* ay+---+PoPT ar =0,

PIPQﬁ‘F fay+--+ PLPT ar = Pry,
9.2)

PIPQB+P[P1T:1a1+'~'+T:Ia[ = Prv.

Explicit matrix representations of the individual matrix blocks in (9.2) follow directly
from (4.2)—(4.3) (see [9, lemma 3.3] for details) for Py,...,P; and by applying a
discrete Fourier transform to the characteristic function on S*\ 2 for Py. Accordingly,
the block matrix corresponding to the entire linear system can be assembled, and the
linear system can be solved directly. The estimates from theorem 5.7 give bounds on
the absolute condition number of the system matrix.

The main advantage of the I' approach from section 6 is that no a priori infor-
mation on the radii R; of the balls Bg,(¢;), ¢ = 1,...,I, containing the individual
source components is required. However, we still assume that a priori knowledge of
the centers cq,...,cy of such balls is available. Using the orthogonal projection Pq
onto L?(Q), the basis pursuit formulation from theorem 6.6 can be rewritten as
(9.3)

I I
(@1,...,ar) = argmin ¥ _[lai[lp st [y = Po)_Trou)2 <6, a; € L*(S).

i=1

Accordingly, 3 := Zi]:l(Tc*i a;)|q is an approximation of the missing data segment. It
is well known that the minimization problem from (9.3) is equivalent to minimizing
the Tikhonov functional

(9.4) Vular,...,ar) = [y — Pal Z - Qi ||é2 "’NZHO‘ZHﬂ

[a1,. .., Q] € £2x -+ x (2, for a suitably chosen regularization parameter u > 0 (see,

, [8, proposition 2.2]). The unique minimizer of this functional can be approxi-
mated using (fast) iterative soft thresholding (cf. [1, 4]). Apart from the projection
Pq, which can be implemented straightforwardly, our numerical implementation anal-
ogously to the implementation for the splitting problem described in [10], and also
the convergence analysis from [10] carries over.?

ExaMPLE 9.1. We consider a scattering problem with three obstacles as shown
in figure 9.1 (left), which are illuminated by a plane wave u’(z) = €**? 2 € R,
with incident direction d = (1,0) and wave number k£ = 1 (i.e., the wave length is
A =27 &~ 6.28). Assuming that the ellipse is sound soft whereas the kite and the nut

4In [10] we used additional weights in the I! minimization problem to ensure that its solution
indeed gives the exact far field split. Here we don’t use these weights, but our estimates from section 6
imply that the solution of (9.3) and (9.4) is very close to the true split.
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Geometry and a priori information Exact farfield
30 =

l’ \\
20 : !
‘\ pd

10
0
, .
gy
~10 H B H R
—20 .‘\%,,
30
-30 —-20 —10 0 10 20 30 0 /2 ™ 3m/2 2m

Fic. 9.1. Left: Geometry of the scatterers (solid) and a priori information on the source
locations (dashed). Right: Real part (solid) and imaginary part (dashed) of the far field a.

Observed farfield Reconstructed missing data Absolute error
6 6 6
!
:: 4 4+
2 2

0 /2 ™ 3m/2 2m 0 /2 ™ 3 /2 27 0 /2 ™ 3m/2 27

Fic. 9.2. Reconstruction of the least squares scheme: Observed far field v (left), re-
construction of the missing part o|o (middle), and difference between exact far field and
reconstructed far field (right).

are sound hard, the scattered field u® satisfies the homogeneous Helmholtz equation
outside the obstacles, the Sommerfeld radiation condition at infinity, and Dirichlet
(ellipse) or Neumann boundary conditions (kite and nut) on the boundaries of the
obstacles. We simulate the corresponding far field « of 4® on an equidistant grid with
512 points on the unit sphere S! using a Nystrém method (cf. [3, 14]). Figure 9.1
(middle) shows the real part (solid line) and the imaginary part (dashed line) of a.
Since the far field o can be written as a superposition of three far fields radiated by
three individual smooth sources supported in arbitrarily small neighborhoods of the
scattering obstacles (cf., e.g., [17, lemma 3.6]), this example fits into the framework
of the previous sections.
We assume that the far field cannot be measured on the segment

Q = {0 = (cost,sint) € S* | n/2 <t < 7/2+7/3},

ie., |Q =n/3. We first apply the least squares procedure and use the dashed circles
shown in figure 9.1 (left) as a priori information on the approximate source locations
Br,(ci), i = 1,2,3. More precisely, ¢; = (24, —4), c2 = (—22,23), ¢5 = (—15,—-20)
and Ry =5, Ry = 6 and R3 = 4. Accordingly we choose N1 =7, Ny = 9 and N3 = 6,
and solve the linear system (9.2).

Figure 9.2 shows a plot of the observed data ~ (left), of the reconstruction of the
missing data segment obtained by the least squares algorithm and of the difference
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Observed farfield Reconstructed missing data Absolute error
6 6 6
4 4r
2 2
M
0 m ~ 0
Y
i -2 8 ~ -2
—4 —4
i
—6 —6 —6
0 w/2 T 3m/2 27 0 /2 ™ 3mw/2 2 0 /2 m 3m/2 27

Fic. 9.3. Reconstruction of the basis pursuit scheme: Observed far field v (left), re-
construction of the missing part oo (middle), and difference between exact far field and
reconstructed far field (right).

between the exact far field and the reconstructed far field. Again the solid line cor-
responds to the real part while the dashed line corresponds to the imaginary part.
The condition number of the matrix is 5.4 x 10*. We note that the missing data
component in this example is actually too large for the assumptions of theorem 5.7
to be satisfied. Nevertheless the least squares approach still gives good results.

Applying the (fast) iterative soft shrinkage algorithm to this example (with reg-
ularization parameter g = 1072 in (9.4)) does not give a useful reconstruction. As
indicated by the estimates in theorem 6.6 the I! approach seems to be a bit less stable.
Hence we halve the missing data segment, consider in the following

Q = {0 = (cost,sint) € S* | n/2 <t <m/2+7/6},

i.e., |Q2] = /6, and apply the I! reconstruction scheme to this data. Figure 9.3 shows
a plot of the observed data v (left), of the reconstruction of the missing data segment
obtained by the fast iterative soft shrinkage algorithm (with p = 1073) after 103
iterations (the initial guess is zero) and of the difference between the exact far field
and the reconstructed far field.

The behavior of both algorithms in the presence of noise in the data depends
crucially on the geometrical setup of the problem (i.e. on its conditioning). The
smaller the missing data segment is and the smaller the dimensions of the individual
source components are relative to their distances, the more noise these algorithms can
handle.

Conclusions. We have considered the source problem for the two-dimensional
Helmholtz equation when the source is a superposition of finitely many well-separated
compactly supported source components. We have presented stability estimates for
numerical algorithms to split the far field radiated by this source into the far fields
corresponding to the individual source components and to restore missing data seg-
ments. Analytic and numerical examples confirm the sharpness of these estimates
and illustrate the potential and limitations of the numerical schemes.

The most significant observations are: (i) The conditioning of far field splitting
and data completion depends on the dimensions of the source components, their rel-
ative distances with respect to wavelength and the size of the missing data segment.
The results clearly suggest combining data completion with splitting whenever pos-
sible in order to improve the conditioning of the data completion problem. (ii) The
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conditioning of far field splitting and data completion depends on wave length and
deteriorates with increasing wave number. Therefore, in order to increase resolution
one not only has to increase the wave number but also the dynamic range of the
sensors used to measure the far field data.
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