
INVERSE BOUNDARY VALUE PROBLEMS

AN OVERVIEW

John Sylvester

In this talk, we present an overview of some recent progress in inverse problems. We

shall discuss several time independent problems. In general we consider a bounded region

in Rn, which represents a body, and a partial differential equation, or system of equations

which represents the physics inside the body. The problem is to deduce the interior physi-

cal parameters—coefficients of the differential equation—from measurements made at the

boundary of the region. We begin with the simplest example.

Schrödinger Equation in Ω ⊂⊂ Rn.

(1) (∆ + q)u = 0

The physical parameter to be determined is the potential q. The boundary measurements

are represented by the Cauchy Data, Cq.

(2) Cq = {(f, g) | f = u|∂Ω , g =
∂u

∂ν

∣∣∣∣
∂Ω

, u satisfies (1)}

The basic tool we use to relate the Cauchy Data to the coefficients is an orthogonality

relation, which we derive below. Suppose that

(∆ + q1)u1 =0 (∆ + q2)u2 = 0(3)

u1|∂Ω =f u2|∂Ω = g
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then

0 =

∫

Ω

u2(∆ + q1)u1

(4) 0 = −
∫

Ω

∇u2∇u1 + qu1u2 +

∫

∂Ω

u2
∂u1

∂ν

If we skew symmetrize (4), i.e., permute the indices 1 and 2 and then subtract the new

equation from (4) we obtain

(5)

∫

Ω

(q1 − q2)u1u2 =

∫

∂Ω

u2
∂u1

∂ν
− u1

∂u2

∂ν

=

∫

∂Ω

g
∂uf1
∂ν
− f ∂u

g
2

∂ν

where we denote by ufi the solution to the Schrödinger equation with potential qi and

Dirichlet data f . Setting q1 = q2 = q in (5) gives the symmetry relation

(6)

∫

∂Ω

f
∂ug

∂ν
=

∫

∂Ω

g
∂uf

∂ν

Making use of (6) we may rewrite (5) as

∫

∂Ω

f
∂ug2
∂ν
− f ∂u

g
1

∂ν
=

∫

Ω

(q1 − q2)u1u2

If we assume that Cq1 = Cq2 , then

(7) 0 =

∫

Ω

(q1 − q2)u1u2

The relation (7) is a variation of a formula first proposed in [C], the form above first

appeared in [A].

The next step is to construct some special exponentially increasing solutions to (3). We

notice that, for ζ ∈ Cn

∆ex·ζ = 0⇐⇒ ζ · ζ = 0

⇐⇒
{

Re ζ · Imζ = 0

|Re ζ| = |Imζ|

The following theorem is from [Sy-U]:
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Theorem. For |ζ| sufficiently large with ζ · ζ = 0, there exist unique solutions to (1) of

the form

(8) u = ex·ζ
(

1 +O

(
1

|ζ|

))

Here, O
(

1
|ζ|

)
stands for a smooth function of x and ζ which decays like 1

|ζ| as |ζ| tends

to infinity. We will choose u1 and u2 satisfying (3) to be of the form (8) with

ζ1 = l + i(k +m)

ζ2 = l − i(k −m)

where l, k, and m are real, mutually orthogonal and satisfy |l|2 = |k|2 + |m|2. Note that

this is only possible in dimension ≥ 3. Inserting these solutions into (7) gives

0 =

∫

Ω

(q1 − q2)e2ix·k
(

1 +O

(
1

|m|

))

Letting |m| → ∞ implies that the Fourier transform of q, and therefore q, is zero, which

implies

Theorem.

Cq1 = Cq2 ⇒ q1 = q2

This theorem was first proved in [Sy-U] for n ≥ 3. If q is a priori known to be positive,

the same result in dimension 2 follows from a result of Nachman [N1].

2. Impedance Tomography.

(10) dγdu = 0

In the impedance tomography equation, u represents a voltage potntial, du, an electric

field, and γdu the current flux (a 2-form). The conductivity, γ, is represented as a map

from 1-forms to 2-forms. The Cauchy data is given by

(11) Cγ = {(u, γdu)|∂Ω} =

{(
u,

(
γijνj

∂u

∂xi

)
dS

)∣∣∣∣
∂Ω

}
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where the last term on the right of (11) is just the expression for γdu|∂Ω in local coordinates.

To derive the orthogonality relations we write

0 =

∫

Ω

u2dγ1du1

0 = −
∫

Ω

du2γ1du1 +

∫

∂Ω

u2γ1du1(12)

Skew symmetrizing (12), we find that

(13)

∫

∂Ω

u1γ2du2 − u2γ1du1 =

∫

Ω

du2(γ1 − γ2)du1

so that, if Cγ1 = Cγ2 , we have

(14) 0 =

∫

Ω

du2(γ1 − γ2)du1

The equations (10) can be shown to allow exponentially growing solutions just as the

Schrödinger equation did. Inserting these solutions into (14) gives the following result.

Theorem. Suppose that γ1 and γ2 are isotroppic, i.e. γ1 and γ2 can be written as scalar

functions times the identity matrix. Then

Cγ1 = Cγ2 =⇒ γ1 = γ2

This theorem appeared in [Sy-U] for n ≥ 3 and [N1] for n = 2.

If γ1 and γ2 are not isotropic, and Ψ is a diffeomorphism of Ω which is the identity on

∂Ω, then

Ψ∗γ =
DΨT γDΨ

detDΨ
◦Ψ−1

is a new conductivity which gives the same Cauchy data as γ. This suggests the following

Conjecture.

Cγ1 = Cγ2 ⇐⇒ there exists Ψ such that





Ψ : Ω→ Ω

Ψ|∂Ω = I

Ψ∗γ1 = γ2

For n = 2, this conjecture is proved as a consequence of [N] and [Sy]. For n ≥ 3, the

conjecture is only known to be true if γ1 and γ2 are real analytic [L-U].
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3. Time Harmonic Maxwell’s Equations.

(15)

{
dE = iωµH

dH = −iωεE ; ε =
(
ε̃+ iσ

ω

)

In (15), we represent E and H as 1-forms, µ, ε̃, and σ are real symmetric (α∧µβ = µα∧β)

maps from 1-forms to n− 1 forms. The Cauchy Data is just

Cµ,ε = { (E,H)|∂Ω}

The orthogonality relation is derived as follows:

1

iω

∫

∂Ω

E1 ∧H2 =
1

iω

∫

Ω

d(E1 ∧H2)

1

iω

∫

∂Ω

E1 ∧H2 =

∫

Ω

µ1H1 ∧H2 +E1 ∧ ε2E2(16)

Skew symmetrizing (16) gives

(17)
1

iω

∫

∂Ω

E1 ∧H2 −E2 ∧H1 =

∫

Ω

H1 ∧ (µ1 − µ2)H2 +E1 ∧ (ε1 − ε2)E2

In the case where both µ and ε are isotropic, Ola, Parvarinta, and Sommersalo produced

exponentially growing solutions to (15) in [O-P-S] and combined them with (17) to prove

Theorem. Suppose that ω 6= 0 and that (µi, ε̃i, σi) are isotropic. Then

C1 = C2 =⇒ (µ1, ε̃1, σ1) = (µ2, ε̃2, σ2)

The anisotropic problem is completely open, although some linearized calculations may

be found in [Sy3].

4. Linear Elasticity.

Let the displacement, u, be denoted by a vector field and its jacobian be a section of

Λ1 ⊗ V , one forms tensor vector fields. Then the strain is defined by

ε(u) = Du+Du∗
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where ∗ denotes the adjoint—we use the euclidean metric. The stress is linearly related to

the strain by

(18) T (u) = Cε(u)

In (18) the physical parameters are encoded in C which is a linear map from Λ1⊗Sym(V )

to Λ2⊗Sym(V ). With this notation, the equations of elasticity become

(19) DT = 0

The Cauchy data is just

CC = { (u, T (u))|∂Ω}

The orthogonality relations can be obtained as in the previous example

∫

∂Ω

u1T (u2) =

∫

Ω

d(u1 · T (u2))

=

∫

Ω

Du1 · T (u2) + u1 ·DT (u2)

∫

∂Ω

u1T (u2) =

∫

Ω

Du1 · T (u2)(20)

Skew symmetrizing (20) gives

(21)

∫

∂Ω

u1T (u2) − u2T (u1) =

∫

Ω

Du1T (u2)−Du2T (u1)

For isotropic linear elasticity, Nakamura and Uhlmann [N-U] have produced exponentially

growing solutions to (19).

The isotropy hypothesis takes the form

T = µε+ λtr(εI)

where µ and λ are the scalar Lamé parameters. In this case, if C1 = C2, (21) takes the

form

0 =

∫

Ω

(µ1 − µ2)ε(u1) · ε(u2) + (λ1 − λ2)(divu1)(divu2)

The theorem proved in [N-U] is
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Theorem.

C1 = C2 =⇒ (µ1, λ1) = (µ2, λ2)

5. Schrödinger Equation with Magnetic Potential.

(22) (d+ iA) ∗ (d+ iA)u + qu = 0

In (22), A is 1-form (vector potential) and ∗ represents the euclidean star operator. The

Cauchy data is

CA,q = { (u, (d + iA)u)|∂Ω}

The orthogonality relations are obtained by

(23)

∫

∂Ω

u2 ∗ (d + iA1)u1 =

∫

Ω

du2 ∗ (d+ iA1)u1 + u2d ∗ (d+ iA1)u1

∫

∂Ω

u2 ∗ (d + iA1)u1 =

∫

Ω

du2∧ ∗ du1

+ i ∗A1∧(u2du1 − u1du2) + (A1∧ ∗A1 − q)u1u2

Skew symmetrizing (23) gives

∫

∂Ω

u2 ∗ (d+ iA1)u1 − u1(d+ iA2)u2(24)

=

∫

Ω

i ∗ (A1 −A2)∧(u2du1 − u1du2)

+ (A1∧ ∗A1 −A2∧ ∗A2 + q2 − q1)u1u2

By contrasting exponentially growing solutions and using (24), it has been shown in [Su]

and [N-Su-U] that

Theorem.

C1 = C2 ⇐⇒ dA1 = dA2 and q1 = q2
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6. Nonlinear Schrödinger Equation.

(25) ∆u+ q(x, u) = 0

The Cauchy data is just

Cq =

{(
u,
∂u

∂ν

)∣∣∣∣
∂Ω

}

The following theorem has been shown in [I-S].

Theorem. Suppose that, for i = 1, 2, qi(x, 0) = 0, |qi(x, s)| and
∣∣∣∂q

i(x,s)
∂s

∣∣∣ are bounded on

Ω× R and that ∂qi

∂s ≤ 0, then

Cq1 = Cq2 =⇒ q1 = q2

The theorem is proved by differentiating the family of Dirichlet problems

(26)
∆u+ q(x, u) = 0

u|∂Ω = θg

with respect to the parameter θ to obtain (qs denotes the derivative of q with respect to

the second variable)

(27)
∆uθ + qs(x, u)uθ = 0

uθ|∂Ω = g

and showing that the equality of Cauchy data for the nonlinear problem (26) implies the

equality of Cauchy data for the linear problem (27). From the uniqueness result for the

linear problem we conclude that

q1
s (x, u1) = q2

s (x, u2)

and therefore that the unique solutions to (27) are equal, i.e.

u1
θ = u2

θ

Integrating from θ = 0, where q1(x, 0) = q2(x, 0), to θ = 1 gives

u1 = u2.

Once we know that all solutions to (27) are equal, it follows that

(28) q1(x, s) = q2(x, s)

for every s which can be attained by a solution to (27) at x. As long as ∂q
∂s is bounded, it

can be shown that (28) holds for all s.
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7. Inverse Scattering at Fixed Energy.

Several authors ([C-K],[I],[N]) have observed that the results from Section 1 can be used

to yield results about inverse scatting at fixed energy. We outline a new approach below.

Consider the Schrödinger equation

(29) (∆ + q + λ)ψ = 0 in Rn.

We assume that q has compact support and that λ > 0 is fixed. It is well known that for

every ω ∈ Sn−1, there exists a unique eigenfunction ψq(x, ω, λ) solving (29) which has the

form

ψq(x, ω, λ) = ei
√
λx·ω +

ei
√
λ|x|

|x|
n−1

2

aq

(
x

|x| , ω, λ
)

+O

(
1

|x|n−1
2

)

The function aq
(
x
|x| , ω, λ

)
is called the scattering amplitude. The basic theorem is

Theorem. Let q1 and q2 have support in the ball of radius R. If, for some λ > 0 and for

all ω ∈ Sn−1

(30) aq1

(
x

|x| , ω, λ
)

= aq2

(
x

|x| , ω, λ
)

then

q1 = q2

The theorem is a consequence of the following proposition.

Proposition. Suppose that suppq ⊂ Ω ⊂⊂ Rn and fix λ > 0. Then (f, g) is Cauchy data

for (29) in Ω if and only if

(31)

∫

∂Ω

f
∂ψ

∂ν
− gψ = 0 ∀ ω ∈ Sn−1

According to the proposition, q1 and q2 have the same Cauchy data if their eigenfunc-

tions agree outside some ball. But

(32) (∆ + λ)(ψq1 − ψq2) = q1ψ1 − q2ψ2

Since the right hand side of (32) has support inside the ball of radius R, the following

variation of a theorem of Rellich asserts that (30) implies that ψq1 −ψq2 is also supported

inside that ball. Let Gq(λ)f denote the unique solution to

(∆ + q + λ)ψ = f in Rn

which satisfies the Sommerfeld radiation condition.
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Lemma. Suppose that f ∈ Hs
0 (BR) with −2 < s < 0 and that λ > 0. Then the following

are equivalent:

(8)

i) Gq(λ)f ∈ Hs
µ for someµ > −1/2

ii) (f, ψq(·, ω, λ)) = 0 for all ω ∈ Sn−1

iii) supp(Gq(λ)f) ⊂ BR

The hypothesis (30) implies that (ψq1 −ψq2 ) satisfies i), which, according to the lemma,

implies iii). Hence the Cauchy data Cq1+λ(BR) and Cq2+λ(BR) are equal. That this implies

that q1 = q2 was shown in the first section of this report.
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[C-K] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory; Applied Math-
ematical Sciences, vol 93, (Berlin:Springer).

[I] V. Isakov, On uniqueness in the inverse tranmission scattering problem, Communications in
PDE 15 (1990), no. 11, 1565–1587.

[I-S] V. Isakov and J. Sylvester, Global Uniqueness for a Semilinear Elliptic Inverse Problem, Comm.
Pure Appl. Math. (to appear).

[L-U] J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary mea-
surements, Comm. Pure Appl. Math. 42 (1989), 1097–1112.

[N1] A. Nachmann, Reconstruction from boundary measurements, Ann. Math. 128, 531–577.
[N2] , Global uniqueness for a two dimensional inverse boundary value problem, preprint.
[N-Su-U] G. Nakamura, Z. Sun and G. Uhlmann, Global identifiability for an inverse problem for the

Schrödinger equation in a magnetic field, preprint.
[N-U] G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary value problem arising

in elasticity, preprint.

[O-P-S] Ola P., Paivarinta L., Somersalo E., An inverse boundary value problem in electrodynamics,
preprint (1992).

[Su] Z. Sun, An inverse boundary value problem for Schrödinger operators with magnetic potentials,
Trans. AMS (to appear).

[Sy1] J. Sylvester, An Anisotropic Inverse Boundary Value Problem, Comm. Pure Appl. Math. 43
(1990), 201–232.

[Sy2] , A Convergent Layer Stripping Algorithm for the Radially Symmetric Impedance To-
mography Problem, Communications in PDE 17 (1992), no. 12, 1955–1994.

[Sy3] J. Sylvester, Linerizations of anisotropic inverse problems, Inverse Problems and Theo-
retical Imaging, Springer Verlag (to appear).

[Sy-U] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value prob-
lem, Ann. of Math. 125 (1987), 153–169.

10


