INVERSE BOUNDARY VALUE PROBLEMS
AN OVERVIEW

JOHN SYLVESTER

In this talk, we present an overview of some recent progress in inverse problems. We
shall discuss several time independent problems. In general we consider a bounded region
in R™, which represents a body, and a partial differential equation, or system of equations
which represents the physics inside the body. The problem is to deduce the interior physi-
cal parameters—coefficients of the differential equation—from measurements made at the

boundary of the region. We begin with the simplest example.

Schrodinger Equation in 2 CC R™.

(1) (A +qju=0

The physical parameter to be determined is the potential ¢. The boundary measurements

are represented by the Cauchy Data, C,.

0
(2) Co ={(F.9) | f =ulpq. 9= 5| . usatisties (1)}
o2

The basic tool we use to relate the Cauchy Data to the coefficients is an orthogonality
relation, which we derive below. Suppose that
(3) (A+qlur=0  (A+qgluz=0
U1|aQ =f U2|aQ =g
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If we skew symmetrize (4), i.e., permute the indices 1 and 2 and then subtract the new

equation from (4) we obtain

/( — ) _/ Ouy  Juy
qu g2)uiuz = aQUQ o U o

-/ duf _ Ouf
N an 8V 8V

where we denote by u{ the solution to the Schrodinger equation with potential ¢; and

()

Dirichlet data f. Setting g1 = g2 = ¢ in (5) gives the symmetry relation

oud ou'
(6) Qégf5;-1éﬂﬂs;

Making use of (6) we may rewrite (5) as

ou$ ouf
/{)Qfﬁ_ E —/Q((h—QQ)UlUQ

If we assume that C;, = Cy,, then

(7) 0= /Q(Ch — q2)uuz

The relation (7) is a variation of a formula first proposed in [C], the form above first
appeared in [A].

The next step is to construct some special exponentially increasing solutions to (3). We
notice that, for { € C™

A" =0« (-(=0

{ Re(-Im({ =0
[Re ¢| = [Im (]

The following theorem is from [Sy-U]:



Theorem. For [(| sufficiently large with ¢ - ( = 0, there exist unique solutions to (1) of
the form

(8) u=e"" (1+0 (%))

Here, O (ﬁ) stands for a smooth function of x and ¢ which decays like ﬁ as |C| tends
to infinity. We will choose u; and wuy satisfying (3) to be of the form (8) with

G =1l+i(k+m)
CG=1—i(k—m)

where [, k, and m are real, mutually orthogonal and satisfy |I|? = |k|? + |m|?. Note that

this is only possible in dimension > 3. Inserting these solutions into (7) gives

o - (or0(()

Letting |m| — oo implies that the Fourier transform of ¢, and therefore ¢, is zero, which

implies

Theorem.

Cop =Cq = 1 = @2

This theorem was first proved in [Sy-UJ for n > 3. If q is a priori known to be positive,

the same result in dimension 2 follows from a result of Nachman [N1].

2. Impedance Tomography.

(10) dydu =0

In the impedance tomography equation, u represents a voltage potntial, du, an electric

field, and ydu the current flux (a 2-form). The conductivity, «, is represented as a map

ol

from 1-forms to 2-forms. The Cauchy data is given by

(1) ¢, = (. 1dullpg = { (. (1905 5 ) as)
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where the last term on the right of (11) is just the expression for ydu|, in local coordinates.

To derive the orthogonality relations we write

OZ/UQd’yldul
Q

(12) 0:—/ du271d’LL1+/ ugy1duy
Q o0

Skew symmetrizing (12), we find that

(13) / Ul’)/Qd'LLQ — uQ’yldul = / d’LLQ(")/l — ’yg)dul
o2 Q

so that, if C,, = C,,, we have

(14) 0= /Qd’LLQ(")/l - ’yg)dul

The equations (10) can be shown to allow exponentially growing solutions just as the

Schrédinger equation did. Inserting these solutions into (14) gives the following result.

Theorem. Suppose that v1 and 2 are isotroppic, i.e. y1 and 2 can be written as scalar

functions times the identity matriz. Then
C’Y1 = C’Yz =7 =2

This theorem appeared in [Sy-U] for n > 3 and [N1] for n = 2.
If 1 and 2 are not isotropic, and V¥ is a diffeomorphism of €2 which is the identity on

01}, then
DUT~DW
det DV

is a new conductivity which gives the same Cauchy data as . This suggests the following

U,y = oyt

Conjecture.
U:0Q—0
Cy, = Cy, <= there exists ¥ such thaty V|yq =1
Vr =72

For n = 2, this conjecture is proved as a consequence of [N] and [Sy]. For n > 3, the

conjecture is only known to be true if 1 and 2 are real analytic [L-U].



3. Time Harmonic Maxwell’s Equations.

5) { dE = iwpH

dH = —iweE ;e = (€4 2)

In (15), we represent E' and H as 1-forms, p, €, and o are real symmetric (apul = pap)

maps from 1-forms to n — 1 forms. The Cauchy Data is just

Cu,e = {(E:H)bﬂ}

The orthogonality relation is derived as follows:

1 1
— El/\HQZ—/d(El/\HQ)
W Jon w Jo
1
(16) — Ei1NHy = / pwiHy N Hy + Ey N ea By
W Jan Q

Skew symmetrizing (16) gives

1
(17) - El/\HQ—Eg/\Hl :/ Hl/\(,ul—ILLQ)HQ +E1/\(€1—€2)E2
W Jon 9)

In the case where both p and e are isotropic, Ola, Parvarinta, and Sommersalo produced

exponentially growing solutions to (15) in [O-P-S] and combined them with (17) to prove

Theorem. Suppose that w # 0 and that (., €;,0;) are isotropic. Then
C1 = Co = (1, €1,01) = (2, €2,02)

The anisotropic problem is completely open, although some linearized calculations may
be found in [Sy3].

4. Linear Elasticity.
Let the displacement, u, be denoted by a vector field and its jacobian be a section of

A' ® V, one forms tensor vector fields. Then the strain is defined by

e(u) = Du+ Du*
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where * denotes the adjoint—we use the euclidean metric. The stress is linearly related to

the strain by
(18) T(u) = Ce(u)

In (18) the physical parameters are encoded in C' which is a linear map from A! ® Sym(V)
to A2® Sym(V). With this notation, the equations of elasticity become

(19) DT =0

The Cauchy data is just
Co = {(u,T(u))[pa}

The orthogonality relations can be obtained as in the previous example

/em ur T (ug) = /Qd(m - T(uz2))
_ /Q Duy - T(usz) + u1 - DT (us)

(20) /a () = /Q Duy - T(us)

Skew symmetrizing (20) gives

(21) /a T (us) — usT(ur) = /Q DusT(us) — DusT(ur)

For isotropic linear elasticity, Nakamura and Uhlmann [N-U] have produced exponentially
growing solutions to (19).

The isotropy hypothesis takes the form
T = pe + Atr(el)

where p and A\ are the scalar Lamé parameters. In this case, if C; = Cq, (21) takes the

form

0= / (1 — po)e(ur) - €(uz) + (A1 — A2)(divuy ) (divusg)
0

The theorem proved in [N-U] is



Theorem.

C1 =Cy = (1, A1) = (p2, A2)

5. Schrodinger Equation with Magnetic Potential.

(22) (d+iA) * (d+iA)u+qu=0

In (22), A is 1-form (vector potential) and * represents the euclidean star operator. The

Cauchy data is
Caq={(u,(d+id)u)lyo}

The orthogonality relations are obtained by

/ U9 * (d + 'iAl)Ul = / dusg * (d + 'iAl)Ul + uod * (d + ’iAl)Ul
o Q

(23) / ug * (d+iA1)up = / dusg p * duy
a0 0

+ 0% Ay A (uoduy —urdug) + (A1 * A1 — q)uius

Skew symmetrizing (23) gives

(24) / U9 * (d + 'iAl)Ul — Ul(d + 'iAQ)UQ
o0

= / R (A1 — AQ)/\(UQdu1 — UldUQ)
Q
+ (A1p x A1 — Agp x A2 + @2 — q1)urus
By contrasting exponentially growing solutions and using (24), it has been shown in [Su]
and [N-Su-U] that

Theorem.

Cl = CQ < dA1 = dAQ and q1 = q2



6. Nonlinear Schrodinger Equation.

(25) Au+ g(z,u) =0

0
{05 ,)
o J\sa
The following theorem has been shown in [I-S].
Theorem. Suppose that, for i = 1,2, ¢*(x,0) = 0, |¢*(x, s)| and

Q2 x R and that %—(f <0, then

The Cauchy data is just

% are bounded on

qu = qu — q1 = q2
The theorem is proved by differentiating the family of Dirichlet problems

Au+q(z,u) =0
(26)
ulgq =0y

with respect to the parameter 6 to obtain (¢s; denotes the derivative of ¢ with respect to
the second variable)

Aug + qs(z,u)ug =0
(27)
U0|aQ =g
and showing that the equality of Cauchy data for the nonlinear problem (26) implies the
equality of Cauchy data for the linear problem (27). From the uniqueness result for the

linear problem we conclude that
g (v, u') = ¢ (w,u?)

and therefore that the unique solutions to (27) are equal, i.e.

uh = u2
Integrating from 6 = 0, where ¢'(z,0) = ¢?(z,0), to 6 = 1 gives

u = u”.
Once we know that all solutions to (27) are equal, it follows that
(28) a(z, s) = q2(, s)
for every s which can be attained by a solution to (27) at x. As long as % is bounded, it
can be shown that (28) holds for all s.



7. Inverse Scattering at Fixed Energy.
Several authors ([C-K],[I],[N]) have observed that the results from Section 1 can be used
to yield results about inverse scatting at fixed energy. We outline a new approach below.

Consider the Schrodinger equation
(29) (A+qg+MNyY=0 in R"™.

We assume that ¢ has compact support and that A > 0 is fixed. It is well known that for

every w € S"~ ! there exists a unique eigenfunction ¢, (z,w, A) solving (29) which has the

. iV Az 1
¢Q(wi7A) = e’L\/XI'UJ + ‘ n—1 4 (%’w,)\) o < )

1

form

The function a4 ( L w, )\> is called the scattering amplitude. The basic theorem is

mv
Theorem. Let q1 and g2 have support in the ball of radius R. If, for some X > 0 and for
allw e S™~1

x x
30 ag, | —,w, A\ ) = agq, —,w,)\)
) o (i) =an (3

then
q1 = q2
The theorem is a consequence of the following proposition.
Proposition. Suppose that suppg C Q CC R™ and fix A > 0. Then (f,g) is Cauchy data
for (29) in Q if and only if

(31) fa—w—mD:O Vwesnt
oq " OV

According to the proposition, g1 and g2 have the same Cauchy data if their eigenfunc-

tions agree outside some ball. But

(32) (A+ N = Ve) = Qo1 — @292

Since the right hand side of (32) has support inside the ball of radius R, the following
variation of a theorem of Rellich asserts that (30) implies that 14, — 14, is also supported
inside that ball. Let G4(\)f denote the unique solution to

(A+q+M\=f inR"

which satisfies the Sommerfeld radiation condition.
9



Lemma. Suppose that f € H5(Br) with —2 < s < 0 and that A > 0. Then the following
are equivalent:
i) Gq(\)f € H;, for somepu > —1/2
(8) i) (f,q(,w,A) =0 for allwe S™!
i) supp(Gy(\)f) € Br
The hypothesis (30) implies that (14, — 4, ) satisfies ), which, according to the lemma,

implies ¢i7). Hence the Cauchy data Cy, +(Bgr) and Cy,+(Br) are equal. That this implies

that g1 = g2 was shown in the first section of this report.
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