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Outline

• Fixed Frequency Scattering and Inverse Scattering

• Singular Values of Homogeneous Far Field Operator associated

with a ball.

– Source in a Ball iff Fourier Coefficients in a Box

– Translation Formula for Fourier Coefficients of Far Fields

• Applications to Array Imaging – locating sources or scatterers

– Algorithm to find a small scatterer

– Find the convex hull of a big scatterer

– Split the far fields of well separated scatterers

– Analyze and enhance the focusing of TR eigenfunctions
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Passive Remote Sensing

utt − ∆u = F (x, t)

u(x, 0) = 0

ut(x, 0) = 0

• The source radiates

• No Illumination – zero initial conditions

• Sensor Array is many wavelengths away

• Full (or partial) Aperture Observations

• Data measured by the sensor is called the Far Field

• Only one Far Field to measure
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Active Remote Sensing

n2(x)utt − ∆u = 0

utt − ∆u = (1 − n2(x))utt

u(x, 0) = g(θ)δ(t − |x| − r0)

ut(x, 0) = g(θ)δ′(t − |x| − r0)

• Incoming wave illuminates – incoming initial conditions

• Scatterer becomes an Induced Source

• Many Far Fields – one for each illuminating wave

• Nonlinear effects from strong scatterers

• Passive Location Algorithms apply directly
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Time Harmonic Model

F (x, t) = eiωtF (x)

u(x, t) = eiωtu(x)

Wave equation becomes Helmholtz equation (k = n0ω)

(
∆ + k2

)
u = F (x, k)

• G+
0 F is the outgoing wave radiated by the source F .

5



Outgoing Waves and Far Fields

u(x, k) = G+
0 F

∼ eikr

r
n−1

2

α(Θ)

F+
0 F := α(Θ) = F̂ (kΘ)

• G+
0 F is the outgoing wave radiated by the source F .

• F+
0 F is the far field radiated by F .

• We can calculate F+
0 F , and it turns out to be the Fourier

Transform of F , restricted to to the sphere of radius k.
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The (Relative) Scattering Operator

(
∆ + k2

)
u = qu (= k2(n2 − 1)u)

u∞
− = β(Θ)

Sqβ := u∞
+ − β(Θ)

• u∞
− is the incoming far field and u∞

+ is the outgoing far field.

• Sqmeasures the difference between the outgoing far field you

see and the one you would have seen if nothing were there.

• If the aperture is less than π, you don’t see the −β(−Θ).

• F+
0

∗F+
0 and S∗

qSq are far field versions of the time reversal

operator.

•
(
S∗

qSq

) 1

4 is the Linear Sampling Operator
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Singular Value Decomposition

The Far Field operator has a singular value decomposition

F+
q

∣∣∣
Bc(R)

=
∑

σnΦn ⊗ Ψn

A source sits inside a ball iff the Fourier coefficients

∣∣(F+
q F, Φn

)∣∣ ≤ Cqσn(R)

For the homogeneous background, we can compute by hand

Φn = einθ

Ψc
n = χkRc

Jn(krc)e
inφc

σn

σ2
n(R) =

∫ R

0

J2
n(kr)rdr
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A Box For the Fourier Coefficients

σn(25)
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Rapid Transition to Evanescence

The homogeneous background exhibits a rapid transition to

evanescence.

• σn(R) uniformly big if n < R

• σn(R) uniformly small if n > R

• Uniform contrast between big and small

Where is the Origin ?

All source points are effectively equidistant from the far field. Thus

we can translate the origin c with a mathematical formula. You

don’t have to move the array.

F+
0 [F (x − c)] = eik|c| cos(θ−θc)α(θ)
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Fourier Coefficients of the Far Field

F+
0 F = α(θ) =

∑
α0

neinθ

F+
0 [F (x − c)] = eik|c| cos(θ−θc)α(θ) =

∑
αc

neinθ

Rule for Locating A Source

• The α0
n are zero for |n| > kR0 iff there is a source inside BR0

(0)

that radiates α.

• The αc
n are zero for |n| > kRc iff there is a source inside BRc

(c)

that radiates α.

• If both conditions above are satisfied, there is a source inside

the intersection of the two balls.
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Finding a Source Triangle (k = 20)

A single layer source on a triangle (about 4 wavelengths on a side)

is somewhere in a 3x3 box. We plot the modulus or the Fourier

coefficients of Far Field it radiates on the right, measure the width,

and draw the circle of radius W/k on the left.
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Choose a new center at the top of the old circle.

Plot the translated Fourier Coefficients.

Measure the width of the box and draw the new circle.
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Choose a new center at the intesection of the old circles.

Plot the translated Fourier Coefficients.

Measure the width of the box and draw the new circle.
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Translated Far Field (k = 20)
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Translated Far Field (k = 20)
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Translated Far Field (k = 20)

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Centered at 1.6062     0.99249

−2 0 2 4

−2

−1

0

1

2

3

4

5

The source triangle Modulus of αc
n versus n

17



Confessions

• We can only find convex hulls by intersecting balls.

• We are actually finding the Convex Scattering Support of the
far field, which can be smaller than the convex hull. Its
impossible to do better if you measure only one far field.

– A point source and a spherically symmetric source produce

the same far fields.

– Its impossible to find an upper bound using observations of a

single (or finitely many) far fields.

– The convex hull of the true source must contain the Convex

Scattering Support.

– The Convex Scattering Support isn’t too small. There is always a

source that fits inside that radiates the far field. Corners and

components are always visible.
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Narrow Boxes, High Amplitudes

F+
0 F = α(θ) =

∑
α0

neinθ

F+
0 [F (x − c)] = eik|c| cos(θ−θc)α(θ) =

∑
αc

neinθ

• The translation operator is L2 unitary

• As the center gets closer to the center of the source, the Fourier

coefficients get squeezed into a narrow box.

• If you squeeze the Fourier coefficients into a narrow box, they

get higher.

• High enough to stand out from a background.
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A strong source among 20 weaker sources (20% strength)

21 pentagons (radius = 0.4) with point sources on the corners

somewhere in 3x3 square.

−200 −100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Centered at 0  0

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Centered at −0.024234       3.987

−5 0 5
−4

−2

0

2

4

6

8

10

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

0.5
Centered at 2.7073      −2.856

−5 0 5 10
−10

−5

0

5

10

−200 −100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Centered at −4.0478     −1.5323

−10 −5 0 5
−10

−5

0

5

10

20



−200 −100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Centered at 3.6038     −2.5274

−10 −5 0 5 10
−10

−5

0

5

10

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

0.5
Centered at 3.3731      1.2623

−10 −5 0 5 10
−10

−5

0

5

10

−200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1
Centered at 2.6258      1.1265

−10 −5 0 5 10
−10

−5

0

5

10

21



Other Applications of the Box

Splitting the Far Fields of two sources

Φ = F+
0 F1 + F+

0 F2

= α1 + α2

c

R1
R2

Build a projection operator

• Translate to center c1

• Cut out modes n > kR1

• Translate back

P1 = T−c1
χn<kR1

Tc1
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Splitting the Far Fields of two sources

α1 + α2 = Φ

α1 = P1Φ − P1α2

α2 = P2Φ − P2α1

(I − P1P2) α1 = P1 (I − P2) Φ

We can represent P1P2 is a 2kR1 × 2kR2 toeplitz matrix whose

entries are Bessel functions evaluated at k|c| = k|c1 − c2|. We can

use this representation to compute and to estimate the stability of

the inverse, at least when the scatterers are far apart.

||P1P2||2 ≤ k
R1R2

c
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Fourier Coefficients of Sq Fit in a Square

If q fits in a ball,

(Sq)
m

n
≤ Cqσn(R)σm(R)

• Conclusions persist in the presence of multiple scattering.

Every reflected wave has a last bounce (and a first bounce).

Why its so ...

Send it back bounce it around Send it in

Sqβ = F+
0

(
I − qG+

0

)−1
q Hβ

Sqβ = F+
0 q

(
I − G+

0 q
)−1 Hβ

Sqβ =
(
F+

0 χsuppq

)
q
(
I − G+

0 q
)−1 (

F+
0 χsuppq

)∗
β
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Eigenfunctions Fit in the Same Box

(Sq)
m

n
≤ Cqσn(R)σm(R)

eλ
n ≤ Cqσn(R)

so location, splitting, and projection methods apply here as well. In

particular, For separated scatterers,

|eq1
· eq2

| ≤
√

k
min(R1, R2)√

c

Thus the eigenfunctions of the one scattering operator are nearly

orthogonal to those of the another scattereirng operator if the

scatterers are separated. Via perturbation theory, the

eigenfunctions of the sum are nearly the union of the eigenvectors.
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Translated Fourier Coefficients of an Eigenfunction

• Centered in the mid-

dle

• Centered at the

strong scatterer

• Centered at the weak

scatterer
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• Born Approximation for two point scatterers (k = 10)

• One scatterer is 20% stronger

• Eigenfunction with largest eigenvalue
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Translated Coefficients of Second Eigenfunction

• Centered in the mid-

dle

• Centered at the

strong scatterer

• Centered at the weak

scatterer
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• Time Reversal Eigenfunctions localize in space

• Formulas analyze relation between individual scatterers and

eigenfunctions in a simple way

• Plots of translated eigenfunctions show localization on the

Fourier side.
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Summary

• Narrow Box Principle gives a new way to probe for location

and to analyze other aspects of localization on the other side of

the Fourier Transform.

• No hypothesis about sources or scatterers.

• Algorithms contract down from the outside rather than

sampling from the inside.

• Only convex hulls from single far field.

• Some indications we can work with limited aperture.

• Translation formula makes essential use of the Far Field.
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